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Recapitulation

• Problem of motion estimation
• Parametric models of motion
• Direct methods for image motion estimation
• Camera models & parametric motion
• Image & video mosaicing as an application
• Quasi-parametric model-based motion & structure 

estimation : Depth and Pose
• Image-based Rendering
• Hi-res stereo sequence synthesis as an IBMR 

application



Plan
• Motivate Image-based Modeling & Rendering (IBMR)

– Change in viewpoint, IMAX app

• Parameterize motion & structure for video 
– Euclidean case
– Direct Estimation

• Plane+Parallax
– Formulation
– Direct Estimation

• IMAX app.
• Tweening app.
• Model-to-video pose estimation
• Video Flashlights



Real-World Apps of IBR

• The Matrix
• What Dreams May Come
• Titanic



Application : Dynamic New View Rendering

The Matrix



Flow-based New View Rendering

Original 8 frames Tweened 71 frames



Enhanced Visualization



3D Model-based Direct Camera Pose 
Estimation and Video Visualization

[Hsu et al. ’00]



Pose Estimation
…when only shape of 3D scene is known ...

? ?? ????



Video to Site Model Alignment

• Model to frame alignment

REFINE

Correspondence-less
exterior orientation
from 3D-2D line pairs



The REGSITE Algorithm
… aligning site model edges to image edges...

• Inputs:
– Predicted pose of camera
– Un-textured (Open Inventor) site model
– Video frame

• Output:
– Estimated pose of camera

• Premise
– Discontinuities in 3D depth are correlated with brightness 

edges in the video frame (most of the time)
• Approach

– Oriented energy image pyramids highlight  image edges
– Extract edges (depth discontinuities) from 3D site model
– Adjust camera pose to maximize  overlap of model and 

image edges
• refinement is done  using coarse to fine strategy over image 

pyramid



Oriented Energy Pyramid

Oriented Energy Pyramid: 4  Orientation Bands 0 deg., 45 deg., 90 deg., 135 deg.



Pose Refinement Procedure
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Pose Refinement Results

Iterative coarse-to-fine adjustment of pose 
over oriented energy pyramid



Geo-registration of Video Sequence from Draper 
Helicopter to 3D Site Models

Original Video Model rendered from the pose of 
the helicopter sensor. 

Pose recovered after geo-
registration process

World as seen from the view-point of the runner

Overlay of site model on video



Re-projection & Enhanced Visualization of Video
Geo-registration of video to site models

Original 
Video

Re-projection of video after merging 
with model. 

Geo-
registration 
of video to 
site model

Site 
model



Application : Model-based Video Visualization



Multiple cameras are merged to form a unified 3D scene representation.  

Each observer views the scene with his own “virtual” camera.

Immersive and Interactive Telepresence
Total Facilities Visualization



Distributed 2D Cameras

It is difficult to interpret activities viewed by multiple cameras



Video Flashlights Concept
[EGWR’02]

A tool for Global Visualization of Dynamic Environments

• 2D Video Flashlights:
– Project multiple 2D videos on a site model.

• Moving Object Cued Video Flashlights:
– Project multiple 2D videos with automatically 

detected moving objects on a site model.

• 3D Video Flashlights:
– Project automatically extracted dynamic object 

models from multiple videos on a site model.



Video Flashlights: Moving Target Cueing

Moving Target Indication (MTI)

Moving objects (humans & vehicles) are detected and segmented from live camera videos
Shown as color coded dynamic visual cues from a bird’s eye view
Accurate dynamic positioning w.r.t. the model provides a global context for the action

[VIDEO]



Video Flashlights

Accurate Projection of multiple video streams onto the site model
Enables interpretation of visual action in the global context of the model
Provides photo-realistic sky-to-street views at arbitrary scales and viewpoints

Live video streams are draped over a site model in real-time
Live videos are being viewed in the context of the model from a bird’s eye view 



Video Flashlights

(video)

Close up view of multiple video streams draped over the site model
Close up view allows zooming onto action that is happening over multiple video cameras  



Depth Computation
for continuous video streams 



2 D
 M

T
I

D
 M

T
I

D
 M

T
I

D
 M

T
I

3D
 M

T
I

Camera 1 Camera 2

• 3D method can separate shadows from moving objects
• 3D method provides better delineation of moving objects

2D and 3D MTI : Results



Where are we headed ?

From Pixels 
to

Intermediate Representations 
for

Perception

Immersive Visualization

Immersive Communications

Cognition

Object / Activity Recognition

Pattern Discovery



AN IMMERSIVE IBMR GRAND CHALLENGE



AND IF WE DO IT RIGHT



Handling Moving Objects in 2D 
Parametric Alignment & Mosaicing



Multiple Motions : Robust Regression

Find the dominant motion while rejecting outliers



Estimating the Mean
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Generalized M-Estimation
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Optimization Functions & their Corresponding Weight Plots

Geman-Mclure Sum-of-squares



Continuation Method: Coarse-to-fine



With Robust Functions Direct Alignment Works 
for 

Non-dominant Moving Objects Too

Original two frames Background Alignment



Object Deletion with Layers

Video Stream with 
deleted moving objectOriginal Video



DYNAMIC MOSAICS

Video Stream with 
deleted moving objectOriginal Video

Dynamic Mosaic Video



SYNOPISIS MOSAICS



Problem

• Assumption:
– Constraints that do not fit the dominant motion are treated 

as outliers : Extreme noise

• Problem:
– But they are not noise
– There indeed are multiple motions present in the scene



Motivate Simultaneous Multiple
Model Estimation



Motivating Multiple Models

Line Fitting





The expected values of the deltas at the maximum
(notice the one value close to zero).



Closeup of the fit



Local maximum



which is an excellent fit to some points



and the deltas for this maximum



A dataset that is well fitted by four lines



Result of EM fitting, with one line (or at least, 
one available local maximum).



Result of EM fitting, with two lines (or at least, 
one available local maximum).



Seven lines can produce a rather logical answer



Motivating Multiple Models

Multiple Motions



Independent Object Motion

Objects are the Focus
Camera is more or less steady



Independent Object Motion
with

Camera Pan

Most common scenario 
for 

capturing performances



Multiple Motions may not be due only to 
independent object motions but due to different surfaces

Or 
“ Motion Layers “ 



Multiple Motions as a
Segmentation & Estimation Problem

• If we know which pixels go with what motion, can 
apply the now well-known methods of motion 
estimation to compute the motions

• Alternatively, given the motion parameters, 
potentially can label pixels corresponding to each 
of the motions.



Represent Multiple Motions
as Layers

Input Sequence

Layers



Compact Video Representation
...motion and scene structure analysis...

Separate coherent & significant motion & structure components

• Coherence : Align images using 2D/3D models of motion and structure

Separate backgrounds and moving objects with layers

• Significance : Regions of support for various motion & structure components



MULTIPLE 2D PARAMETRIC MODEL ESTIMATION

… layered scene representation …

THREE ISSUES

• How many models ?

• What are the model parameters ?

• What is the spatial support layer for each model ?



Competitive Multiple Model Estimation
[Ayer,Sawhney ‘95 ‘96]

• Model image motion in terms of a mixture of Gaussian models

• Layers of support represented as ownership probabilities

• Robust Maximum-Likelihood estimation of mixture and layer 
parameters using the Expectation-Maximization algorithm

• Minimum Description Length (MDL) encoding to select adequate 
number of models



Automatic Layer Extraction : Intuition

Input Sequence Layer Motion

Assume that the segmentation of pixels into layers is known,

then estimating the motion is easy.
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Where do we get the weights from ?

Input Sequence Layer Motion

Model each pixel as potentially belonging to N layers each
with its own motion model.
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Assume that we know the motion model, but not the pixel
ownership to the model



Where do we get the weights from ?

Input Sequence Layer Motion

Each pixel has a likelihood associated with a motion model
and the two images

)2
))p(I)A;p(uI(-

exp(
2
1

)A),p(I|)p(I(L 2

2
i

T
1

i12 σ
δ+

σπ
=

∇

∑∑∑∑=

i
i12

i12
i )A),p(I|)p(I(L

)A),p(I|)p(I(L
)p(w



Multiple Models : Mixture Models 
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• Model an image as a density function created using a mixture of Gaussian
models conditioned on the adjacent images : 

The mixture model is parameterized by 
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: Ensemble of motion parameters for the g models

: Ensemble of the Gaussian distribution parameters for the models

: Ensemble of the ownership layers for the models

No. of models



Mixture Models
… represent layer ownerships as binary hidden variables ...

{{{{ }}}}N..1j,g..1i),p(zZ ji ============•

is a set of binary indicator variables representing the model labels.

• The stochastic model for the complete data, measurements and hidden
variables is:

4342143421
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Observation Likelihood Prior on the labels



Mixture Model Estimation
The Expectation-Maximization (EM) Algorithm

• Maximize the negative log-likelihood of the parameters given the 
observations : 
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• Define the expectation of the likelihood : 

[[[[ ]]]])()( �,|),|()�|( kk IZILEQ ΦΦΦΦΦΦΦΦ====ΦΦΦΦΦΦΦΦ

(((( )))) (((( ))))++++ΦΦΦΦ====ΦΦΦΦΦΦΦΦ ∑∑∑∑∑∑∑∑
====

g

i x

k
i

k xipQ
1

)()( �,|log)�|( ππππ

(((( )))) (((( ))))∑∑∑∑∑∑∑∑
====

ΦΦΦΦΦΦΦΦ
g

i x

kk
l xipxIp

1

)()( �,|�|)((log

Data Likelihood

Mixing Proportions Ownership



The EM Algorithm
… iterate between layer and motion estimation ...

Starting with an initial estimate )0(Φ� repeat :

• E-step : Compute the function )Φ�|Φ(Q )k(

Given the current estimate of the alignment parameters,
compute the layer ownerships.

• M-step : Compute )Φ�|Φ(QmaxargΦ� )k(

Φ

)1k( ====++++

Given the layer ownerships compute the alignment parameters.



Model Selection

• We wish to choose 
a model to fit to data
– e.g. is it a line or a 

circle?
– e.g is this a 

perspective or 
orthographic 
camera?

– e.g. is there an
aeroplane there or is 
it noise?

• Issue
– In general, models with 

more parameters will fit a 
dataset better, but are 
poorer at prediction

– This means we can’t 
simply look at the 
negative log-likelihood 
(or fitting error)



Top is not necessarily a better
fit than bottom
(actually, almost always worse)





We can discount the fitting error with some term in the number
of parameters in the model.



How Many Models Are Adequate ?
Minimum Description Length (MDL) encoding

for
Optimizing Modeling Complexity

• Define model complexity as the total number of bits needed to 
encode the data and the models:

{{{{ }}}} {{{{ }}}}
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Model Encoding Length
(including pixel ownerships)

Data Encoding Length
(residuals after alignment)

• Find the optimum number of models and the model parameters that
minimize the total encoding complexity.



Scale and motion 
parameters initial

estimates

E-step:
computation of 

ownership
probabilitities

M-step:
computation of

motion and scale
parameters

MDL-step:
selection of the 

number of models
and outlier detection

INITIALIZATION EM-step

MDL-stepMAP segmentation

MAP-step:
motion labeling
using a MAP

criterion

The Complete Algorithm



Automatic Extraction
of 2D Layers

Input Sequence

Layers



Automatic Extraction
of 2D Layers

Input Sequence

Layers




