Hybrid Stereo Camera

An IBR Approach for Synthesis of Very High Resolution Stereo Image Sequences

Harpreet S. Sawhney Yanlin Guo Keith Hanna Rakesh Kumar Sean Adkins Samuel Zhou

http://www.sarnoff.com/search/tech_papers/hybrid/index.asp

Motivation

Extremely High Visual Quality

Stereo Creation & Projection 4K-8K digital resolution per eye World's Largest Film Format

IMAX 3D Content

CG Animations Live Action Mixed CG & Live Action

Limitations on IMAX 3D Content Creation

Live Action Content

- Camera is very large.
- Requires two strips of large format film.
- Size of camera and cost of film limits production.

CG Content

• 6-14 hours rendering time per frame !

Solution: Hybrid Stereo Camera

Expand the possibilities for 3D Cinematography:

Can Computer Vision & IBR deliver High Quality?

With reduced cost & time ?

Explore an Analysis-Test-Synthesis Framework for I mage-based Modeling & Rendering

Hybrid Stereo Camera

... pure upsampling is not an option ...

INPUT

OUTPUT

Live Action Sequence

Live Action : Hybrid Input

Left

Approach

Convergence of Computer Vision & IBR

- Compute stereo disparities at lo-res.
- Compute motion (Optical Flow) at lo-res.
- Compute quality map at lo-res.
- Synthesize hi-res frame.
- Fill-in and color correct mis-matched pixels.
- Temporal de-scintillation.

Approach

Convergence of Computer Vision & IBR

- Compute stereo disparities at lo-res.
- Compute motion (Optical Flow) at lo-res.
- Compute quality map at lo-res.
- Synthesize hi-res frame.
- Fill-in and color correct mis-matched pixels.
- Temporal de-scintillation.

Correspondences by Coarse-to-fine Model-based Image Alignment : A Primer

Correspondences by Coarse-to-fine Model-based Image Alignment : A Primer

3D Stereo Correspondence Original Left-Right Pair

3D Stereo Correspondence Disparity/Correspondence Map

3D Stereo Correspondence

Original Left & Disparity-warped Right Frame

Quality of Alignment Map Associate a [0,1] value at each pixel

Aggregate Quality Map at Lo-Res Using Stereo-Motion Synthesis

····· Warped frame t-1

Warped frame t

Warped frame t+1···

Original Lo-res Synthes zed Lo-res Aggregate Q-map

Synthesis at the High-Resolution

Left Lo-res Original at t

Right Hi-res Original at t

Filling-in Mismatched Pixels at Hi-res

Hi-res Synthesized frame

q > thresh

Ν

Up-resed frame

Filling-in Mismatched Pixels at Hi-Res

Sample Result

Color Correction

Synthesized Hi-res frame

Hi-res Q-map

Use Matched Pixels to solve for a Color Model: Color(p') = A * Color(p) + b

> Apply Model to Mismatched Pixels

Up-resed frame

Color Correction

Sample Result

Quantitative Validation

Synthesis vs. Up-resing : Live Action

Synthesis vs. Up-resing : CG Animation

Computational Time

- Research Code : Currently about 45 mins. per 4K frame on an SGI 350 Mhz Octane.
- Optimizations can easily reduce the time to about 4-5 mins.

Generalizations

Key I dea : I BMR can exploit the availability of lower resolution or other similar data for high quality rendering.

Summary

- Applied an Analysis-Test-Synthesis Framework to high quality stereo synthesis.
- Initial validation of quality of synthesis is very encouraging.
- Potential for new research and applications based on generalizations of the framework.

Acknowledgements

- Ed Lepieszo & Carol Harrison, IMAX
 Help with demos and frame synthesis.
- Vince Paragano & Doug Corliss, Sarnoff
 Software and systems support.
- Spans & Partner Inc., and IMAX
 CG and Live Action Stereo Sequences.

Related Work

- Perception of mismatched stereo pairs
 Julesz'71, Perkins'92, Stelmach et al.'00
- Multi-resolution 3D/image sequence analysis
 - Bergen et al.'92, Hanna et al.'93
- Alignment quality measures
 Irani et al.'94, Szeliski'99, Lubin'92

Temporal De-scintillation Problem

- Synthesis is uncorrelated over time.
- Produces temporal scintillation.

Solution

• Smooth quality maps over time before using them for compositing.

Outstanding Issues

- Evaluation of JND based quality maps.
- Adaptive combination of stereo and motion frames.
- I ssues related to real hybrid camera design.

Motivation

Extremely High Visual Quality

Stereo Creation & Projection 4K-8K digital resolution per eye World's Largest Film Format

IMAX 3D Content

CG Animations Live Action Mixed CG & Live Action

Expand the possibilities for 3D Cinematography:

Can Computer Vision & IBR deliver High Quality?

With reduced cost & time ?

Explore an Analysis-Test-Synthesis Framework for I mage-based Modeling & Rendering

3D Movie Demo

Computational Time

- Research Code : Currently about 45 mins. per 4K frame on an SGI 350 Mhz Octane.
- Optimizations can easily reduce the time to about 4-5 mins.

Potential cost/time reduction for a 45 min. feature

180 CPUs / 6 months > 30 CPUS / 2.5 months