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Recapitulation
• Problem of motion estimation

• Parametric models of motion

• Direct methods for image motion estimation

• Camera models & parametric motion

• Image & video mosaicing as an application



Plan
• Motivate Image-based Modeling & Rendering (IBMR)

– Change in viewpoint, IMAX app

• Parameterize motion & structure for video 
– Euclidean case
– Direct Estimation

• Plane+Parallax
– Formulation
– Direct Estimation

• IMAX app.
• Tweening app.
• Model-to-video pose estimation
• Video Flashlights



Graphics Vs. Vision

Graphics
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Modeling Complexity vs. Realism Dilemma

Can we model and render this scene authentically ?

A very hard vision and graphics problem !



Can we model less

and

fill-in details with more and more

images ?



Plenoptic Function

Describes rays of light at every point in space
from every direction, at every wavelength, and at
each time instant !!!
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Pure IBR
Use Images to Generate Novel Views

• Mosaics and Panoramas:
– Projective, Cylindrical, Spherical

• Concentric Mosaics:
– Restricted change in viewpoint 



An Illustrative Example
Concentric Mosaics
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New View Generation
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New View Generation

Details:

• New view rays will not be exactly

original pixel locations

• Need to interpolate rays

• Since these rays come from cameras
that have different centers of 
projection, interpolation ideally
requires depth estimates



Local Geometry for IBR

• “Extreme” IBR works only with images

• Need a dense collection to cover even a restricted 
collection of generatable viewpoints

• Extend the scope of IBR by including local geomtery 
modeling using parallax/depth



Image Motion : 3D Parameterization
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Image Motion : 3D Parameterization
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Observations
• For a perspective camera:

– Rotational image displacements are depth independent
– Translational displacements contain depth information

• Each displacement vector provides two equations
– There are 6 motion parameters common to all vectors
– Depth parameter is typically unique to each vector

• Scale ambiguity between depth and translation
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Observations
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Quasi-Parametric Motion Model

Z
xT-T

xxy-y-x-x zx2
yxzy +ω+ωωω=′′′′

Z
yT-T

y-xyx-y-y zy2
xyzx +ωω+ω+ω=′′′′

Global Parametric
Component

Local Parametric
Component

For rigid small motion scenario:

• 6 global model parameters

• ),,( zyx ωωω Rotations )T,T,T( zyx Translations

• One local parameter per pixel : Depth Z



Direct Model Estimation
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Observations: The error function is quadratic in inverse depth

Given the depth at each pixel, it is quadratic in
rotation and translation parameters

Therefore, can be iteratively solved using depth and motion optimizations



Solution

Simplifying assumption : Although depth varies from pixel-to-pixel
we assume, that within a small window,
(say 5x5) around each pixel, depth is constant

Local Optimization Step : Eliminate depth analytically
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Solution

Global Optimization Step : Substitute the analytical solution for Z
in the optimization function and solve
iteratively for rotation and translation
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• This optimization function is quadratic in rotations
• So solve for rotations using closed form
• Solve for translations analytically

• Employ the older trick of warp and solve



Global Constraints on Local Motion

Brightness Constancy

3D Motion Constraint

Unambiguous
Local

Estimate



• Dense representation of geometry

– Planar layers capture sharp depth boundaries
– Global matching constraints handle visibility

• Alignment based estimation of structure

– Correspondences are not a pre-requisite for structure estimation
– 3D constrained depth/parallax maps are sharper

• Independent motion detection with 3D constraints

– Shape and motion constraints used to detect independent motions

Layered Representation of 3D Geometry



LOCAL RANGE ESTIMATION HANDLES
ARBITRARY SHAPED OBJECTS

Two Views

Automatically computed
Shape/Depth

Synthetic video rendered from 
original new views



Multi-baseline depth estimation

Depth maps

New view 
rendering

Global matching method

Thin
structures

Accurate
boundaries

Accurate
boundaries



Depth vs. Parallax

• Euclidean depth estimation requires calibrated 
cameras:
– External Calibration : Camera R & T for each position 

of the camera
– Internal Calibration : Focal length, center, skew

• IBR can be accomplished usually without 
calibration:
– Compute parallax instead of depth
– A special practical version : plane + parallax



Direct Estimation of Parallax/Depth



Plane + Parallax 3D Model
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• Given a reference view, a reference plane, 
points in any other view are related by :

1. a plane projective transformation
2. the epipole, and
3. the “relative depth/parallax” 

• That is, 
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Plane+Parallax for Small Displacements
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Shape Estimation through 3D Constrained 
Image Alignment

• Parameterize the image correlation constraint with plane+parallax:

• Given an estimate of )p(κ,t,A )m()m()m(
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Plane+parallax Demo

Input Sequence Plane Alignment

Parallax 
AlignmentShape



A Novel Real-world Application
of IBR

IMAX 3D Movie Synthesis




