The greedy algorithm runs to completion:

Let e be an uncolored edge.

If e's ends are in different blue trees, apply blue rule.

If e's ends are in the same blue tree, apply red rule.
Correctness of blue rule:

\[e = \min \text{ uncolored edge across cut.} \]

\[T = \min \text{ tree containing all blue edges, no red ones.} \]

If \(e \) not in \(T \): find path in \(T \) connecting ends of \(e \), edge \(e' \) on path crossing cut.

Swap \(e \) and \(e' \) to give \(T' \)

\[c(e') \leq c(e') \text{ by blue rule}, \]

\[c(e) \geq c(e') \text{ by minimality of } T \]

\(T' \) satisfies invariant after \(e \) is blue

(swapping can only occur if equal costs)
Correctness of red rule:

\(e = \text{max uncolored edge on cycle.} \)

\(T = \text{min tree containing all blue edges, no red ones} \)

If \(e \in T \), delete \(e \) from \(T \), find edge \(e' \) on cycle (other than \(e \)) reconnecting two parts, form \(T' \) by swapping \(e' \) for \(e \) in \(T \).

\(c(e) \geq c(e') \) by red rule

\(c(e) \leq c(e') \) by minimality of \(T \)
“HON-EEE...CALL A MATHEMATICIAN!”
Shortest Paths

Digraph with edge weights (costs, distances)

Shortest path from s to t: path of minimum total wt.

Problems:

single pair: given s, t, find a shortest path from s to t

single source: given s, find shortest paths from s to all reachable vertices

all pairs: find shortest paths between all pairs

Cases:

acyclic

no negative wts

general

(planar, etc.)
Properties:

If a shortest path from \(s \) to \(t \) iff there is no negative (total wt.) cycle on a path from \(s \) to \(t \).

If there is no such cycle, there is a shortest path that is simple (no repeated vertex).

If no neg cycle reachable from \(s \), then \(s \) shortest path tree; rooted at \(s \), contains all vertices reachable from \(s \), all tree paths are shortest paths in graph.

New goal: find a negative cycle or construct a shortest path tree.

(single-source problem is central)
Given a spanning tree T, rooted at s,

\[d(v) = \text{tree wt from } s \text{ to } v, \text{ is } T \text{ a shortest path tree?} \]

Yes, iff there is no $\{(v,w)\}$ with $d(v) + c(v,w) < d(w)$

Edge relaxation algorithm to find a shortest path tree:

\[d(s) = 0, \quad d(v) = \infty \text{ for } v \neq s \]

while there exists $\{(v,w)\}$ with $d(v) + c(v,w) < d(w)$

\[d(w) = d(v) + c(v,w); \quad p(w) = v \]

$d(v)$ is always the wt of some $s-v$ path

if algorithm stops and p defines a tree, must be a shortest path tree

stops iff no neg cycle

(alg maintains $d(w) \geq d(v) + c(v,w)$ if $v = p(w)$)
Suppose \(T \) not a SP tree. Let \(x \) be such that \(d(x) > s-x \). Let \(P \) be a shortest path from \(s \) to \(x \). \(d'(v) = P \)-distance from \(s \), \((v, w) \) first edge along \(P \) such that \(d'(w) < d(w) \). Then \(d(v) + c(v, w) = d'(v) + c(v, w) = d'(w) < d(w) \). (This gives the hard direction of SP tree test.)

Suppose edge relaxation algorithm creates a cycle.

Then it must be a negative cycle.

\[
s \rightarrow w \rightarrow v_2 \rightarrow v_3 \rightarrow w \rightarrow x \rightarrow C \rightarrow s
\]

\[
d(v) + c(v, w) < d(w) \Rightarrow d(v) - d(w) + c(v, w) < 0
\]

Turn around cycle: \[
\sum_{i=1}^{k} d(v_i) - d'(v_{i+1}) + c(v_i, v_{i+1}) < 0
\]
Labeling and scanning algorithm:

$L = \{s\};$ $d(s) = 0;$ $d(v) = \infty$ for $v \neq s$;

while $L \neq \emptyset$ do
 remove v from L;
 scan(v); for each (v,w) do
 if $d(v) + c(v,w) < d(w)$ then
 $d(w) = d(v) + c(v,w);$ $p(w) = v;$ add w to L;

(unlabeled)

(labeled)

(scanned)
Any edge: topological scanning order

$D(x)$

Non-negative weight: shortest-first scanning order

$D(x^4)$ original $D(x^4 + n)$ standard heap

$D(x^{n^2} + n^2)$ Fibonacci heap

No vertex scanned more than once:

Invariant $\phi(x) = x(x) = x(\phi(x))$

Induct x

\[x \]

\[\phi(x) \]
General case: FIFO scanning order

Maintain L as an (ordinary) queue.

Phases:

phase 0: scan of s

phase k: scan of vertices added to L during phase $k-1$

After phase k, all distances for shortest paths of $k+1$ or fewer edges are correct.

\Rightarrow $n-1$ or fewer phases

$\Rightarrow \mathcal{O}(nm)$ time.
Negative cycle detection:

Method 1: Count phases, stop after first scan of n-th phase. Parent pointers will define a (negative) cycle.

Method 2 (early detection): Maintain a predecessor list of vertices in the current shortest path tree. When re-labeling w using \((v,w)\), explore the subtree rooted at w, disassembling it and looking for v.

Both methods take \(O(m)\) time total.

(Theoretically) inferior methods:

Method 3: When re-labeling v using \((v,w)\), follow parent pointers from v looking for w.

Method 4: Maintain tentative shortest path tree as a dynamic tree.
bad (negative cycle)
Definition: New vomit\(\frac{1}{l}\) level of products

\[(c_{old} + m) \rightarrow (c_{new} + m) \rightarrow 0 \]
All pairs:

Dynamic prog.

\[d(x, x) = 0 \]

\[d(x, y) = d(x, z) + d(z, y) \text{ if } x \neq y \text{ and } (x, y) \in E \]

\[d(z, y) = d(x, z) \text{ if } x = y \text{ and } (x, y) \in E \]

for \(z \)

for \(y \)

for \(x \)

for \(y \)

if \(d(x, z) + d(z, y) \leq d(x, y) \) then

\[d(y) \leftarrow d(x, z) + d(z, y) \]

\[O(n^3) \]
single source

\[\text{Dijkstra: } O(nm + n^2 \log n) \]

Bellman-Ford:

\[\text{eliminate neg edge cost} \]

\[c(v, w) = c(v, w) + p(v) - p(w) \geq 0 \]
Heuristic Search: Let $e(v)$ be an estimate of the distance from v to the goal t.

Use Dijkstra's algorithm with $d(v) + e(v)$ as the selection criterion.

The method works if

$$e(v) \leq d(v, w) + e(w) \text{ for all } v, w$$

(Estimate e is a consistent lower bound on the actual distance.)

In Euclidean graphs the distance "as the crow flies" works.

Hart, Nilsson, Rafael (1968)
Heuristic Search: Let $e(v)$ be an estimate of the distance from v to the goal vertex t.

Use Dijkstra's algorithm, but expand the frontier vertex v with $d(v) + e(v)$ minimum.

This method is correct if

$$e(v) \leq d(v, w) + e(w) \quad \text{for all } v, w.$$

Estimate e is a consistent lower bound on the actual distance.

Distance "as the crow flies" works.

Hart, Nilsson, Raphael (1964)
Dijkstra's Algorithm

Heuristic Search
Bidirectional Search: Search forward from s and backward from t concurrently.

⇒ Getting the stopping rule correct is tricky, especially for bidirectional heuristic search.