How long to process a sequence of searches?

If access frequencies are known in advance and initial tree is arbitrary but fixed, an optimum binary search tree (Knuth-style) minimizes the total search time.

What if access frequencies are not known in advance?

What if tree is allowed to change during the sequence?
Total time for a sequence of accesses

= total search time
 (sum of 1+ depth of accessed item, when accessed)

+ total number of rotations
 (between searches arbitrary rotations can be done)
Goal: Compare the minimum-cost off-line strategy with (simple) on-line strategies.

Can an on-line strategy (no future knowledge) achieve a performance within a constant factor of that of the optimum off-line strategy (access requests known in advance)?
Balanced trees have $O(\log n)$ worst-case access, insert, delete time.

Optimum trees minimize average access time for fixed, known probabilities, independent accesses. Construction takes $O(n^2)$ time, $O(n)$ time for approximately optimum tree.

Biased trees are approximately optimum, allow fast insertion, deletion, require known probabilities (but could keep frequency counts) are somewhat complicated.
A Self-Adjusting Search Tree
Previous Self-Adjusting Heuristic

1. **Move to root**: do single rotations all along access path.

 ![Diagrams showing example of move to root](Image)

2. **Single exchange**: do one rotation at parent of accessed node.

 ![Diagrams showing example of single exchange](Image)

Both are $O(n)$ per operation, even amortized.
Bad Examples

MTR

SE
Splaying: Sleator and Tarjan (1985)

Rotate each edge along an access path.

Perform rotations in pairs, roughly bottom-up.

Access path is (roughly) halved, other nodes can move down, but only by a few steps.
Cases of Splaying

zig

zig-zig

zig-zag
Step by Step Examples

\[
\begin{array}{c}
\rightarrow 1 \\
\rightarrow 1 \\
\rightarrow 1 \\
\end{array}
\]
EXAMPLES

1 2 3 4 5 6 7 8 9 10
splay

1 2 3 4 5 6 7 8 9 10
splay

1 4 8 10 3 6 7 5
Accessed node moves to root, distance of the other nodes from the root essentially halves.
Splaying in sequential order

\[
\begin{align*}
\text{average} & = 3^{2/3}
\end{align*}
\]
What is Known

Let m be the number of accesses, n the number of nodes. Assume $m \geq n$.

Total time for m accesses $= O(m \log n)$: matches bound for balanced trees.

Total time for any access sequence is within a constant factor of that for an optimum static tree.

Total time for n accesses, one per item, in symmetric order, is $O(n)$.

+ 25
Potential: define the total weight of a node to be the sum of the individual weights of its descendants, including itself.

The potential of a tree is the sum of the (base-two) logarithms of the weights of its nodes.

\[\Phi = \sum_{i=1}^{n} \log_2 \left(+w_i \right) \]
Access Lemma

For any assignment of positive weights to items, the amortized time to access item \(i \) is at most

\[3 \log \left(\frac{W}{w_i} \right) + 1 \]

where \(W = \text{total weight} \) and the cost of an access is the depth of the accessed node.

Note: The item weights are parameters of the analysis, not of the algorithm.
Let \(tw(x) = \text{sum of weights of all items in subtree of } x \)

rank of \(x = r(x) = \log_2 tw(x) \)

We shall show:

amortized time of a splay step at \(x \) is

\[
\leq 3 \left(r'(x) - r(x) \right) + 1 \text{ if zig}
\]

\[
\uparrow \quad \uparrow
\]

after \quad before

Then total amortized time of splay is

\[
\leq 3 \left(r_{\text{final}}(x) - r_{\text{initial}}(x) \right) + 1
\]

\[
\leq 3 \left(\log W - \log w_i \right) + 1
\]

\[
\leq 3 \log \left(\frac{W}{w_i} \right) + 1
\]
Analysis of Case 2 (zig-zig) Step

Amortized time of step

\[
= 1 + r'(y) + r'(z) - r(x) - r(y)
\]

\[
\leq 1 + r'(x) + r'(z) - 2r(x) \quad \text{since} \quad r'(x) \geq r'(y), \quad r(y) \geq r(x)
\]

\[
\leq 3(r'(x) - r(x)) \quad \text{iff}
\]

\[
2r'(x) - r(x) - r'(z) \geq 1.
\]

But \(r'(x) \geq \max \{r(x), r'(z)\} \). Also, \(tw(x) + tw'(z) \leq tw'(x) \).

Thus \(\min \{tw(x), tw'(z)\} \leq tw'(x)/2 \). I.e. \(r'(x) \geq \min \{r(x), r'(z)\} + 1 \).

\[
r(x) = \log tw(x)
\]
Corollaries

Balance Theorem
The total time for m accesses in an n-node tree is \(O((m+n) \log (n+2)) \).

Static Optimality Theorem
If every item is accessed at least once, the total access time is \(O(m + \sum_{i=1}^{\infty} q_i \log (m/q_i)) \), where \(q_i \) is the access frequency of item \(i \).
Extension of argument shows that self-adjusting
trees are as efficient (to within a
constant factor) as optimum trees, over
a sequence of operations.
Static Finger Theorem
The total access time is
\[o(n \log n + \sum_{j=1}^{m_3} \log(d(i,j,f)+2)) \]
where \(f \) is any fixed item, \(ij \) is the item accessed during the \(j^{th} \) access, and \(d(i,i') \) is the (symmetric-order) distance between items \(i \) and \(i' \).
"Working Set" Theorem

The total access time is

\[o(n \log n + \sum_{j=1}^{m} \log(t(i, j)+2)) \]

where \(t(i, j) \) is the number of different items accessed before access \(j \) since the last access of item \(i \).
Access lemma holds for variants of splaying, including top-down and move half-way to root methods. For the latter, the constant factor is 2.
Thm. Total time to access all items once, in symmetric order, using splaying = $O(n)$.

(any initial tree)
Conjecture

Dynamic Optimality

For any access sequence, splaying minimizes the total access time to within a constant factor among dynamic binary search tree algorithms, assuming unit cost per rotation and access cost equal to depth.

(Initial tree is given or $+O(n)$ term)