Dynamic Trees

- Motivation (online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Online Minimum Spanning Trees

- The online minimum spanning trees problem:
 - Input: a sequence of edges (with costs), one at a time.
 - Goal: keep the minimum spanning forest of the graph.
- An algorithm:
 - For each new edge (u, v):
 - If u and v belong to different components, insert the edge.
 - If u and v are in the same component:
 - Insert (u, v) into the union, and
 - Remove the most expensive edge in the cycle created.
Renato Werneck

Dynamic Trees
Online Minimum Spanning Trees

Dynamic Trees

Online Minimum Spanning Trees

Dynamic Trees

Online Minimum Spanning Trees

Dynamic Trees

Online Minimum Spanning Trees

Dynamic Trees

Dynamic Trees
Online Minimum Spanning Trees

<table>
<thead>
<tr>
<th>edge</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a,b)</td>
<td>6</td>
</tr>
<tr>
<td>(a,c)</td>
<td>3</td>
</tr>
<tr>
<td>(a,d)</td>
<td>4</td>
</tr>
<tr>
<td>(b,d)</td>
<td>3</td>
</tr>
<tr>
<td>(b,e)</td>
<td>1</td>
</tr>
<tr>
<td>(c,d)</td>
<td>1</td>
</tr>
<tr>
<td>(d,e)</td>
<td>2</td>
</tr>
<tr>
<td>(e,f)</td>
<td>2</td>
</tr>
</tbody>
</table>

• How fast is the algorithm?
 - How fast can we find the most expensive edge in a cycle?
 - \(O(\log n)\), with the right data structure.
 - Total running time: \(O(m \log n)\) \((m \text{ edges}, n \text{ vertices})\)

Dynamic Trees

- Motivation (online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees - Problem Definition

- Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- Operations allowed:
 - \(\text{link}(u,v)\): creates an edge between \(u\) (a root) and \(v\).
 - \(\text{cut}(v)\): deletes edge \((u, p(v))\) (where \(p(v)\) is its parent).
 - \(\text{findcost}(v)\): returns the cost of vertex \(v\).
 - \(\text{findroot}(v)\): returns the root of the tree containing \(v\).
 - \(\text{findmin}(v)\): returns the vertex \(w\) of minimum cost in the path from \(u\) to the root.
- A possible extension:
 - \(\text{event}(u)\): makes \(u\) the root of its tree

Dynamic Trees

- An example (two trees):

![Dynamic Trees Diagram]
Dynamic Trees

- **link:**
 - E_{11}
 - E_{12}

- **cut:**
 - E_{21}
 - E_{22}

Dynamic Trees

- **findmin:** $s \rightarrow b$
- **findroot:** $s \rightarrow a$
- **findcost:** $s \rightarrow 2$

Applications

- Used as a building block of several graph algorithms:
 - online minimum spanning trees
 - dynamic graphs
 - directed minimum spanning trees
 - network flows (e.g., maximum flow)
 - ...

Dynamic Trees and Online MSTs

- **How can dynamic trees help us in the online MST problem?**
 - We must answer the following (equivalent) questions:
 - Should we insert (c,g), with cost 4, into the following tree?
 - Is (c,g) cheaper than some other edge in the cycle it creates?
 - What is the most expensive edge in the path between c and g?

Dynamic Trees and Online MST

- **How can dynamic trees help us in the online MST problem?**
 - We must answer the following (equivalent) questions:
 - Should we insert (c,g), with cost 4, into the following tree?
 - Is (c,g) cheaper than some other edge in the cycle it creates?
 - What is the most expensive edge in the path between c and g?
 - Imagine the tree is rooted at g now, what is the most expensive edge in the path from c to the root?
Obvious Implementation of Dynamic Trees

- Each node represents a vertex.
- Each node \(x \) points to its parent \(p(x) \):
 - cut, link, findroot: constant time.
 - findroot, findmin: time proportional to path length.
- Acceptable if paths are small, but \(O(n) \) in the worst case.
- We can get \(O(\log n) \) for all operations.

Dynamic Trees

- Motivation (online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Paths

- We start with a simpler problem:
 - Maintain set of paths subject to the following operation:
 - \(\text{split} \): removes an edge, cutting a path in two;
 - \(\text{concatenate} \): links endpoints of two paths, creating a new path.
 - Operations allowed:
 - \(\text{findmin}(v) \): returns the root of vertex \(v \);
 - \(\text{findmin}(e) \): returns minimum-cost vertex in the path containing \(e \).

Simple Paths as Lists

- Natural representation: doubly-linked list:
 - Path characterized by two endpoints:
 - \(\text{findroot} \): constant time.
 - \(\text{concatenate} \): constant time.
 - \(\text{split} \): constant time.
 - \(\text{findmin} \): linear time (not good).
 - Can we do it \(O(\log n) \) time?

Simple Paths as Binary Trees

- Alternative representation: balanced binary tree.
 - Leaves: vertices in symmetric order.
 - Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

- Compact alternative:
 - Each internal node represents both a vertex and a subpath:
 - subpath from leftmost to rightmost descendant.
Simple Paths: Maintaining Costs

- We store cost(x) directly on each vertex.
- Problem: findmin still takes linear time (must visit all vertices).

Simple Paths: Finding Minima

- Also store mincost(x), minimum cost in subpath with root x.
- findmin(x) now runs in O(log n) time.

Simple Paths: Data Fields

- Final version:
 - Stores mincost(x) and cost(x) for every vertex x.

Simple Paths: Structural Changes

- Concatenating and splitting paths:
 - Join or split the corresponding binary trees;
 - Time proportional to tree height.
 - For balanced trees (AVL, red-black, etc.), this is O(log n):
 - Rotations must be supported in constant time.
 - We must be able to update mincost, but that's easy:

Splaying

- Simpler alternative to balanced binary trees: splaying.
 - Does not guarantee that trees are balanced in the worst case.
 - Guarantees O(log n) access in the amortized sense.
 - Makes the data structure much simpler to implement.
 - Basic characteristics:
 - Does not require any balancing information;
 - On an access to v:
 - Moves v to the root;
 - Roughly halves the depth of other nodes in the access path.
 - Primitive operation: rotation.
 - All operations (insert, delete, join, split) use splaying.

Splaying

- Three restructuring operations:
An Example of Splaying

Dynamic Trees

Dynamic Trees
Amortized Analysis

- Bounds the running time of a sequence of operations.
- Potential function Φ maps configurations to real numbers.
- Amortized time to execute each operation:
 - $c_i = t_i + \Phi_i - \Phi_{i-1}$
 - t_i: amortized time to execute i:th operation;
 - Φ_i: potential after the i:th operation.
- Total time for m operations:
 \[\sum_{i=1}^{m} t_i = \sum_{i=1}^{m} (c_i + \Phi_i - \Phi_{i-1}) = \Phi_m - \Phi_1 + \sum_{i=1}^{m} c_i \]

Amortized Analysis of Splaying

- Definitions:
 - $s(x)$: size of node x (number of descendants, including x);
 - At most n, by definition.
 - $r(x)$: rank of node x, defined as $\log s(x)$;
 - At most $\log n$, by definition.
 - Φ: potential of the data structure (twice the sum of all ranks).
 - At most $n \log n$, by definition.
- Access Lemma [ST83]: The amortized time to splay a tree with root t at a node x is at most
 \[6(r(t) - r(x)) + 1 = O(\log s(x)/s(x)) \]
Proof of Access Lemma
- Access Lemma [SF87]: The amortized time to splay a tree with root at a node *x* is at most
 \[\Theta(r(x) - r(x)) + 1 = O(\log(n)/\Theta(x)) \]
- Proof idea:
 - \(r(x) \) = rank of *x* after the i-th splay step;
 - \(c_i \) = amortized cost of the i-th splay step;
 - \(n_i \leq \Theta(r(x)) - \Theta(x) + 1 \) (for the zig-zag step, if any)
 - \(n_i \leq \Theta(r(x)) - \Theta(x) \) (for any zig-zag and zig-zag steps)
 - Total amortized time for all *k* steps:
 \[\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} \Theta(r(x)) - \Theta(x) \leq k \leq 6 \Theta(x) - \Theta(x) + 1 \]
 \[= 6n_i - 6n_i + 1 \]

Proof of Access Lemma: Splaying Step
- Zig-zag:

 Claim: \(a \leq 4 (\Theta(x)) - \Theta(x) \)
 \[t = \Theta(x) - \Theta(x) \]
 \[2 + (2\Theta(x) + 2\Theta(y) - 2\Theta(x)) \leq 2 + (2\Theta(x) + 2\Theta(y) - 2\Theta(x)) \leq 4 (\Theta(x)) - \Theta(x) \]
 \[= 2 + (2\Theta(y) - 2\Theta(x)) \leq 4 (\Theta(x)) - \Theta(x), \] since \(\Theta(y) \geq \Theta(x) \)
 \[(\Theta(y)) - \Theta(x)) + \Theta(y)) = \leq 1, \] rearranging
 \[\log(\Theta(y)) - \Theta(x)) + \Theta(y)) = \leq 1 \]
 - TRUE because \(\Theta(y)) - \Theta(x)) \) both ratios are smaller than 1, at least one
 is at most \(1/2 \) (and its log is at most \(-1 \)).

Proof of Access Lemma: Splaying Step
- Zig:

 Claim: \(a \leq 4 (\Theta(x)) - \Theta(x) \)
 \[t = \Theta(x) - \Theta(x) \]
 \[2 + (2\Theta(x) + 2\Theta(y) - 2\Theta(x)) \leq 2 + (2\Theta(x) + 2\Theta(y) - 2\Theta(x)) \leq 4 (\Theta(x)) - \Theta(x) \]
 \[= 2 + (2\Theta(y) - 2\Theta(x)) \leq 4 (\Theta(x)) - \Theta(x), \] since \(\Theta(y) \geq \Theta(x) \)
 \[(\Theta(y)) - \Theta(x)) + \Theta(y)) = \leq 1, \] rearranging
 \[\log(\Theta(y)) - \Theta(x)) + \Theta(y)) = \leq 1 \]
 - TRUE because \(\Theta(y)) - \Theta(x)) \) both ratios are smaller than 1, at least one
 is at most \(1/2 \) (and its log is at most \(-1 \)).

Splaying
- Summing up:
 - Notation: \(a = 1 \)
 - Zig: \(a \leq 6 (\Theta(x)) - \Theta(x) + 1 \)
 - Zig-zig: \(a \leq 6 (\Theta(x)) - \Theta(x) \)
 - Zig-zag: \(a \leq 4 (\Theta(x)) - \Theta(x) \)
 - Total amortized time at most \((\Theta(x)) - \Theta(x) + 1 = O(\log(n)) \)
 - Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dynamic Trees
- Motivation (online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions
Dynamic Trees

- We know how to deal with isolated paths.
- How to deal with paths within a tree?

Dynamic Trees

- Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

- A vertex \(v \) is exposed if:
 - There is a solid path from \(v \) to the root;
 - No solid edge enters \(v \).

Dynamic Trees

- A vertex \(v \) is exposed if:
 - There is a solid path from \(v \) to the root;
 - No solid edge enters \(v \);
 - It is unique.

Dynamic Trees

- Solid paths:
 - Represented as binary trees (as seen before).
 - Parent pointer of root is the outgoing dashed edge of the path.
 - Dashed pointers go up, so the solid path above does not “know” it has dashed children.
 - Solid binary trees linked by dashed edges: virtual tree.
 - “Isolated path” operations handle the exposed path.
 - That’s the solid path entering the root.
 - If a different path is needed:
 - expose(\(v \)): make entire path from \(v \) to the root solid.

Virtual Tree: An Example
Dynamic Trees

- Example: expose(y)

 - Take all edges in the path to the root, ...

Dynamic Trees

- Example: expose(y)

 - ... make them solid, ...

Dynamic Trees

- Example: expose(y)

 - ... make sure there is no other solid edge incident into the path.
 - Uses splice operation.

Exposing a Vertex

- expose(y): makes the path from y to the root solid.
- Implemented in three steps:
 1. Splay within each solid tree in the path from x to root.
 2. Splice each dashed edge from x to the root.
 - splice replaces left solid child with dashed child.
 3. Splay on x, which will become the root.

Exposing a Vertex: An Example

- expose(y): (1) splay within each solid tree;
- Does not change the partition into solid paths.
Exposing a Vertex: An Example

- expose(y): (c) splice on all vertices from y to the root.
 - Original exposed path: (d l i f c b a)
 - New exposed path: (y u t s mj g d c b a)

Dynamic Trees

Exposing a Vertex: An Example

- expose(y): (g) splay on y.
 - Does not change the exposed path.

Dynamic Trees

Dynamic Trees: Splice

- Additional restructuring primitive: splice.
 - Dashed child becomes solid, replaces left child.

Dynamic Trees

Exposing a Vertex: Running Time

- Running time of expose(x):
 - Proportional to initial depth of x;
 - x is rotated all the way to the root;
 - we just need to count the number of rotations.
 - Will use the Access Lemma:
 - $a(x), r(x)$ and potential are defined as before;
 - In particular, $a(x)$ is the size of the whole subtree rooted at x.
 - Includes both solid and dashed edges.

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

- k: number of dashed edges from x to the root t.
- Amortized costs of each pass:
 1. Splay within each solid tree:
 - x: vertex splayed on the j-th solid tree.
 - amortized cost of j-th splay: $6 \cdot (j, x) = \delta(x) + 1$ (Access Lemma)
 - $r(x) \leq r(x_j)$, so the sum over a subtree does not pass.
 - amortized cost of first pass $6 \cdot (x \rightarrow \delta(x_j)) = k \leq 6 \log n = k$.
 2. Splay dashed edges:
 - no rotations, no changes in potential: amortized cost is zero.
 3. Splay on x:
 - amortized cost is at most $6 \log n = 1$.
 - splay at root, so exactly 3 rotations happen.
 - each rotation costs one credit, but charges two;
 - the payback is extra rotations in the first pass.
- Amortized number of rotations $s = O(\log n)$.

Dynamic Trees

Implementing Dynamic Tree Operations

- findcost(u):
 - expose u, return cost(u).
- findroot(u):
 - expose u;
 - find w, the rightmost vertex in the solid subtree containing v;
 - splay at w and return w.
- findmin(u):
 - expose u;
 - use mincost to walk down from x to w, the last minimum-cost node in the solid subtree containing v;
 - splay at w and return w.

Dynamic Trees
Implementing Dynamic Tree Operations

- link(u, w):
 - expose u and w (they are in different trees);
 - set p(u) = w (that is, make v a middlechild of w).
- cut(u):
 - expose v;
 - make p(right(v)) = null and right(v) = null;
 - set mincost(v) = min{cost(v), mincost(left(v))}.

Alternative Implementations

- Total time per operation depends on path representation:
 - Splay trees: O(log n) amortized [Sleator and Tarjan, 83].
 - Balanced search trees: O(log n) amortized [ST83].
 - Locally biased search trees: O(log n) amortized [ST83].
 - Globally biased search trees: O(log n) worst-case [ST83].
- Biased search trees:
 - Support leaves with different "weights".
 - Some solid leaves are "heavier" because they also represent dashed subtrees.
 - Much more complicated than splay trees.

Dynamic Trees

- Motivation (online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Extension: Adding Costs

- addcost(v, x) adds x to the cost of all vertices in the path from v to the root.

Adding Costs to Dynamic Paths

- Corresponding operation on dynamic paths:
 - addcost(u, x): adds x to the cost of vertices in path containing v;
 - current representation takes linear time.

Adding Costs to Dynamic Paths

- Better approach is to store Δcost(x) instead (difference form):
 - Root: Δcost(x) = cost(x)
 - Other nodes: Δcost(x) = cost(x) - cost(p(x))
Adding Costs to Dynamic Paths

- Costs:
 - \(\text{addcost: constant time (just add to root)} \)
 - Finding cost(x) is slightly harder: \(O(\text{depth}(x)) \).

Adding Costs to Dynamic Paths

- Still have to implement findmin:
 - Cannot store mincost(x) explicitly (addcost would be linear).

Adding Costs to Dynamic Paths

- Store \(\text{mincost}(x) = \text{cost}(x) - \text{mincost}(x) \) instead.
 - findmin still runs in \(O(\log n) \) time, addcost now constant.

Adding Costs to Dynamic Paths: Updating Fields

- Updating fields during rotations:
 - \(\Delta \text{cost}(v) = \Delta \text{cost}(u) + \Delta \text{cost}(w) \)
 - \(\Delta \text{cost}(u) = -\Delta \text{cost}(v) \)
 - \(\Delta \text{cost}(b) = \Delta \text{cost}(v) + \Delta \text{cost}(b) \)
 - \(\Delta \text{min}(w) = \max(\Delta \text{min}(b), \Delta \text{min}(c)) - \Delta \text{cost}(v) \)
 - \(\Delta \text{min}(c) = \max(\Delta \text{min}(b), \Delta \text{min}(c)) - \Delta \text{cost}(w) - \Delta \text{cost}(u) \)

Adding Costs: Updating Fields

- Updating fields during splices:
 - \(\Delta \text{cost}(u) = \Delta \text{cost}(v) - \Delta \text{cost}(x) \)
 - \(\Delta \text{cost}(u) = \Delta \text{cost}(w) + \Delta \text{cost}(x) \)
 - \(\Delta \text{min}(x) = \max(\Delta \text{min}(b), \Delta \text{min}(c)) - \Delta \text{cost}(v) + \Delta \text{cost}(w) \)
 - \(\Delta \text{min}(x) = \Delta \text{min}(b) - \Delta \text{cost}(w) \)
 - Recall that \(w \) is always the root of a solid tree.
Renato Werneck

Adding Costs: Operations

- **findroot(v):**
 - expose v, return \(\Delta \text{cost}(v) \).
- **findroot(w):**
 - expose v;
 - find w, the rightmost vertex in the solid subtree containing v;
 - splay at w and return w.
- **findmin(v):**
 - expose v;
 - use \(\Delta \text{cost} \) and \(\Delta \text{min} \) to walk down from v to w, the last minimum-cost node in the solid subtree;
 - splay at w and return w.

Adding Costs: Operations

- **addroot(v, x):**
 - expose v;
 - add x to \(\Delta \text{cost}(v) \), subtract x from \(\Delta \text{cost}(\text{left}(v)) \);
 - link(v, w):
 - expose v and w (they are in different trees);
 - set \(\text{p}(v) = w \) (that is, make v a middle child of w).
 - cut(v):
 - expose w;
 - add \(\Delta \text{cost}(v) \) to \(\Delta \text{cost}(\text{right}(v)) \);
 - make \(\text{p}(\text{right}(v)) = \text{null} \) and \(\text{right}(v) = \text{null} \).
 - set \(\Delta \text{min}(v) = \max \{0, \Delta \text{min}(\text{left}(v)) - \Delta \text{cost}(\text{left}(v))\} \)

Another Extension: Change Root

- **event(q):** makes q the root of its tree
 - Make sure q is exposed, reverse solid path.

Another Extension: Change Root

- **event(q):** makes q the root of its tree
 - In the virtual tree, reverse left-right pointers:
 - This can be done implicitly with a reverse bit.
 - Must be stored in difference form (meaning depends on parent).
 - **event(q):** makes q the root of its tree

Other Extensions

- Associate values with edges:
 - just interpret \(\Delta \text{cost}(v) \) as \(\Delta \text{cost}(v, p(v)) \).
- Other path queries (such as length):
 - modify values stored in each node appropriately.
- Free (unrooted) trees: use event to change root.
- Subtree-related operations:
 - Can be implemented, but parent must have access to middle children in constant time.
 - Tree must have bounded degree.
 - Approach for arbitrary trees: “ternarize” them
 - [Goldberg, Grigoriadis and Tarjan, 1991]