Doubly Ordered Trees

Idea: Use both symmetric order and heap order (on different values)

1. Dynamic order statistics (CLRS 302)

 access k^{th} in a list

 Method: store subtree size in each node

 \[
 \text{size}(x) = \text{size} (\text{left}(x)) + \text{size} (\text{right}(x)) + 1
 \]

 $O(1)$ per rotation
2. "Interval trees" (CLRS 311)

store intervals \([x, y]\)

symmetric order on \(x\)
store max \(y\)-value in subtree

can do intersection, containment queries

But (at least) one other kind of "interval tree" exists: CLRS dfn not standard

segment trees are a related structure
3. Treaps: randomized search trees (CLRS 296)

Each newly inserted item gets a random priority.

Maintain symmetric order by value, heap order by priority:
 after insert rotate up along access path to restore heap order.

The tree always looks like a tree generated by random insertions.

Big drawback: high-precision priorities.
4. Priority Search Trees (McCreight, Section 3)

Store pairs \([x, y]\)

Given \(x_0, x_1, y_1\), list all pairs \([x, y]\)
with \(x_0 \leq x \leq x_1\) and \(y \leq y_1\)

1 \(\frac{1}{2}\)-D searching

Time to list \(k\) pairs is \(O(k + \log n)\)

"Interval trees" give \(O(k \log n)\)

Another approach: make a treap
with y-values as priorities
(Vuillemin: pagoda)

But not balanced: pairs with \(x\approx y\)
McCreight: store (up to) 4 pairs per node:
once \((p)\) with min \(y\)-value, the other \((q)\) with splitting \(x\)-value.

Tree is symmetrically ordered on \(x\)-values of \(q\)'s,
min-heap-ordered on \(y\)-values of \(p\)'s.

Each pair appears exactly once as a \(q\), and may
appear once as a \(p\), in a proper ancestor.

\(t, p\) is a pair with min \(y\) that is \(q\) in a proper
descendant of \(t\) and not \(p\) for any proper
ancestor of \(t\).

\(t, validP\) is false iff there is no pair \(t, p\)
\((false \Rightarrow false \text{ at all descendants})\)

\(t, dup\|Q\) is true iff some ancestor \(a\) of \(t\)
has \(a, validP = true\) and \(a, p = t, q\)
\[
\text{list}(t): \begin{cases}
\text{report } t.p \text{ if in range;} \\
\text{report } t.q \text{ if in range and not } t.dup/Q; \\
\text{if } t.p.y \leq y \text{ (or not } t.\text{valid} \text{ and } t.q.y \leq y \text{)} \\
\text{then } \begin{cases}
\text{if } x_0 \leq t.q.x \text{ then list(} \text{left}(t) \text{);} \\
\text{if } x_0 \geq t.q.x \text{ then list(} \text{right}(t) \text{);}
\end{cases}
\end{cases}
\]

Proof of \(O(k+\log n)\) bound: descent both left and right lists a pair; any non-extreme descent list a pair unless terminal.
Rotation

q's okay p's?

dispose(e); dispose(c);

rotate

extract(e); extract(c)
\textbf{dispose}(t): push t.p down into left or right subtree as appropriate, bumping down lower p's, until some p reaches its q

\textbf{extract}(t): use min available among left(t).p, left(t).q, right(t).p, right(t).q; recur on left(t) or right(t) if necessary

Each recurs down a single tree path

\[\Rightarrow O(\log n) \text{ time} \]
extract (t):
 use min available among
 t.left.p, t.left.q, t.right.p, t.right.q;
 recurse on t.left or t.right
 as necessary

dispose (t): if t.valid.p then
 if t.pix < t.q.x then
 (dispose into left subtree)
 if t.p = t.left.q then
 t.left.drop.q = false
 else dispose (t.left);
 t.left.p = t.p;
 t.left.valid.p = true
 else (dispose into right subtree);
 t.valid.p = false

dispose(t): if t.p.x < t.q.x then
 if t.p = left(t).q then
 { dispose (left(t)); left(t).p = t.p }
 else (symmetric on right)
 recursively
 dispose(t); push t.p down into left or right
 subtree as appropriate, bumping down other p's,
 until a bumped p meets its q
Broadcast Scheduling

(Lecture by Mike Franklin → research papers)

Server: many data items → Broadcast channel (single-item) → Users

One server, many possible items to send.

One broadcast channel.

Users submit requests for items.

Goal: Satisfy users as well as possible, making decisions on-line.
Abstractions:

All items have the same broadcast time.

Minimize the sum of waiting times?

Scheduling Policies (heuristics)

Greedy = Longest Wait first (LWF):

Send item with largest sum of waiting times.

(vs. number of requests or longest single waiting time)

$R \times W$: Max # requests \times longest waiting time

Approximations to $R \times W$
Results of Franklin and others:

LWF schedules well "in practice" (in simulations)

but too expensive (linear-time)

This claim used to justify approximations to

$R \times W$, still linear-time but with a smaller

(parameterized) constant.
Questions (for an algorithm guy or gal)

LWF does well compared to what?
 ⇒ Try a competitive analysis

Can we improve the cost of LWF?
 ⇒ What data structure?
Parametric Heap

A collection of items, each with an associated key.

\[\text{key (i) = } a_i x + b_i \quad a_i, b_i \text{ reals, } x \text{ a real-valued parameter} \]

\[a_i = \text{slope}, \quad b_i = \text{constant} \]

Operations:

make an empty heap h.

insert item i with key \(a_i x + b_i \) into heap h.

find an item i in heap h of minimum key for \(x = x_0 \).

delete item i from heap h.
Kinetic Heap

A parametric heap such that successive x-values of find mins are non-decreasing.

(Think of x as time.)

$x_c = \text{largest } x \text{ so far (current time)}$

Additional operation:

decrease the key of an item i, replacing it by a key that is no larger for all $x \geq (\text{next}) \ x_c$
Broadcast Scheduling via a Kinetic Heap

Max-heap (replace find min by find max,

decrease key by increase key =

change sign of all keys)

Can implement LWF or $R \times W$ or any similar policy:

Broadcast decision is find max plus delete

Request is insert (if first) or increase key (if not)

Only find max need be real-time, other ops

can proceed concurrently with broadcasting

Slopes are integers that count requests
What is known about parametric and kinetic heaps?

A **key** is a **line** \Rightarrow computational geometry

Equivalent problems:

- maintain the lower envelope of a collection of lines
 in 2D

 - projective duality

- maintain the convex hull of a set of points in 2D
 under insertion and deletion

"kinetic" restriction = "sweep line" query constraint
(Seminal) Results

Overmars and van Leeuwen (1981)

Dynamic convex hulls and lower envelopes in $O(\log n)$ time per query,

$O(\log^2 n)$ time per update, worst-case

Basch, Guibas, and Hershberger (1997)

"Kinetic" data structure paradigm

(Much other work: improvements, restrictions, etc.)
Simple Kinetic Heap

A balanced binary tree, with items in leaves in left-right order by key slope.

The tree is a tournament on items by current key.

The tree also contains swap times (times when winning keys change) and is a tournament on swap times.

$O(1)$ (worst-case) find min,
$O(\log^2 n)$ amortized insert/delete
$\Phi = \# \text{ right child winners} \cdot \log n$

Combines seminal ideas with our own

Is it practical?
\[x_c = 0 \]

A Simple Kinetic Heap