Lecture 1: Introduction

Algorithms and Data Structures Princeton University
Spring 2004
Kevin Wayne

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving with applications.
- Algorithms: method for solving a problem.
- Data structures: method to store information.

Data Structure	Algorithms
union-find	weighted quick union with path compression
sorting	quicksort, mergesort, heapsort. radix sorts
priority queue	binary heap
symbol table	BST, red-black tree, hash table, TST, k-d tree
string	KMP, Rabin-Karp, Huffman, LZW, Burrows-Wheeler
graph	Prim, Kruskal, Dijkstra, Bellman-Ford, Ford-Fulkerson

Imagine a World With No Good Algorithms

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.
Internet. Packet routing, Google, Akamai.
Secure communications. Cell phones, e-commerce.
Information processing. Database search, data compression.
Computers. Circuit layout, file system, compilers.
Computer graphics. Hollywood movies, video games.
Biology. Human genome project, protein folding.
Astrophysics. N-body simulation.
Transportation. Airline crew scheduling, map routing.
...

Why Study Algorithms

Using a computer?

- Want it to go faster? Process more data?
. Want it to do something that would otherwise be impossible?

Technology improves things by a constant factor.

- But might be costly.
- Good algorithmic design can do much better and might be cheap.
- Supercomputers cannot rescue a bad algorithm.

Algorithms as a field of study.
. Old enough that basics are known.

- New enough that new discoveries arise.
- Burgeoning application areas.
- Philosophical implications.

Lectures: Kevin Wayne (Kevin)

- MW 11-12:20, CS 105.

Precepts: Nir Ailon (Nir), Miro Dudik (Miro)
. T 12:30, Friend 005.

- T 1:30, Friend 005.
- T 3:30, Friend 005.
- Clarify programming assignments, exercises, lecture material.
- First precept meets 2/10.

Weekly programming assignments: 45%

- Due Thursdays $11: 59$ pm, starting 2/12.

Weekly written exercises: 15\%

- Due at beginning of Monday lecture, starting 2/9.

Exams:

. Closed book with cheatsheet.

- Midterm. 15\%
- Final. 25%

Staff discretion. Adjust borderline cases.

Course Materials

Course web page. http://www.princeton.edu/~cos226

- Syllabus.
- Programming assignments.
- Exercises.
- Lecture notes.
- Old exams.

Algorithms in Java, $3^{\text {rd }}$ edition.

- Parts 1-4 (COS 126 text).
- Part 5 (graph algorithms).

Algorithms in $C, 2^{\text {nd }}$ edition.

- Strings and geometry handouts.
-

note change
電

Union Find

Quick find
Quick union
Weighted quick union
Path compression

Network connectivity.

- Nodes at grid points.
- Add connections between pairs of nodes.
. Is there a path from node A to node B ?

in	out	evidence	(1)
34	34		
49	49		
80	80		(6)
23	23		(
56	56		,
29		(2-3-4-9)	,--
59	59		(2) (3) (4)
73	73		+
48	48		
56		(5-6)	
02		(2-3-4-8-0)	(0) (7)
61	61		\bigcirc

Union-Find Abstraction

What are critical operations we need to support?

- N objects.
- grid points
- FIND: test whether two objects are in same set.
- is there a connection between A and B ?
- UNION: merge two sets.
- add a connection

Design efficient data structure to store connectivity information and algorithms for UNION and FIND.

- Number of operations M can be huge.
- Number of objects N can be huge.

Other Applications

More union-find applications.
\Rightarrow. Hex.
\Rightarrow. Percolation.
. Image processing.

- Minimum spanning tree
- Least common ancestor.
- Equivalence of finite state automata
- Compiling EQUIVALENCE statements in FORTRAN.
- Micali-Vazarani algorithm for nonbipartite matching.
- Weihe's algorithm for edge-disjoint s - \dagger paths in planar graphs.
- Scheduling unit-time tasks to P processors so that each job finishes between its release time and deadline.
- Scheduling unit-time tasks with a partial order to two processors in order to minimize last completion time.

[^0]Objects
Elements are arbitrary objects in a network.

- Pixels in a digital photo.
- Computers in a network.
- Transistors in a computer chip.
- Web pages on the Internet.
- Metallic sites in a composite system.
- When programming, convenient to name them 0 to $\mathrm{N}-1$.
- When drawing, fun to use animals!

Quick-Find

id[tiger] = id[panda] = id[bunny] = id[elephant] = elephant id[bear] = id[dragon] = id[lion] = lion
id[bat] = id[lobster] = lobster

Quick-Find

Union(tiger, bear)

Data structure

- eger between 0 and $\mathrm{N}-1$
- Maintain array id[] with name for each of N elements.
. If p and q are connected, then they have the same id.
. Initially, set id of each element to itself.

```
for (int i = 0; i < N; i++)
    id[i] = i
```

Noperations

Find. To check if p and q are connected, see if they have same id.
return (id[p] == id[q]);
1 operations

Union. To merge components containing p and q, change all entries with id[p] to id[q].

```
int pid = id[p]
for (int i = 0; i < N; i++)
    if (id[i] == pid) id[i] = id[q];
```

Problem Size and Computation Time

Rough standard for 2000.

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second. (unchanged since 1950!)

Ex. Huge problem for quick find.

- 10^{10} edges connecting 10^{9} nodes.
- Quick-find might take 10^{20} operations. (10 ops per query)
- 3,000 years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 x$ as long!

Quick-Union

Quick-Union

3-4	0	1	2		4				7	8	9	© (1) (2) (4) © © © (8) © ()
4-9	0	1	2	4	9				7	8	9	$\begin{gathered} \text { (1) © (2) } 9 \text { (© © © © © } \\ \text { (3) } \end{gathered}$
8-0	0	1	2	4	9				7	0	9	
2-3	0	1	9	4	9			6	7	0	9	(1) (2) (3) © (3) © © (8)
5-6	0	1	9	4	9			6	7	0	9	(1) (2) © © © ©
5-9	0	1	9	4	9			9	7	0	9	(1) (2) (8) (1)
7-3	0	1	9	4	9			9	9	0	9	(1) (2) (3) (3) (1)
4-8	0	1	9	4	9				9	0	0	
6-1	1	1	9	4	9				9	0	0	

Quick-Union

Data structure: disjoint forests.

- Maintain array id [] for each of N elements.

> keep going until it
> doesn't change
. Root of element $x=$ id[id[id[...id[p]...]]]

```
public int root(int x) {
    while (x != id[x])
        x = id[x];
    return x;
```

\}
time proportional to depth of x

Find. Check if p and q have same root.
$\operatorname{return}(\operatorname{root}(p)==\operatorname{root}(q))$;
time proportional to depth of p and q

Union. Set the id of p 's root to q 's root.

```
int i = root(p)
int j = root(q);
id[i] = j;
```

time proportional to depth of p and q

Quick-find defect.

- UNION too expensive.
- Trees are flat, but too hard to keep them flat.

Quick-union defect.

- Finding the root can be expensive.
- Trees could get tall.

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Weighted Quick-Union

Weighted Quick-Union

Data structure: disjoint forests.

- Also maintain array sz [i] that counts the number of elements in the tree rooted at i .

Find. Same as quick union.

Union. Same as quick union, but merge smaller tree into the larger tree and update the sz [] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else
{id[j] = i; sz[i] += sz[j]; }
```

Analysis.
now, provably at most $\lg N$
. FIND takes time proportional to depth of p and q in tree.

- UNION takes constant time, given roots.

Is performance improved?

- Theory: $\lg N$ per union or find operation.
- Practice: constant time.

Ex. Huge practical problem.

- 10^{10} edges connecting 10^{9} nodes.
- Reduces time from 3,000 years to 1 minute
- Supercomputer wouldn' \dagger help much.
. Good algorithm makes solution possible.

Stop at guaranteed acceptable performance?

- Not hard to improve algorithm further.

Weighted Quick-Union with Path Compression

Weighted Quick-Union with Path Compression

Path compression

- Add second loop to root to compress tree that sets the id of every examined node to the root.
. Simple one-pass variant: make each element point to grandparent

```
public int root(int x) {
    while (x != id[x])
        id[x] = id[id[x]]
        x = id[x];
    }
    return x
}
```

- No reason not to!
- In practice, keeps tree almost completely flat.

Theorem. A sequence of M union and find operations on N elements takes $O\left(N+M g^{\star} N\right)$ time.
. Proof is very difficult.

- But the algorithm is still simple!

Remark. $\lg * N$ is a constant in this universe.

N	$\lg *$
2	1
4	2
16	3
65536	4
2^{65536}	5

Linear algorithm?

- Cost within constant factor of reading in the data.
- Theory: WQUPC is not quite linear.
. Practice: WQUPC is linear.

Hex. (Piet Hein 1942, John Nash 1948, Parker Brothers 1962)

- Two players alternate in picking a cell in a hex grid.
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.
- Goal: algorithm to detect when a player has won?

Yet Another Application: Percolation

Percolation phase-transition.

- Two parallel conducting bars (top and bottom).
. Electricity flows from a site to one of its 4 neighbors if both are occupied by conductors.
- Suppose each site is randomly chosen to be a conductor or insulator with probability p. What is percolation threshold p^{*} at which charge carriers can percolate from top to bottom? \uparrow
~ 0.592746 for square lattices, but constant only known via simulation

0	0	0	0	0	0	0	0	0	0	0	0
2	3	4	0	6	0	8	9	10	11	12	0
14	15	0	0	0	0	20	21	22	23	24	0
14	14	28	29	30	31	32	33	34	35	36	0
14	39	40	1	42	43	32	45	46	1	1	49
50	1	52	1	54	55	56	57	58	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Lessons

Union-find summary. Online algorithm can solve problem while collecting data for "free."

Algorithm	Time
Quick-find	$M N$
Quick-union	$M N$
Weighted	$N+M \log N$
Path compression	$N+M \log N$
Weighted + path	$5(M+N)$

M union-find ops on a set of N elements

Simple algorithms can be very useful.

- Start with brute force approach.
- don't use for large problems
- can't use for huge problems
might be nontrivial to analyze
- Strive for worst-case performance guarantees.
- Identify fundamental abstractions. union-find, disjoint forests

[^0]: References.

 - A Linear Time Algorithm for a Special Case of Disjoint Set Union, Gabow and Tarjan
 - The Design and Analysis of Computer Algorithms, Aho, Hopcroft, and Ullman.

