Undirected Graphs

Undirected graphs
Adjacency lists
BFS
DFS
Euler tour

Reference: Chapter 17-18, Algorithms in Java, 3rd Edition, Robert Sedgewick.

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.

- Interesting and broadly useful abstraction.

Why study graph algorithms?

- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Graph Applications
Graph Jargon

Graph	Vertices	Edges
communication	telephones, computers	fiber optic cables
circuits	gates, registers, processors	wires
mechanical	joints	rods, beams, springs
hydraulic	reservoirs, pumping stations	pipelines
financial	stocks, currency	transactions
transportation	street intersections, airports	highways, airway routes
scheduling	tasks	precedence constraints
software systems	functions	function calls
internet	web pages	hyperlinks
games	board positions	legal moves
social relationship	people, actors	friendships, movie casts
neural networks	neurons	synapses
protein networks	proteins	protein-protein interactions
chemical compounds	molecules	bonds

Terminology.
. Vertex: v.

- Edge: e = v-w.
- Graph: G.
- V vertices, E edges.
. Parallel edge, self loop.
- Directed, undirected.
- Sparse, dense.
- Path, cycle.
- Cyclic path, tour.
- Tree, forest.
- Connected, connected component.

Path. Is there a path between s to t?
Shortest path. What is the shortest path between two vertices?
Longest path. What is the longest path between two vertices?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cyclic path that uses each edge exactly once? Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Bi-connectivity. Is there a vertex whose removal disconnects graph?
Planarity. Can you draw the graph in the plane with no crossing edges? Isomorphism. Do two adjacency matrices represent the same graph?

Typical client program.

- Create a Graph.
- Pass the Graph to a graph processing routine, e.g., DFSearcher.
- Query the graph processing routine for information
- Design pattern: separate graph from graph algorithm.

```
public static void main(String args[]) {
    int V = Integer.parseInt (args[0]);
    int E = Integer.parseInt(args[1]);
    Graph G = new Graph(V, E)
    System.out.println(G);
    DFSearcher dfs = new DFSearcher(G)
    int comp = dfs.components()
    System.out.println("Components = " + comp)
}
```

calculate number of connected components

Graph Representation

Vertex names. A B CDEF GHIJKLM

- This lecture: use integers between 0 and $\mathrm{v}-1$.
- Real world: convert between names and integers with symbol table.

Two drawing represent same graph

Set of edges representation
. A-B A-G A-C L-M J-M J-L J-K E-D F-D H-I F-E A-F G-E

Adjacency Matrix Representation

Adjacency matrix representation.

- Two-dimensional $\mathrm{v} \times \mathrm{v}$ boolean array.
. Edge v -w in graph: $\operatorname{adj}[\mathrm{v}][\mathrm{w}]=\operatorname{adj}[w][v]=$ true

		A B	C	C	E	F	G	H	I	J	K	L	
0 A		01	1	10	0	1	1	0	0	0	0	0	0
1 B		10	0	0	0	1	1	0	0	0	0	0	0
		10		0	0	0	0	0	0	0	0	0	0
3 D		0	0	0	1		0	0	0	0	0	0	0
4 E		0		01	0	1	1	0	0	0	0	0	0
					1	0	0	0	0	0	0	0	0
6 G				0	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0
		0	0	0	0	0	0	1	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	1	1	
10 K		0	0	0	0	0	0	0	0	1	0	0	
11 L		0		0	0	0	0	0	0	1	0	0	
12 M				0								1	

adjacency matrix

```
```

public class Graph {

```
```

public class Graph {
private int v; // number of vertices
private int v; // number of vertices
private int E; // number of edges
private int E; // number of edges
private boolean[][] adj; // adjacency matrix
private boolean[][] adj; // adjacency matrix
// empty graph with V vertices
// empty graph with V vertices
public Graph(int V) {
public Graph(int V) {
this.v = v;
this.v = v;
this.E = 0;
this.E = 0;
this.adj = new boolean[V][V];
this.adj = new boolean[V][V];
}
}
// insert edge v-w if it doesn't already exist
// insert edge v-w if it doesn't already exist
public void insert(int v, int w) {
public void insert(int v, int w) {
if (!adj[v][w]) E++;
if (!adj[v][w]) E++;
adj[v][w] = true;
adj[v][w] = true;
adj[w][v] = true;
adj[w][v] = true;
}

```
    }
```

}

```

Iterator.
- Client needs way to iterate through elements of adjacency list.
- Graph implementation doesn't want to reveal details of list.
- Design pattern: give client just enough to iterate.
```

interface IntIterator {
int next();
boolean hasNext();
}

```
```

IntIterator i = G.neighbors(v);

```
IntIterator i = G.neighbors(v);
while (i.hasNext()) {
while (i.hasNext()) {
    int w = i.next()
    int w = i.next()
    // do something with edge v-w
    // do something with edge v-w
}
```

}

```

\section*{Adjacency Matrix Iterator: Java Implementation}
```

public IntIterator neighbors(int v) (
return new AdjMatrixIterator(v);
}
private class AdjMatrixIterator implements IntIterator {
int v, w = 0;
AdjMatrixIterator(int v) { this.v = v; }
public boolean hasNext() { does v have another neighbor?
if (w == V) return false;
if (adj[v][w]) return true;
for (w = w; w < V; w++)
if (adj[v][w]) return true;
return false;
}
public int next() { return next neighbor w of v
if (hasNext()) return w++;
return -1;
}
}

Iterator Diversion: Java Collections

Iterator.

- Java uses interface Iterator with all of its collection data types.
. Its method next returns an object instead of an int.
- Need to import java.util.Iterator and java.util.ArrayList.

```
ArrayList list = new ArrayList()
list.add(value)
Iterator i = list.iterator();
while(i.hasNext()) {
    System.out.println(i.next());
}
```

- You can now write the ArrayList or LinkedList libraries and use an Iterator to traverse them.

Adjacency List Representation

Vertex indexed array of lists．
－Space proportional to number of edges．
－Two representations of each undirected edge．

$A: \quad \mathrm{F} \cdot \cdot \rightarrow \mathrm{C} \mid \cdot \rightarrow \mathrm{B} \cdot \bullet \rightarrow$ 圈
B：A 图
C：A产
$D: F \cdot \longrightarrow$
$E: \xrightarrow{G / \cdot} \longrightarrow D \mid \cdot D$ 图
$F: \xrightarrow{A}|\cdot| \rightarrow D \mid \cdot D$
$G: \quad \mathrm{E} \rightarrow \mathrm{A}$ 图
$\mathrm{H}: \mathrm{I}$

$\xrightarrow{\mathrm{H} \cdot \mathrm{O}} \mathrm{L} \rightarrow$ ME
J图

M： $\xrightarrow{\mathrm{J} \cdot \longrightarrow}$

```
public class Graph {
    private int v; // # vertices
    private int E; // # edges
    private AdjList[] adj; // adjacency lists
    private static class AdjList {
        int w;
            AdjList next;
            AdjList(int w, AdjList next) { this.w = w; this.next = next; }
    }
    public Graph(int V) {
            this.v = v
            this.E = 0;
            adj = new AdjList[V];
    }
    public void insert(int v, int w) {
        adj[v] = new AdjList(w, adj[v])
        adj[w] = new AdjList(v, adj[w]);
        E++;
    }
```

Adjacency List Iterator：Java Implementation

```
public IntIterator neighbors(int v) {
    return new AdjListIterator(adj[v]);
}
private class AdjListIterator implements IntIterator {
    AdjList x;
    AdjListIterator(AdjList x) { this.x = x; }
    public boolean hasNext() {
        return x != null;
    }
    public int next() {
        int w = x.w;
        x = x.next;
            return w
    }
}

\section*{Graph Representations}

Graphs are abstract mathematical objects．
－ADT implementation requires specific representation．
．Efficiency depends on matching algorithms to representations．
\begin{tabular}{|c|c|c|c|c|}
\hline Representation & Space & \begin{tabular}{c} 
Edge between \\
\(v\) and w？
\end{tabular} & \begin{tabular}{c} 
Edge from \(v\) \\
to anywhere？
\end{tabular} & \begin{tabular}{c} 
Enumerate \\
all edges
\end{tabular} \\
\hline Adjacency matrix & \(\Theta\left(V^{2}\right)\) & \(\Theta(1)\) & \(O(V)\) & \(\Theta\left(V^{2}\right)\) \\
\hline Adjacency list & \(\Theta(E+V)\) & \(O(E)\) & \(\Theta(1)\) & \(\Theta(E+V)\) \\
\hline
\end{tabular}

\section*{Graphs in practice．}
－Typically sparse．
－Typically bottleneck is iterating through all edges．
－Use adjacency list representation．

Goal. Visit every node and edge in Graph
A solution. Depth-first search.

- To visit a node v:
- Disconnected pieces may be hard to spot, especially for computer!
- mark it as visited
- recursively visit all unmarked nodes w adjacent to v
- To traverse a Graph G:
- initialize all nodes as unmarked
- visit each unmarked node

Enables direct solution of simple graph problems.
\(\Rightarrow\). Connected components.
- Cycles.

Basis for solving more difficult graph problems.
- Biconnectivity.
- Planarity.


\section*{Connected Components Application: Minesweeper}

Connected Components Application: Image Processing

\section*{Challenge: implement the game of Minesweeper.}

Critical subroutine.
- User selects a cell and program reveals how many adjacent mines.
- If zero, reveal all adjacent cells.
. If any newly revealed cells have zero adjacent mines, repeat.


Challenge: read in a 2D color image and find regions of connected pixels that have the same color.

Original


Labeled


Challenge：read in a 2D color image and find regions of connected pixels that have the same color．

Efficient algorithm．
－Connect each pixel to neighboring pixel if same color．
－Find connected components in resulting graph．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 8 & 9 & 9 & 11 \\
\hline 0 & 0 & 0 & 1 & 6 & 6 & 6 & 8 & 8 & 11 & 9 & 11 \\
\hline 3 & 0 & 0 & 1 & 6 & 6 & 4 & 8 & 11 & 11 & 11 & 11 \\
\hline 3 & 0 & 0 & 1 & 1 & 6 & 2 & 11 & 11 & 11 & 11 & 11 \\
\hline 10 & 10 & 10 & 10 & 1 & 1 & 2 & 11 & 11 & 11 & 11 & 11 \\
\hline 7 & 7 & 2 & 2 & 2 & 2 & 2 & 11 & 11 & 11 & 11 & 11 \\
\hline 7 & 7 & 5 & 5 & 5 & 2 & 2 & 11 & 11 & 11 & 11 & 11 \\
\hline
\end{tabular}
```

public class DFSearcher {
private final static int UNMARKED = -1;
private Graph G;
private int[] cc
private int components = 0;
public DFSearcher(Graph G) {
this.G = G;
this.cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)
Cc[v] = UNMARKED;
dfs();
}
private void dfs()
{ // NEXT SLIDE
public int component(int v) { return cc[v]
public int components()
}

```

Path．Is there a path from s to t？
\begin{tabular}{|c|c|c|c|}
\hline Method & Preprocess Time & Query Time & Space \\
\hline Union Find & \(O\left(E \log ^{\star} V\right)\) & \(O\left(\log ^{\star} V\right)\) & \(\Theta(V)\) \\
\hline DFS & \(\Theta(E+V)\) & \(\Theta(1)\) & \(\Theta(V)\) \\
\hline
\end{tabular}

Depth First Search：Connected Components
```

\}
\}

```
／／depth first search private void dfs（int v）\｛ loop idiom cc［v］＝components ：
IntIterator \(i=G . n e i g h b o r s(v)\) ；
while（i．hasNext（））\｛
int \(w=i\) ．next（）；
if（ \(\operatorname{cc}[\mathbf{w}]==\) UNMARKED）dfs（w）；
\}
```

// run dfs from each unmarked vertex

```
// run dfs from each unmarked vertex
private void dfs() {
private void dfs() {
    for (int v = 0; v < G.V(); v++) {
    for (int v = 0; v < G.V(); v++) {
        if (cc[v] == UNMARKED) {
        if (cc[v] == UNMARKED) {
            dfs(v);
            dfs(v);
            components++;
            components++;
        }
        }
        }
        }
// depth first search
// depth first search
// depth first search
    cc[v] = components; 片
    cc[v] = components; 片
    cc[v] = components; 片
}
```

}

```

\section*{Connected Components}

UF advantage．Dynamic：can intermix query and edge insertion．
DFS advantage．
－Can get path itself in same running time．
．Extends to more general problems．

Maze graphs
- Vertices = intersections
- Edges = corridors.


DFS.
. Mark ENTRY and EXIT halls at each vertex.
- Leave by ENTRY when no unmarked halls.

Graph search. Visit all nodes and edges of graph.
Depth-first search. Put unvisited nodes on a STACK.
Breadth-first search. Put unvisited nodes on a QUEUE.

Shortest path: what is fewest number of edges to get from \(s\) to t?

Solution \(=\) BFS.
- Initialize dist[v] \(=\infty\), dist[s] \(=0\).
- When considering edge v - w :
- if w is marked, then ignore
- otherwise else set dist \([w]=\operatorname{dist}[v]+1\), \(\operatorname{pred}[\mathrm{w}]=\mathrm{v}\), and add w to the queue
令
if you want to find
shortest path itself

\section*{Breadth First Search}
```

public class BFSearcher {
private static int INFINITY = Integer.MAX_VALUE;
private Graph G;
private int[] dist;
public BFSearcher(Graph G, int s)
this.G = G;
int V = G.V();
dist = new int[V];
for (int v = 0; v < v; v++) dist[v] = INFINITY;
dist[s] = 0;
bfs(s);
}
public int distance(int v) { return dist[v]; }
private void bfs(int s) { // NEXT SLIDE
}

```
```

// breadth-first search from s
private void bfs(int s) {
IntQueue q = new IntQueue();
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {
int w = i.next();
if (dist[w] == INFINITY) {
q.enqueue(w) ;
dist[w] = dist[v] + 1;
}
}

```

    \(\}\)
\}

\section*{Breadth First Search}

Path. Is there a path from \(s\) to t?
- Solution: DFS, BFS, or PFS.

Shortest path. Find shortest path (fewest edges) from s to t
. Solution: BFS.

Bi-connected components. Which nodes participate in cycles?
. Solution: DFS (see textbook).

Euler tour. Is there a cyclic path that uses each edge exactly once?
. Solution: DFS.

Hamilton tour. Is there a cycle that uses each vertex exactly once?
. Solution: ??? (NP-complete)

Leonhard Euler, The Seven Bridges of Königsberg, 1736

\(s\)
.... in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once....."

Euler tour. Is there a cyclic path that uses each edge exactly once? . Yes if connected and degrees of all vertices are even.

\section*{Euler Tour}

How to find an Euler tour (assuming graph is Eulerian).
- Start at some vertex \(v\) and repeatedly follow unused edge until you return to \(v\).
- always possible since all vertices have even degree
- Find additional cyclic paths using remaining edges and splice back into original cyclic path.


\section*{Euler Tour}

How to find an Euler tour (assuming graph is Eulerian).
- Start at some vertex \(v\) and repeatedly follow unused edge until you return to \(v\).
- always possible since all vertices have even degree
- Find additional cyclic paths using remaining edges and splice back into original cyclic path.

How to efficiently keep track of unused edges?
. Delete edges after you use them.

How to efficiently find and splice additional cyclic paths?
. Push each visited vertex onto a stack.

Euler Tour: Implementation
```

private int euler(int v) {
while (true) {
IntIterator i = G.neighbors(v)
if (!i.hasNext()) break;
stack.push(v);
G.remove (v, w); \& destroys graph
v = w;
}
return v;
}
public void show() {
stack = new intStack();
stack . push(0); found cyclic path from v to itself
while (euler(v) == v \&\& !stack.isEmpty()) {
v = stack.pop();
System.out.println(v);
}
if (!stack.isEmpty())
System.out.println("Not Eulerian");

```
        assumes graph is connected```

