
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Undirected Graphs

Reference: Chapter 17-18, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Undirected graphs

Adjacency lists

BFS

DFS

Euler tour

2

Undirected Graphs

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.
� Interesting and broadly useful abstraction.

Why study graph algorithms?
� Challenging branch of computer science and discrete math.
� Hundreds of graph algorithms known.
� Thousands of practical applications.

3

Graph Applications

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

6

Graph Jargon

Terminology.
� Vertex: v.
� Edge: e = v-w.
� Graph: G.
� V vertices, E edges.
� Parallel edge, self loop.
� Directed, undirected.
� Sparse, dense.
� Path, cycle.
� Cyclic path, tour.
� Tree, forest.
� Connected, connected component.

A

G

E

CB

F

D

H M

KJ

LI

7

A Few Graph Problems

Path. Is there a path between s to t?
Shortest path. What is the shortest path between two vertices?
Longest path. What is the longest path between two vertices?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cyclic path that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Bi-connectivity. Is there a vertex whose removal disconnects graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Isomorphism. Do two adjacency matrices represent the same graph?

8

Typical client program.
� Create a Graph.
� Pass the Graph to a graph processing routine, e.g., DFSearcher.
� Query the graph processing routine for information.
� Design pattern: separate graph from graph algorithm.

Graph ADT in Java

public static void main(String args[]) {
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
Graph G = new Graph(V, E);
System.out.println(G);
DFSearcher dfs = new DFSearcher(G);
int comp = dfs.components();
System.out.println("Components = " + comp);

}
calculate number of connected components

9

Graph Representation

Vertex names. A B C D E F G H I J K L M
� This lecture: use integers between 0 and V-1.
� Real world: convert between names and integers with symbol table.

Two drawing represent same graph.

Set of edges representation.
� A-B A-G A-C L-M J-M J-L J-K E-D F-D H-I F-E A-F G-E

A

G

E

CB

F

D

H

M

KJ

L

I
A G

E

CB

F

D

H

M
K

J

L

I

10

Adjacency Matrix Representation

Adjacency matrix representation.
� Two-dimensional V � V boolean array.
� Edge v-w in graph: adj[v][w] = adj[w][v] = true.

A B C D E F G H I J K L M
0 A 0 1 1 0 0 1 1 0 0 0 0 0 0
1 B 1 0 0 0 0 1 1 0 0 0 0 0 0
2 C 1 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 0 1 1 0 0 0 0 0 0 0
4 E 0 0 0 1 0 1 1 0 0 0 0 0 0
5 F 1 1 0 1 1 0 0 0 0 0 0 0 0
6 G 1 1 0 0 1 0 0 0 0 0 0 0 0
7 H 0 0 0 0 0 0 0 0 1 0 0 0 0
8 I 0 0 0 0 0 0 0 1 0 0 0 0 0
9 J 0 0 0 0 0 0 0 0 0 0 1 1 1

10 K 0 0 0 0 0 0 0 0 0 1 0 0 0
11 L 0 0 0 0 0 0 0 0 0 1 0 0 1
12 M 0 0 0 0 0 0 0 0 0 1 0 1 0

adjacency matrix

A

G

E

CB

F

D

H M

KJ

LI

11

Adjacency Matrix: Java Implementation

public class Graph {
private int V; // number of vertices
private int E; // number of edges
private boolean[][] adj; // adjacency matrix

// empty graph with V vertices
public Graph(int V) {

this.V = V;
this.E = 0;
this.adj = new boolean[V][V];

}
// insert edge v-w if it doesn't already exist
public void insert(int v, int w) {

if (!adj[v][w]) E++;
adj[v][w] = true;
adj[w][v] = true;

}
}

12

Iterator

Iterator.
� Client needs way to iterate through elements of adjacency list.
� Graph implementation doesn't want to reveal details of list.
� Design pattern: give client just enough to iterate.

interface IntIterator {
int next();
boolean hasNext();

}

IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
// do something with edge v-w

}

idiom for traversing with an iteratorcontract for implementing an
integer-valued iterator

13

Adjacency Matrix Iterator: Java Implementation

public IntIterator neighbors(int v) {
return new AdjMatrixIterator(v);

}
private class AdjMatrixIterator implements IntIterator {

int v, w = 0;
AdjMatrixIterator(int v) { this.v = v; }
public boolean hasNext() {

if (w == V) return false;
if (adj[v][w]) return true;
for (w = w; w < V; w++)

if (adj[v][w]) return true;
return false;

}
public int next() {

if (hasNext()) return w++;
return -1;

}
}

does v have another neighbor?

return next neighbor w of v

Graph.java

14

Iterator Diversion: Java Collections

Iterator.
� Java uses interface Iterator with all of its collection data types.
� Its method next returns an Object instead of an int.
� Need to import java.util.Iterator and java.util.ArrayList.

� You can now write the ArrayList or LinkedList libraries and use an
Iterator to traverse them.

ArrayList list = new ArrayList();
...
list.add(value);
...
Iterator i = list.iterator();
while(i.hasNext()) {

System.out.println(i.next());
}

15

Adjacency List Representation

Vertex indexed array of lists.
� Space proportional to number of edges.
� Two representations of each undirected edge.

A: F C B G

B: A

C: A

D: F E

E: G F D

F: A E D

G: E A

H: I

I: H

J: K L M

K: J

L: J M

M: J L

A

G

E

CB

F

D

H M

KJ

LI

adjacency list

16

Adjacency List: Java Implementation

public class Graph {
private int V; // # vertices
private int E; // # edges
private AdjList[] adj; // adjacency lists

private static class AdjList {
int w;
AdjList next;
AdjList(int w, AdjList next) { this.w = w; this.next = next; }

}
public Graph(int V) {

this.V = V;
this.E = 0;
adj = new AdjList[V];

}
public void insert(int v, int w) {

adj[v] = new AdjList(w, adj[v]);
adj[w] = new AdjList(v, adj[w]);
E++;

}

insert edge v-w,
parallel edges allowed

empty graph with V vertices

add w to adjacency list

17

Adjacency List Iterator: Java Implementation

public IntIterator neighbors(int v) {
return new AdjListIterator(adj[v]);

}
private class AdjListIterator implements IntIterator {

AdjList x;
AdjListIterator(AdjList x) { this.x = x; }
public boolean hasNext() {

return x != null;
}
public int next() {

int w = x.w;
x = x.next;
return w;

}
} Graph.java

does v have another neighbor?

return next neighbor w of v

18

Graph Representations

Graphs are abstract mathematical objects.
� ADT implementation requires specific representation.
� Efficiency depends on matching algorithms to representations.

Graphs in practice.
� Typically sparse.
� Typically bottleneck is iterating through all edges.
� Use adjacency list representation.

Representation Space

Adjacency matrix �(V 2)

Adjacency list �(E + V)

Edge between
v and w?

�(1)

O(E)

Enumerate
all edges

�(V 2)

�(E + V)

Edge from v
to anywhere?

O(V)

�(1)

19

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.

� To visit a node v:
– mark it as visited
– recursively visit all unmarked nodes w adjacent to v

� To traverse a Graph G:
– initialize all nodes as unmarked
– visit each unmarked node

Enables direct solution of simple graph problems.
� Connected components.
� Cycles.

Basis for solving more difficult graph problems.
� Biconnectivity.
� Planarity.

Graph Search

20

Connected Components

Define problem.
� Disconnected pieces may be hard to spot, especially for computer!

21

Connected Components Application: Minesweeper

Challenge: implement the game of Minesweeper.

Critical subroutine.
� User selects a cell and program reveals how many adjacent mines.
� If zero, reveal all adjacent cells.
� If any newly revealed cells have zero adjacent mines, repeat.

22

Connected Components Application: Image Processing

Challenge: read in a 2D color image and find regions of connected
pixels that have the same color.

Original Labeled

23

Connected Components Application: Image Processing

Challenge: read in a 2D color image and find regions of connected
pixels that have the same color.

Efficient algorithm.
� Connect each pixel to neighboring pixel if same color.
� Find connected components in resulting graph.

0 1 1 1 1 1 6 6

0 0 0 1 6 6 6 8

3 0 0 1 6 6 4 8

3 0 0 1 1 6 2 11

10 10 10 10 1 1 2 11

7 7 2 2 2 2 2 11

7 7 5 5 5 2 2 11

8 9 9 11

8 11 9 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

24

Depth First Search: Connected Components

public class DFSearcher {
private final static int UNMARKED = -1;
private Graph G;
private int[] cc;
private int components = 0;
public DFSearcher(Graph G) {

this.G = G;
this.cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)

cc[v] = UNMARKED;
dfs();

}
private void dfs() { // NEXT SLIDE }
public int component(int v) { return cc[v]; }
public int components() { return components; }

}

25

Depth First Search: Connected Components

// run dfs from each unmarked vertex
private void dfs() {

for (int v = 0; v < G.V(); v++) {
if (cc[v] == UNMARKED) {

dfs(v);
components++;

}
}

}
// depth first search
private void dfs(int v) {

cc[v] = components;
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (cc[w] == UNMARKED) dfs(w);

}
}

loop idiom

26

Connected Components

Path. Is there a path from s to t?

UF advantage. Dynamic: can intermix query and edge insertion.

DFS advantage.
� Can get path itself in same running time.
� Extends to more general problems.

Method Preprocess Time

Union Find O(E log* V)

DFS �(E + V)

Query Time

O(log* V)

�(1)

Space

�(V)

�(V)

27

Graphs and Mazes

Maze graphs.
� Vertices = intersections
� Edges = corridors.

DFS.
� Mark ENTRY and EXIT halls at each vertex.
� Leave by ENTRY when no unmarked halls.

28

Breadth First Search

Graph search. Visit all nodes and edges of graph.
Depth-first search. Put unvisited nodes on a STACK.
Breadth-first search. Put unvisited nodes on a QUEUE.

Shortest path: what is fewest number of edges to get from s to t?

Solution = BFS.
� Initialize dist[v] = �, dist[s] = 0.
� When considering edge v-w:

– if w is marked, then ignore
– otherwise else set dist[w] = dist[v] + 1,
pred[w] = v, and add w to the queue

if you want to find
shortest path itself

29

Breadth First Search

max integer

public class BFSearcher {
private static int INFINITY = Integer.MAX_VALUE;
private Graph G;
private int[] dist;
public BFSearcher(Graph G, int s) {

this.G = G;
int V = G.V();
dist = new int[V];
for (int v = 0; v < V; v++) dist[v] = INFINITY;
dist[s] = 0;
bfs(s);

}
public int distance(int v) { return dist[v]; }
private void bfs(int s) { // NEXT SLIDE }

}

max integer

30

Breadth First Search

// breadth-first search from s
private void bfs(int s) {

IntQueue q = new IntQueue();
q.enqueue(s);
while (!q.isEmpty()) {

int v = q.dequeue();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (dist[w] == INFINITY) {

q.enqueue(w);
dist[w] = dist[v] + 1;

}
}

}
}

31

Related Graph Search Problems

Path. Is there a path from s to t?
� Solution: DFS, BFS, or PFS.

Shortest path. Find shortest path (fewest edges) from s to t.
� Solution: BFS.

Bi-connected components. Which nodes participate in cycles?
� Solution: DFS (see textbook).

Euler tour. Is there a cyclic path that uses each edge exactly once?
� Solution: DFS.

Hamilton tour. Is there a cycle that uses each vertex exactly once?
� Solution: ??? (NP-complete).

32

Bridges of Königsberg

Leonhard Euler, The Seven Bridges of Königsberg, 1736.

Euler tour. Is there a cyclic path that uses each edge exactly once?
� Yes if connected and degrees of all vertices are even.

"..... in Königsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once....."

33

0

6

4

21

5

3

0

6

4

21

5

3

0

6

4

21

5

3

Euler Tour

How to find an Euler tour (assuming graph is Eulerian).
� Start at some vertex v and repeatedly follow unused edge until you

return to v.
– always possible since all vertices have even degree

� Find additional cyclic paths using remaining edges and splice back
into original cyclic path.

34

Euler Tour

How to find an Euler tour (assuming graph is Eulerian).
� Start at some vertex v and repeatedly follow unused edge until you

return to v.
– always possible since all vertices have even degree

� Find additional cyclic paths using remaining edges and splice back
into original cyclic path.

How to efficiently keep track of unused edges?
� Delete edges after you use them.

How to efficiently find and splice additional cyclic paths?
� Push each visited vertex onto a stack.

35

Euler Tour: Implementation

delete both copies of edge

private int euler(int v) {
while (true) {

IntIterator i = G.neighbors(v);
if (!i.hasNext()) break;
stack.push(v);
G.remove(v, w);
v = w;

}
return v;

}
public void show() {

stack = new intStack();
stack.push(0);
while (euler(v) == v && !stack.isEmpty()) {

v = stack.pop();
System.out.println(v);

}
if (!stack.isEmpty())

System.out.println("Not Eulerian");
}

found cyclic path from v to itself

assumes graph is connected

destroys graph

