
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Tries

Reference: Chapter 12, Algorithms in Java, 3rd Edition, Robert Sedgewick.

R-way tries

Ternary search tries

2

Symbol Table Review

Symbol table: key-value pair abstraction.
� Insert a value with specified key.
� Search for value given key.
� Delete value with given key.
� Balanced trees use log N key comparisons.
� Hashing uses O(1) probes, but probe proportional to key length.

Are key comparisons necessary? No.
Is time proportional to key length required? No.
Best possible. Examine lg N bits.

This lecture: specialized symbol table for string keys.
� Faster than hashing.
� More flexible than BST.

4

Tries.
� Store characters in internal nodes, not keys.
� Store records in external nodes.
� Use the characters of the key to guide the search.
� NB: from retrieval, but pronounced "try."
� You can get at anything if its organized properly in 40 or 100 bits!

Example: sells sea shells by the sea shore

Tries

by
sea

sells
shells

the

shore
5

Applications

Applications.
� Spell checkers.
� Data compression. stay tuned
� Princeton U-CALL.
� Computational biology.
� Routing tables for IP addresses.
� Storing and querying XML documents.
� Associative arrays, associative indexing.

Modern application: inverted index of Web.
� Insert each word of every web page into trie, storing URL list in leaves.
� Find query keywords in trie, and take intersection of URL lists.
� Use Pagerank algorithm to rank resulting web pages.

6

Existence Symbol Table: Operations

Existence symbol table: set of keys.

Operations.
� st.add(key) inserts a key.
� st.contains(key) checks if the key is in the symbol table.

Removes duplicates from input stream

ExistenceTable st = new ExistenceTable();
while (!StdIn.isEmpty()) {

String key = StdIn.readString();
if (!st.contains(key)) {

st.add(key);
System.out.println(key);

}
}

say, strings over ASCII alphabet

7

Keys

Key = sequence of "digits."
� DNA: sequence of a,c, g, t.
� Protein: sequence of 20 amino acids A, C, ..., Y.
� IPv6 address: sequence of 128 bits.
� English words: sequence of lowercase letters.
� International words: sequence of UNICODE characters.
� Credit card number: sequence of 16 decimal digits.
� Library call numbers: sequence of letters, numbers, periods.

This lecture: key = string.
� We assume over ASCII alphabet.
� We also assume that character '\0' never appears.

8

Existence Symbol Table: Implementations Cost Summary

Challenge: As fast as hashing, as flexible as BST.

N = number of strings
L = size of string
C = number of characters in input
R = radix

* only reads in data

Actor: 82MB, 11.4M words, 900K distinct.
Moby: 1.2MB, 210K words, 32K distinct.

Red-Black

Implementation

Hashing
L + log N

Search hit

L
log N

Insert

L

Typical Case

C

Space

C
1.40

Moby

0.76
97.4

Actors

40.6

Dedup

Input * L L L 0.26 15.1

9

R-Way Existence Trie: Example

Assumption: no string is a prefix of another string.

Ex: sells sea shells by the sea shore

R = 26

10

R-Way Existence Trie: Java Implementation

R-way existence trie: a node.
Node: reference to R nodes.

root

a f h R = 8

private static class Node {
Node[] next = new Node[R];

}

11

R-Way Existence Trie: Implementation

Code is short and sweet.

public class RwayExistenceTable {
private static final int R = 128;
private static final char END = '\0';
private Node root;
private static class Node {

Node[] next = new Node[R];
}

public boolean contains(String s) {
return contains(root, s + END, 0);

}
private boolean contains(Node x, String s, int i) {

char d = s.charAt(i);
if (x == null) return false;
if (d == END) return (x.next[END] != null);
return contains(x.next[d], s, i+1);

}

sentinel
ASCII

ensure no string is a prefix of another

12

R-Way Existence Trie: Implementation

public void add(String s) {
root = add(root, s + END, 0);

}

private Node add(Node x, String s, int i) {
char d = s.charAt(i);
if (x == null) x = new Node();
if (d == END && x.next[END] == null)

x.next[END] = new Node();
if (d == END) return x;
x.next[d] = insert(x.next[d], s, i+1);
return x;

}
}

ensure no string is a prefix of another

13

Existence Symbol Table: Implementations Cost Summary

R-way trie: Faster than hashing for small R, but slow and wastes
memory if R is large.

Goal: Use less space.

R = 256

Red-Black

Implementation

Hashing
L + log N

Search hit

L
log N

Insert

L

Typical Case

C

Space

C
1.40

Moby

0.76
97.4

Actors

40.6
R-Way Trie L L R N + C 1.12 Memory

Dedup

Input L L L 0.26 15.1

R = 128

15

Existence TST

Ternary search trie. Bentley-Sedgewick
� Each node has 3 children:
� Left (smaller), middle (equal), right (larger).

Ex: sells sea shells by the sea shore
Observation: Few wasted links!

16

Existence TST: Implementation

Existence TST: a node.
Node: four fields:

� Character d.
� Reference to left TST. smaller
� Reference to middle TST. equal
� Reference to right TST. larger

root

h

ia

\0\0

ha i

i

\0

hi

private class Node {
char d;
Node l, m, r;

}

17

Existence TST: Java Implementation

private boolean contains(Node x, String s, int i) {
char d = s.charAt(i);
if (x == null) return false;
if (d == END && x.d == END) return true;
if (d < x.d) return contains(x.l, s, i);
else if (d == x.d) return contains(x.m, s, i+1);
else return contains(x.r, s, i);

}

private Node add(Node x, String s, int i) {
char d = s.charAt(i);
if (x == null) {

x = new Node();
x.d = d;

}
if (d == END && x.d == END) return x;
if (d < x.d) x.l = add(x.l, s, i);
else if (d == x.d) x.m = add(x.m, s, i+1);
else x.r = add(x.r, s, i);
return x;

}
18

Existence Symbol Table: Implementations Cost Summary

Red-Black

Implementation

Hashing
L + log N

Search hit

L
log N

Insert

L

Typical Case

C

Space

C
1.40

Moby

0.76
97.4

Actors

40.6
R-Way Trie

TST
L

L + log N
L

L + log N
R N + C

C
1.12
0.72

Memory
38.7

Dedup

Input L L L 0.26 15.1

no arithmetic

19

Existence TST With R2 Branching At Root

Hybrid of R-way and TST.
� Do R-way or R2-way branching at root.
� Each of R2 root nodes points to a TST.

Q. What about one letter words?

TST

aa

TST

ab

TST

ac

TST

zz

TST

zy

array of R2 roots

20

Existence Symbol Table: Implementations Cost Summary

Red-Black

Implementation

Hashing
L + log N

Search hit

L
log N

Insert

L

Typical Case

C

Space

C
1.40

Moby

0.76
97.4

Actors

40.6
R-Way Trie

TST
L

L + log N
L

L + log N
R N + C

C
1.12
0.72

Memory
38.7

TST with R2 L + log N L + log N C 0.51 32.7

Dedup

Input L L L 0.26 15.1

21

Existence TST Summary

Advantages.
� Very fast search hits.
� Search misses even faster. examine only a few digits of the key!
� Linear space.
� Adapts gracefully to irregularities in keys.
� Supports even more general symbol table ops.

Bottom line: more flexible than BST and can be faster than hashing.

especially if lots of search misses

22

Existence TST: Other Operations

Delete. Delete key from the symbol table.
Sort. Examine the keys in ascending order.
Find ith. Find the ith largest key.
Range search. Find all elements between k1 and k2.

Partial match search.
� Use . to match any character.
� co....er .c...c.

Near neighbor search.
� Find all strings in ST that differ in � P characters from query.
� Application: spell checking for OCR.

Longest prefix match.
� Find string in ST with longest prefix match to query.
� Application: search IP database for longest prefix matching

destination IP, and route packets accordingly.

conventional BST ops

additional ops

23

TST: Partial Matches

Partial match in a TST.
� Search as usual if query character is not a period.
� Go down all three branches if query character is a period.

private void match(Node x, String s, int i, String prefix) {
char d = s.charAt(i);
if (x == null) return;
if (d == END && x.d == END) System.out.println(prefix);
if (d == END) return;
if (d == '.' || d < x.d) match(x.l, s, i, prefix);
if (d == '.' || d == x.d) match(x.m, s, i+1, prefix + x.d);
if (d == '.' || d > x.d) match(x.r, s, i, prefix);

}
public void match(String s) {

match(root, s + END, 0, "");
}

for printing out matches

or use explicit char
array for efficiency

24

TST Symbol Table

TST implementation of symbol table ADT.
� Store key-value pairs in leaves of trie.
� Search hit ends at leaf with key-value pair;

search miss ends at null or leaf with different key.
� Internal node stores char; external node stores key-value pair.

– use separate internal and external nodes?
– collapse (and split) 1-way branches at bottom?

s

hby the

e shells

l

sea sells

25

TST Symbol Table

TST implementation of symbol table ADT.
� Store key-value pairs in leaves of trie.
� Search hit ends at leaf with key-value pair;

search miss ends at null or leaf with different key.
� Internal node stores char; external node stores key-value pair.

– use separate internal and external nodes?
– collapse (and split) 1-way branches at bottom?

s

hby the

e

shells

e

shorel

sea sells
26

Existence Symbol Table: Implementations Cost Summary

Search, insert time is independent of key length!
� Consequence: can use with very long keys.

Red-Black

Implementation

Hashing
L + log N

Search hit

L
log N

Insert

L

Typical Case

C

Space

C
R-Way Trie

TST
L

L + log N
L

L + log N
R N + C

C
TST with R2 L + log N L + log N C

Input L L L

R-way collapse 1-way logR N logR N RN + C
TST collapse 1-way log N log N C

27

PATRICIA Tries

Patricia tries. Practical Algorithm to Retrieve Information Coded in Alphanumeric.

� Collapse one-way branches in binary trie.
� Thread trie to eliminate multiple node types.

Applications.
� Database search.
� P2P network search.
� IP routing tables: find longest prefix match.
� Compressed quad-tree for N-body simulation.
� Efficiently storing and querying XML documents.

28

Suffix Tree

Suffix tree: PATRICIA trie of suffixes of a string.

Applications.
� Longest common substring.
� Longest repeated substring.
� Longest palindromic substring.
� Longest common prefix of two substrings.
� Computational biology databases (BLAST, FASTA).
� Search for music by melody.

29

Associative Arrays

Associative array.
� In Java, C, C++, arrays indexed by integers.
� In Perl, csh, PHP, Python: president["Princeton"] = "Tilghman"

Idealized excerpt from COS 226 timing script

collect data
foreach student ($argv)

foreach input (input100.txt input1000.txt input10000.txt)
foreach program (worstfit bestfit)

t[$student][$input][$program] = `time java $program < $input`
end

end
end

compute statistics
. . .

30

Associative Indexing

Associative index.
� Given list of N strings, associate index 0 to N-1 with each string.
� Recall union-find where we assumed objects were labeled 0 to N-1.

Why useful?
� Using algorithm with strings is more useful.
� Running algorithm with indices (instead of ST lookup) is faster.

while (true) {
int p = StdIn.readInt();
int q = StdIn.readInt();
...
uf.unite(p, q);
...

}

while (true) {
String s = StdIn.readString();
String t = StdIn.readString();
int p = st.index(s);
int q = st.index(t);
...
uf.unite(p, q);
...

}

31

Associative Indexing: Application

Connectivity problem.
� N objects: 0 to N-1
� Find: is there a connection between A and B?
� Union: add a connection between A and B.

Fun version.
� N objects: "Kevin Bacon", "Kate Hudson", . . .
� Find: is there a chain of movies connecting Kevin to Kate?
� Union: Kevin and Kate appeared in "How To Lose a Guy in 10 Days"

together, add connection

Real version.
� N objects: "www.cs.princeton.edu", "www.harvard.edu"
� Any graph processing application.

32

Symbol Table Summary

Hash tables: separate chaining, linear probing.

Binary search trees: randomized, splay, red-black.

Tries: R-way, TST.

Determine the needed ST ops for your application, and choose
the best data structure.

