String Searching

Karp-Rabin
Knuth-Morris-Pratt
Boyer-Moore

Reference: Chapter 19, Algorithms in C, 2nd Edition, Robert Sedgewick.

String Search

String: Sequence of characters over some alphabet Ex alphabets: binary, decimal, ASCII, UNICODE, DNA.

Some applications.

- Parsers.
- Lexis/Nexis.
- Spam filters
- Virus scanning.
- Digital libraries.
- Screen scrapers.
- Word processors.
- Web search engines.
- Symbol manipulation.
- Bibliographic retrieval.
- Natural language processing
- Carnivore surveillance system.
- Computational molecular biology.
- Feature detection in digitized images.

String search: given a pattern string p, find first match in text \dagger Model : can' \dagger afford to preprocess the text.

$$
\begin{array}{ll}
N=\# \text { characters in text } & \text { typically } N>M \\
M=\# \text { characters in pattern } & \text { Ex: } N=1 \text { million, } M=100
\end{array}
$$

Search Pattern
$M=21, N=6$

M

Successful Search

n	n	e	e	n	l	e	d	e	n	e	e	n	e	e	d	l	e	n	l	d

Spam Filtering

Spam filtering: patterns indicative of spam.

- AMAZING
- GUARANTEE
- PROFITS
- herbal Viagra
- This is a one-time mailing.
- There is no catch.
- This message is sent in compliance with spam regulations.
- You're getting this message because you registered with one of our marketing partners.

Brute force: Check for pattern starting at every text position.

```
public static int search(String pattern, String text) {
    int M = pattern.length();
    int N = text.length();
    for (int i = 0; i < N - M; i++) {
        int j;
        for (j = 0; j < M; j++) {
            if (text.charAt(i+j) != pattern.charAt(j))
            break
        }
        if (j == M) return i; & return offset i if found
    }
    return -1; & return-1 if not found
}
```


Screen Scraping

Find current stock price of Sun Microsystems.

- t. indexOf (p): index of $1^{\text {st }}$ occurrence of pattern p in text \dagger.
- Download html from http://finance.yahoo.com/q?s=sunw
- Find $1^{\text {st }}$ string delimited $b y$ and $</ b>$ appearing after Last Trade

```
public class StockQuote {
    public static void main(String[] args) {
        String name = "http://finance.yahoo.com/q?s=" + args[0];
        In in = new In(name)
        String input = in.readAll();
        int p = input.indexOf("Last Trade:", 0);
        int from = input.indexOf("<b>", p);
        int to = input.indexOf("</b>", from)
        String price = input.substring(from + 3, to);
        System.out.println(price)
    }
}
```

```
% java StockQuote sunw
```

% java StockQuote sunw
5.20
5.20
% java StockQuote ibm
% java StockQuote ibm
96.84

```
96.84
```


Algorithmic Challenges

Theoretical challenge: linear-time guarantee.
. TST index costs ~ N lgN.

Practical challenge: avoid BACKUP

- Often no room or time to save text.

Fundamental algorithmic problem.

Idea: use hashing.

- Compute hash function for each text position.
- No explicit hash table: just compare with pattern hash!

Example.

- Hash "table" size $=97$.

Search Pattern				
5	9	2	6	5

Search Text																				
3	1	4	1	5	9	2	6	5	3	5	8	9	7	9	3	2	3	8	4	6
3	1	4	1	5																
	1	4	1	5	9						314	\%	97	8						
		4	1	5	9	2					415	2 \%	97							
			1	5	9	2	6				1592	6 \%	97	1						
				5	9	2	6	5			592	\%	97	9						

Karp-Rabin Fingerprint Algorithm

Key idea: fast to compute hash function of adjacent substrings.

- Use previous hash to compute next hash.
- O(1) time per hash, except first one.

Example.

- Pre-compute:
- Previous hash:

$$
\begin{aligned}
& 10000 \div 97=9 \\
& 41592 \div 97=76 \\
& 15926 \div 97=? ?
\end{aligned}
$$

- Next hash:

Observation.

$$
\text { - } \begin{aligned}
15926 \div 97 & \equiv(41592-(4 * 10000)) * 10 \\
& \equiv(76-(4 * 9))) * 10+ \\
& \equiv 406 \\
& \equiv 18
\end{aligned}
$$

Idea: use hashing.

- Compute hash function for each text position.

Guaranteeing correctness.

- Need full compare on hash match to guard against collisions.

$$
-59265 \div 97=95
$$

$$
-59362 \div 97=95
$$

Running time.

- Hash function depends on M characters.
- Running time is $\Theta(M N)$ for search miss.
how can we fix this?

Karp-Rabin Fingerprint Algorithm: Java Implementation

```
public static int search(String p, String t) {
    int M = p.length()
    int N = t.length()
    int dM = 1, h1 = 0, h2 = 0
    int q = 3355439;
    int d = 256;
    for (int j = 1; j < M; j++)
        dM = (d * dM) % q;
    for (int j = 0; j < M; j++) {
        h1 = (h1*d + p.charAt(j)) % q; // hash of pattern
        h2 = (h2*d + t.charAt(j)) % q;
    }
    if (h1 == h2) return i - M;
    for (int i = M; j < N; i++) {
        h2 = (h2 - t.charAt(i-M)) % q; // remove high order digit
        h2 = (h2*d + t.charAt(i)) % q; // insert low order digit
            if (h1 == h2) return i - M; q; // match found
    }
    return -1;
}
```

Karp-Rabin fingerprint algorithm

- Choose table size at random to be huge prime.
- Expected running time is $O(M+N)$.
- $\Theta(M N)$ worst-case, but this is (unbelievably) unlikely.

Main advantage. Extends to 2d patterns and other generalizations.

Search for an M-character pattern in an N-character text.

Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N}^{+}$	M N
Karp-Rabin	$\Theta(\mathrm{N})$	$\Theta(\mathrm{N})^{\ddagger}$

character comparisons

A randomized algorithm uses random numbers to gain efficiency.
Las Vegas algorithms.

- Expected to be fast
- Guaranteed to be correct.
- Ex: quicksort, randomized BST, Rabin-Karp with match check.

Monte Carlo algorithms.

- Guaranteed to be fast.
- Expected to be correct.
. Ex: Rabin-Karp without match check.

Would either version of Rabin-Karp make a good library function?

How To Save Comparisons

How to avoid re-computation?

- Pre-analyze search pattern.
- Ex: suppose that first 5 characters of pattern are all a's.
- if $t[0 . .4]$ matches $p[0 . .4]$ then $t[1 . .4]$ matches $p[0 . .3]$
- no need to check $i=1, j=0,1,2,3$
- saves 4 comparisons

Basic strategy: pre-compute something based on pattern.
Search Pattern

a	a	a	a	a

DFA used in KMP has special property.

- Upon character match, go forward one state.
- Only need to keep track of where to go upon character mismatch: go to state next [j] if character mismatches in state j

Two key differences from brute force.

- Text pointer i never backs up.
- Need to precompute next [] table.

```
for (int i = 0, j = 0; i < N; i++)
    if (t.charAt(i) == p.charAt(j)) j++; // match
    else j = next[j];
    if (j == M) return i - M + 1; // mismatch
}
return -1; // not found
```

Simulation of KMP DFA (assumes binary alphabet)

Knuth-Morris-Pratt

KMP algorithm. (over binary alphabet, for simplicity)

- Use knowledge of how search pattern repeats itself.
\Rightarrow. Build DFA from pattern.
- Run DFA on text.

Rule for creating next [] table for pattern aabaaa.

- next [4]: longest prefix of aabaa that is a proper suffix of aabab. next [5]: longest prefix of aabaaa that is a proper suffix of aabaab.
compute by simulating abaab on DFA

DFA construction for KMP. DFA builds itself!

Ex: compute next [6] for pattern p[0..6] = aabaaab.

- Assume you know DFA for pattern p[0..5] = aabaaa.
- Assume you know state X for $p[1 . .5]=$ abaaa. $X=2$
- Update next [6] to state for abaaaa.
- Update X to state for $p[1 . .6]=$ abaaab
$x+a=2$
$X+b=3$

DFA Construction for KMP

DFA construction for KMP. DFA builds itself!

Ex: compute next [6] for pattern p[0..6] = aabaaab.

- Assume you know DFA for pattern p[0..5] = aabaaa
- Assume you know state X for $p[1 . .5]=$ abaaa. $X=2$
- Update next [6] to state for abaaaa. $X+a=2$
- Update X to state for $p[1 . .6]=$ abaaab $X+b=3$

$$
x+b=3
$$

DFA construction for KMP. DFA builds itself

Ex: compute next [7] for pattern p[0..7] = aabaaabb.

- Assume you know DFA for pattern p[0..6]= aabaaab.
- Assume you know state X for $p[1 . .6]=$ abaaab. $X=3$
- Update next [7] to state for abaaaba. $X+a=4$
- Update X to state for $p[1 . .7]=$ abaaabb

$$
x+b=0
$$

DFA construction for KMP. DFA builds itself!

Ex: compute next [7] for pattern p[0..7] = aabaaabb.

- Assume you know DFA for pattern p [0..6] = aabaaab.
- Assume you know state X for $p[1 . .6]=$ abaaab. $X=$
- Update next [7] to state for abaaaba. $X+a=4$
- Update X to state for $p[1 . .7]=$ abaaabb $X+b=0$

j	pattern[1..j]						x		
next									
0								0	0
1	a							1	0
2	a	b						0	2
3	a	b	a					1	0
4	a	b	a	a				2	0
5	a	b	a	a	a			2	3
6	a	b	a	a	a	b		3	2
7	a	b	a	a	a	b	b	0	4

Build DFA for KMP.

- Takes $O(M)$ time.
- Requires $O(M)$ extra space to store next [] table.

```
int X = 0
int[] next = new int[M]
for (int j = 1; j < M; j++) {
    if (p.charAt(X) == p.charAt(j)) { // char match
        next[j] = next[x]
        x = x + 1;
    }
    else {
        next[j] = x + 1;
        x = next[X]
    }
}
```

DFA Construction for KMP (assumes binary alphabet)

KMP Over Arbitrary Alphabet

DFA for patterns over arbitrary alphabets.

- Read new character only upon success (or failure at beginning).
- Reuse current character upon failure and follow back.
- Fact: KMP follows at most $1+\log _{\phi} M$ back links in a row.
- Theorem: at most 2 N character comparisons in total.

Ex: DFA for pattern ababcb.

KMP analysis.

- DFA simulation takes $\Theta(N)$ time in worst-case.
- DFA construction takes $\Theta(M)$ time and space in worst-case.
- Extends to ASCII or UNICODE alphabets.
- Good efficiency for patterns and texts with much repetition.
. "On-line algorithm." virus scanning, internet spying

Search for an M-character pattern in an N-character text.

Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N}^{+}$	M N
Karp-Rabin	$\Theta(\mathrm{N})$	$\Theta(\mathrm{N})^{\ddagger}$
KMP	$1.1 \mathrm{~N}^{+}$	2 N

History of KMP

- Inspired by esoteric theorem of Cook that says linear time algorithm should be possible for 2-way pushdown automata.
- Discovered in 1976 independently by two theoreticians and a hacker.
- Knuth: discovered linear time algorithm
- Pratt: made running time independent of alphabet
- Morris: trying to build an editor and avoid annoying buffer for string search

Resolved theoretical and practical problems.
. Surprise when it was discovered.
. In hindsight, seems like right algorithm.

Boyer-Moore

Boyer-Moore algorithm (1974).
\Rightarrow. Right-to-left scanning.

- find offset i in text by moving left to right.
- compare pattern to text by moving right to left.

Boyer-Moore

Boyer-Moore algorithm (1974).

. Right-to-left scanning.

\Rightarrow. Heuristic 1: advance offset i using "bad character rule."

- upon mismatch of text character c, look up index [c]
- increase offset i so that $j^{\text {th }}$ character of pattern lines up with text character c

Boyer-Moore

Boyer-Moore algorithm (1974)

- Right-to-left scanning.
\Rightarrow. Heuristic 1: advance offset i using "bad character rule."
- upon mismatch of text character c, look up index [c]
- increase offset i so that $j^{\text {th }}$ character of pattern lines up with text character c

Boyer-Moore algorithm (1974).

- Right-to-left scanning
- Heuristic 1: advance offset i using "bad character rule."
- Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior

bad character rule
construction of bad character skip table

Boyer-Moore

Boyer-Moore algorithm (1974).

- Right-to-left scanning.
- Heuristic 1: advance offset i using "bad character rule."
- Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior

String Search Implementation Cost Summary

Boyer-Moore analysis.
. $O(N / M)$ average case if given letter usually doesn' \dagger occur in string.

- time decreases as pattern length increases
- sublinear in input size!
- $O(\mathrm{~N})$ worst-case with Galil variant.

Search for an M-character pattern in an N-character text.

Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N} \dagger$	MN
Karp-Rabin	$\Theta(\mathrm{N})$	$\Theta(\mathrm{N})^{\ddagger}$
KMP	$1.1 \mathrm{~N}^{\dagger}$	2 N
Boyer-Moore	$\mathrm{N} / \mathrm{M}^{\dagger}$	4 N

\dagger assumes appropriate mode \ddagger randomized
character comparisons

Big alphabets.

- Direct implementation may be impractical, e.g., UNICODE.
- May explain why Java's indexof doesn't use it.
- Solution 1: search one byte at a time.
- Solution 2: hash UNICODE characters to smaller range.

Small alphabets.

- Loses effectiveness when A is too small, e.g., DNA.
- Solution: group characters together (aaaa, aaac, . . .).

Tip of the Iceberg
Multiple string search. Search for any of k different strings.

- Naïve: $O(M+k N)$.
- Aho-Corasick: $O(M+N)$.
- Screen out dirty words from a text stream.

Wildcards / character classes.

- Ex: PROSITE patterns for computational biology.
- $O(M+N)$ time using $O(M+A)$ extra space.
- Multiple matches

Approximate string matching: allow up to k mismatches.

- Recovering from typing or spelling errors in information retrieval.
- Fixing transmission errors in signal processing.

Edit-distance: allow up to k edits.

- Recover from measurement errors in computational biology.

Java String Library

Java String library has built-in string searching.

- t.index $\mathrm{f}(\mathrm{p})$: index of $1^{\text {st }}$ occurrence of pattern p in text \dagger.
- Caveat: it's brute force, and can take $\Theta(M N)$ time.

```
public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);
    String s = "a"
    String s = (int i = 0; i< n; i++) ( 
    String pattern = s + "b";
    String text = s + s;
```

 System.out.println(text.indexOf (pattern)) ;
 \}

Why do you think library uses brute force?

