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Lecture 3:  Efficient Sorts

Mergesort 

Quicksort

Analysis of Algorithms
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Mergesort and Quicksort

Two great sorting algorithms.
� Full scientific understanding of their properties has enabled us to
� hammer them into practical system sorts.
� Occupies a prominent place in world's computational infrastructure. 
� Quicksort honored as one of top 10 algorithms for science and 

engineering of 20th century.

Mergesort.
� Java Arrays sort for type Object.
� Java Collections sort.
� Perl stable, Python stable.

Quicksort.
� Java Arrays sort for primitive types. 
� C qsort, Unix, g++, Visual C++, Perl, Python.
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obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting Applications

Applications.
� Sort a list of names.
� Organize an MP3 library.
� Display Google PageRank results.

� Find the median. 
� Find the closest pair.
� Binary search in a database.
� Identify statistical outliers.
� Find duplicates in a mailing list.

� Data compression.
� Computer graphics. 
� Computational biology.
� Supply chain management.
� Simulate a system of particles.
� Book recommendations on Amazon.
� Load balancing on a parallel computer.

. . .
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Estimating the Running Time

Total running time is sum of cost � frequency for all of the basic ops.
� Cost depends on machine, compiler.
� Frequency depends on algorithm, input.

Cost for sorting.
� A  =  # function calls.
� B  =  # exchanges.
� C  =  # comparisons.
� Cost on a typical machine = 35A + 11B + 4C.

Frequency of sorting ops.
� N  =  # elements to sort.
� Selection sort:  A = 1, B = N-1, C = N(N-1) / 2.

Donald Knuth
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An easier alternative.
(i)   Analyze asymptotic growth as a function of input size N.
(ii)  For medium N, run and measure time.
(iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.
� Estimate as a function of input size N.

– N,  N log N,  N2,  N3,  2N,  N!
� Ignore lower order terms and leading coefficients.

– Ex.  6N3  + 17N2 + 56  is asymptotically proportional to N3

Estimating the Running Time
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Big Theta, Oh, and Omega notation.

� �(N2) means { N2, 17N2, N2 + 17N1.5 + 3N,  . . . }
– ignore lower order terms and leading coefficients

� O(N2) means { N2, 17N2, N2 + 17N1.5 + 3N, N1.5, 100N, . . . }
– �(N2) and smaller
– use for upper bounds

� �(N2) means { N2, 17N2, N2 + 17N1.5 + 3N,  N3, 100N5, . . . }
– �(N2) and larger
– use for lower bounds

Never say:  insertion sort makes at least O(N2) comparisons.

Big Oh Notation
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Insertion sort is quadratic. 
� N2 / 4 - N / 4 comparisons on average.
� �(N2).

On arizona:  1 second for N = 10,000.
� How long for N = 100,000? 100 seconds (100 times as long)
� N = 1 million? 2.78 hours (another factor of 100)
� N = 1 billion? 317 years (another factor of 106)
� N = 1 trillion?

Estimating the Running Time
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Why It Matters

1000
Time to
solve a
problem
of size

10,000
100,000
million

10 million

1.3 seconds
22 minutes

15 days
41 years

41 millennia

920
3,600
14,000
41,000

1,000

Run time in
nanoseconds --> 1.3 N3

second
Max size
problem
solved
in one

minute
hour
day

10 msec
1 second

1.7 minutes
2.8 hours
1.7 weeks

10,000
77,000

600,000
2.9 million

100

10 N2

0.4 msec
6 msec

78 msec
0.94 seconds
11 seconds

1 million
49 million
2.4 trillion
50 trillion

10+

47 N log2N

0.048 msec
0.48 msec
4.8 msec
48 msec

0.48 seconds

21 million
1.3 billion
76 trillion

1,800 trillion

10

48 N

N multiplied by 10,
time multiplied by

Reference: More Programming Pearls by Jon Bentley
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Orders of Magnitude

10-10

Meters Per
Second

10-8

10-6

10-4

10-2

1
102

1.2 in / decade

Imperial
Units

1 ft / year
3.4 in / day
1.2 ft / hour
2 ft / minute
2.2 mi / hour
220 mi / hour

Continental drift

Example

Hair growing
Glacier

Gastro-intestinal tract
Ant

Human walk
Propeller airplane

104

106

108

370 mi / min
620 mi / sec

62,000 mi / sec

Space shuttle
Earth in galactic orbit

1/3 speed of light

1

Seconds

102

103

104

105

106

107

108

109

1010

1 second

Equivalent

1.7 minutes
17 minutes
2.8 hours
1.1 days

1.6 weeks
3.8 months
3.1 years

3.1 decades
3.1 centuries

forever

1017 age of
universe

210 thousand
220 million
230 billion

. . .

10 10 seconds

Powers
of 2

Reference: More Programming Pearls by Jon Bentley
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Mergesort

Mergesort  (divide-and-conquer)
� Divide array into two halves.
� Recursively sort each half.
� Merge two halves to make sorted whole.

merge

sort

A L G O R I T H M S

divideA L G O R I T H M S
A G L O R H I M S T
A G H I L M O R S T
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Mergesort Implementation in Java

public static void mergesort(Comparable[] a, int low, int high) {
Comparable temp[] = new Comparable[a.length];
for (int i = 0; i < a.length; i++) temp[i] = a[i];
mergesort(temp, a, low, high);

}
private static void mergesort(Comparable[] from, Comparable[] to,

int low, int high) {
if (high <= low) return;
int mid = (low + high) / 2;
mergesort(to, from, low, mid);
mergesort(to, from, mid+1, high);
int p = low, q = mid+1;
for(int i = low; i <= high; i++) {

if (q > high) to[i] = from[p++];
else if (p > mid) to[i] = from[q++];
else if (less(from[q], from[p])) to[i] = from[q++];
else to[i] = from[p++];

}
}
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Mergesort Analysis

Stability? Yes, if underlying merge is stable.

How much memory does array implementation of mergesort require?
� Original input =  N.
� Auxiliary array for merging = N.
� Local variables:  constant.
� Function call stack:  log2 N.
� Total = 2N + O(log N).

How much memory do other sorting algorithms require?
� N + O(1) for insertion sort, selection sort, bubble sort.
� In-place  =  N + O(log N).
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Mergesort Analysis

How long does mergesort take?
� Bottleneck = merging (and copying).

– merging two files of size N/2 requires � N comparisons
� T(N) = comparisons to mergesort N elements.

– assume N is a power of 2
– assume merging requires exactly N comparisons

Claim. T(N) = N log2 N.
� Note:  same number of comparisons for ANY file.
� We'll give several proofs to illustrate standard techniques.

�
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Proof by Picture of Recursion Tree

T(N)
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Proof by Telescoping

Claim. If T(N) satisfies this recurrence, then T(N) = N log2 N.

Proof.   For N > 1:
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Mathematical Induction

Mathematical induction.
� Powerful and general proof technique in discrete mathematics.
� To prove a theorem true for all integers k � 0:

– base case: prove it to be true for N = 0
– induction hypothesis: assuming it is true for arbitrary N
– induction step: show it is true for N + 1

Claim: 0 + 1 + 2 + 3 + . . . + N  =  N(N+1) / 2   for all N � 0.
Proof: (by mathematical induction)

� Base case (N = 0).
– 0  =  0(0+1) / 2.

� Induction hypothesis:  assume 0 + 1 + 2 + . . . + N  =  N(N+1) / 2
� Induction step:  0 + 1 + . . . + N + N + 1 =   (0 + 1 + . . . + N) + N+1

=   N (N+1) /2  +  N+1
=   (N+2)(N+1) / 2
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Proof by Induction

Claim. If T(N) satisfies this recurrence, then T(N) = N log2 N.

Proof. (by induction on N)
� Base case:  N = 1.
� Inductive hypothesis:  T(N) =  N log2 N.
� Goal:  show that T(2N) =  2N log2 (2N).

� �

)2(log2
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Proof by Induction

Q.  What if N is not a power of 2?
Q.  What if merging takes at most N comparisons instead of exactly N?

A.  T(N) satisfies following recurrence.

Claim. T(N)  � N �log2 N�.
Proof. Challenge for the bored.

� �� � � �� �
��
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Mergesort:  Practical Improvements

Eliminate recursion.  Bottom-up mergesort.

Stop if already sorted.
� Is biggest element in first half � smallest element in second half?
� Helps for nearly ordered lists.

Insertion sort small files.
� Mergesort has too much overhead for tiny files.
� Cutoff to insertion sort for < 7 elements.

Use sentinels.
� Two of four statements in inner loop are bounds checking.
� "Superoptimization requires mindbending recursive switchery."

Sedgewick Program 8.5
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Sorting By Different Fields

Design challenge:  enable sorting students by email or section.

// sort by email
Student.setSortKey(Student.EMAIL);
ArraySort.mergesort(students, 0, N-1);
// then by precept
Student.setSortKey(Student.SECTION);
ArraySort.mergesort(students, 0, N-1);

1 Anand Dharan adharan
1 Ashley Evans amevans
1 Alicia Myers amyers
1 Arthur Shum ashum
1 Amy Trangsrud atrangsr
1 Bryant Chen bryantc
1 Charles Alden calden
1 Cole Deforest cde
1 David Astle dastle
1 Elinor Keith ekeith
1 Kira Hohensee hohensee
. . .
5 Tom Brennan tpbrenna
5 Timothy Ruse truse
5 Yiting Jin ycjin

Mergesort is stable
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Sorting By Different Fields

public class Student implements Comparable {
private String first, last, email;
private int section;
public final static int FIRST   = 0;
public final static int LAST    = 1;
public final static int EMAIL   = 2;
public final static int SECTION = 3;
private static int sortKey = SECTION;
public static void setSortKey(int k) { sortKey = k; }
public int compareTo(Object x) {

Student a = this;
Student b = (Student) x;
if (sortKey == FIRST) return a.first.compareTo(b.first);
else if (sortKey == LAST) return a.last.compareTo(b.last);
else if (sortKey == EMAIL) return a.email.compareTo(b.email);
else return a.section - b.section;

}
...

}

data members
(one for each student)

classwide variables
(shared by all students)

compare using chosen key
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Computational Complexity

Computational complexity.  Framework to study efficiency of 
algorithms for solving a particular problem X.
Machine model. Count fundamental operations.

Upper bound.  Cost guarantee provided by some algorithm for X.
Lower bound.  Proven limit on cost guarantee of any algorithm for X.
Optimal algorithm.  Algorithm with best cost guarantee for X.

Example:  sorting.
� Machine model = # comparisons on random access machine.
� Upper bound = N log2 N from mergesort.
� Lower bound = N log2 N - N log2 e
� Optimal algorithm = mergesort.

applies to any comparison-based
algorithm (see COS 226)

lower bound ~ upper bound
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Decision Tree

print
a1, a2, a3

a1 < a2

YES NO

a2 < a3

YES NO

a2 < a3

YES NO

a1 < a3

YES NO

a1 < a3

YES NO

print
a1, a3, a2

print
a3, a1, a2

print
a2, a1, a3

print
a2, a3, a1

print
a3, a2, a1
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Comparison Based Sorting Lower Bound

Theorem. Any comparison based sorting algorithm must use
�(N log2N) comparisons.

Proof. Worst case dictated by tree height h.
� N! different orderings.
� One (or more) leaves corresponding to each ordering.
� Binary tree with N! leaves must have height

What if we don't use comparisons?  Stay tuned for radix sort.

eNNN
eN

Nh
N

22
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2

loglog
)/(log

)!(log
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�

�

Stirling's formula
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Sorting Analysis Summary

Running time estimates:
� Home pc executes 108 comparisons/second.
� Supercomputer executes 1012 comparisons/second.

Lesson 1:  good algorithms are better than supercomputers.

computer
home
super

thousand
instant
instant

million
2.8 hours
1 second

billion
317 years
1.6 weeks

Insertion Sort (N2)
thousand
instant
instant

million
1 sec

instant

billion
18 min
instant

Mergesort (N log N)
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Quicksort

Quicksort.
� Partition array so that:

– some pivot element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

Sir  Charles Antony 
Richard Hoare, 1960

Q U I C K S O R T I S C O O L
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Quicksort

Quicksort.
� Partition array so that:

– some pivot element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

partitioning element

partitioned array

� L � L

Q U I C K S O R T I S C O O L

I C K I C OQ U S O R T S OL
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Quicksort

Quicksort.
� Partition array so that:

– some pivot element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

� Sort each "half" recursively.

Q U I C K S O R T I S C O O L

I C K I C OQ U S O R T S OLC C I I K UO O O Q R S S T

partitioning element

sort each piece
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Quicksort:  Java Implementation

Quicksort.
� Partition array so that:

– some pivot element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

� Sort each "half" recursively.

public static void quicksort(Comparable[] a, int L, int R) {
if (R <= L) return;
int m = partition(a, L, R);
quicksort(a, L, m-1);
quicksort(a, m+1, R);

} 
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Quicksort :  Implementing Partition

How do we partition in-place efficiently?

static int partition(Comparable[] a, int L, int R) {
int i = L - 1;
int j = R;
while(true) {

while (less(a[++i], a[R]))
;

while (less(a[R], a[--j]))
if (j == L) break;

if (i >= j) break;
exch(a, i, j);

}
exch(a, i, R);
return i;

}

swap with partitioning element

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index where crossing occurs
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Quicksort Example

Partitioning Quicksort
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Quicksort:  Worst Case

Number of comparisons in worst case is quadratic.
� N + (N-1) + (N-2) + . . . + 1  =  N(N+1)/2

Worst-case inputs.
� Already sorted!
� Reverse sorted.

What about all equal keys or only two distinct keys?
� Many textbook implementations go quadratic.
� Sedgewick partitioning algorithm stops on equal keys.
� Stay tuned for 3-way quicksort.
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Quicksort:  Average Case

Average case running time.
� Roughly 2 N ln N comparisons.
� Assumption:  file is randomly shuffled.
� Equivalent assumption:  pivot on random element.

Remarks.
� 39% more comparisons than mergesort.
� Faster than mergesort in practice because of lower cost of other

high-frequency instructions.
� Worst case still proportional to N2 but more likely that you are 

struck by lightning and meteor at same time.
� Caveat:  many textbook implementations have best case N2 if 

duplicates, even if randomized!

proof on next slide
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Quicksort:  Average Case

Theorem. The average number of comparisons CN to quicksort a 
random file of N elements is about 2N ln N.

� The precise recurrence satisfies C0 = C1 = 0 and for N � 2:

� Multiply both sides by N and subtract the same formula for N-1:

� Simplify to:

� �

�

�

�

�

�

�

���

����

N

k
kN

N

k
kNkNN

CN

CCNC

1
1

2

1

1

1

1

11 2)1()1()1(
��

������� NNN CNNNNCNCN

NCNNC NN 2)1( 1 ���
�

37

Quicksort:  Average Case

� Divide both sides by N(N+1) to get a telescoping sum:

� Approximate the exact answer by an integral:

� Finally, what we want:
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Sorting Analysis Summary

Running time estimates:
� Home pc executes 108 comparisons/second.
� Supercomputer executes 1012 comparisons/second.

Lesson 1: good algorithms are better than supercomputers.
Lesson 2: great algorithms are better than good ones.

computer
home
super

thousand
instant
instant

million
2.8 hours
1 second

billion
317 years
1.6 weeks

Insertion Sort (N2)
thousand
instant
instant

million
1 sec

instant

billion
18 min
instant

Mergesort (N log N)

thousand
instant
instant

million
0.3 sec
instant

billion
6 min

instant

Quicksort (N log N)
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Quicksort:  Practical Improvements

Median of sample.
� Best choice of pivot element  =  median.
� But how would you compute the median?
� Estimate true median by taking median of sample.

Insertion sort small files.
� Even quicksort has too much overhead for tiny files.
� Can delay insertion sort until end.

Optimize parameters.
� Median of 3 elements.
� Cutoff to insertion sort for < 10 elements.

Non-recursive version.
� Use explicit stack.
� Always sort smaller half first.

guarantees O(log N) stack size
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Engineering a System Sort

Samplesort.
� Basic algorithm = quicksort.
� Sort a relatively large random sample from the array.
� Use sorted elements as pivots.
� Pivots are (probabilistically) good estimates of true medians.

Bentley-McIlroy.
� Original motivation:  improve qsort function in C.
� Basic algorithm = quicksort.
� Partition on Tukey's ninther:  Approximate median-of-9. 

– used median-of-3 elements, each of which is median-of-3
– idea borrowed from statistics, useful in many disciplines

� 3-way quicksort to deal with equal keys.

Reference:  Engineering a Sort Function by Jon L. Bentley and M. Douglas McIlroy.

stay tuned
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System Sorts

Java's Arrays.sort library function for arrays.
� Uses Bentley-McIlroy quicksort implementation for objects.
� Uses mergesort for primitive types.

� To access library, need following line at beginning of program. 

Why the difference for objects and primitive types?

starting index is inclusive,
ending index is exclusive
http://java.sun.com/j2se/1.4.2/docs/api/

import java.util.Arrays;

Arrays.sort(students, 0, N);
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Breaking Java's System Sort

Is it possible to make system sort go quadratic?
� No, for mergesort.
� Yes, for deterministic quicksort.

McIlroy's devious idea.
� Construct malicious input WHILE running system quicksort in 

response to elements compared.
� If p is partition element, commit to x < p, y < p, but don't commit to 

any order on x, y until x and y are compared.

Consequences.
� Confirms theoretical possibility.
� Algorithmic complexity attack:  you enter linear amount of data;

server performs quadratic amount of work.
� Blows function call stack and crashes program.

Reference: McIlory.  A Killer Adversary for Quicksort. 

more disastrous 
possibilities in C

so, why are most system sorts deterministic?
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Lots of Sorting Algorithms

Internal sorts.
� Insertion sort, selection sort, bubblesort, shellsort, shaker sort.
� Quicksort, mergesort, heapsort.
� Samplesort, introsort.
� Solitaire sort, red-black sort, splaysort, psort, . . . .

External sorts.  Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts.
� Distribution, MSD, LSD.
� 3-way radix quicksort.

Parallel sorts.
� Bitonic sort, Batcher even-odd sort.
� Smooth sort, cube sort, column sort.


