Priority Queues

Priority Queue ADT

Binary heaps
Heapsort

Separate interface and implementation so as to:

- Build layers of abstraction.
. Reuse software.
- Ex: stack, queue, symbol table.

Interface: description of data type, basic operations. Client: program using operations defined in interface. Implementation: actual code implementing operations.

Benefits.

- Client can't know details of implementation, so has many implementation from which to choose.
- Implementation can't know details of client needs, so many clients can re-use the same implementation.
- Performance: use optimized implementation where it matters.
- Design: creates modular, re-usable libraries.

Abstract Data Types

Idealized scenario.

- Design general-purpose ADT useful for many clients.
- Develop efficient implementation of all ADT functions.
- Each ADT provides a new level of abstraction.

algorithms

Total cost depends on:

- ADT implementation. algorithms and data structures
. Client usage pattern. might need different implementations for different clients

Priority Queues

Records with keys (priorities) that can be compared.
Basic operations.

- Insert. \Leftarrow	PQ ops	insert E \Rightarrow	E				
- Remove largest.		insert $X \rightarrow$	E	X			
		insert $A \Rightarrow$	E	X	A		
			E	A			remove largest
- Create.	generic ADT ops	insert $M \rightarrow$	E	A	M		
Test if empty			E	A			remove largest
- Test if empty.		insert $P \rightarrow$	E	A	P		
		insert $L \rightarrow$	E	A	P	L	
			E	A	L		remove largest
- Copy.		insert E \rightarrow	E	A	L	E	
- Destroy.			E	A	E		remove largest
			A	E			remove largest
			A				remove largest
not needed for one-time use, but critical in large systems when writing in C or C_{++}							remove largest

Priority Queue Client Example

Applications.
. Event-driven simulation.

- Numerical computation.
- Data compression.
- Graph searching.
- Computational number theory.
- Artificial intelligence
- Statistics.
- Operating systems.
- Discrete optimization.
- Spam filtering.
customers in a line, colliding particles
reducing roundoff error
Huffman codes
shortest path, MST
sum of powers
A^{*} search
maintain largest M values in a sequence
task scheduling, interrupt handling
bin packing heuristics
Bayesian spam filter

Unordered Array Priority Queue Implementation

public class PQ \{

$$
\begin{array}{ll}
\text { private Comparable[] pq; } & \text { // pq[i] = ith element } \\
\text { private int } N ; & \text { // number of elements on } \mathrm{PQ}
\end{array}
$$

public PQ() \{ pq = new Comparable[8]; \}
constructor
public boolean isEmpty() \{return $N==0 ;\}$ is the $P Q$ empty?
public void insert(Comparable x) \{ pq $[\mathrm{N}++]=\mathbf{x}$;
\}
public Comparable delMax()
int $\max =0$;
for (int $i=1 ; i<N ; i++$)
if (less (pq[max], pq[i])) max = i
exch(pq, max, $N-1)$;
return $\mathrm{pq}[-\mathrm{N}]$.
\}

Problem: Find the largest M of a stream of N elements.

Ex 1: Fraud detection - isolate \$\$ transactions.

Ex 2: File maintenance - find biggest files or directories.

Possible constraint: may not have enough memory to store N elements. Solution: Use a priority queue.

Operation	time	space
sort	$N \lg N$	N
elementary PQ	$M N$	M
binary heap	$N \lg M$	M
best in theory	N	M

```
PQ pq = new PQ()
while(!StdIn.isEmpty()) {
    String s = StdIn.readString()
    pq.insert(s);
    if (pq.size()
        pq.delMax() :
```

\}
while (!pq.isEmpty())
System.out.println(pq.delMax()) ;

Ex: top 10,000 in a stream of 1 billion.
. Not possible without good algorithm.

Implementation Details

What if I don't know the max capacity of the PQ ahead of time?

- Double the size of the array as needed.
- Add following code to insert before updating array.

```
if (N >= pq.length)
    Comparable[] temp = new Comparable[2*N];
    for (int i = 0; i < N; i++)
            temp[i] = pq[i];
        pq = temp
}
```

Memory leak.

- Garbage collector only reclaims memory if there is no outstanding reference to it.
- When deleting element N-1 from the priority queue, set:

```
pq[N-1] = null
```

Worst-Case Asymptotic costs for PQ with N items			
Operation	Insert	Remove Max	Find Max
ordered array	N	1	1
ordered list	N	1	1
unordered array	1	N	N
unordered list	1	N	N

Can we implement all operations efficiently?

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree

- null or
- Node with links to left and right trees.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

Array representation

- Take nodes in level order.
- No explicit links needed since tree is complete.

1	2	3	4	5	6	7	8	9	10	11	12
X	T	0	6	S	M	N	A	E	R	A	I

Heap Properties

Largest key is at root.

Use array indices to move through tree.

- Note: indices start at 1.
- Parent of node at k is at $k / 2$. \square | X | T | O | G | S | M | N | A | E | R | A | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

. Children of node at k are at $2 k$ and $2 k+1$.

Length of path in N-node heap is at most $\sim \lg N$.

- n levels when $2^{n} \leq N<2^{n}+1$.
. $n \leq \lg N<n+1$.

$$
2^{n}-1 \text { nodes }
$$

en

Promotion (Bubbling Up) In a Heap

Suppose that exactly one node is bigger than its parent.
To eliminate the violation:

- Exchange with its parent.
- Repeat until heap order restored.

```
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
        }
}
parent of node at }k\mathrm{ is at k/2
```

Peter principle: node promoted to level of incompetence.

Suppose that exactly one node is smaller than a child.
To eliminate the violation:

- Exchange with larger child.
- Repeat until heap order restored.

```
private void sink(int k, int N) {
    while (2*k <= N) {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break; 人
        exch(k, j); children of node
        k = j; at k are 2k and 2k+1
    }
}
```


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | O | T | X | G | S | P | N | A | E | R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |A^{\prime} I

Insert. Add node at end, then promote.

```
public void insert(Comparable x
    pq[++N] = x ;
    swim(N);
}
```

Remove largest. Exchange root with node at end, then sift down.

```
public Comparable delMax()
    exch(1,N) ;
    sink (1, N-1)
    sink(1, N-1);
}
```


$\triangle|T| O|G| S|M| N|A| E|R| A \mid I P$

TSTP|G|R|O|NA|E|M|A|IX

Heap Based Priority Queue in Java

```
public class PQ {
    private Comparable[] pq; & exactly as in array-based PQ
    private int N;
    public PQ()
    public boolean isEmpty()
    public int size() { }
    public void insert(Comparable x) { } & PQops
    public Comparable delMax()
    private void swim(int k) int N) { } } & heap helper functions
    private boolean less(int i, int j) { }
    exch(int i, int j) { } & helper functions
}
```

Priority Queues Implementation Cost Summary

Worst-Case Asymptotic costs for PQ with N items			
Operation	Insert	Remove Max	Find Max
ordered array	N	1	1
ordered list	N	1	1
unordered array	1	N	N
unordered list	1	N	N
heap	$\lg \mathrm{N}$	$\lg \mathrm{N}$	1

Hopeless challenge: get all ops $O(1)$.

Expansion: double size of array as needed.

Memory leak: when deleting element n , set $\mathrm{pq}[\mathrm{N}]=$ null.

First pass: build heap.

- Add item to heap at each iteration, then sift up.in the heapnot in the heap
- Or can use faster bottom-up method; see book.

```
for (int k = N / 2; k >= 1; k--) {
    sink (k, N);
```

Second pass: sort.

- Remove maximum at each iteration.
. Exchange root with node at end, then sift down.

```
while (N > 1) {
    exch(1, N);
    sink (1, --N)
}
```

E	X	A	M	P	L	E
E	X	A	M	P	L	E
X	E	A	M	P	L	E
X	E	A	M	P	L	E
X	M	A	E	P	L	E
X	P	A	E	M	L	E
X	P	L	E	M	A	E
X	P	L	E	M	A	E
P	M	L	E	E	A	X
M	E	L	A	E	P	X
L	E	E	A	M	P	X
E	A	E	L	M	P	X
E	A	E	L	M	P	X
A	E	E	L	M	P	X
A	E	E	L	M	P	X

Q: Sort in $N \log N$ worst-case without using extra memory?
A: Yes. Heapsort.

Not mergesort? Linear extra space.
$\leqslant \quad$ challenge for bored: design in-place merge
Not quicksort? Quadratic in worst case. challenge for bored: design $O(N \log N)$ worst-case quicksort

Heapsort is OPTIMAL for both time and space, BUT

- Inner loop longer than quicksort's.
- Makes poor use of cache memory.

In the wild: g$^{++}$STL uses introsort.
combo of quicksort, heapsort, and insertion

Sorting Summary

Sam Loyd's 15-Slider Puzzle

15 puzzle.

- Legal move: slide neighboring tile into blank square.
- Challenge: sequence of legal moves to put tiles in increasing order.
- Win $\$ 1000$ prize for solution.

Sam Loyd

Priority first search.

- Basic idea: explore positions in more intelligent order.
\Rightarrow. Ex 1: number of tiles out of order.
- Ex 2: sum of Manhattan distances + depth.

Implement A^{*} algorithm with $P Q$.

Pictures from Sequential and Paralle/ Algorithms by Berman and Paul.

Event-Based Simulation

Challenge: animate N moving particles.

- Each has given velocity vector.
- Bounce off edges and one another upon collision.

Example applications: molecular dynamics, traffic, ...

Naive approach: † times per second

- Update particle positions.
- Check for collisions, update velocities.
- Redraw all particles.

Problems:

- $N^{2}+$ collision checks per second.
- May miss collisions!

Event-Based Simulation

Approach: use PQ of events with time as key.
. Put collision event on PQ for each particle (calculate time of next collision as priority)

- Put redraw events on PQ († per second).

Main loop: remove next event from PQ.

- Redraw: update positions and redraw.
- Collision: update velocity of affected particles and put new collision events on PQ.

More PQ operations needed:

- may need to remove items from PQ.
- may want to join PQs for different sets of events (Ex: joil national for air traffic control).

More sophisticated PQ interface needed

Indirect priority queue.

- Supports deletion of arbitrary elements.
- Use symbol table to access binary heap node, given element to delete.

Binomial queue.

- Supports fast join.
- Slightly relaxes heap property to gain flexibility.

Worst-Case Asymptotic costs for PQ with N items

Operation	Insert	Remove Max	Find Max	Change Key	Join
ordered array	N	1	1	N	N
ordered list	N	1	1	N	N
unordered array	1	N	N	1	N
unordered list	1	N	N	1	1
heap	$\lg N$	$\lg N$	1	$\lg N$	N
binomial queue	$\lg N$				
best in theory	1	$\lg N$	1	1	1

