
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Priority Queues

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Priority Queue ADT

Binary heaps

Heapsort

2

Client, Implementation, Interface

Separate interface and implementation so as to:
� Build layers of abstraction.
� Reuse software.
� Ex: stack, queue, symbol table.

Interface: description of data type, basic operations.
Client: program using operations defined in interface.
Implementation: actual code implementing operations.

Benefits.
� Client can't know details of implementation, so has many

implementation from which to choose.
� Implementation can't know details of client needs, so many clients

can re-use the same implementation.
� Performance: use optimized implementation where it matters.
� Design: creates modular, re-usable libraries.

3

Abstract Data Types

Idealized scenario.
� Design general-purpose ADT useful for many clients.
� Develop efficient implementation of all ADT functions.
� Each ADT provides a new level of abstraction.

Total cost depends on:
� ADT implementation.
� Client usage pattern.

ADT

clients

algorithms

might need different implementations
for different clients

algorithms and data structures

4

Priority Queues

Records with keys (priorities) that can be compared.

Basic operations.
� Insert.
� Remove largest.

� Create.
� Test if empty.

� Copy.
� Destroy.

PQ ops

generic
ADT ops

not needed for one-time use, but critical
in large systems when writing in C or C++

5

Priority Queue Applications

Applications.
� Event-driven simulation. customers in a line, colliding particles
� Numerical computation. reducing roundoff error
� Data compression. Huffman codes
� Graph searching. shortest path, MST
� Computational number theory. sum of powers
� Artificial intelligence. A* search
� Statistics. maintain largest M values in a sequence
� Operating systems. task scheduling, interrupt handling
� Discrete optimization. bin packing heuristics
� Spam filtering. Bayesian spam filter

6

Priority Queue Client Example

Problem: Find the largest M of a stream of N elements.
Ex 1: Fraud detection - isolate $$ transactions.
Ex 2: File maintenance – find biggest files or directories.

Possible constraint: may not have enough memory to store N elements.
Solution: Use a priority queue.

Ex: top 10,000 in a stream of 1 billion.
� Not possible without good algorithm.

PQ pq = new PQ();
while(!StdIn.isEmpty()) {

String s = StdIn.readString();
pq.insert(s);
if (pq.size() > M)

pq.delMax();
}
while (!pq.isEmpty())

System.out.println(pq.delMax());

sort

Operation

elementary PQ

binary heap

best in theory

N

space

M

M

M

N lg N

time

M N

N lg M

N

7

Unordered Array Priority Queue Implementation

public class PQ {
private Comparable[] pq; // pq[i] = ith element
private int N; // number of elements on PQ
public PQ() { pq = new Comparable[8]; }
public boolean isEmpty() { return N == 0; }
public void insert(Comparable x) {

pq[N++] = x;
}
public Comparable delMax() {

int max = 0;
for (int i = 1; i < N; i++)

if (less(pq[max], pq[i])) max = i;
exch(pq, max, N-1);
return pq[--N];

}
}

constructor

remove and return max
element from PQ

is the PQ empty?

insert element x into PQ

8

Implementation Details

What if I don't know the max capacity of the PQ ahead of time?
� Double the size of the array as needed.
� Add following code to insert before updating array.

Memory leak.
� Garbage collector only reclaims memory if there is no outstanding

reference to it.
� When deleting element N-1 from the priority queue, set:

if (N >= pq.length) {
Comparable[] temp = new Comparable[2*N];
for (int i = 0; i < N; i++)

temp[i] = pq[i];
pq = temp;

}

pq[N-1] = null;

9

Priority Queues Implementation Cost Summary

Can we implement all operations efficiently?

ordered array

Operation

ordered list

unordered array

unordered list

1

Remove Max

1

N

N

1

Find Max

1

N

N

N

Insert

N

1

1

Worst-Case Asymptotic costs for PQ with N items

12

Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.
� null or
� Node with links to left and

right trees.

Heap-ordered binary tree.
� Keys in nodes.
� No smaller than children’s keys.

Array representation.
� Take nodes in level order.
� No explicit links needed since

tree is complete.

13

Heap Properties

Largest key is at root.

Use array indices to move through tree.
� Note: indices start at 1.
� Parent of node at k is at k/2.
� Children of node at k are at 2k and 2k+1.

Length of path in N-node heap is at most ~ lg N.
� n levels when 2n ≤ N < 2n + 1.
� n ≤ lg N < n+1.
� ~ lg N levels.

14

Promotion (Bubbling Up) In a Heap

Suppose that exactly one node is bigger than its parent.

To eliminate the violation:
� Exchange with its parent.
� Repeat until heap order restored.

Peter principle: node promoted to level
of incompetence.

private void swim(int k) {
while (k > 1 && less(k/2, k)) {

exch(k, k/2);
k = k/2;

}
} parent of node at k is at k/2

15

Demoting (Sifting Down) In a Heap

Suppose that exactly one node is smaller than a child.

To eliminate the violation:
� Exchange with larger child.
� Repeat until heap order restored.

Power struggle: better subordinate promoted.

private void sink(int k, int N) {
while (2*k <= N) {

int j = 2*k;
if (j < N && less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k = j;

}
}

children of node
at k are 2k and 2k+1

16

Insert and Delete Max

Insert. Add node at end, then promote.

Remove largest. Exchange root with
node at end, then sift down.

public Comparable delMax() {
exch(1, N);
sink(1, N-1);
return pq[N--];

}

public void insert(Comparable x) {
pq[++N] = x;
swim(N);

}

17

Expansion: double size of array as needed.
Memory leak: when deleting element N, set pq[N] = null.

public class PQ {
private Comparable[] pq;
private int N;
public PQ() { }
public boolean isEmpty() { }
public int size() { }
public void insert(Comparable x) { }
public Comparable delMax() { }
private void swim(int k) { }
private void sink(int k, int N) { }
private boolean less(int i, int j) { }
private void exch(int i, int j) { }

}

Heap Based Priority Queue in Java

exactly as in array-based PQ

helper functions

same as array-based PQ, but
allocate one extra element in array

heap helper functions

PQ ops

18

Priority Queues Implementation Cost Summary

Hopeless challenge: get all ops O(1).

ordered array

Operation

ordered list

unordered array

unordered list

heap

1

Remove Max

1

N

N

lg N

1

Find Max

1

N

N

1

N

Insert

N

1

1

lg N

Worst-Case Asymptotic costs for PQ with N items

19

Digression: Heapsort

First pass: build heap.
� Add item to heap at each iteration, then sift up.
� Or can use faster bottom-up method; see book.

Second pass: sort.
� Remove maximum at each iteration.
� Exchange root with node at end, then sift down.

while (N > 1) {
exch(1, N);
sink(1, --N);

}

for (int k = N / 2; k >= 1; k--) {
sink(k, N);

20

Significance of Heapsort

Q: Sort in N log N worst-case without using extra memory?
A: Yes. Heapsort.

Not mergesort? Linear extra space.
Not quicksort? Quadratic in worst case.

Heapsort is OPTIMAL for both time and space, BUT
� Inner loop longer than quicksort’s.
� Makes poor use of cache memory.

In the wild: g++ STL uses introsort.

challenge for bored: design in-place merge

challenge for bored: design O(N log N)
worst-case quicksort

combo of quicksort, heapsort, and insertion

21

Sorting Summary

In-Place

Bubble Sort X

Selection Sort

Insertion Sort

Shellsort

Quicksort

Mergesort

Heapsort

X

X

X

X

X

Stable

X

X

X

Worst

N2 / 2

N2 / 2

N2 / 2

N3/2

N2 / 2

N lg N

2 N lg N

Average

N2 / 2

N2 / 2

N2 / 4

N3/2

2N ln N

N lg N

2 N lg N

Best

N

N2 / 2

N

N3/2

N lg N

N lg N

N lg N

Remarks

never use it

N exchanges

use as cutoff for small N

with Knuth sequence

fastest in practice

N log N guarantee, stable

N log N guarantee, in-place

Key Comparisons

22

Sam Loyd's 15-Slider Puzzle

15 puzzle.
� Legal move: slide neighboring tile into blank square.
� Challenge: sequence of legal moves to put tiles in increasing order.
� Win $1000 prize for solution.

http://www.javaonthebrain.com/java/puzz15/

Sam Loyd

23

Breadth First Search of 8-Puzzle Game Tree

24

A* Search of 8-Puzzle Game Tree

Priority first search.
� Basic idea: explore positions in more intelligent order.
� Ex 1: number of tiles out of order.
� Ex 2: sum of Manhattan distances + depth.

Implement A* algorithm with PQ.

6 4

3 5

4 2

3 0

4

5

Pictures from Sequential and Parallel Algorithms by Berman and Paul.

26

Event-Based Simulation

Challenge: animate N moving particles.
� Each has given velocity vector.
� Bounce off edges and one another upon collision.

Example applications: molecular dynamics, traffic, ...

Naive approach: t times per second
� Update particle positions.
� Check for collisions, update velocities.
� Redraw all particles.

Problems:
� N2t collision checks per second.
� May miss collisions!

27

Event-Based Simulation

Approach: use PQ of events with time as key.
� Put collision event on PQ for each particle

(calculate time of next collision as priority)
� Put redraw events on PQ (t per second).

Main loop: remove next event from PQ.
� Redraw: update positions and redraw.
� Collision: update velocity of affected particles and

put new collision events on PQ.

More PQ operations needed:
� may need to remove items from PQ .
� may want to join PQs for different sets of events (Ex: join locals to

national for air traffic control).

More sophisticated PQ interface needed

28

More Priority Queue Operations

Indirect priority queue.
� Supports deletion of arbitrary elements.
� Use symbol table to access binary heap node, given

element to delete.

Binomial queue.
� Supports fast join.
� Slightly relaxes heap property to gain flexibility.

29

Priority Queues Implementation Cost Summary

ordered array

Operation

ordered list

unordered array

unordered list

heap

binomial queue

best in theory

1

Remove Max

1

N

N

lg N

lg N

lg N

1

Find Max

1

N

N

1

lg N

1

N

Change Key

N

1

1

lg N

lg N

1

N

Join

N

N

1

N

lg N

1

N

Insert

N

1

1

lg N

lg N

1

Worst-Case Asymptotic costs for PQ with N items

