
Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Minimum Spanning Tree

Reference:  Chapter 20, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Prim's algorithm

Kruskal's algorithm

2

Minimum Spanning Tree

MST. Given connected graph G with positive edge weights, find a min
weight set of edges that connects all of the vertices.

Cayley's Theorem (1889). There are VV-2 spanning trees on the 
complete graph on V vertices.

� Can't solve MST by brute force.

1
3

8

2

6

7

4
5

5

23

10 
21

14

24

16

6

4

18
9

7
11

8

1

3

8

2

6

7

4
5

5

6

4
9

7
11

8

G T w(T) = 50

3

MST Origin

Otakar Boruvka (1926).
� Electrical Power Company of Western Moravia in Brno.
� Most economical construction of electrical power network.
� Concrete engineering problem is now a cornerstone problem in 

combinatorial optimization.

4

Applications

MST is fundamental problem with diverse applications.

� Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

� Cluster analysis.
– analyzing fungal spore spatial patterns
– microarray gene expression data clustering
– finding clusters of quasars and Seyfert galaxies

� Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

� Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network



5

Medical Image Processing

Arrangement of nuclei in skin cell for cancer research.

6

Prim's Algorithm

Prim's algorithm.  (Jarník 1930, Dijkstra 1957, Prim 1959)
� Initialize T = �,  S = {s} for some arbitrary vertex s.
� Grow S until it contains all of the vertices:

– let f be smallest edge with exactly one endpoint in S
– add edge f to T
– add other endpoint to S

0

2

7

1

5

6

3

4

8

S

0
S

1
5
4
3

-
T

0-1
0-5
5-4
4-3

7

Prim's Algorithm

Prim's algorithm.  (Jarník 1930, Dijkstra 1957, Prim 1959)
� Initialize T = �,  S = {s} for some arbitrary vertex s.
� Grow S until it contains all of the vertices:

– let f be smallest edge with exactly one endpoint in S
– add edge f to T
– add other endpoint to S

0
S

1
5
4
3
2

-
T

0-1
0-5
5-4
4-3
3-2

0

2

7

1

5

6

3

4

8

S

8

Prim's Algorithm:  Example



9

Prim's Algorithm:  Intuition of Proof of Correctness

Observation.  Given a spanning tree T. Let f be an edge not in T. Adding 
f to T creates a unique cycle. If cf  < ce for some edge e of cycle, then 
T � { f } - { e } is a tree of lower cost.

1

3

8

2

6

7

4
5

5

6

4

9

7

23

8

T

11
f

e

10

Prim's Algorithm:  Intuition of Proof of Correctness

Observation.  Given a spanning tree T. Let f be an edge not in T. Adding 
f to T creates a unique cycle. If cf  < ce for some edge e of cycle, then 
T � { f } - { e } is a tree of lower cost.

1

3

8

2

6

7

4
5

5

6

4

9

7

23

8

T � { f } - { e }

11
f

e

11

Prim's Algorithm:  Proof of Correctness

Theorem. Upon termination of Prim's algorithm, T is a MST.
Proof. (by induction on number of iterations)

Base case: T = � � every MST satisfies invariant.
Induction step: invariant true at beginning of iteration i.

� Let f be the edge that Prim's algorithm chooses.
� If f � T*, T* still satisfies invariant.
� Otherwise, consider cycle C formed by adding f to T*

– let e � C be another arc with exactly one endpoint in S
– cf  � ce since algorithm chooses f instead of e
– T* � { f } - { e } satisfies invariant

f 

T*
e

Invariant:  There exists a MST T* containing all of the edges in T.

S

12

Spanning Tree Representation

How to represent a spanning tree?
� List of edges:  0-1 0-5 2-3 3-4 3-7 4-5 5-6 7-8
� Parent-link representation:  vertex indexed array pred[v].

0
v

1
2
3
4
5
6
7
8

-
pred[v]

0
3
4
5
0
5
3
8

0

2

7

1

5

6

3

4

8



13

Prim's Algorithm

Maintain S = set of vertices in current tree.
� For each vertex not in S, maintain vertex in S to which it is closest.
� Choose next vertex v to add to S with min dist[v].
� For each neighbor w of v, if w is closer to v than current neighbor in 

S, update dist[w].

A
v

A
pred

B E
C A
D E
E F
F G
G A
H C
I E

-
dist

15
-
9
-
-
-

23
11

A

D

B

C

G E

F

I

H

S

14

Prim's Algorithm

Maintain S = set of vertices in current tree.
� For each vertex not in S, maintain vertex in S to which it is closest.
� Choose next vertex v to add to S with min dist[v].
� For each neighbor w of v, if w is closer to v than current neighbor in 

S, update dist[w].

A

B

G E

F

I

S

A
v

A
pred

B E
C A
D E
E F
F G
G A
H D
I D

-
dist

15
-
-
-
-
-
4
6

DC

H

15

Weighted Graphs

Weights.
� Method 1:  graph access function G.cost(v, w).
� Method 2:  modify adjacency list iterator to return Edge.

Tradeoffs.
� Method 1 is easier with adjacency matrix or Euclidean weights. 

Method 2 is more general.

3

21

0

8

6

10

7
0:

1:

2:

3:

0 | 1 | 8 0 | 3 | 6

1 | 2 | 7 1 | 3 | 100 | 1 | 8

0 | 3 | 6 1 | 3 | 10

1 | 2 | 7

adjacency list of Edge objects

map routing assignment

16

Prim's Algorithm

Adjacency list implementation.
� Initialize, dist[v] = � and dist[s] = 0.
� Insert all vertices onto PQ.
� Repeatedly delete vertex v from PQ with min dist[v].

– for each v-w, if (dist[w] > G.cost(v, w)),  update dist[w]

while (!pq.isEmpty()) {
int v = pq.delMin();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (dist[w] > G.cost(v, w)) {

dist[w] = G.cost(v, w);
pq.decrease(w, dist[w]);
pred[w] = v;

}}} main loop

cost of edge v-w

decrease key



17

Priority Queues for Index Items

Index heap-based priority queue.
� Insert, delete min, test if empty.
� Decrease key.

Brute force array implementation.
� Maintain vertex indexed array dist[w].
� Decrease key:  change dist[w]. 
� Delete min:  scan through dist[w] for each vertex w.

Operation

insert
delete-min

decrease-key

Array

V
V
1

is-empty 1
total V2

Prim

V
V
E
V

18

Priority Queues for Index Items

Index heap-based priority queue.   (Sedgewick Program 9.12)
� Assumes elements are named 0 to N-1.
� Assumes priorities are of type double.
� Client:  pq.decrease(i, value).

How to decrease key of vertex i?  Bubble it up.
How to know which heap node to bubble up?  Maintains an extra array
qp[i] that stores the heap index of vertex i.

7

14

78 18

81 7791

42

4547

6484 9983decrease key
of i to value

19

Priority Queues for Index Items

Design issues. 
� PQ maintains priorities; client accesses through PQ interface.
� Client maintains priorities; PQ accesses through client.
� Both maintain  their own copy.

public void insert(int k, double value) {
N++;
pq[N] = k;
qp[k] = N;
priority[k] = value;
fixUp(pq, N);

}
public void decrease(int k, double value) {

priority[k] = value;
fixUp(pq, qp[k]);

}
private void exch(int i, int j) {

int swap = qp[i]; qp[i] = qp[j]; qp[j] = swap;
pq[qp[i]] = i; pq[qp[j]] = j;

}

20

Prim's Algorithm:  Implementation Cost Summary

†  Individual ops are amortized bounds

Operation

insert
delete-min

decrease-key

Binary heap

log V
log V
log V

Fibonacci heap †

1
log V

1

Array

V
V
1

is-empty 1 11

Priority Queue

total E log V E + V log VV2

Prim

V
V
E
V

d-way Heap

d log d V
d log d V
log d V

1
E log E / V V

optimize parameters  � d =  E/V



21

Prim's Algorithm:  Priority Queue Choice

The choice of priority queue matters in Prim implementation.
� Array:  �(V2).
� Binary heap:  O(E log V).  
� Fibonacci heap:  O(E + V log V).

Best choice depends on whether graph is SPARSE or DENSE.
� 2,000 vertices, 1 million edges.   Heap:  2-3x slower.
� 100,000 vertices, 1 million edges. Heap:  500x faster.
� 1 million vertices, 2 million edges. Heap:  10,000x faster.

Bottom line.
� Array implementation optimal for dense graphs.
� Binary heap far better for sparse graphs.
� Fibonacci heap best in theory, but not in practice.

22

Kruskal's Algorithm

Kruskal's algorithm (1956).
� Initialize forest F = �.
� Consider edges in ascending order of weight.
� If adding edge e to forest F does not create a cycle, then add it.

Otherwise, discard e.

1
3

0

2

6

7

4

5

Case 1:  adding 5-0 creates a cycle

1
3

0

2

6

7

4

5

Case 2:  adding 5-6 connects 2 components

23

Kruskal's Algorithm:  Example

clusters

24

Kruskal's Algorithm:  Proof of Correctness

Theorem.  Upon termination of Kruskal's algorithm, F is a MST.

Proof.  Identical to proof of correctness for Prim's algorithm except 
that you let S be the set of nodes in component of F containing v.

Greed is good.  Greed is right. Greed works.  Greed 
clarifies, cuts through, and captures the essence of 
the evolutionary spirit." - Gordon Gecko



25

Kruskal's Algorithm:  Implementation

How to check if adding an edge to F would create a cycle?
� Naïve solution:  DFS in O(V) time.
� Clever solution:  union-find in O(log* V) amortized time.

– each tree in forest F corresponds to a set
– adding v-w creates a cycle if v and w are in same component
– when adding v-w to forest F, merge sets containing v and w

v

w

F
26

public class MST {
private Edge[] mst;    // list of all edges in mst

public MST(Graph G) {
mst = new Edge[G.V()];
Edge[] edges = G.edges();  // list of all edges in G
Arrays.sort(edges);      // sort them by weight

UnionFind uf = new UnionFind(G.V());
for (int i = 0, k = 1; i < G.E(); i++) {

int v = edges[i].v();
int w = edges[i].w();
if (!uf.find(v, w)) {   // v-w does not create a cycle

uf.unite(v, w);      // merge v and w components 
mst[k++] = edges[i]; // add edge to mst

}
}

}
}

Kruskal's Algorithm:  Implementation

27

Kruskal's Algorithm:  Running Time

Kruskal running time:  O(E log V).

If edges already sorted. O(E log* V) time. 

Operation

sort

union
find

Cost

E log E 

log* V  †

log* V  †

Frequency

1

V - 1
E

† Amortized bound using weighted quick union with path compression.

recall:  log* V  � 5 in this universe

28

Advanced MST Algorithms

Worst Case

E log log V

E log log V

E log* V,  E + V log V

E log (log* V)

E � (E, V) log � (E, V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E � (E, V)

E

Chazelle

???

Year

1975

1976

1984

1986

1997

2000

20??

Deterministic Comparison Based MST Algorithms

Related Problems

Problem

Planar MST

MST Verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

Randomized MST Karger-Klein-Tarjan1995 E



29

Euclidean MST

Given N points in the plane, find MST connecting them.
� Distances between point pairs are Euclidean distances.

Brute force:  compute �(N2) distances and run Prim's algorithm.
� Memory and running time are �(N2), which is quadratic in input size.
� Can use squares of distances to avoid taking square roots.

Is it possible to do better by exploiting the geometry?

30

Euclidean MST

Key geometric fact.  Edges of the Euclidean MST are edges of the 
Delaunay triangulation.

Euclidean MST algorithm.
� Compute Voronoi diagram to get Delaunay triangulation.
� Run Kruskal's MST algorithm on Delaunay edges.

Running time:  O(N log N).
� Fact: � 3N - 6 Delaunay edges since it's planar.
� O(N log N) for Voronoi.
� O(N log N) for Kruskal.

Lower bound.  Any comparison-based Euclidean
MST algorithm requires �(N log N) comparisons.

31

Optimal Message Passing

Optimal message passing.
� Distribute message to N agents.
� Each agent i can communicate with some of the other agents j, but their 

communication is (independently) detected with probability pij.
� Group leader wants to transmit message to all agents so as to minimize 

overall probability of detected.

Objective.
� Find tree T that minimizes:

� Or equivalently, that maximizes:

� Or equivalently, that maximizes:

Algorithm. MST with weights =  - log (1 - pij ). Weights pij also work!

1� 1� pij� �
(i , j)�T
�

1� pij� �
(i , j)�T
�

log 1� pij� �
(i , j)�T
�


