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Minimum Spanning Tree

Reference:  Chapter 20, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Prim's algorithm

Kruskal's algorithm
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Minimum Spanning Tree

MST. Given connected graph G with positive edge weights, find a min
weight set of edges that connects all of the vertices.

Cayley's Theorem (1889). There are VV-2 spanning trees on the 
complete graph on V vertices.

� Can't solve MST by brute force.
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MST Origin

Otakar Boruvka (1926).
� Electrical Power Company of Western Moravia in Brno.
� Most economical construction of electrical power network.
� Concrete engineering problem is now a cornerstone problem in 

combinatorial optimization.
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Applications

MST is fundamental problem with diverse applications.

� Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

� Cluster analysis.
– analyzing fungal spore spatial patterns
– microarray gene expression data clustering
– finding clusters of quasars and Seyfert galaxies

� Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

� Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network
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Medical Image Processing

Arrangement of nuclei in skin cell for cancer research.
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Prim's Algorithm

Prim's algorithm.  (Jarník 1930, Dijkstra 1957, Prim 1959)
� Initialize T = �,  S = {s} for some arbitrary vertex s.
� Grow S until it contains all of the vertices:

– let f be smallest edge with exactly one endpoint in S
– add edge f to T
– add other endpoint to S
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Prim's Algorithm

Prim's algorithm.  (Jarník 1930, Dijkstra 1957, Prim 1959)
� Initialize T = �,  S = {s} for some arbitrary vertex s.
� Grow S until it contains all of the vertices:

– let f be smallest edge with exactly one endpoint in S
– add edge f to T
– add other endpoint to S
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Prim's Algorithm:  Example
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Prim's Algorithm:  Intuition of Proof of Correctness

Observation.  Given a spanning tree T. Let f be an edge not in T. Adding 
f to T creates a unique cycle. If cf  < ce for some edge e of cycle, then 
T � { f } - { e } is a tree of lower cost.
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Prim's Algorithm:  Intuition of Proof of Correctness

Observation.  Given a spanning tree T. Let f be an edge not in T. Adding 
f to T creates a unique cycle. If cf  < ce for some edge e of cycle, then 
T � { f } - { e } is a tree of lower cost.
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Prim's Algorithm:  Proof of Correctness

Theorem. Upon termination of Prim's algorithm, T is a MST.
Proof. (by induction on number of iterations)

Base case: T = � � every MST satisfies invariant.
Induction step: invariant true at beginning of iteration i.

� Let f be the edge that Prim's algorithm chooses.
� If f � T*, T* still satisfies invariant.
� Otherwise, consider cycle C formed by adding f to T*

– let e � C be another arc with exactly one endpoint in S
– cf  � ce since algorithm chooses f instead of e
– T* � { f } - { e } satisfies invariant

f 

T*
e

Invariant:  There exists a MST T* containing all of the edges in T.

S
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Spanning Tree Representation

How to represent a spanning tree?
� List of edges:  0-1 0-5 2-3 3-4 3-7 4-5 5-6 7-8
� Parent-link representation:  vertex indexed array pred[v].
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Prim's Algorithm

Maintain S = set of vertices in current tree.
� For each vertex not in S, maintain vertex in S to which it is closest.
� Choose next vertex v to add to S with min dist[v].
� For each neighbor w of v, if w is closer to v than current neighbor in 

S, update dist[w].
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Prim's Algorithm

Maintain S = set of vertices in current tree.
� For each vertex not in S, maintain vertex in S to which it is closest.
� Choose next vertex v to add to S with min dist[v].
� For each neighbor w of v, if w is closer to v than current neighbor in 

S, update dist[w].
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Weighted Graphs

Weights.
� Method 1:  graph access function G.cost(v, w).
� Method 2:  modify adjacency list iterator to return Edge.

Tradeoffs.
� Method 1 is easier with adjacency matrix or Euclidean weights. 

Method 2 is more general.
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Prim's Algorithm

Adjacency list implementation.
� Initialize, dist[v] = � and dist[s] = 0.
� Insert all vertices onto PQ.
� Repeatedly delete vertex v from PQ with min dist[v].

– for each v-w, if (dist[w] > G.cost(v, w)),  update dist[w]

while (!pq.isEmpty()) {
int v = pq.delMin();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (dist[w] > G.cost(v, w)) {

dist[w] = G.cost(v, w);
pq.decrease(w, dist[w]);
pred[w] = v;

}}} main loop

cost of edge v-w

decrease key
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Priority Queues for Index Items

Index heap-based priority queue.
� Insert, delete min, test if empty.
� Decrease key.

Brute force array implementation.
� Maintain vertex indexed array dist[w].
� Decrease key:  change dist[w]. 
� Delete min:  scan through dist[w] for each vertex w.

Operation

insert
delete-min

decrease-key

Array

V
V
1

is-empty 1
total V2

Prim

V
V
E
V
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Priority Queues for Index Items

Index heap-based priority queue.   (Sedgewick Program 9.12)
� Assumes elements are named 0 to N-1.
� Assumes priorities are of type double.
� Client:  pq.decrease(i, value).

How to decrease key of vertex i?  Bubble it up.
How to know which heap node to bubble up?  Maintains an extra array
qp[i] that stores the heap index of vertex i.
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Priority Queues for Index Items

Design issues. 
� PQ maintains priorities; client accesses through PQ interface.
� Client maintains priorities; PQ accesses through client.
� Both maintain  their own copy.

public void insert(int k, double value) {
N++;
pq[N] = k;
qp[k] = N;
priority[k] = value;
fixUp(pq, N);

}
public void decrease(int k, double value) {

priority[k] = value;
fixUp(pq, qp[k]);

}
private void exch(int i, int j) {

int swap = qp[i]; qp[i] = qp[j]; qp[j] = swap;
pq[qp[i]] = i; pq[qp[j]] = j;

}
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Prim's Algorithm:  Implementation Cost Summary

†  Individual ops are amortized bounds

Operation

insert
delete-min

decrease-key

Binary heap

log V
log V
log V

Fibonacci heap †

1
log V

1

Array

V
V
1

is-empty 1 11

Priority Queue

total E log V E + V log VV2

Prim

V
V
E
V

d-way Heap

d log d V
d log d V
log d V

1
E log E / V V

optimize parameters  � d =  E/V
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Prim's Algorithm:  Priority Queue Choice

The choice of priority queue matters in Prim implementation.
� Array:  �(V2).
� Binary heap:  O(E log V).  
� Fibonacci heap:  O(E + V log V).

Best choice depends on whether graph is SPARSE or DENSE.
� 2,000 vertices, 1 million edges.   Heap:  2-3x slower.
� 100,000 vertices, 1 million edges. Heap:  500x faster.
� 1 million vertices, 2 million edges. Heap:  10,000x faster.

Bottom line.
� Array implementation optimal for dense graphs.
� Binary heap far better for sparse graphs.
� Fibonacci heap best in theory, but not in practice.
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Kruskal's Algorithm

Kruskal's algorithm (1956).
� Initialize forest F = �.
� Consider edges in ascending order of weight.
� If adding edge e to forest F does not create a cycle, then add it.

Otherwise, discard e.
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Kruskal's Algorithm:  Example

clusters
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Kruskal's Algorithm:  Proof of Correctness

Theorem.  Upon termination of Kruskal's algorithm, F is a MST.

Proof.  Identical to proof of correctness for Prim's algorithm except 
that you let S be the set of nodes in component of F containing v.

Greed is good.  Greed is right. Greed works.  Greed 
clarifies, cuts through, and captures the essence of 
the evolutionary spirit." - Gordon Gecko
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Kruskal's Algorithm:  Implementation

How to check if adding an edge to F would create a cycle?
� Naïve solution:  DFS in O(V) time.
� Clever solution:  union-find in O(log* V) amortized time.

– each tree in forest F corresponds to a set
– adding v-w creates a cycle if v and w are in same component
– when adding v-w to forest F, merge sets containing v and w

v

w

F
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public class MST {
private Edge[] mst;    // list of all edges in mst

public MST(Graph G) {
mst = new Edge[G.V()];
Edge[] edges = G.edges();  // list of all edges in G
Arrays.sort(edges);      // sort them by weight

UnionFind uf = new UnionFind(G.V());
for (int i = 0, k = 1; i < G.E(); i++) {

int v = edges[i].v();
int w = edges[i].w();
if (!uf.find(v, w)) {   // v-w does not create a cycle

uf.unite(v, w);      // merge v and w components 
mst[k++] = edges[i]; // add edge to mst

}
}

}
}

Kruskal's Algorithm:  Implementation
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Kruskal's Algorithm:  Running Time

Kruskal running time:  O(E log V).

If edges already sorted. O(E log* V) time. 

Operation

sort

union
find

Cost

E log E 

log* V  †

log* V  †

Frequency

1

V - 1
E

† Amortized bound using weighted quick union with path compression.

recall:  log* V  � 5 in this universe
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Advanced MST Algorithms

Worst Case

E log log V

E log log V

E log* V,  E + V log V

E log (log* V)

E � (E, V) log � (E, V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E � (E, V)

E

Chazelle

???

Year

1975

1976

1984

1986

1997

2000

20??

Deterministic Comparison Based MST Algorithms

Related Problems

Problem

Planar MST

MST Verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

Randomized MST Karger-Klein-Tarjan1995 E
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Euclidean MST

Given N points in the plane, find MST connecting them.
� Distances between point pairs are Euclidean distances.

Brute force:  compute �(N2) distances and run Prim's algorithm.
� Memory and running time are �(N2), which is quadratic in input size.
� Can use squares of distances to avoid taking square roots.

Is it possible to do better by exploiting the geometry?
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Euclidean MST

Key geometric fact.  Edges of the Euclidean MST are edges of the 
Delaunay triangulation.

Euclidean MST algorithm.
� Compute Voronoi diagram to get Delaunay triangulation.
� Run Kruskal's MST algorithm on Delaunay edges.

Running time:  O(N log N).
� Fact: � 3N - 6 Delaunay edges since it's planar.
� O(N log N) for Voronoi.
� O(N log N) for Kruskal.

Lower bound.  Any comparison-based Euclidean
MST algorithm requires �(N log N) comparisons.
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Optimal Message Passing

Optimal message passing.
� Distribute message to N agents.
� Each agent i can communicate with some of the other agents j, but their 

communication is (independently) detected with probability pij.
� Group leader wants to transmit message to all agents so as to minimize 

overall probability of detected.

Objective.
� Find tree T that minimizes:

� Or equivalently, that maximizes:

� Or equivalently, that maximizes:

Algorithm. MST with weights =  - log (1 - pij ). Weights pij also work!

1� 1� pij� �
(i , j)�T
�

1� pij� �
(i , j)�T
�

log 1� pij� �
(i , j)�T
�


