Guaranteeing Performance

Binary Search Trees

Binary search trees
Randomized BSTs

Reference: Chapter 12, Algorithms in Java, 3rd Edition, Robert Sedgewick

Princeton University • $\cos 226$ - Algorithms and Data Structures • Spring 2004 - Kevin Wayne • http://www.Princeton.EDU/~cos226

Symbol table: key-value pair abstraction.

- Insert a value with specified key.
. Search for value given key.
- Delete value with given key.

Challenge 1: guarantee symbol table performance

- Make average case independent of input distribution.
- Extend average case guarantee to worst-case.
- Remove assumption on having a good hash function.
- Remove expensive (but infrequent) re-doubling operations

Challenge 2: expand interface when keys are ordered.
. Find the $i^{\text {th }}$ largest key.

- Range searching

Binary Search Tree

Binary search tree: binary tree in symmetric order.

Binary tree is either:

- Empty.
- A key-value pair and two binary trees

Symmetric order:

- Keys in nodes.
- No smaller than left subtree.
- No larger than right subtree.

Binary Search Tree in Java

A BST is a reference to a node.
A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.


```
private static class Node {
    Comparable key; }\Leftarrow\mathrm{ key can be any
        Object value; Comparable object
        Node left;
        Node right;
}
```


Tree shape.

- Many BSTs correspond to same input data.
- Have different tree shapes.
- Performance depends on shape.

BST Search

Search for specified key and return corresponding value or null.
. Code follows from BST definition.

- Use helper function to search for key in subtree rooted at h.

```
public Object get(Comparable key) {
    return search(root, key);
}
private Object search (Node h, Comparable key) {
    if (h == null) return null; & not found
    if (equals(key, h.key)) return h.value; & found
    if (equals(key, h.key)) return h.value; & found
    else return search(h.right, key)
}
o left or right
```

public class SymbolTable \{ private Node root;

```
private static class Node {
```

 Comparable key;
 Object value
 Node left, right;
 Node (Comparable key, Object value) \{
 this.key = key ;
 this.value = value;
 \}
 helper inner class
 private static boolean less(Comparable k1, Comparable k2) \{ \}
 private static boolean equals (Comparable k1, Comparable k2) \{ \}
 public void put(Comparable key, Object value) \{ \}
 public Object get(Comparable key) \{ \}

BST Insert

Insert key-value pair.

- Code follows from BST definition.
. Search, then insert.
- Simple (but tricky) recursive code.
- Duplicates allowed.

```
public void put(Comparable key, Object value) {
    root = insert(root, key, value);
}
private Node insert(Node h, Comparable key, Object value) {
    if (h == null) return new Node(key, value);
    if (less(key, h.key)) h.left = insert(h.left, key, value);
    else h.right = insert(h.right, key, value)
    return h;
}
```


Insert the following keys into BST: ASERCHINGXMPL

Cost of search and insert BST.

- Proportional to depth of node.
- 1-1 correspondence between BST and quicksort partitioning.
- Height of node corresponds to number of function calls on stack when node is partitioned.

Theorem. If keys are inserted in random order, then height of tree is $\Theta(\log N)$, except with exponentially small probability. Thus, search and insert take $O(\log N)$ time.

Problem. Worst-case search and insert are proportional to N .
. If nodes in order, tree degenerates to linked list.

Symbol Table: Implementations Cost Summary

	Worst Case				Average Case		
Implementation	Search	Insert	Delete	Search	Insert	Delete	
Sorted array	$\log \mathrm{N}$	N	N	$\log \mathrm{N}$	$\mathrm{N} / 2$	$\mathrm{~N} / 2$	
Unsorted list	N	1	1	$\mathrm{~N} / 2$	1	1	
Hashing	N	1	N	1^{\star}	1^{\star}	1^{\star}	
BST	N	N	N	$\log \mathrm{N}$	$\log \mathrm{N}$???	

BST: $\log N$ insert and search if keys arrive in random order. Ahead: Can we make all ops $\log \mathrm{N}$ if keys arrive in arbitrary order?

Symbol Table: Delete

To delete a node:

- Case 1 (zero children): just remove it.
- Case 2 (one child): pass the child up.
- Case 3 (two children): find the next largest node using right-left* or left-right*, swap with next largest, remove as in Case 1 or 2.

Case 1

Case 2

Case 3

Problem: strategy clumsy, not symmetric.
Serious problem: trees not random (!!)

	Worst Case			Average Case		
Implementation	Search	Insert	Delete	Search	Insert	Delete
Sorted array	$\log \mathrm{N}$	N	N	$\log \mathrm{N}$	$\mathrm{N} / 2$	$\mathrm{~N} / 2$
Unsorted list	N	1	1	$\mathrm{~N} / 2$	1	1
Hashing	N	1	N	1^{\star}	1^{\star}	1^{\star}
BST	N	N	N	$\log \mathrm{N}$	$\log \mathrm{N}$	$\operatorname{sqrt(N)})^{\dagger}$

> * assumes our hash function can generate random values for all keys t if delete allowed, insert/search become sqrt (N) too

Ahead: Can we achieve $\log \mathrm{N}$ delete?
Ahead: Can we achieve log N worst-case?

Fundamental operation to rearrange nodes in a tree.
. Maintains BST order.

- Local transformations, change just 3 pointers.

Right Rotate, Left Rotate

Recursive BST Root Insertion

insert G
Root insertion: insert a node and make it the new root.

- Insert the node using standard BST.
- Use rotations to bring it up to the root.

Why bother?

- Faster if searches are for recently inserted keys.
- Basis for advanced algorithms.

Node insertT (Node h, Comparable key, Object value)
if (h == null) return new Node (key, value)
if (less(key, h.key))
h.left $=$ insertT(h.left, key, value)
$\Rightarrow h=\operatorname{rot}(h)$
else
h.right $=$ insertT(h.right, key, value)
$\Rightarrow \mathrm{h}=\operatorname{rotL}(\mathrm{h})$
\}
return h;
\}

ASERCHINGXMPL

Observation. If keys are inserted in random order then BST is balanced with high probability.

Idea. When inserting a new node, make it the root (via root insertion) with probability $1 /(\mathrm{N}+1)$ and do it recursively.

```
private Node insert(Node h, Comparable key, Object value)
    if (h == null) return new Node(key, value)
    |if (Math.random()*(h.N+1) < 1) return insertT(h, key, value)
    if (less(key, h.key)) h.left = insert(h.left, key, value)
    lse h.right = insert(h.right
    h.right = insert(h.right, key, value)
h N++
    return h
}
```

Fact. Tree shape distribution is identical to tree shape of inserting keys in random order.

- No assumptions made on the input distribution!

Randomized BST Example

Insert keys in order.

- Tree shape still random.

웅

Randomized BST

Always "looks like" random binary tree.

- Implementation: maintain subtree size in each node.
- Supports all symbol table ops.
- $\log N$ average case.
- Exponentially small chance of bad balance.

Randomized BST: Delete

Join. Merge two disjoint symbol tables A (of size M) and B (of size N), assuming all keys in A are less than all keys in B.

- Use A as root with probability $M /(M+N)$, and recursively join right subtree of A with B
- Use B as root with probability $N /(M+N)$, and recursively join left subtree of B with A

Delete. Given a key k, delete and return a node with key k.

- Delete the node.
- Join two broken subtrees as above.

Theorem. Tree still random after delete.

	Worst Case				Average Case		
Implementation	Search	Insert	Delete	Search	Insert	Delete	
Sorted array	$\log N$	N	N	$\log N$	$N / 2$	$N / 2$	
Unsorted list	N	1	1	$N / 2$	1	1	
Hashing	N	1	N	1^{\star}	1^{\star}	1^{\star}	
BST	N	N	N	$\log N$	$\log N$	$\operatorname{sqrt(N)^{\dagger }}$	
Randomized BST	$\log N ~$	$\log N$	N^{\ddagger}	$\log N^{\ddagger}$	$\log N$	$\log N$	
$\log N$							

* assumes our hash function can generate random values for all keys
\dagger if delete allowed, insert/search become sqrt(N)
\ddagger assumes system can generate random numbers

Randomized BST: guaranteed \log N performance!
Next time: Can we achieve deterministic guarantee?

BST: Other Operations

Sort. Traverse tree in ascending order.

- Inorder traversal.
- Same comparisons as quicksort, but pay space for extra links.

Range search. Find all items whose keys are between k_{1} and k_{2}.

Find $\mathrm{k}^{\text {th }}$ largest. Generalized PQ that finds $\mathrm{k}^{\text {th }}$ smallest.

- Special case: find min, find max.
- Add subtree size to each node.
- Takes time proportional to height of tree.

```
private class Node {
    Comparable key;
    Object value;
    Node left, right
    int N;
        $ subtree size
```


Randomized BST: Other Operations

Ceiling. Given key k, return smallest element that is at least as big as k.
Best-fit bin packing heuristic. Insert the item in the bin with the least remaining space among those that can store the item.

Theorem. Best-fit decreasing is guaranteed use no more than 11B/9 + 1 bins, where B is the best possible.

- within 22% of best possible.
- original proof of this result was over 70 pages of analysis!

Symbol Table: Implementations Cost Summary

Worst Case Asymptotic Cost								
Implementation	Search	Insert	Delete	Find $k^{\text {th }}$	Sort	Join	Ceil	
Sorted array	$\log N$	N	N	$\log N$	N	N	$\log N$	
Unsorted list	N	1	1	N	$N \log N$	N	N	
Hashing	1^{\star}	1^{\star}	1^{\star}	N	$N \log N$	N	N	
BST	N							
Randomized BST	$\log N \neq$	$\log N^{\ddagger}$						

* assumes our hash function can generate random values for all keys \ddagger assumes system can generate random numbers
makes no assumption on input distribution
Randomized BST: $O(\log N)$ average case for ALL ops!
Next time: Can we achieve deterministic guarantee?

