
1

Robust Programming
and

Debugging
CS 217

2

Program Errors
• Programs encounter errors

o Good programmers handle them gracefully

• Types of errors
o Compile-time errors
o Link-time errors
o Run-time user errors
o Run-time program errors
o Run-time exceptions

3

Compile-Time Errors
• Code does not conform to C specification

o Forgetting a semicolon
o Forgetting to declare a variable
o etc.

• Detected by compiler
int a = 0;
int b = 3
int c = 6;
a = b + 3;
d = c + 3;

cc-1065 cc: ERROR File = foo.c, Line = 2
A semicolon is expected at this point.

int c = 6;
^

cc-1020 cc: ERROR File = foo.c, Line = 6
The identifier "d" is undefined.

d = c + 3;
^

4

Link-Time Errors
• Error in linking together the .o files to make an a.out

o Symbol referenced (used) in one module, not defined in another

extern int not_there;
.
.
.
main() {
printf(“%d”, not_there);
}

Undefined first referenced
symbol in file
not_there foo.o
ld: fatal: Symbol referencing errors.
No output written to a.out

5

Run-Time User Errors
• User provides invalid input

o User types in name of file that does not exist
o User provides program argument with value outside legal bounds

• Detected with “if” checks in program
o Program should print message and recover gracefully
o Possibly ask user for new input

• Your program should anticipate and handle EVERY
possible user input!!!

int ReadFile(const char *filename)
{

FILE *fp = fopen(filename, “r”);
if (!fp) {
fprintf(stderr, “Unable to open file: %s\n”, filename);
return 0;

}
...

6

Run-Time Program Errors
• What errors can this program make?

void Array_getData(Array_T array, int k)
{
return array->elements[k];

}

7

Run-Time Program Errors
• Internal error from which recovery is impossible (bug)

o Null pointer passed to Array_getData()
o Invalid value for array index (k = -7)
o Invariant is violated
o etc.

• Detected with conditional checks in program
o Program should print message and abort

void Array_getData(Array_T array, int k)
{
return array->elements[k];

}

8

Run-time Exceptions
• Rare error from which recovery

may be possible
o User hits interrupt key
o Arithmetic overflow
o etc.

• Detected by machine or
operating system
o Program can handle them with signal

handlers (later)
o Not usually possible/practical to

detect with conditional checks

#include <limits.h>
...
int a = MAX_INT;
int b = MAX_INT;
int c = 6;
int d = 0;
...
a = a + d;
d = a + b;
b = a - c;
...

9

Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
o Call exit
o Call abort

10

Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
> Return from main
o Call exit
o Call abort #include <stdio.h>

#include “stringarray.h”
int main()
{

StringArray_T stringarray = StringArray_new();
StringArray_read(stringarray, stdin);
StringArray_sort(stringarray, strcmp);
StringArray_write(stringarray, stdout);
StringArray_free(stringarray);
return 0;

}

11

Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
> Call exit
o Call abort

#include <stdlib.h>
void ParseArguments(int argc, char **argv)
{
argc--; argv++;
while (argc > 0) {
if (!strcmp(*argv, "-filename")) {

...
}
else if (!strcmp(*argv, "-help")) {
PrintUsage();
exit(0);

}
else {
fprintf(stderr, "Unrecognized argument: %s\n", *argv);
PrintUsage();
exit(1);

}
argv++; argc--;

}
}

12

Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
o Call exit
> Call abort

...
#include <stdlib.h>
void *Array_getData(Array_T array, int k)
{

if (!array) {
fprintf(stderr, “array=NULL in Array_getData\n”);
abort();

}
if ((k < 0) || (k >= array->nelements)) {

fprintf(stderr, “k=%d in Array_getData\n”, k);
abort();

}
return array->elements[k];

}

13

Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: gcc foo.c
– After release: gcc –DNDEBUG foo.c

• Typical uses
o Check function arguments
o Check invariants!!!

#ifdef NDEBUG
#define assert(_e) 0
#else
#define assert(_e) \

if (_e) { \
fprintf(stderr,

“Assertion failed on line %d of file %s\n”, __LINE__, __FILE__); \
abort(); \

}
0

#endif

assert.h

14

Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: gcc foo.c
– After release: gcc –DNDEBUG foo.c

• Typical uses
> Check function arguments
o Check invariants!!!

#include <assert.h>
void *Array_getData(Array_T array, int k)
{

assert(array);
assert((k >= 0) && (k < array->nelements));
return array->elements[k];

}

15

Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: cc foo.c
– After release: cc –DNDEBUG foo.c

• Typical uses
o Check function arguments
> Check invariants!!! #include <assert.h>

void Array_remove(Array_T array, int index)
{

int i;
for (i = index+1; i < array->num_elements; i++)

array->elements[i-1] = array->elements[i];
array->num_elements--;
assert(array->nelements >= 0);

}
16

What assert is not best for
• Assert is meant for bugs, conditions that “can’t” occur

(or if they do, it’s the programmer’s fault)
o File-not-present happens all the time,

beyond the control of the programmer
o Instead of an assert, print a nice error message to the user,

then exit or retry

FILE *f;
f = fopen(filename, “r”);
assert(f);

17

Robust Programming Summary
• Programs encounter errors

o Good programmers handle them gracefully

• Types of errors
o Compile-time errors
o Run-time user errors
o Run-time program errors
o Run-time exceptions

• Robust programming
o Complete successfully, or
o Output a meaningful error message

1. Preprocessing time
2. Compile time
3. Link time
4. Run time

1. Preprocessing time
2. Compile time
3. Link time
4. Run time

Different execution times

18

Debugging
• Bug

b. A defect or fault in a machine, plan, or the like. orig. U.S.
1889 Pall Mall Gaz. 11 Mar. 1/1 Mr. Edison, I was informed, had

been up the two previous nights discovering ‘a bug’ in his
phonograph an expression for solving a difficulty, and implying that
some imaginary insect has secreted itself inside and is causing all
the trouble.

Oxford English Dictionary, 2nd Edition

• Debugging is backward reasoning
o Like solving mysteries, think backwards from the results to reasons
o Most problems are our own faults

19

Easy Bugs
• Look for familiar patterns

int n;
scanf(“%d”, n);

if (x & 1 == 0)...

• Examine the most recent change
o If previous version is correct, check the differences
o Version control is helpful

• Don’t make the same mistake twice
switch (argv[i][1]) {
case ‘o’:

outname = argv[i]; break;
case ‘f’:

from = atoi(argv[i]); break;
. . .

20

Good Disciplines
• Debug now, don’t wait

o Bug will show up later and it will become harder to fix over time

• Get a stack trace
o Probably the most useful function of a debugger

• Read before typing
o “Read and think” is often better than “type and try.”
o Take a break for a while

• Do a good, old flowchart
o The technique works at all levels

• Explain your code to someone
o Rethink through your code

21

Hard Bugs
• Make the bug reproducible

o Construct input and settings
o Or, try to understand why not reproducible

• Divide and conquer
o Binary search is fast

• Display output to localize your search
o You will have to be selective

• Log the events
o Useful for long running programs

• Use tools
o Compare and visualize the results

22

Very Hard Bugs
• Remember many languages are very forgiven

o C’s type checking is not strong

• Caused by your own faults
o Uninitialized variables
o Global variables
o Use freed memory

• Other people’s bugs
o Read another program is challenging
o Learn testing to find bugs without source code

• Infrequent causes
o Library code
o Compiler optimizations
o Hardware

23

Summary of Debugging
• Solving a puzzle

• Hard thinking is the best first step

• Explain your code to someone else

• Reproducing bugs is the key

• Make mistakes fast and don’t make them again

