
1

Robust Programming
and 

Debugging
CS 217

2

Program Errors
• Programs encounter errors

o Good programmers handle them gracefully

• Types of errors
o Compile-time errors
o Link-time errors
o Run-time user errors
o Run-time program errors
o Run-time exceptions
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Compile-Time Errors
• Code does not conform to C specification

o Forgetting a semicolon 
o Forgetting to declare a variable
o etc.

• Detected by compiler
int a = 0;
int b = 3
int c = 6;
a = b + 3;
d = c + 3;

cc-1065 cc: ERROR File = foo.c, Line = 2
A semicolon is expected at this point.

int c = 6;
^

cc-1020 cc: ERROR File = foo.c, Line = 6
The identifier "d" is undefined.

d = c + 3;
^
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Link-Time Errors
• Error in linking together the .o files to make an a.out

o Symbol referenced (used) in one module, not defined in another 

extern int not_there;
.
.
.
main() {
printf(“%d”, not_there);
}

Undefined      first referenced
symbol            in file
not_there          foo.o
ld: fatal: Symbol referencing errors. 
No output written to a.out
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Run-Time User Errors
• User provides invalid input

o User types in name of file that does not exist 
o User provides program argument with value outside legal bounds

• Detected with “if” checks in program
o Program should print message and recover gracefully
o Possibly ask user for new input

• Your program should anticipate and handle EVERY 
possible user input!!!

int ReadFile(const char *filename)
{

FILE *fp = fopen(filename, “r”);
if (!fp) {
fprintf(stderr, “Unable to open file: %s\n”, filename);
return 0;

}
...
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Run-Time Program Errors
• What errors can this program make?

void Array_getData(Array_T array, int k)
{
return array->elements[k];

}
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Run-Time Program Errors
• Internal error from which recovery is impossible (bug)

o Null pointer passed to Array_getData()
o Invalid value for array index (k = -7)
o Invariant is violated
o etc.

• Detected with conditional checks in program
o Program should print message and abort

void Array_getData(Array_T array, int k)
{
return array->elements[k];

}
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Run-time Exceptions
• Rare error from which recovery 

may be possible
o User hits interrupt key
o Arithmetic overflow
o etc.

• Detected by machine or 
operating system
o Program can handle them with signal 

handlers (later)
o Not usually possible/practical to 

detect with conditional checks

#include <limits.h>
...
int a = MAX_INT;
int b = MAX_INT;
int c = 6;
int d = 0;
...
a = a + d;
d = a + b;
b = a - c;
...
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Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
o Call exit
o Call abort
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Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
> Return from main
o Call exit
o Call abort #include <stdio.h>

#include “stringarray.h”
int main()
{

StringArray_T stringarray = StringArray_new();
StringArray_read(stringarray, stdin);
StringArray_sort(stringarray, strcmp);
StringArray_write(stringarray, stdout);
StringArray_free(stringarray);
return 0;

}

11

Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
> Call exit
o Call abort

#include <stdlib.h>
void ParseArguments(int argc, char **argv) 
{
argc--; argv++;
while (argc > 0) {
if (!strcmp(*argv, "-filename")) { 

...
}
else if (!strcmp(*argv, "-help")) { 
PrintUsage();
exit(0);

}
else {
fprintf(stderr, "Unrecognized argument: %s\n", *argv);
PrintUsage();
exit(1);

}
argv++; argc--;

}
}
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Robust Programming
• Your program should never terminate without either ...

o Completing successfully, or
o Outputing a meaningful error message

• How can a program terminate?
o Return from main
o Call exit
> Call abort

...
#include <stdlib.h>
void *Array_getData(Array_T array, int k)
{

if (!array) {
fprintf(stderr, “array=NULL in Array_getData\n”);
abort();

}
if ((k < 0) || (k >= array->nelements)) {

fprintf(stderr, “k=%d in Array_getData\n”, k);
abort();

}
return array->elements[k];

}
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Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: gcc foo.c
– After release: gcc –DNDEBUG foo.c

• Typical uses
o Check function arguments
o Check invariants!!!

#ifdef NDEBUG 
#define assert(_e) 0
#else
#define assert(_e) \

if (_e) { \
fprintf(stderr, 

“Assertion failed on line %d of file %s\n”, __LINE__, __FILE__); \
abort(); \

}
0

#endif

assert.h
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Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: gcc foo.c
– After release: gcc –DNDEBUG foo.c

• Typical uses
> Check function arguments
o Check invariants!!!

#include <assert.h>
void *Array_getData(Array_T array, int k)
{

assert(array);
assert((k >= 0) && (k < array->nelements));
return array->elements[k];

}
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Assert
•void assert(int expression)

o Issues a message and aborts the program if expression is 0
o Activated conditionally

– While debugging: cc foo.c
– After release: cc –DNDEBUG foo.c

• Typical uses
o Check function arguments
> Check invariants!!! #include <assert.h>

void Array_remove(Array_T array, int index)
{

int i;
for (i = index+1; i < array->num_elements; i++) 

array->elements[i-1] = array->elements[i];
array->num_elements--;
assert(array->nelements >= 0);

}
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What assert is not best for
• Assert is meant for bugs, conditions that “can’t” occur 

(or if they do, it’s the programmer’s fault)
o File-not-present happens all the time, 

beyond the control of the programmer
o Instead of an assert, print a nice error message to the user, 

then exit or retry

FILE *f;
f = fopen(filename, “r”);
assert(f);
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Robust Programming Summary
• Programs encounter errors

o Good programmers handle them gracefully

• Types of errors
o Compile-time errors
o Run-time user errors
o Run-time program errors
o Run-time exceptions

• Robust programming
o Complete successfully, or
o Output a meaningful error message

1. Preprocessing time
2. Compile time
3. Link time
4. Run time

1. Preprocessing time
2. Compile time
3. Link time
4. Run time

Different execution times
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Debugging
• Bug

b. A defect or fault in a machine, plan, or the like. orig. U.S.
1889 Pall Mall Gaz. 11 Mar. 1/1 Mr. Edison, I was informed, had 

been up the two previous nights discovering ‘a bug’ in his 
phonograph an expression for solving a difficulty, and implying that 
some imaginary insect has secreted itself inside and is causing all 
the trouble. 

Oxford English Dictionary, 2nd Edition

• Debugging is backward reasoning
o Like solving mysteries, think backwards from the results to reasons
o Most problems are our own faults
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Easy Bugs
• Look for familiar patterns

int n;
scanf( “%d”, n);

if ( x & 1 == 0 )...

• Examine the most recent change
o If previous version is correct, check the differences
o Version control is helpful

• Don’t make the same mistake twice
switch (argv[i][1]) {
case ‘o’:

outname = argv[i]; break;
case ‘f’:

from = atoi(argv[i]); break;
. . .
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Good Disciplines
• Debug now, don’t wait

o Bug will show up later and it will become harder to fix over time

• Get a stack trace
o Probably the most useful function of a debugger

• Read before typing
o “Read and think” is often better than “type and try.”
o Take a break for a while

• Do a good, old flowchart
o The technique works at all levels

• Explain your code to someone
o Rethink through your code
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Hard Bugs
• Make the bug reproducible

o Construct input and settings
o Or, try to understand why not reproducible

• Divide and conquer
o Binary search is fast

• Display output to localize your search
o You will have to be selective

• Log the events
o Useful for long running programs

• Use tools
o Compare and visualize the results
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Very Hard Bugs
• Remember many languages are very forgiven

o C’s type checking is not strong

• Caused by your own faults
o Uninitialized variables
o Global variables
o Use freed memory

• Other people’s bugs
o Read another program is challenging
o Learn testing to find bugs without source code

• Infrequent causes
o Library code
o Compiler optimizations
o Hardware
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Summary of Debugging
• Solving a puzzle

• Hard thinking is the best first step

• Explain your code to someone else 

• Reproducing bugs is the key

• Make mistakes fast and don’t make them again


