-
Program Errors ggg

Robust Programming
and
Debugging

CS 217

. Programs encounter errors
o Good programmers handle them gracefully

» Types of errors
o Compile-time errors
o Link-time errors
o Run-time user errors
o Run-time program errors
o Run-time exceptions

e R
Compile-Time Errors ggg

®

e N
Link-Time Errors ggg

®

» Code does not conform to C specification
o Forgetting a semicolon
o Forgetting to declare a variable
o etc.

* Detected by compiler

int a = 0; cc-1065 cc: ERROR File = foo.c, Line = 2
int b =3 A semicolon is expected at this point.
int c = 6;

int c = 6;
a=b+ 3; ~
d=c + 3;

cc-1020 cc: ERROR File = foo.c, Line = 6
The identifier "d" is undefined.

d=c + 3;
N

« Error in linking together the .o files to make an a.out
o Symbol referenced (used) in one module, not defined in another

extern int not_there;

main(Q) {
printf(“%d”, not_there);
}
Undefined First referenced
symbol in file
not_there foo.o

Id: fatal: Symbol referencing errors.
No output written to a.out

[

Run-Time User Errors

2

\

®

» User provides invalid input
o User types in name of file that does not exist
o User provides program argument with value outside legal bounds

* Detected with “if” checks in program
o Program should print message and recover gracefully
o Possibly ask user for new input

 Your program should anticipate and handle EVERY
possible user input!!!

int ReadFile(const char *filename)

[

Run-Time Program Errors

2

\

®

* What errors can this program make?

void Array_getData(Array_T array,

int k)

Run-Time Program Errors

e

®

* Internal error from which recovery is impossible (bug)
o Null pointer passed to Array_getData()
o Invalid value for array index (k = -7)
o Invariant is violated
o etc.

* Detected with conditional checks in program
o Program should print message and abort

void Array_getData(Array_T array, int k)

{

return array->elements[k];

}

Run-time Exceptions

{
FILE *fp = fopen(filename, “r”); return array->elements[k];
if (1fp) { ¥
fprintf(stderr, “Unable to open file: %s\n”, filename);
return 0;
}
*) ®

2

®

 Rare error from which recovery
may be possible
o User hits interrupt key
o Arithmetic overflow
o etc.

» Detected by machine or
operating system
o Program can handle them with signal
handlers (later)

o Not usually possible/practical to
detect with conditional checks

#include <limits.h>

int
int
int
int

a
d
b

Q0T w

L @

+ o+

MAX_INT;
MAX_INT;
6;
0;
d;
b.

C;

-
Robust Programming Qg

®

* Your program should never terminate without either ...
o Completing successfully, or
o Outputing a meaningful error message

* How can a program terminate?
o Return from main
o Call exit
o Call abort

[

Robust Programming

2

®

* Your program should never terminate without either ...
o Completing successfully, or
o Outputing a meaningful error message

* How can a program terminate?
> Return from main
o Call exit
o Call abort

#include <stdio.h>
#include “stringarray.h”

int mainQ)
StringArray_T stringarray = StringArray_new();
StringArray_read(stringarray, stdin);
StringArray_sort(stringarray, strcmp);
StringArray_write(stringarray, stdout);

StringArray_free(stringarray);

return 0;

0)

-
Robust Programming ggg

* Your program should never terminate without either ...
o Completing successfully, or
o Outputing a meaningful error message

* How can a program terminate?

o Return from main
> Call exit
o Call abort

#include <stdlib.h>
void ParseArguments(int argc, char **argv)
argc--; argv++;

while (argc > 0) {
it (Istremp(*argv, "-filename™)) {

3

else if (Istrcmp(*argv, "-help™)) {
PrintUsage(Q);
exit(0);

else {
fprintf(stderr, "Unrecognized argument: %s\n",
PrintUsage();
exit(l);

*argv);

argv++; argc--;

n)

[

Robust Programming

2

®

* Your program should never terminate without either ...
o Completing successfully, or
o Outputing a meaningful error message

* How can a program terminate?

o Return from main
o Call exit
> Call abort

#include <stdlib.h>
void *Array_getData(Array_T array, int k)

if (larray) {
fprintf(stderr, “array=NULL in Array_getData\n™);
abort();

3

if ((k <0) || (k >= array->nelements)) {

fprintf(stderr, “k=%d in Array_getData\n”, k);
abort();

return array->elements[k];

2)

[

Assert

2

®

\

evoild assert(int expression)
o Issues a message and aborts the program if expression is 0
o Activated conditionally
— While debugging: gcc foo.c
— After release: gcc —DNDEBUG foo.c

* Typical uses
o Check function arguments

o Check invariants!!! assert.h

#ifdef NDEBUG
#define assert(_e) O
#else
#define assert(_e) \
if (e) {\
fprintf(stderr,

“Assertion failed on line %d of file %s\n”, __ LINE__, _ FILE_); \

[

Assert

2

\

®

evoild assert(int expression)
o Issues a message and aborts the program if expression is 0
o Activated conditionally
— While debugging: gcc foo.c
— After release: gcc —DNDEBUG foo.c

* Typical uses
> Check function arguments
o Check invariants!!!

#include <assert.h>

void *Array_getData(Array_T array, int k)
{

assert(array);

assert((k >= 0) && (k < array->nelements));

evoid assert(int expression)
o Issues a message and aborts the program if expression is 0

o Activated conditionally
— While debugging: cc foo.c
— After release: cc —DNDEBUG foo.c

* Typical uses
o Check function arguments

> Check invariants!!! [4inciude <assert.h>
void Array_remove(Array_T array, int index)
int i;

for (i = index+1l; i < array->num_elements; i++)
array->elements[i-1] = array->elements[i];

array->num_elements--;

assert(array->nelements >= 0);

5)

} mhortos return array->elements[Kk];
0 }
#endif 13/ 14/
() 4)
Assert ggg What assert is not best for ggg

» Assert is meant for bugs, conditions that “can’t” occur
(or if they do, it's the programmer’s fault)
o File-not-present happens all the time,
beyond the control of the programmer
o Instead of an assert, print a nice error message to the user,
then exit or retry

“rv);

)

(

Robust Programming Summary

\

®

° Programs encounter errors
o Good programmers handle them gracefully

» Types of errors

o Compile-time errors
o Run-time user errors

Different execution times

o Run-time program errors 2. Compile time
o Run-time exceptions 3. Link time
4. Run time

* Robust programming

1. Preprocessing time

o Complete successfully, or
o Output a meaningful error message

1

(

Debugging

2

®

* Bug
b. A defect or fault in a machine, plan, or the like. orig. U.S.

1889 Pall Mall Gaz. 11 Mar. 1/1 Mr. Edison, | was informed, had
been up the two previous nights discovering ‘a bug’ in his
phonograph an expression for solving a difficulty, and implying that
some imaginary insect has secreted itself inside and is causing all
the trouble.

Oxford English Dictionary, 2" Edition

» Debugging is backward reasoning
o Like solving mysteries, think backwards from the results to reasons
o Most problems are our own faults

8

(

Easy Bugs

* Look for familiar patterns

int n;

scanf(“%d”, n);

if (x &1 ==

0)...

» Examine the most recent change
o If previous version is correct, check the differences
o Version control is helpful

* Don’t make the same mistake twice
switch (argv[il[1]) {

case “07:
outname =
case “f’:

argv[i]; break;

from = atoi(argv[i]); break;

0

(

Good Disciplines

2

\

®

» Debug now, don’t wait
o Bug will show up later and it will become harder to fix over time

Get a stack trace
o Probably the most useful function of a debugger

Read before typing
o “Read and think” is often better than “type and try.”
o Take a break for a while

Do a good, old flowchart
o The technique works at all levels

Explain your code to someone
o Rethink through your code

%)

(") (")

Hard Bugs §§§ Very Hard Bugs ggg
» Make the bug reproducible * Remember many languages are very forgiven

o Construct input and settings o C’s type checking is not strong

o Or, try to understand why not reproducible

Y Y P » Caused by your own faults

« Divide and conquer o Uninitialized variables

o Binary search is fast o Global variables

. . o Use freed memo

» Display output to localize your search i

o You will have to be selective » Other people’s bugs

o Read another program is challenging

Log the events) o Learn testing to find bugs without source code

o Useful for long running programs

Use tool * Infrequent causes

Se loois)] o Library code
o Compare and visualize the results - Compiler optimizations
o Hardware
21) 22)
(")
Summary of Debugging ggg

* Solving a puzzle

» Hard thinking is the best first step

» Explain your code to someone else
* Reproducing bugs is the key

» Make mistakes fast and don’t make them again

2)

