
COS 511: Foundations of Machine Learning

Rob Schapire Lecture # 24
Scribe: Forrest Collman May 1, 2003

1 Markov Decision Processes

A Markov decision process consists of a string of states (S), and at each state there is an
action (A) which causes a transition to occur to the next state and for a reward r to be
given. A policy π is a mapping from S to A, i.e. an action to be taken for every state. We
aim to find a policy which maximizes our reward.

The value of a policy, given that you start at a state s is

V π(s) = E(rt+1 + rt+2 + ...|st = s) (1)

It is more realistic to decay away the value of the reward

V π(s) = E(rt+1 + γrt+2 + γ2rt+3...|st = s) (2)

Last time we reviewed policy reiteration, in which we used V π to calculate a new π and
proved convergence to the optimal policy π∗.

Given π how did we evaluate V π(s)? All the information is there, but how do we get it
by experimenting? We must approximate V π(s) (call it just V from now on). Note

V (st) = E(rt+1 + γV (st+1)|st) (3)

The idea of the temporal difference approach is to initialize the value of V and then update
it based upon the experience of the most recent reward. Namely to average the old value
with the new one

V̂ ′ = (1− α)V̂ + α(rt+1 + γV̂ (st+1)) (4)

V̂ ′ = V̂ (st) + α
(
rt+1 + γV̂ (st+1)− V̂ (st)

)
(5)

This is called TD(0) because it takes the difference in values of V from the estimate to one
point in the future.

THEOREM: Assume all states visited infinite many times.
αt depends on the # of times st has been visited (n(st)). if

∑
n α(n) = ∞ but∑

n α(n)2 <∞ (e.g. α(n) = 1/n) then

max
s
|V̂ (s)− V (s)| → 0 (6)

PROOF: define s = st, s′ = st+1, r = rt+1, and n = n(st).

V̂n+1(s) = (1− α)V̂n(s) + α(r + γV̂t(s′)) (7)
V̄n+1(s) = (1− α)V̄n(s) + α(E(r + γV̂t(s′)|s)) (8)

Now we can use the triangle inequality to bound the thing we are interested by two parts.

|V̂n+1(s)− V (s)| ≤ |V̂n+1(s)− V̄n+1(s)|+ |V̄n+1(s)− V (s)| (9)

For the first part (call it Dn)

|V̂n+1(s)− V̄n+1(s)|=Dn+1

= (1− αn)(V̂n(s)− V̄n(s)) + αn(r + γV̂n(s′)−E(r + γV̂n(s′)|s)) (10)

define the part that is multiplied by αn as xn, and

xn = r + γV̂n(s′)−E(r + γV̂n(s′)|s) (11)

We will show that Dn is a convex combination of x1, . . . , xn−1 and that E(xn|x1, . . . , xn−1) =
0, thus showing that the Dn forms a “martingale”, and by Azuma’s Lemma converges to
zero. So with our new definitions

Dn+1 = (1− αn)Dn−1 + αnxn (12)

We will prove that Dn is a convex combination of x1...xn−1 by induction. We must initialize
V̂1(s) and V̄1(s) to 0, and constrain α1 = 1, so that

D2 = (1− α1)0 + 1x1 = x1 (13)

Now assuming by induction we assume we can write Dn =
∑n−1
i=1 βixi where βi > 0 ∀i and∑n−1

i=1 βi = 1 and show that Dn+1 is a convex linear combination of xn...x1.

Dn+1 = (1− αn)
n−1∑
i=1

βixi + αnxn (14)

Define β′i = (1− αn)βi ∀i < n and β′n = αn. Thus Dn+1 =
∑n
i=1 β

′
ixi and

n∑
i=1

β′i =

(
n−1∑
i=1

(1− αn)βi

)
+ αn = (1− αn) + αn = 1 (15)

So we have shown that Dn is a convex combination of x1...xn−1 for all n.
E(xn|x1, . . . , xn−1) = 0 ∀n for

E(xn|s) = E(r + γV̂n(s′)−E(r + γV̂n(s′)|s)|s) = E(0) = 0 (16)

So Dn forms a martingale, and by Azuma’s Lemma (a parallel to Hoeffding’s Inequality)
it converges to zero.

For the second part

|V̄t+1(s)− V (s)| = (1 − α)(V̄t − V (s)) + α(E(r + γV̂t(s′)− (r + γV (s′))|s)) (17)
≤ (1− α)(V̄t − V (s)) + γα∆ (18)

if ∆ ≥ V̂t(s′)− V (s′). So this converges to γ∆. Since γ < 1 this is smaller than ∆ and we
can thus redefine ∆′ = γ∆ and reapply the argument over and over again, thus converging
the result to zero.

So we have shown both parts go to zero, thus the entire thing must go to zero.

2

2 TD(λ)

Now in some cases TD(0) is highly inefficient because information about rewards only prop-
agates backward one state at each time step. We can however expand our approximation
(V̂t(s)) farther out into the future.

If we define
Rkt = rt+1 + γrt+2 + ...+ γk−1rt+k + γkV̂ (st+k) (19)

Then our update rule becomes more generally (in parallel to Equation 5)

V̂n+1(s) += αn(Rkt − V̂n(s)) (20)

this would be TD(k). However, this algorithm would require running the process k times
into the future before updating. TD(λ) combines all of the TD(k) methods, decaying the
weight as k increases

Rλt = (R0
t + λR1

t + λ2R2
t + · · ·)(1− λ) (21)

Our update rule has the same form

V̂n+1(s) += αn(Rλt − V̂n(s)) (22)

let V̂ (st) = vt and write out Rλt − V̂n(s)

−vt + (1− λ)(R1
t + λR2

t + λ2R3
t ...) (23)

= −vt + (1− λ)(rt+1 + γvt+1) (24)
+(1− λ)λ(rt+1 + γrt+2 + γ2vt+2)

+(1− λ)λ2(rt+1 + γrt+2 + γ2rt+3 + γ3vt+3)
...

Now group the terms by rt+k (doing the infinite sum) and leave the vt+k terms separate

−vt (25)
+rt+1 + γλrt+2 + (γλ)2rt+3...

+(1− λ)(γvt+1 + λγ2vt+2 + λ2γ3vt+3 + ...

Now distribute (1 − λ) across the last set of terms and separate them into two groups,
bringing in the lone vt

rt+1 + γλrt+2 + (γλ)2rt+3... (26)
+γ(vt+1 + λγvt+2 + (λγ)2vt+3 + ..

−(vt + λγvt+1 + (λγ)2vt+2 + ...

Now group the terms with the same power of λγ

rt+1 + γvt+1 − vt (27)
+λγ(rt+2 + γvt+2 − vt+1)

+(λγ)2(rt+3 + γvt+3 − vt+2)
...

3

So defining δt = rt+1 + γvt+1 − vt the update rule is thus

V̂ (s) += α(δ0 + γλδ1 + (γλ)2δ2 + ...) (28)

Now ideally the updates would go like this

V̂ (s0) += α(δ0 + (γλ)δ1 + ...) (29)
V̂ (s1) += α(δ1 + (γλ)δ2 + ...) (30)

but if this were the case you would never update because you would never have all the terms
to update the first term. So, instead, do the update with the information that you have
after every transition.

V̂ (s0) += αδ0 (31)
−− (32)

V̂ (s1) += αδ1 (33)
V̂ (s0) += αγλδ1 (34)

−− (35)
V̂ (s2) += αδ2 (36)

V̂ (s1) += αγλδ2 (37)
V̂ (s0) += α(γλ)2δ2 (38)

So after each action and reward you use the information to propagate backward to all the
states that came before it.

3 Large State Space

If the number of states is too large for these methods to be effective, neural networks are
often used to approximate the value function. If W is the weights of the neural network
then we could write V̂ (s) = f(s,W). Our update rule

V̂ (s) += α(r + γV̂ (s′)− V̂ (s)) (39)

can be framed as performing gradient descent with dt = α on the function

1
2

(
r + γV̂ (s′)− V̂ (s)

)2
(40)

so now considering W we can also perform gradient descent to update W

W += α(r + γf(s′,W)− f(s,W)) · ∇Wf(s,W) (41)

4 TD-gammon

An example application of TD(λ) is backgammon. All the pieces are on the board, so the
state of the game is known to both competitors. The rewards can be defined as 1 if black
wins -1 if white wins and 0 otherwise. The program chooses the action which maximizes
r(s, a) + V̂ (δ(s, a)) Where δ(s, a) is the state of the game reached after taking the action a.
Then TD(λ) is used to update V̂ , encoding V̂ in a neural network.

4

Early versions of the programs played against itself, used an obvious encoding of the
board state, and played 300,000 times against itself. This was as good as an above average
human.

Later versions, increased the number of games played to 1.5 million, added more special-
ized features to the encoding of the board state, and chose actions by looking farther into
the future. These improvements made it very nearly as good as the best human players.

5

