
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #20
Scribe: John H. White, IV 4/17/2003

1 Review

Given N stocks you want to learn how to make the most amount of money. Let ~pt represent
how much all the stocks go up and down fractionally on day t and pt(i) represent how much
the ith stock goes up or down fractionally on day t. Let ~wt represent how much wealth is in
all the stocks on day t and wt(i) represent how much wealth is in the ith stock on day t. As

shown in the previous lecture the wealth after T days is
T∏
t=1

(~wt · ~pt). For Bayes algorithm,

this is at least 1
N (wealth of best stock). This just boils down to the buy and hold strategy.

2 Constant Rebalanced Portfolio (CRP)

Since the above algorithm is equivalent to the buy and hold strategy let’s examine another
approach to learning how to make the most money from the stock market. In this example
at the end of each day take the wealth and redistribute it into all the stocks based on a
given distribution ~b. This is called a constant rebalanced portfolio (CRP). Why might this
be a good idea? Consider the following example.

Stock 1 - Price stays constant

Stock 2 - Price doubles / halves alternatingly every two days

Stock 1’s pt Stock 2’s pt
Day 1 1 1

2
Day 2 1 2
Day 3 1 1

2
Day 4 1 2

...
...

...

If we let ~b =
[1

2 ,
1
2

]
then the wealth of the example is

S1 = 1 (1)

S2 = S1

(
1
2
· 1 +

1
2
· 1

2

)
=

3
4
S1 (2)

S3 = S2

(
1
2
· 1 +

1
2
· 2
)

=
3
2
S2 (3)

...

St+2 =
3
2
St+1 =

3
2
· 3

4
St =

9
8
St (4)

As Eq. 4 shows every two days the money grows by an 1
8
th. This implies that the money is

growing exponentially fast. This example used a “Uniform CRP” because ~b was a uniform
probability distribution. As this example shows using CRP’s is good.



3 Cover’s “Universal Portfolio” (CUP)

Now let’s consider when you have many different ~b’s and divide the wealth evenly among
each one each day. This is Cover’s Universal Portfolio algorithm (CUP). Basically CUP is
combining many CRP’s because each ~b represents a CRP. So on each day t we know the
following (

dµ(~b)
)

= amount invested with this ~b (5)

(
wealth using ~b

)
=

t−1∏
s=1

(
~b · ~ps

)
dµ(~b) (6)

(
wealth in stock i using ~b

)
= b (i)

t−1∏
s=1

(
~b · ~ps

)
dµ(~b) (7)

(total wealth in stock i) =
∫ (

b (i)
t−1∏
s=1

(
~b · ~ps

)
dµ(~b)

)
(8)

(fraction of total wealth in stock i) = ~wt (i) =

∫ (
b (i)

t−1∏
s=1

(
~b · ~ps

)
dµ(~b)

)
∫ (t−1∏

s=1

(
~b · ~ps

)
dµ(~b)

) (9)

From empirical data and analysis when stocks perform as below the algorithm does well.

Fig. 1

From theory it is known about this algorithm that

(wealth of algorithm after T days) ≥ 1
(T + 1)N−1 (wealth of best CRP) (10)

2



Proof: Let ~b∗ be the best CRP in hind sight and ~b = (1− α)~b∗ + α~z where α ∈ [0, 1] and
~z is a CRP in the set 4 of all CRP’s. By doing this ~b defines a volume of CRP’s within ~b∗.
Since ~b invests 1 − α of its money the same as ~b∗, it must make at least 1 − α as much as
~b∗ on each day. Thus, (

wealth of ~b
)
≥ (1− α)T

(
wealth of ~b∗

)
(11)

So by Eq. 11 we know that the neighborhood of CRP’s defined by ~b has

wealth ≥ (1− α)T
(

wealth of ~b∗
)

Now the volume of the CRP’s defined by ~b is

Vol
({

(1− α)~b∗ + α~z : ~z ∈ 4
})

(12)

= Vol ({α~z : ~z ∈ 4}) (13)
= αN−1Vol (4) (14)

Therefore at least αN−1 of the CRP’s have

wealth ≥ (1− α)T
(

wealth of ~b∗
)

So for the algorithm,

(wealth of algorithm) ≥ αN−1 (1− α)T
(

wealth of ~b∗
)

(15)

Now by letting α = 1
T+1 ,

(wealth of algorithm) ≥ 1
(T + 1)N−1

(
1− 1

T + 1

)T (
wealth of ~b∗

)
(16)

≥ 1
(T + 1)N−1

(
1
e

)(
wealth of ~b∗

)
(17)

Therefore Eq. 10 is proved true within the constant 1
e . Eq. 10 can be proved exactly by

choosing a “better” neighborhood. Consult the literature on the topic to see the proof.

The theory for this algorithm is for the worst case. In practice algorithms exist that do
better empirically but their theory says they should do worse. In practice “Uniform CRP’s”
do as well as the others.

4 Thoughts on Experimentation

4.1 Test Carefully

Programs written for machine learning research and experimentation can be very difficult
to debug. Use small “made up” data sets or small “real” data sets so that the results can be
calculated by hand to verify the programs. Compare the output of the program to known
theoretical results to see if the program is behaving properly. Also since the programs are
run on computers be aware of numerical issues arrising from limited space to represent
numbers.

3



4.2 Number of Data Sets

When using data sets in analysis try to use 20 to 30 different data sets. This gives the
program credibility in showing that it is not an aberration that only works on one or two
data sets.

4.3 Limited Amount of Data

When using data sets that have a small number of examples the technique of 10 Fold Cross
Validation should be used. This involves dividing the data up into 10 equally sized sets of
examples. Then for each set of 10% of the examples train on the remaining 90% of examples
and then test on the 10%. This involves running the algorithm 10 times but by doing this
and taking the average of the error rates on each run better results are obtained.

4.4 Avoid Overfitting Test Set

Don’t try all the algorithms you can think of to try and get a better result on the error
of the test set. By just getting the best error on the test set you can overfit it and cause
the generalization error to be increased. This can also be caused by using algorithms with
many parameters and then tweaking the parameters to give the best test error. Instead try
to guess reasonable values for the parameters and stick with those values. Also the data
can be divided up into training, validation, and test sets. Use the training and validation
sets to analyze the algorithm but then only use the test set to report the performance of
the algorithm.

4.5 Automate

Try and automate as much as possible. This gets rid of errors introduced by humans when
trying to remember what files they have and have not copied, what test they performed,
etc. Also by automating as much as possible a record of what occurred is preserved. This
way the experiments are repeatable by not only you but others reviewing your work. Also
when using randomness use seeding values and remember them. This way the randomness
is repeatable when the experiments are reviewed.

4.6 Beware of Real Computers

Machine learning experiments are often very time consuming and require many trials. Don’t
forget that computers are real and they do crash. Try to design your program to write
out intermediate results and recover from crashes. This way when a crash occurs all the
program’s work will not be lost.

4.7 Experiments Have a Point

Experiments should be planned ahead of time and have the purpose of enforcing your work.
Make sure they relate to what you are trying to say. Also use experiments to isolate what
makes your work better or newer than other work.

4



4.8 Graphs

Use graphs and pictures whenever possible to display results. Lists of numbers upon num-
bers are not pleasing to read.

4.9 Established Software

Use software packages that are already written to aid in your work or even as benchmarks
against which to compare your work. Two such packages to consider are WEKA1 and
MLC++2.

5 Exact Identification

Up until now we assumed that the learning algorithm got data examples passively. What if
the learner was able to actively choose examples? Consider trying to learn an exact function
c that classifies the examples. The algorithm has a black box that represents the function
c. The algorithm is also allowed to ask questions to the black box and it uses these results
to create a functionally equivalent function to function c. There are two queries that can
be asked. The first query is a Membership Query. This query asks “What is the value of
function c on example x?” This query can be thought of as a set and it is asking is x a
member of the set.

To be continued... (in the next lecture)

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.sgi.com/tech/mlc/

5


