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1 Review of Bayes’ Rule

In the previous lecture, we talked about modeling and estimating probability distributions.
In this generative approach, we deal with probabilities in the form Pr(x|y), where y is the
class and x is the input data. Bayes’ Rule is used to relate the Pr(x|y) to Pr(y|x) which is
estimated by discriminative techniques. Bayes’ Rule states that:

Pr[y|x] =
Pr[x|y]Pr[y]

Pr[x]
(1)

Here is a numerical example. Assume the probability of a certain disease is Pr[D] =
0.01. The probability of test positive given that a person is infected with the disease is
Pr[T |D] = 0.95 and the probability of test positive given the person is not infected with
the disease is Pr[T |D̄] = 0.05. Then the probability of test positive is

Pr[T ] = Pr[T ∧D] + Pr[T ∧ D̄]
= Pr[T |D]Pr[D] + Pr[T |D̄]Pr[D̄]
= 0.95× 0.01 + 0.05 × 0.99
= 0.059

Bayes’ Rule is used to calculate the probability of being infected with the disease given
that the test result is positive:

Pr[D|T ] =
Pr[T |D]Pr[D]

Pr[T ]
=

0.95 × 0.01
0.059

≈ 0.16

2 Model a Probability Distribution Using Maximum Likeli-
hood

Given m samples x1, x2, · · · , xm, where xi is distributed according to some distribution D.
We are trying to figure out how we can model this distribution D. Imagine that we have
a class of distributions to model D; the question is which one to choose. If D = q, and we
assume the data is independent to each other, we have

Pr[x1, x2, · · · , xm] = q(x1)q(x2) · · · q(xm) =
m∏
i=1

q(xi) (2)

which is the likelihood of the samples from distribution q. The principle here is to choose
the distribution with the maximum likelihood, i.e.,



max
q

∏
i

q(xi) ≡ max
q

ln
∏
i

q(xi) ≡ max
q

∑
i

ln q(xi) ≡ min
q

∑
i

− ln q(xi) (3)

where − ln q(xi) is called log loss and the maximum likelihood principle is equivalent to
minimizing the log loss. The expected log loss should be minimized under the true distri-
bution D, i.e., ED[− ln q(x)] = −∑xD(x) ln q(x) is minimized when q = D. Therefore, the
principle of minimizing the log loss is to choose

min
q
−
∑
x

D(x) ln q(x) s.t.
∑
x

q(x) = 1 (4)

One way to see this is to use Lagrange multipliers:

L = −
∑
x

D(x) ln q(x) + λ

(∑
x

q(x)− 1

)
. (5)

If we optimize this over q and λ by setting derivatives equal to zero, then we will get that
q = D.

More generally, if we estimate D by q, then the expected log loss will be:

−
∑
x

D(x) ln q(x) =
∑
x

D(x) ln
D(x)
q(x)

−
∑
x

D(x) lnD(x) (6)

= RE(D ‖ q) +H(D). (7)

In the above equation, H(D) is the entropy of the true distribution D, thus does not
depend on q, while RE(D ‖ q) is the distance between the two distributions D and q.
Therefore, the expected log loss only depends on the distance between distribution q and
the true distribution D. When q = D, we have the expected log loss ED[− ln q(x)] =
−∑xD(x) ln q(x) minimized.

3 An Example of Maximum Likelihood Modeling

Random variable X is Bernoulli distributed with parameter p, i.e., X = 1 with probability p
and X = 0 with probability 1−p, where p can take any value from [0, 1]. Given m examples
x1, x2, · · · , xm ∈ X and we want to estimate p. Let h =

∑
i xi. Intuitively, we claim h

m is
the answer according to the maximum likelihood.

Now we calculate the likelihood for probability q: L(q) =
∏
i q(xi) = qh(1− q)m−h. Let

∂L(q)
∂q = 0 to maximize L(q) over q, and we find q = h

m is the answer.

4 A More Complex Example - Habitat Modeling Problem

In this habitat modeling problem, we are interested in estimating distribution of the places
where a species of animals live. Take butterfly, for example, we are given information about
their habitat places, and we can observe and collect information about test features at every
possible location, where test features include altitude, average rainfall, average temperature,
etc. What to estimate is the true distribution of the habitat.
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Using mathematical symbols to represent this model, we are given:

- locations x ∈ X, |X| = N

- n features f1, f2, · · · , fn, where fi : X → R (mapping locations of the habitat to real
numbers)

- m samples x1, x2, · · · , xm. We assume the samples are iid from distribution D.

We are trying to estimate this D. Certain species prefer specific habitat of favorable
environments, therefore, features usually determine the location distribution. We know how
to estimate the expected value of the features:

ED[fj] ≈ Ê[fj] =
1
m

∑
i

fj(xi) (8)

where Ê[fj] = Êj is the empirical expected value of the features. So one idea is to find a
distribution p such that

Ep[fj ] = Ê[fj], ∀j (9)

The problem is that a lot of distributions p can satisfy the above requirements. Among all
these p’s, in the absence of any other information, it is natural to choose the one that is
closest to the uniform distribution, i.e., minimizing the relative entropy

RE(p ‖ unif) =
∑
x

p(x) ln
p(x)
1/N

= lnN +
∑
x

p(x) ln p(x) = lnN −H(p). (10)

Thus, minimizing RE(P ‖ unif) is equivalent to maximizing H(P ), and we call this strategy
the ”Maximum Entropy Approach”, in which we first find the set

P = {p : Ep[fj] = Ê[fj ] ∀j} (11)

and then choose
q∗ = arg max

p∈P
H(p) (12)

The second approach is to model the distribution q(x) by a linear combination of the
features, generating a “Gibbs” form of distribution:

q(x) =
exp

(∑
j λjfj(x)

)
Zλ

(13)

where λj ∈ R and Zλ is a normalization factor. We can then derive a ”Maximum Likelihood
Approach”, in which we choose the Gibbs distribution of maximum likelihood. Let

Q = {q of the Gibbs form}. (14)

and let Q̄ be the closure of Q. We then choose

q∗ = arg max
q∈Q̄

∑
i

ln q(xi) (15)

3



An amazing result is that these two problems have identical solutions and moreover the
intersection P ∩ Q̄ contains a single element which is the unique solution to both problems.

Theorem 1 The following are equivalent:

1. q∗ = arg maxp∈P H(p)

2. q∗ = arg maxq∈Q̄
∑
i ln q(xi)

3. q∗ = P ∩ Q̄

Moreover, q∗ is uniquely determined by any one of these conditions.

The theorem states that the solution q∗ is uniquely determined by any of the above
equations and the ”Maximum Entropy Approach” is equivalent to the ”Maximum Likeli-
hood Approach”. We did not prove this theorem, but we can motivate the result using
Lagrange multipliers.

For the first approach, the Lagrange multiplier is

L =
∑
x

p(x) ln p(x) +
∑
j

λj(Êj −
∑
x

p(x)fj(x)) + γ(
∑
x

p(x)− 1) (16)

∂L

∂p(x)
= 1 + ln p(x)−

∑
j

λjfj(x) + γ = 0 (17)

⇒ p(x) =
exp(

∑
j λjfj(x))
e1+γ =

exp(
∑
j λjfj(x))
Z

(18)

where Z = e1+γ is the normalization factor to make p(x) adds up to 1. (19)

We then conclude that the solution of the first approach has the same form as the second
approach, i.e., generating a Gibbs distribution. Moreover, if we plug in this form of p into
the Lagrangian L, we get the likelihood of the data which is what we need to maximize over
the λj’s. Thus, the two approaches are equivalent.

Next we introduce an iterative algorithm to solve λ:
In the first step, we set the initial value as λ1.
At round t+ 1, we have

λt+1 = λt + αt (20)

The algorithm should make λt converge to the λ in q∗(x). We assume fj(x) ≥ 0 and∑
j fj(x) = 1. (If fj(x) is sometimes negative, we can replace fj(x) by fj(x) + c for some

constant c. Because of normalization, this does not change the corresponding Gibbs distri-
bution. If

∑
j fj(x) < 1, we can add a new feature f0(x) = 1 −∑j fj(x). Since a linear

combination over all the features including f0 is the same as one over just the original
features, this again does not change the problem or the Gibbs distributions that can be
represented.)
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Define

gλ(x) =
∑
j

λjfj(x) (21)

qλ(x) =
egλ(x)

Zλ
(22)

And the loss function is
L(λ) = −

∑
i

ln qλ(xi) (23)

Then look at the difference L(λt+1)− L(λt). Next class we will continue the algorithm
to derive an approximation process for λ.
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