
COS 511: Foundations of Machine Learning

Rob Schapire Lecture # 10
Scribe: John H. White, IV 3/6/2003

1 Boosting

Theorem 1 With probablity 1− δ, ∀f ∈ co (H), and ∀θ > 0 then

PrD [yf (x) ≤ 0] ≤ PrS [yf (x) ≤ θ] +O

 1√
m

√
ln (m) ln (|H|) + ln 1

δ

θ2

Proof:

Previous Lecture

The main idea of the argument is to show that:

∃g ∈ CN s.t. for “most” x, |f (x)− g (x)| ≤ θ
2

and also that, with probability at least 1− δ,

PrD

[
yg (x) ≤ θ

2

]
≤ PrS

[
yg (x) ≤ θ

2

]
+ εθ. (1)

Then

PrD [yf (x) ≤ 0] ≈ PrD

[
yg (x) ≤ θ

2

]
(2)

≈ PrS

[
yg (x) ≤ θ

2

]
(3)

≈ PrS [yf (x) ≤ θ] (4)

This Lecture

PrD [yf (x) ≤ 0] ≤ PrD,g

[
yf (x) ≤ 0 ∧ yg (x) >

θ

2

]
+ PrD,g

[
yg (x) ≤ θ

2

]
(5)

≤ e−
Nθ2

8 +Eg

[
PrD

[
yg (x) ≤ θ

2

]]
(6)

≤ e−
Nθ2

8 +Eg

[
PrS

[
yg (x) ≤ θ

2

]]
+ εθ (7)

≤ PrS [yf (x) ≤ θ] + 2e−
Nθ2

8 +

√√√√ ln
[

(N+1)|H|N
δ

]
m

(8)

≤ PrS [yf (x) ≤ θ] +O

 1√
m

√
ln (m) ln (|H|) + ln 1

δ

θ2

 (9)

The justification of going from equation 6 to 7 is the following:

PrD

[
yg (x) ≤ θ

2

]
≤ PrS

[
yg (x) ≤ θ

2

]
+ εθ (10)

The justification of going from equation 7 to 8 is the following:

Eg

[
PrS

[
yg (x) ≤ θ

2

]]
= PrS,g

[
yg (x) ≤ θ

2
∧ yf (x) > θ

]
+ PrS,g

[
yg (x) ≤ θ

2
∧ yf (x) ≤ θ

]
≤ e−

Nθ2
8 + PrS [yf (x) ≤ θ] (11)

using the same argument as used in the last lecture.

The justification of going from equation 8 to 9 is by defining N as follows:

N =
4
θ2 ln

(
m

ln |H|

)
(12)

In boosting we can prove the following:

PrS [yf (x) ≤ θ] ≤
T∏
t=1

√
2ε1−θt (1− εt)1+θ (13)

So if εt ≤ 1
2 − γ then

PrS [yf (x) ≤ θ] ≤
T∏
t=1

√
2ε1−θt (1− εt)1+θ ≤

(√
(1− 2γ)1−θ (1 + 2γ)1+θ

)T
. (14)

The base of the exponential in this last term is strictly less than 1 when θ < γ. So
PrS [yf (x) ≤ θ] goes to 0 as T →∞ when θ < γ.

When using boosting there are usually two approaches. The first is to use a pretty good
weak learning algorithm and then boost it to make it better. The second is to use a truly
weak learning algorithm and then boost it to make it better. For instance, when learning
to classify emails as spam, we might use weak classifiers that make predictions based on the
presence of key words or phrases (e.g., “if buy now occurs in the email, then predict that
it’s spam”).

2 Support Vector Machines (SVM)

The idea of support vector machines is due to Vapnik. The idea of an SVM is to learn a
hyperplane that classifies the data in the best way. The data for an SVM is

S = {(~x1, y1), . . . , (~xm, ym)} (15)

~xi ∈ Rn (16)

2

‖~xi‖2 ≤ 1 (17)

yi ∈ {+1,−1} (18)

The set S contains all the training examples with each example coming from R
n and being

labeled by yi. Equation 17 means that the Euclidean length of each example is less than or
equal to 1. An SVM can be visuallized by the following figure.

Fig. 1

As Fig. 1 shows an SVM learns the red hyperplane that separates the positive and negative
examples. This hyperplane passes through the origin O and has the normal vector ~v. The
goal of an SVM is to maximize the distance from the plane to each of the examples. This
distance is labeled by δ. An SVM then classifies a point ~x as follows

~v · ~x > 0 means the point ~x is above the hyperplane (19)
~v · ~x = 0 means the point ~x is on the hyperplane (20)
~v · ~x < 0 means the point ~x is below the hyperplane (21)

One interesting observation about SVM’s is that dot products are very prevalent. The sign
of ~v ·~x determines which side of the hyperplane a point is on. Also the magitude of ~v ·~x gives
the distance from the hyperplane to the point. As with boosting SVM’s have a margin.
The margin is defined as y (~v · ~x) and this is positive if the point is classified correctly. Also
you want all the margin values to be large as described by y (~v · ~x) ≥ δ. Assuming the data
is linearly separable the goal of an SVM is to find ~v and maximize δ > 0 such that ‖~v‖2 = 1
and y (~v · ~x) ≥ δ. When this inequality holds with equality, ~x is called a “support vector”.
It is also interesting to note that if a linear threshold function can be found with δ then the
V Cdim ≤ 1

δ2 .

3

3 SVM vs Boosting

SVM Boosting
Examples ~x ∈ Rn ~h (x) ≡ (h1 (x) , h2 (x) , . . . , hh (x))h∈H

‖~x‖2 ≤ 1
∥∥∥~h (x)

∥∥∥
∞

= max
j
|hj (x)| ≤ 1

Weights ‖~v‖2 = 1 ~a = (a1, a2, . . .)
‖~a‖1 =

∑
aj = 1

Prediction sign(~v · ~x) sign

(∑
t

atht (x)

)
= sign

(
~a ·~h (x)

)
Margin y(~v · ~x) y

∑
t

atht (x) = y~a ·~h (x)

4 Solving an SVM

In order to solve an SVM you want to solve the following problem

Find ~v and max δ > 0
s.t.

(1) ‖~v‖2 = 1

(2) ∀i yi (~v · ~xi) ≥ δ ⇔ yi

 ~v

δ︸︷︷︸
~w

·~x

 ≥ 1⇔ yi (~w · ~xi) ≥ 1

The above equation can be written into the following more simplified form to aid in solving
it.

min 1
2 ‖w‖

2

s.t.
∀i yi (~w · ~xi)− 1 ≥ 0

The above form of the problem is the form most used in the literature. In order to solve
this problem Lagrangians are used. This is because the solution to the problem occurs at
the saddle point of the Lagrangian. The Lagrangian is defined as follows

L (~w, ~α) =
1
2
‖~w‖2 −

∑
i

αi [yi (~w · ~xi)− 1] (22)

In equation 22 the αi’s are call the Lagrange multipliers. The solution of the SVM is when
L (~w, ~α) is minimized over ~w and maximized over α1, . . . , αm where αi ≥ 0. To begin
solving the SVM you first minimize over ~w by setting the partial derivative equal to zero
as follows

∂L

∂wj
= wj −

∑
i

αiyixij = 0 (23)

wj =
∑
i

αiyixij (24)

4

~w =
∑
i

αiyi~xi (25)

Equation 25 shows that the solution must be a linear combination of the examples. So now
to continue the solution equation 25 is substituted into equation 22 and the following is
solved

maxαi
αi≥0 L =

∑
i

αi −
1
2

∑
i,j

αiαjyiyj~xi~xj (26)

There are algorithm packages that exist to solve equation 26 so choose your favorite and
the SVM is solved.

5 SVM Solution Observations

By using the Kuhn-Tucker conditions at the solution, αi [yi (~w · ~xi)− 1] = 0. This means
that αi 6= 0 ⇒ yi (~w · ~xi) = 1⇔ “support vector”. Because of this the solution ~w depends
only on the support vectors. Also by using the solution to the homework it can be said
with probablity at least 1−δ, that the err ≤

(
k lnm+ln 1

δ
m−k

)
where k is the number of support

vectors. This analysis is very nice because the error doesn’t depend upon the number of
dimensions of the input.

6 What if the data is not linearly separable?

If the data is not linearly separable there are two main options.

6.1 Allow soft margins

Allowing soft margins means that if a training point is on the wrong side of the hyperplane
then a cost will be applied to the point. This changes the problem into the following

min 1
2 ‖~w‖

2 + C
∑
i

ξi

s.t.
∀i yi (~w · ~xi) ≥ 1− ξi
∀i ξi ≥ 0

In the above problem C is a parameter chosen by the user.

6.2 Increase Dimensionality

By increasing the dimensionality of the data the likelihood of the data becoming linearly
separable increases dramatically. In the Lagrangian we only use dot products. Next lec-
ture, we will show how to use this fact to avoid paying a high price for increasing the
dimensionality of the data.

5

