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1 Where we were last time

With probability ≥ 1− δ, ∀ h ∈ H, if h is consistent with a sample of size m then

err(h) ≤ 2
m

(lg ΠH(2m) + lg
1
δ

).

We also showed that ΠH(m) ≤ Φd(m) where d = V Cdim(H).

2 Finding the order of magnitude on err(h)

We will show that
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since we’re adding m − d positive terms, and 1(m−i) doesn’t change anything. But this is
the bionomial function, so

=
(
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m

)m
.

And from (1 + x) ≤ ex
≤ e dmm = ed.

So returning to the original equation, if h is consistent then

err(h) ≤ O
(
d ln m

d + ln 1
δ

m

)
.

Or equivalently, err(h) ≤ ε for

m = O

(
d ln(1/ε) + ln(1/δ)

ε

)
.

3 How is d useful?

The V Cdim of H, d, gives us a bound on how many examples m we need to achieve ε and δ.
But, H is arbitrarily chosen, so it would be meaningless to use it to provide a lower bound
for m. However, a lower bound for m using V Cdim(C) can be found.



4 Error for m ≤ d
2

We will prove that...
∀ algorithms A ∃ concept class c ∈ C and a dsitribution D such that if only m ≤ d

2
examples are selected from D then

Pr

(
err(h) >

1
8

)
≥ 1

8
.

That is, for ε < 1
8 and δ < 1

8 , PAC learning is impossible with fewer than (or equal to)
d
2 examples.
To do this, we will assume c is chosen at random by an adversary.

Proof:
Assume s1 · · · sd are shattered.

If d = V Cdim(C), then there exists a set of such examples that are shattered.
Take C′, a subset of C which contains one representative concept c for each dichotomy of
the shattered set such that c produces that dichotomy.
|C′| = 2d

The adversary chooses some random c ∈ C′, where all members of C′ are uniformly dis-
tributed. The distribution D is uniform over the shattered set.

So far, we have outlined ”experiment 1,” which can be summarized as:

• c chosen at random

• sample S = {x1, . . . , xm} chosen at random

• hA computed by A using S and labels on that set

• x, a test point, is randomly chosen, and we then test if hA(x) 6= c(x)

But, we claim this experiment is equivelant to ”experiment 2,” as follows:

• S chosen at random

• labels c(xi) chosen just for those xi ∈ S

• hA computed by A using S and labels on that set

• x, a test point, is randomly chosen and labeled (unless already labeled)

• test if hA(x) 6= c(x)

The label for x might have already been chosen if x ∈ S, in which case the hypothesis (which
we assume to be consistent) has zero probability of incorrectly labeling x. Otherwise, hA
has a 50/50 chance of selecting the right label.
Furthermore, x has at most a 50% chance of being in S (since m ≤ d/2). So, computing
probability over c,S, x:

Pr(hA(x) 6= c(x)) = Pr(x ∈ S and hA(x) 6= c(x)) + Pr(x 6∈ S and hA(x) 6= c(x))
≥ 0 + Pr(x 6∈ S)Pr(hA(x) 6= c(x)|x 6∈ S)

≥ 0 +
1
2
· 1

2
=

1
4
.
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So 1
4 ≤Ec(PrS,x[hA(x) 6= c(x)])
therefore ∃c ∈ C′ : Pr(hA(x) 6= c(x)) ≥ 1

4
so ES(Prx[hA(x) 6= c(x)]) ≥ 1

4
... ES(err(hA)) ≥ 1

4
1
4 ≤ES(err(hA)) ≤ Pr(err(hA) > 1

8) + Pr(err(hA) ≤ 1
8) · 1

8
1
4 ≤ Pr(err(hA) > 1

8) + 1
8 , because Pr(err(hA) ≤ 1

8) is at most 1.
Pr(err(hA) > 1

8) ≥ 1
8

5 Inconsistent Hypotheses

What are the cases in which we would be unable to find a consistent hypothesis?

• The true concept is not in H

• The true concept is computationally hard to find

• There is no functional relationship between examples and labels

What if labels are probabilistically related to examples?
For a distribution D on X which takes values 0 or 1,
Replace c(x) by y, no longer a function of x.
PrD[x, y] = Pr(x)Pr(y|x)
Before, we assumed Pr(y|x) was either 0 or 1.
And we redefine error as err(h) =Pr(x,y)∼D[h(x) 6= y]
The best h is one for which h(x) is the more probable of 0 or 1:
hopt(x) = {1 if E(y|x) ≥ 1

2 ; 0 else}
hopt(x) is ”Bayes’ optimal decision rule” and err(hopt) is ”Bayes’ error”

Let’s find an h that minimizes err(h).
We need an H rich enough so that hopt can be approximated. This is a possible source

of error.
Idea: Minimize the number of errors on S = {(xi, yi)}, ”empirical risk minimization”.
Empirical errors ˆerr(h) = 1

m |{i : h(xi) 6= yi}|. We need the empirical error to be close
to the true error for every h ∈ H. This is called uniform convergence. If we can do this,
then minimizing ˆerr(h) also means approximately minimizing err(h):

Suppose we can show that ∀h ∈ H
|err(h)− ˆerr(h)| ≤ ε
Then let ĥ be the hypothesis that minimizes ˆerr(h).
err(ĥ) ≤ ˆerr(ĥ) + ε, by rewriting the above
≤ ˆerr(h) + ε for any h, including the best one
≤ err(h) + 2ε by substituting from the original equation
So the true error of ĥ, the most consistent hypothesis, is within 2ε of the error of the

best h in the entire class, provided we can prove uniform convergence.
To prove uniform convergence results, we will need a powerful tool, called Chernoff

bounds.
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6 Chernoff Bounds, Part 1

For some set of random variables Xi · · ·Xm, independently identically distributed, where
Xi ∈ [0, 1], let

p =E(Xi)
p̂ = 1

m

∑
Xi

which we will prove converges on p quickly.
In the setting above, Xi = {1 if h(xi) 6= yi, 0 else}, p = err(h) and p̂ = ˆerr(()h).
Hoeffding’s Inequality states that:
Pr(p̂ ≥ p+ ε) ≤ e−2ε2m

Pr(p̂ ≤ p− ε) ≤ e−2ε2m

So |p̂− p| ≤
√

ln 2
δ

2m with prob. ≥ 1− δ
We will prove a stronger form:
Pr(p̂ ≥ p + ε) ≤ e−RE(p+ε||p)m, where RE is the relative entropy function, described

below

7 Relative Entropy

RE = Relative Entropy also known as Kullback-Liebler (KL) divergence
RE(·||·) measures the distance between two distributions
Let’s say we’re sending a message x which is selected from a distribution defined by prob-
ability P (x).
The best way to encode x is to use lg 1

P (x) bits for x.
The entropy of P is the expected code length:

∑
P (x) lg 1

P (x)
But let’s say we ”think” the distribution of x is Q.
The cross entropy of P and Q =

∑
P (x) lg 1

Q(x) , which would be the average code length,
and is always at least the entropy of P .
The difference between the cross entropy and the entropy is

∑
P (x) lg P (x)

Q(x)
which we call RE(P ||Q)

If x can take on only the values 0 and 1 with probability p and 1− p, respectively, from P ,
and q and 1− q, respectively, from Q,
then we may use the shorthand RE(p||q) = p lg p

q + (1− p) lg 1−p
1−q .

Although we used base 2 logarithm above in the definition of relative entropy, from now,
we will use natural logarithm.
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