Rob Schapire Scribe: Joshua Tauberer Lecture #6 February 20, 2003

1 Where we were last time

With probability $\geq 1 - \delta$, $\forall h \in \mathcal{H}$, if h is consistent with a sample of size m then

$$err(h) \leq \frac{2}{m} (\lg \Pi_{\mathcal{H}}(2m) + \lg \frac{1}{\delta}).$$

We also showed that $\Pi_{\mathcal{H}}(m) \leq \Phi_d(m)$ where $d = VCdim(\mathcal{H})$.

2 Finding the order of magnitude on err(h)

We will show that

$$\Phi_d(m) = \sum_{i=0}^d \binom{m}{i} \le \left(\frac{em}{d}\right)^d$$

for $m \geq d$. We have

$$\left(\frac{d}{m}\right)^d \sum_{i=0}^d \binom{m}{i} \le \sum_{i=0}^d \left(\frac{d}{m}\right)^i \binom{m}{i},$$

since $0 < \frac{d}{m} \le 1$

$$\leq \sum_{i=0}^{m} \left(\frac{d}{m}\right)^{i} \binom{m}{i} 1^{(m-i)},$$

since we're adding m - d positive terms, and $1^{(m-i)}$ doesn't change anything. But this is the bionomial function, so

$$= \left(1 + \frac{d}{m}\right)^m.$$
$$\leq e^{\frac{d}{m}m} = e^d.$$

And from $(1+x) \le e^x$

So returning to the original equation, if h is consistent then

$$err(h) \le O\left(\frac{d\ln\frac{m}{d} + \ln\frac{1}{\delta}}{m}\right).$$

Or equivalently, $err(h) \leq \epsilon$ for

$$m = O\left(\frac{d\ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}\right).$$

3 How is *d* useful?

The VCdim of \mathcal{H} , d, gives us a bound on how many examples m we need to achieve ϵ and δ . But, \mathcal{H} is arbitrarily chosen, so it would be meaningless to use it to provide a lower bound for m. However, a lower bound for m using $VCdim(\mathcal{C})$ can be found.

4 Error for $m \leq \frac{d}{2}$

We will prove that...

 \forall algorithms A \exists concept class $c \in C$ and a distribution D such that if only $m \leq \frac{d}{2}$ examples are selected from D then

$$Pr\left(err(h) > \frac{1}{8}\right) \ge \frac{1}{8}.$$

That is, for $\epsilon < \frac{1}{8}$ and $\delta < \frac{1}{8}$, PAC learning is impossible with fewer than (or equal to) $\frac{d}{2}$ examples.

To do this, we will assume c is chosen at random by an adversary.

Proof:

Assume $s_1 \cdots s_d$ are shattened.

If $d = VCdim(\mathcal{C})$, then there exists a set of such examples that are shattered. Take \mathcal{C}' , a subset of \mathcal{C} which contains one representative concept c for each dichotomy of the shattered set such that c produces that dichotomy.

 $|\mathcal{C}'| = 2^d$

The adversary chooses some random $c \in C'$, where all members of C' are uniformly distributed. The distribution D is uniform over the shattered set.

So far, we have outlined "experiment 1," which can be summarized as:

- c chosen at random
- sample $S = \{x_1, \ldots, x_m\}$ chosen at random
- h_A computed by A using S and labels on that set
- x, a test point, is randomly chosen, and we then test if $h_A(x) \neq c(x)$

But, we claim this experiment is equivelant to "experiment 2," as follows:

- \mathcal{S} chosen at random
- labels $c(x_i)$ chosen just for those $x_i \in \mathcal{S}$
- h_A computed by A using S and labels on that set
- x, a test point, is randomly chosen and labeled (unless already labeled)
- test if $h_A(x) \neq c(x)$

The label for x might have already been chosen if $x \in S$, in which case the hypothesis (which we assume to be consistent) has zero probability of incorrectly labeling x. Otherwise, h_A has a 50/50 chance of selecting the right label.

Furthermore, x has at most a 50% chance of being in S (since $m \leq d/2$). So, computing probability over c, S, x:

$$\begin{aligned} Pr(h_A(x) \neq c(x)) &= Pr(x \in \mathcal{S} \text{ and } h_A(x) \neq c(x)) + Pr(x \notin \mathcal{S} \text{ and } h_A(x) \neq c(x)) \\ &\geq 0 + Pr(x \notin \mathcal{S}) Pr(h_A(x) \neq c(x) | x \notin \mathcal{S}) \\ &\geq 0 + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. \end{aligned}$$

So $\frac{1}{4} \leq \mathbf{E}_c(\operatorname{Pr}_{\mathcal{S},x}[h_A(x) \neq c(x)])$ therefore $\exists c \in \mathcal{C}' : Pr(h_A(x) \neq c(x)) \geq \frac{1}{4}$ so $\mathbf{E}_{\mathcal{S}}(\operatorname{Pr}_x[h_A(x) \neq c(x)]) \geq \frac{1}{4}$ $\dots \mathbf{E}_{\mathcal{S}}(err(h_A)) \geq \frac{1}{4}$ $\frac{1}{4} \leq \mathbf{E}_{\mathcal{S}}(err(h_A)) \leq Pr(err(h_A) > \frac{1}{8}) + Pr(err(h_A) \leq \frac{1}{8}) \cdot \frac{1}{8}$ $\frac{1}{4} \leq Pr(err(h_A) > \frac{1}{8}) + \frac{1}{8}$, because $Pr(err(h_A) \leq \frac{1}{8})$ is at most 1. $Pr(err(h_A) > \frac{1}{8}) \geq \frac{1}{8}$

5 Inconsistent Hypotheses

What are the cases in which we would be unable to find a consistent hypothesis?

- The true concept is not in \mathcal{H}
- The true concept is computationally hard to find
- There is no functional relationship between examples and labels

What if labels are probabilistically related to examples? For a distribution D on X which takes values 0 or 1, Replace c(x) by y, no longer a function of x. $\Pr_D[x, y] = \Pr(x)\Pr(y|x)$ Before, we assumed $\Pr(y|x)$ was either 0 or 1.

And we redefine error as $err(h) = \Pr_{(x,y)\sim D}[h(x) \neq y]$

The best h is one for which h(x) is the more probable of 0 or 1:

 $h_{opt}(x) = \{1 \text{ if } E(y|x) \ge \frac{1}{2} ; 0 \text{ else} \}$

 $h_{opt}(x)$ is "Bayes' optimal decision rule" and $err(h_{opt})$ is "Bayes' error"

Let's find an h that minimizes err(h).

We need an \mathcal{H} rich enough so that h_{opt} can be approximated. This is a possible source of error.

Idea: Minimize the number of errors on $S = \{(x_i, y_i)\}$, "empirical risk minimization".

Empirical errors $e\hat{r}r(h) = \frac{1}{m}|\{i : h(x_i) \neq y_i\}|$. We need the empirical error to be close to the true error for every $h \in \mathcal{H}$. This is called uniform convergence. If we can do this, then minimizing $e\hat{r}r(h)$ also means approximately minimizing err(h):

Suppose we can show that $\forall h \in \mathcal{H}$

$$|err(h) - e\hat{r}r(h)| \le \epsilon$$

Then let \hat{h} be the hypothesis that minimizes $e\hat{r}r(h)$.

 $err(\hat{h}) \leq e\hat{r}r(\hat{h}) + \epsilon$, by rewriting the above

 $\leq e\hat{r}r(h) + \epsilon$ for any h, including the best one

 $\leq err(h) + 2\epsilon$ by substituting from the original equation

So the true error of \hat{h} , the most consistent hypothesis, is within 2ϵ of the error of the best h in the entire class, provided we can prove uniform convergence.

To prove uniform convergence results, we will need a powerful tool, called Chernoff bounds.

6 Chernoff Bounds, Part 1

For some set of random variables $X_i \cdots X_m$, independently identically distributed, where $X_i \in [0, 1],$ let

 $p = \mathbb{E}(X_i)$ $\hat{p} = \frac{1}{m} \sum X_i$ which we will prove converges on p quickly. In the setting above, $X_i = \{1 \text{ if } h(x_i) \neq y_i, 0 \text{ else}\}, p = err(h) \text{ and } \hat{p} = e\hat{r}r((h))$. Hoeffding's Inequality states that: $Pr(\hat{p} \ge p + \epsilon) \le e^{-2\epsilon^2 m}$ $Pr(\hat{p} \le p + \epsilon) \le \epsilon$ $Pr(\hat{p} \le p - \epsilon) \le e^{-2\epsilon^2 m}$ So $|\hat{p} - p| \le \sqrt{\frac{\ln \frac{2}{\delta}}{2m}}$ with prob. $\ge 1 - \delta$ We will prove a stronger form: $Pr(\hat{p} \geq p + \epsilon) \leq e^{-RE(p+\epsilon||p)m}$, where RE is the relative entropy function, described

below

Relative Entropy 7

RE = Relative Entropy also known as Kullback-Liebler (KL) divergence

 $RE(\cdot || \cdot)$ measures the distance between two distributions

Let's say we're sending a message x which is selected from a distribution defined by probability P(x).

The best way to encode x is to use $\lg \frac{1}{P(x)}$ bits for x.

The entropy of P is the expected code length: $\sum P(x) \lg \frac{1}{P(x)}$

But let's say we "think" the distribution of x is Q.

The cross entropy of P and $Q = \sum P(x) \lg \frac{1}{Q(x)}$, which would be the average code length, and is always at least the entropy of P.

The difference between the cross entropy and the entropy is $\sum P(x) \lg \frac{P(x)}{Q(x)}$ which we call RE(P||Q)

If x can take on only the values 0 and 1 with probability p and 1-p, respectively, from P, and q and 1-q, respectively, from Q,

then we may use the shorthand $RE(p||q) = p \lg \frac{p}{q} + (1-p) \lg \frac{1-p}{1-q}$. Although we used base 2 logarithm above in the definition of relative entropy, from now, we will use natural logarithm.