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1 Theorem 3.2 (continued from lecture #4)

In general, we are trying to show that, with probability ≥ 1 − δ for all h in our hypoth-
esis space, that h being consistent implies errD(h) ≤ ε. To do this we are bounding the
probability that there exists an h such that h is consistent yet has error ≥ ε.

1.1 Review of Previous Results

We were in the middle of proving that, with probability ≥ 1− δ, ∀h ∈ H:

h consistent ⇒ errD(h) ≤ O
(

lnΠH(2m) + ln 1
δ

m

)
(1)

The following has been established (or asserted and deferred):

Pr[B] ≤ 2Pr[B′] (2)

Pr[e(h)|S, S′] ≤ 2
−mε

2 (3)

Where:

S ≡ our training sample of m random points according to D (4)
S′ ≡ our other sample of m random points according to D (5)

M(h) ≡ the number of mistakes h makes on S′ (6)

e(h) ≡ h consistent with S ∧M(h) ≥ mε

2
(7)

B ≡ ∃h ∈ H : h consistent with S ∧ errD(h) > ε (8)
B′ ≡ ∃h ∈ H : e(h) (9)

1.2 Working with Fixed S, S0

Let H′ ≡ {one representative from H for every dichotomy of S;S′}. Clearly, we have an-
other interpretation of B′:

B′ ≡ ∃h ∈ H′ : e(h) (10)

If we call the elements of H′ h1, h2, . . . , and hN , we can then use the union bound:

Pr[B′|S, S′] = Pr[∃h ∈ H′ : e(h)|S, S′] (11)
= Pr[e(h1) ∨ e(h2) ∨ . . . ∨ e(hN )|S, S′] (12)

≤
N∑
i=1

Pr[e(hi)|S, S′] (13)

≤
∣∣H′∣∣ · 2−mε2 (14)

=
∣∣ΠH(S;S′)

∣∣ · 2−mε2 (15)



1.3 Unfixing Variables in General

We now take a break from the proof to explore a method for eliminating our dependance
on a fixed S and S′. Let A be an arbitrary event, and X a random variable (it is irrelevant
whether or not X and A are independent). Well, by the definitions of probability (see the
notes from lecture #2),

Pr[A] =
∑
x

Pr[A ∧X = x] (16)

=
∑
x

Pr[X = x] · Pr[A|X = x] (17)

= EX [Pr[A|X]] (18)

1.4 Unfixing S and S0 and Completing the Proof

Now we can use this result to bound Pr[B′] with our bound for Pr[B′|S, S′]:

Pr[B′] = ES,S′
[
Pr[B′|S, S′]

]
(19)

≤ ES,S′
[∣∣ΠH(S;S′)

∣∣ · 2−mε2

]
(20)

≤ ES,S′
[
ΠH(2m) · 2

−mε
2

]
(21)

= ΠH(2m) · 2
−mε

2 (22)

Using our other previous result:

Pr[B] ≤ 2Pr[B′] (23)

≤ 2ΠH(2m) · 2
−mε

2 (24)

Finally, setting this bound ≤ δ, we find that, with probability ≥ 1− δ,∀h ∈ H,

errD(h) ≤ ε ≤
2 ·
(
lg ΠH(2m) + lg 1

δ + 1
)

m
(25)

2 The VC Dimension

The result we just derived is, of course, completely useless if we can’t bound ΠH(2m) to
some sub-exponential order, with respect to m. Sauer’s lemma will do just that, but first
we need to explore a new concept: the Vapnik-Chervonenkis Dimension.

2.1 Definitions

S is said to be shattered by H if every dichotomy of S has a representative in H (i.e.
|ΠH(S)| = 2|S|).

The VC dimension of H is defined to be the size of the largest S which is shattered by
H (i.e. V Cdim(H) = max ({|S| : S is shattered by H}))
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2.2 Example: Intervals in R

For example, let H = {intervals in R}. When S is composed of 1 or 2 samples, S is quite
obviously shattered. If follows that V Cdim(H) ≥ 2.

x1 x2

h00

h01

h10

h11

x1

h0

h1

Figure 1: Representatives of H which shatter S when S is a set of 1 or 2 points.

However, when S is composed of 3 sample points, it is not shattered (if our sample points
are x1, x2, and x3 with x1 < x2 < x3, there is no hypothesis which can label just x1 and x3
positive without also labelling x2 positive).

x1 x2

h000

h001

h010

h011

h100

h101

h110

h111

x3

???

Figure 2: When S is a set of 3 points, we cannot find a hypothesis which marks the two
outer points positive without also marking the inner point so.

To show that V Cdim(H) < 3, it is not sufficient to show that a single set of size 3 is not
shattered. We need to show that no set of size 3 is shattered. However, in this case, it is
evident that our argument applies to all sets of size 3. Thus, V Cdim(H) = 2.

Note that if no set of size d is shattered, then no larger set can be shattered either.
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2.3 Example: Rectangles R
2

Let H = {rectangles in R
2}. We will use a proof by picture to show that there is an S such

that |S| = 4 and S is shattered by H:

h0000 h0001 h0010 h0011

h0100 h0101 h0110 h0111

h1000 h1001 h1010 h1011

h1100 h1101 h1110 h1111

Figure 3: Representatives of H which shatter S when S is a set of 4 points.

Thus V Cdim(H) ≥ 4, now we need to show that V Cdim(H) < 5.

Suppose |S| ≥ 5. If you take the leftmost, rightmost, topmost, and bottommost points
of S, there is at least one other point, and it must logically be inside. As such, no rectangle
can label the leftmost, rightmost, topmost, and bottommost points of S positive without
also labeling the interior point positive.

2.4 The VC Dimension of Finite Hypothesis Spaces

Since each hypothesis corresponds to precisely one dichotomy of S, the number of di-
chotomies of S is less than or equal to |H|. Furthermore, since a shattered S requires
2|S| dichotomies,

2|V Cdim(H)| ≤ |H| (26)
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So,

|V Cdim(H)| ≤ lg |H| (27)

2.5 Sauer’s Lemma

Sauer’s Lemma states that,

Πd(m) ≤ Φd(m) (28)

Where:

d ≡ V Cdim(H) (29)

Φd(m) ≡
d∑
i=0

(
m
i

)
(30)

2.6 The Proof of Sauer’s Lemma

Note that it is a common convention that,

(
n
k

)
≡ 0 if k < 0 or k > n. In our proof, we

shall also use the following proposition, which turns out to be true even with the aforemen-
tioned convention: (

n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
(31)

The following proof will be done by induction on (m+ d):

Base Cases:

Whenever d = 0, H can’t even shatter an S of one point. Thus all h ∈ H label
all points the same way (whether it be positive or negative). Thus, all the h are

identical and |H| = 1. So regardless of m, ΠH(m) = 1 =

(
m
0

)
= Φ0(m).

On the other hand, whenever m = 0, there is only one way to label a set of 0

examples. Thus, regardless of H, ΠH(0) = 1 =

(
0
0

)
+

(
0
1

)
+ . . .+

(
0
d

)
=

Φd(0).

Induction Hypothesis:

Assume the lemma to be true for all m′ and d′ in which m′ + d′ < m+ d.

Induction Step:

Let us work on m sample points, S = {x1, x2, . . . , xm}, with a hypothesis
space H of VC dimension d, V Cdim(H) = d. For convenience, let S\m =
{x1, x2, . . . , xm−1}.

We define two new (finite) hypotheses spaces, H1 and H2, in the following
manner:
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H0 ≡ {one representative from H for each dichotomy over S} (32)
H1 ≡ {one representative from H0 for each dichotomy over S\m} (33)
H2 ≡ H0 −H1 (34)

Take, for example, some H which contains the dichotomies given by the H0
column of the table below, where m = 4. The following table illustrates the
procedure (hypotheses are identified by their dichotomies for the sake of read-
ability):

H0 H1 H2

01100 −→ 0110
01101 −→ 0110 −→ 0110
01110 −→ 0111
10100 −→ 1010
10101 −→ 1010 −→ 1010
11001 −→ 1100

So for H1 over S\m, m1 = m − 1 (because S is one smaller than S\m) and
d1 = V Cdim(H1) ≤ d (because reducing the number of hypotheses certainly
will not increase the VC dimension of a space).

Similarly, with H2 over S\m, m2 = m − 1 and d2 = V Cdim(H2) ≤ d − 1.
Let us explain d − 1: By construction, if S′ ⊆ S\m is shattered by H2, then
every dichotomy over S′ must occur both in H1 and H2 but with different la-
belings of xm. Thus, S′ ∪ {xm}, which has size |S′|+ 1, is shattered by H, and
so |S′| cannot be more than d− 1.
Using induction, ΠH1(S\m) ≤ Φd(m− 1) and ΠH2(S\m) ≤ Φd−1(m− 1).

Now, by the construction of H1 and H2, ΠH(S) = |H1| + |H2| = ΠH1(S\m) +
ΠH2(S\m). So, using our inequalities along with the convention and proposition
put forth at the beginning of this subsection,

ΠH(S) = ΠH1(S\m) + ΠH2(S\m) (35)
≤ Φd(m− 1) + Φd−1(m− 1) (36)

=
d∑
i=0

(
m− 1
i

)
+
d−1∑
i=0

(
m− 1
i

)
(37)

=
d∑
i=0

(
m− 1
i

)
+

d∑
i=0

(
m− 1
i− 1

)
(38)

=
d∑
i=0

[(
m− 1
i

)
+

(
m− 1
i− 1

)]
(39)

=
d∑
i=0

(
m
i

)
(40)

= Φd(m) (41)
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2.7 Sauer’s Lemma and Theorem 3.2

We note that:

Φd(m) =
d∑
i=0

(
m
i

)
(42)

=
d∑
i=0

m!
i! · (m− i)! (43)

=
d∑
i=0

(m− 0)(m− 1)(m− 2) . . . (m− i+ 1)
i!

(44)

= O(md) (45)

Thus, Πd(m) ≤ O(md), and we have just made Theorem 3.2 useful.
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