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1 Comment on Union Bound

In the previous lecture in which probabilities were discussed, the Union Bound property
of random variables was discussed. In its basic form, this rule in which A and B are random
variables states the following:

Pr[A ∨B] ≤ Pr[A] + Pr[B]

If A and B are disjoint then this will result in equality. The idea extends to more
variables in the logical way:

Pr[A1 ∨A2 ∨ . . .] ≤
∑
i

Pr[Ai]

2 Review of PAC Model

2.1 The PAC Model

A class C is PAC learnable by H if:
∃ algorithm A
∀ c ∈ C
∀ distributions D on X
∀ ε > 0
∀ δ > 0
A takes m = poly(1/ε, 1/δ) examples from D and produces hypothesis h ∈ H subject to

Pr[errD(h) ≤ ε] ≥ 1 - δ

2.2 Terminology Related to PAC

Definitions:
C = target class or target space
H = hypothesis class or hypothesis space
c = target concept
D = target distribution
ε = accuracy parameter
δ = confidence parameter
S = training sample

2.3 Concepts of Error

2.3.1 True or Generalization Error

errD(h) = Prx∼D[h(x) 6= c(x)], where h is fixed, x is random



2.3.2 Training Error

training error (empirical error) = 1
m |{i: c(xi) 6= h(xi)}|, where h = output hypothesis

3 Example Revisited

In the previous lecture the example of positive half lines on the Real number line was
offered as an example of a PAC learnable concept. This example operates in the domain
of the Real < numbers. Classes and hypotheses can be represented in this domain by a
single point, with all numbers to the right of that point being a positive example and all
numbers to the left of that point being a negative example. c represents the target class
and h represents a given hypothesis.

X = <

H = C = {positive half lines }

The region of the number line that exists between c and h is the region representing
the error of the hypothesis. During learning the algorithm does not know the distribution
defined by the class that its goal is to learn, and, therefore, the learned hypothesis h can
be off in one of two ways: Its representative value can either be too large (to the right of c
on the number line) or it can be too small (to the left of c on the number line). These two
bad cases will be labelled B+ and B− respectively.

B+: h is more than ε to the right of c, where ε is in terms of distribution weight.
B−: h is more than ε to the left of c, where ε is in terms of the distribution weight.

The bad case, B+, can only occur if no training examples occur in the region, denoted
R+, between c and an h that is to the right of c. Symmetrically, the bad case B−, can only
occur if no training examples occur in the region, denoted R−, between c and an h that is
to the left of c. The reason for this is that if such a training example occurred, it would
shrink the corresponding region to the region between c and that example. Because of the
setup of this problem, it follows directly that in this problem errors can only be found on
one side of the true class c.

The regions R+ and R− are defined as the region formed by starting at c on the num-
ber line and then moving right or left, respectively, until ε of the distribution is covered.
Formally that is:

Prx∼D[x ε R+] = ε

To bound the probability of the bad case B+ happening we can therefore calculate the
probability of none of the training examples occurring in R+.

Pr[B+] ≤ Pr[x1 6∈ R+ ∧ · · · ∧ xm 6∈ R+]

Because the xi’s are independent, this reduces to:

Pr[B+] ≤
m∏
i=1

Pr[xi 6∈ R+]
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Because each probability in the above product is at most (1− ε) the above formula can
be simplified to:

Pr[B+] ≤ (1− ε)m

The same bound on the probability of B− is obtained by a symmetric argument.
The probability that a given hypothesis h is ε-bad is then bounded by the following:

Pr[errD(h) > ε] ≤ Pr[B+ ∨B−]

Pr[errD(h) > ε] ≤ Pr[B+] + [B−]

Pr[errD(h) > ε] ≤ 2(1 − ε)m

then using the following useful inequality:

∀x ∈ < : 1 + x ≤ ex

this can be simplified to:

Pr[errD(h) > ε] ≤ 2e−εm

Thus, rearranging things slightly we obtain the result that

Pr[errD(h) > ε] ≤ δ

if
m ≥ 1

ε
ln(

2
δ

)

If m is at least that large then Pr[h is ε-bad] is less than δ. In practice, the data is usually
given, so considering the error-rate is often useful. If we let ε be such that 2e−εm = δ, then ε
will be an upper bound on the error rate of h, so our argument shows that, with probability
at least 1− δ,

errD(h) ≤ 1
m

ln(
2
δ

)

for any h consistent with a sample of size m.

4 Sketched Examples

To further the understanding of how the PAC learning model is applied in practice, two
other examples were sketched.

4.1 Intervals

This example was very much like the positive half-line example from above, but, instead of
merely being able to divide the number line into a negative region on the left and a positive
region on the right, classes and hypotheses in this space were represented by intervals with
examples in the interval classified as positive and those outside of the interval classified as
negative.

X = <
H = C = Intervals
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Someone noticed that if the intervals were cut in half, this problem could be viewed as
two problems very similar to the positive half-line example presented above. The argument
would always begin at the endpoint formed when the interval was divided in half and from
there an argument symmetric to the one above could be presented, with the errors at the
regions approaching the endpoints required to be less than ε

2 .

4.2 Rectangles

Extending the intervals example to two dimensions results in a problem whose classes
and hypotheses are defined by rectangles. In this example, the class in this problem is
represented by an unknown rectangle whose axes are parallel to the axes of the coordinate
system. A given hypothesis will be accurate in the areas in which its area overlaps the
area of the true class’ rectangle. The observation presented by someone in the class is that
in this case you can once again provide a symmetric argument to that proposed above for
the intervals and positive half lines, by splitting the area that defines the error into four
rectangles and requiring that each be less than ε

4 .

This example is discussed on pages 1-6 of the course textbook, An Introduction to Com-
putational Learning Theory, by Kearns and Vasirani.

5 Moving Toward A General Result

In these last examples, we had to give arguments that were peculiar to the particular
classes we were trying to learn. In this section, a more general approach is developed in
which we judge the hypothesis by how well it explains the examples that have already been
seen.

5.1 A Result for Finite Hypothesis Spaces

We assume now that the set of all hypothesesH is finite. The goal is to choose any consistent
h ∈ H and show that it is PAC compliant for a sample size of m. Let

B = {h ∈ H : errD(h) > ε}

Algorithm A outputs any hypothesis hA ∈ H consistent with the sample.

Pr[hA ∈ B] ≤ Pr[∃h ∈ B : h consistent with sample]

If we fix h ∈ B

Pr[h consistent] = Pr[h(x1) = c(x1) ∧ · · · ∧ h(xm) = c(xm)]

= Πm
i=1Pr[h(xi) = c(xi)]

< (1− ε)m

Using this we can obtain the following central result as follows:
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Pr[∃h ∈ B : h consistent] ≤ |B|(1− ε)m ≤ |H|(1− ε)m

≤ |H|e−εm

≤ δ

m ≥ 1
ε

(ln|H|+ ln
1
δ

)

err(h) ≤ 1
m

(ln|H|+ ln
1
δ

)

NOTES:

• bound only logarithmic in 1
δ

• If we were to represent the h’s in terms of bits, we would need lg|H| bits, so ln|H| is
just represented by a number of bits.

5.2 Occam’s Razor

Occam’s Razor: Simply stated, Occam’s Razor is the general principle that using a hy-
pothesis space that is more complicated than required is not as good as using a simpler
one.

The bound above gets at the idea of Occam’s Razor.
To illustrate this we revisited the Monotone Conjunction Example from the first lecture:

011010 +
101010 +
−−−−−

001010
In this case n is equal to the number of bits in the binary string:

ln|H| = n(ln2)

In the case of DNF we get:

|H| = 22n

and end up with an exponential after ln|22n |.

5.3 Intuitive Results of Occam’s Razor Analysis

This suggests that PAC-learning is possible whenever you are able to write down a hy-
pothesis in a reasonable number of bits and is only hard because of computational reasons
instead of statistical reasons or because of a lack of information.
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This model doesn’t handle infinite hypothesis spaces and one approach may be to dis-
cretize but it is unclear if this approach will always work. This applies directly to the
positive half line example from the beginning of lecture.

Intuitions:

• more data means the error goes down

• more hypotheses that you consider, the more likely you’ll choose one that seems good
but isn’t

• the more you know ahead of time about the data, the smaller you can make H

6 False Argument for Getting Rid of H Dependence

6.1 The Faulty Analysis

if hA ε− bad then:

Pr[hA consistent] = Pr[hA(x1) = c(x1) ∧ · · · ∧ hA(xm) = c(xm)]

= Πm
i=1Pr[hA(xi) = c(xi)]

≤ (1− ε)m ≤ e−εm ≤ δ

m ≥ 1
ε
ln

1
δ

6.2 Mistake

The main mistake here is that hA is now a random variable, so the reduction to a product
in step two does not follow since the events hA(xi) 6= c(xi) are no longer independent of
one another.
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