
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #1
Scribe: Rob Schapire February 4, 2003

1 What is Machine Learning?

Machine learning studies computer algorithms for learning to do stuff. We might, for
instance, be interested in learning to complete a task, or to make accurate predictions,
or to behave intelligently. The learning that is being done is always based on some sort
of observations or data, such as examples (the most common case in this course), direct
experience, or instruction. So in general, machine learning is about learning to do better in
the future based on what was experienced in the past.

The emphasis of machine learning is on automatic methods. In other words, the goal is
to devise learning algorithms that do the learning automatically without human intervention
or assistance. The machine learning paradigm can be viewed as “programming by example.”
Often we have a specific task in mind, such as spam filtering. But rather than program
the computer to solve the task directly, in machine learning, we seek methods by which the
computer will come up with its own program based on examples that we provide.

Machine learning is a core subarea of artificial intelligence. It is very unlikely that we
will be able to build any kind of intelligent system capable of any of the facilities that we
associate with intelligence, such as language or vision, without using learning to get there.
These tasks are otherwise simply too difficult to solve. Further, we would not consider a
system to be truly intelligent if it were incapable of learning since learning is at the core of
intelligence.

Although a subarea of AI, machine learning also intersects broadly with other fields,
especially statistics, but also mathematics, physics, theoretical computer science and more.

2 Examples of Machine Learning Problems

There are many examples of machine learning problems. Much of this course will focus on
classification problems in which the goal is to categorize objects into a fixed set of categories.
Here are several examples:

• optical character recognition: categorize images of handwritten characters by the
letters represented

• face detection: find faces in images (or indicate if a face is present)

• spam filtering: identify email messages as spam or non-spam

• topic spotting: categorize news articles (say) as to whether they are about politics,
sports, entertainment, etc.

• spoken language understanding: within the context of a limited domain, determine
the meaning of something uttered by a speaker to the extent that it can be classified
into one of a fixed set of categories



• medical diagnosis: diagnose a patient as a sufferer or non-sufferer of some disease

• customer segmentation: predict, for instance, which customers will respond to a par-
ticular promotion

• fraud detection: identify credit card transactions (for instance) which may be fraud-
ulent in nature

• weather prediction: predict, for instance, whether or not it will rain tomorrow

(In this last case, we most likely would actually be more interested in estimating the prob-
ability of rain tomorrow.)

Although much of what we will talk about will be about classification problems, there
are other important learning problems. In classification, we want to categorize objects into
fixed categories. In regression, on the other hand, we are trying to predict a real value. For
instance, we may wish to predict how much it will rain tomorrow. Or, we might want to
predict how much a house will sell for.

A richer learning scenario is one in which the goal is actually to behave intelligently, or
to make intelligent decisions. For instance, a robot needs to learn to navigate through its
environment without colliding with anything. To use machine learning to make money on
the stock market, we might treat investment as a classification problem (will the stock go
up or down) or a regression problem (how much will the stock go up), or, dispensing with
these intermediate goals, we might want the computer to learn directly how to decide to
make investments so as to maximize wealth.

3 Goals of Machine Learning Research

The primary goal of machine learning research is to develop general purpose algorithms of
practical value. Such algorithms should be efficient. As usual, as computer scientists, we
care about time and space efficiency. But in the context of learning, we also care a great
deal about another precious resource, namely, the amount of data that is required by the
learning algorithm.

Learning algorithms should also be as general purpose as possible. We are looking for
algorithms that can be easily applied to a broad class of learning problems, such as those
listed above.

Of course, we want the result of learning to be a prediction rule that is as accurate as
possible in the predictions that it makes.

Occasionally, we may also be interested in the interpretability of the prediction rules
produced by learning. In other words, in some contexts (such as medical diagnosis), we want
the computer to find prediction rules that are easily understandable by human experts.

As mentioned above, machine learning can be thought of as “programming by example.”
What is the advantage of machine learning over direct programming? First, the results of
using machine learning are often more accurate than what can be created through direct
programming. The reason is that machine learning algorithms are data driven, and are able
to examine large amounts of data. On the other hand, a human expert is likely to be guided
by imprecise impressions or perhaps an examination of only a relatively small number of
examples.

Also, humans often have trouble expressing what they know, but have no difficulty
labeling items. For instance, it is easy for all of us to label images of letters by the character

2



classification
predicted

rule
prediction

algorithm
machine learning

example
new

examples
training
labeled

Figure 1: Diagram of a typical learning problem.

represented, but we would have a great deal of trouble explaining how we do it in precise
terms.

Another reason to study machine learning is the hope that it will provide insights into
the general phenomenon of learning. Some of the questions that might be answered include:

• What are the intrinsic properties of a given learning problem that make it hard or
easy to solve?

• How much do you need to know ahead of time about what is being learned in order
to be able to learn it effectively?

• Why are “simpler” hypotheses better?

This course is focused on theoretical aspects of machine learning. Theoretical machine
learning has much the same goals. We still are interested in designing machine learning
algorithms, but we hope to analyze them mathematically to understand their efficiency. It
is hoped that theoretical study will provide insights and intuitions, if not concrete algo-
rithms, that will be helpful in designing practical algorithms. Through theory, we hope
to understand the intrinsic difficulty of a given learning problem. And we also attempt to
explain phenomena observed in actual experiments with learning algorithms.

4 A Typical Learning Problem

In a typical learning problem, such as spam filtering, our goal is to create a spam filter.
But rather than attacking the problem directly, we start by gathering a large collection of
examples of email messages which are labeled as spam or non-spam. We then feed these
examples to a general purpose learning algorithm which in turn produces a prediction rule
capable (we hope) of classifying new email messages. The entire process is depicted in
Figure 1.

To get a feeling for learning, we looked first at the learning problem shown in Figure 2.
Here, examples are labeled positive (“+”) or negative (“−”). In this case, the pattern is
that all examples between 67 and 173 are positive, while those below 47 or above 197 are
negative. Thus, test examples 111 and 23 are positive and negative, respectively, but we
can only guess the correct label of 55.

3



228 −
67 +

138 +
209 −
156 +
46 −

197 −
6 −

173 +
111 ?
23 ?
55 ?

Figure 2: A tiny learning problem. The line separates training and test examples.

197 + 11000101
128 − 10000000
30 − 00011110
72 − 01001000

133 − 10000101
109 + 01101101
213 + 11010101
84 + 01010100
3 − 00000011

200 ? 11001000
68 ? 01000100

Figure 3: A second toy learning problem. Examples were intially presented in decimal as
in the left column, but later rewritten in binary as in the right column.

The second example is shown in Figure 3. Initially, examples were presented as integers,
and the problem seemed difficult. Although someone suggested that the hidden pattern
might be the union of two intervals, this turns out to give wrong predictions on the test
examples. When the integers were written out in binary, the pattern became more evident,
namely, that an example is positive if and only if the second and sixth bits (counting from
the left) are 1.

Some things to notice about this experiment:

• Trying to find a rule that is consistent with the data seems natural and intuitive.
Moreover, intuitively, the best rule should be the one that is simplest, although sim-
plicity is not always so easy to define.

• It is very helpful to know something about what is being learned. Changing repre-
sentations in the second problem gave a strong clue about what kind of rule to look
for.

All of these issues will come up again very soon.

4



5 Learning Models

To study machine learning mathematically, we need to formally define the learning problem.
This precise definition is called a learning model. A learning model should be rich enough
to capture important aspects of real learning problems, but simple enough to study the
problem mathematically. As with any mathematical model, simplifying assumptions are
unavoidable.

A learning model should answer several questions:

• What is being learned?

• How is the data being generated? In other words, where does it come from?

• How is the data presented to the learner? For instance, does the learner see all the
data at once, or only one example at a time?

• What is the goal of learning in this model?

6 Definitions

Before getting to our first learning model, we will need some definitions. An example
(sometimes also called an instance) is the object that is being classified. For instance, in
spam filtering, the email messages are the examples.

Usually, an example is described by a set of attributes, also known as features or variables.
For instance, in medical diagnosis, a patient might be described by attributes such as gender,
age, weight, blood pressure, body temperature, etc.

The label is the category that we are trying to predict. For instance, in spam filtering,
the possible labels are “spam” and “not spam”. During training, the learning algorithm is
supplied with labeled examples, while during testing, only unlabeled examples are provided.

To make things as simple as possible, we will often assume that only two labels are
possible that we might as well call 0 and 1. We also will make the simplifying assumption
that there is a mapping from examples to labels. This mapping is called a concept. Thus,
a concept is a function of the form c : X → {0, 1} where X is the space of all possible
examples called the domain or instance space. A collection of concepts is called a concept
class. We will often assume that the examples have been labeled by an unknown concept
from a known concept class.

7 The Consistency Model

Our first learning model, called the consistency model, is rather unrealistic, but it is intu-
itive, and it is a good place to start. Many of the ideas that come up will also be of value
later. The model captures the intuitive idea that the prediction rule that is derived from a
set of examples should be consistent with their observed labelings.

We say that a concept class C is learnable in the consistency model if there is an algorithm
A which, when given any set of labeled examples (x1, y1), . . . , (xm, ym), where xi ∈ X and
yi ∈ {0, 1}, finds a concept c ∈ C that is consistent with the examples (so that c(xi) = yi
for all i), or says (correctly) that there is no such concept.

Some examples:

5



Let X = {0, 1}n, and let C be the set of all monotone conjunctions on n boolean
variables, such as x2 ∧ x5 ∧ x7. (Monotone means that none of the variables are negated.)
To learn this class in the consistency model, we take the bitwise AND of all of the positive
examples, then form a conjunction of all variables corresponding to the bits that are still
on. For instance, for the data in Figure 3, the bitwise AND of the positive examples gives
01000100, i.e., the conjunction x2 ∧ x6. This procedure clearly gives a conjunction c that
is consistent with the positive examples. Moreover, by construction, any other conjunction
c′ that is consistent with the positive examples must contain a subset of the variables in c,
so if c′ is consistent with all the examples (both positive and negative), then c must be as
well.

For monotone disjunctions, we can make a symmetric argument. Or we can use DeMor-
gan’s Law x1 ∨ x2 = x1 ∧ x2 to reduce to the previous case. That is, we replace all of the
variables with their negation, and reverse all of the labels, then apply the algorithm above
for monotone conjunctions.

For non-monotone conjunctions, we can reduce to the monotone case by adding n new
variables zi where zi is always set equal to xi.

A formula is in disjunctive normal form (DNF) if it is written as a disjunction of con-
junctions, such as (x1 ∧ x3) ∨ (x2 ∧ x7 ∧ x9) ∨ (x2 ∧ x3 ∧ x4) ∨ x1 The conjunctions (such
as x1 ∧ x3 in this case) are called terms. A formula is in conjunctive normal form (CNF)
if it is written as a conjunction of disjunctions. The disjunctions are clauses. A k-DNF
formula is a DNF formula with any number of terms but in which each term includes at
most k literals (where a literal is either a variable or its negation). The example above
is a 3-DNF formula. Likewise, a k-CNF formula is one in which each clause includes at
most k literals. A k-term DNF is a DNF formula containing at most k terms (each one of
which may include any number of literals). The example above is a 4-term DNF. Likewise,
a k-clause CNF consists of at most k clauses.

For k a small constant, we can use a similar trick of adding new variables to learn k-CNF
formulas in the consistency model. In particular, for every possible k-tuple of literals, we
add one new variable whose value is always set equal to the OR of the k literals. This adds
only O(nk) new variables.

Learning k-term DNF, on the other hand, turns out to be NP-complete for any constant
k ≥ 2. On the other hand, by “multiplying out” the formula, one can show that any k-term
DNF can be rewritten as a k-CNF, which we just argued can be efficiently learned in the
consistency model. So this is an odd situation in which one class, k-term DNF, cannot be
learned in the model even though the superset class, k-CNF, can be.

We can also think about learning more geometrical classes in the consistency model.
Let X = R

2, and consider the class of axis-aligned rectangles in the plane.1 Here, we can
easily find a consistent rectangle by choosing the one defined by the largest and smallest
positive example in each dimension. This will give the smallest rectangle containing all
of the positive examples, and since it is the smallest one, it will be consistent with all of
the negative examples unless there is no consistent rectangle. This argument generalizes
immediately to hyper-rectangles in n dimensions.

Let X = R
n, and let C be the class of linear threshold functions, i.e., functions that

classify points as positive if and only if they lie above some defining hyperplane. That is,
these functions are defined by a vector w and scalar b. Examples x are positive if and only

1We will often identify concepts with the set of all examples for which the concept is 1. Thus, when we
refer to a rectangle as a concept, we really mean the concept (boolean function) that is 1 on points inside
the rectangle and 0 on all others.

6



if w ·x ≥ b. Given labeled examples (xi, yi), the consistency problem is to find w and b such
that w · xi ≥ b if yi = 1 and w · xi < b otherwise. This is a linear programming problem
that can be solved efficiently. However, this approach is virtually never followed in practice.
We will return to this class several times in this course, and will learn about a number of
techniques that are better from a learning perspective.

Finally, returning to the boolean domain X = {0, 1}n, suppose that C is the class of all
DNF formulas. Finding a DNF formula consistent with a set of examples is trivial since we
can define a term that exactly matches each positive example and take their disjunction. It
should seem bothersome that “learning” such a rich class should be so easy. It is hard to
believe that any kind of learning is happening. Indeed, this DNF will be positive on all of
the positive examples in the training set, but negative on all other examples in the entire
space, so in general, it will give very poor predictions on points not observed during train
(in fact, it will predict that they are all negative).

So we see that the consistency model has some serious defects. Most importantly, there
is no direct connection to learning. We only have an intuitive feeling that finding a rule
that matches the training data should be a good way to learn. The model does not provide
any direct link to any notion of learning or generalization.

7


