

Computer Animation

What is animation?
 Make objects change over time according to scripted actions

 What is simulation?
 Predict how objects change over time according to physical laws

Principles of Traditional Animation Squash and stretch

- Slow In and out
- Anticipation
- Exaggeration
- · Follow through and overlapping action
- Timing
- Staging
- Straight ahead action and pose-to-pose action
- Arcs
- · Secondary action
- Appeal

Disney

Principles of Traditional Animation Squash and stretch Slow In and out Anticipation

- Exaggeration
- · Follow through and overlapping action
- Timing
- Staging
- · Straight ahead action and pose-to-pose action
- Arcs
- Secondary action
- Appeal

Keyframe Animation Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline interpolation - maybe good enough what not follow physical laws Image: Comparison of the spline

Articulated Figures

• Character poses described by set of rigid bodies connected by "joints"

Kinematics and Dynamics

- Kinematics
 - Considers only motion
 - Determined by positions, velocities, accelerations

- Dynamics
 - Considers underlying forces
 - Compute motion from initial conditions and physics

Inverse Kinematics

- · Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

Dynamics

· Simulation of physics insures realism of motion

Spacetime Constraints Animator specifies constraints: What the character's physical structure is e.g., articulated figure What the character has to do e.g., jump from here to there within time t What other physical structures are present e.g., floor to push off and land How the motion should be performed e.g., minimize energy

Cloth (Baraff & Witkin `98)

Summary

• Principles of animation

- Keyframe animation
- Articulated figures
- Kinematics
 - Forward kinematics
 - $\circ~$ Inverse kinematics
- Dynamics
 - Space-time constraints
 - Also other physical simulations