COS 423

Solutions to Problem Set No.3

Spring 2003

1. Bk=
[image: image1.wmf]
=

=

=

(

=

[image: image2.wmf]

Let k be maximum such that 2k+1≤n. Build a Bk tree by repeated pairwise unites. Repeat 2k times: unite the existing big tree with a singleton, making the singleton the root; do a find on the deepest element in the tree. Each find takes
[image: image3.wmf]()

k

W

time, and the total time is
[image: image4.wmf](2)(log).

k

knn

W=W

2. With naive union, ranks are undefined. The analysis requires that ranks strictly increase along any find path. The following definition of ranks after a union gives strictly increasing ranks: when uniting trees with roots x and y, making x the new parent of y, set the new rank of x to be the maximum of its old rank and one plus the rank of y. Unfortunately, with this definition, the rank of x can go up by more than 1; and indeed the sum of all ranks can be quadratic, not linear, which invalidates another part of the analysis.

3. Define the potential of a node x to be
[image: image5.wmf]2

log()

dx

, where
[image: image6.wmf]()

dx

is the number of descendants of x. Define the total potential to be the sum of the node potentials. Initially the potential is zero, since all initial trees are singletons. The potential is always non-negative, so the sum of amortized times is an upper bound on the sum of actual times. A unite takes
[image: image7.wmf](1)

O

time and increases the potential by at most
[image: image8.wmf]2

log

n

 (only the new root has an increase in potential), so the amortized time of a unite is
[image: image9.wmf](log)

On

. Consider a find that compresses a path of k nodes. Let us take k to be the time of the find. Every node on the find path except the first and last loses potential; the potential of every other node stays the same. Call a node x on the find path with child
[image: image10.wmf]()

cx

 good if
[image: image11.wmf]()2(())

dxdcx

³

 before the find and bad otherwise. There are at most
[image: image12.wmf]2

log

n

 good nodes on the find path. (why?) Each bad node on the find path (except the root) has its potential drop by at least 1 due to the compression. (why?) Thus the amortized cost of the find is at most
[image: image13.wmf]22

(2log)log2.

kknn

---=+

Bk-1

Bk-1

B0

Bk-1

Bk-2

Bk-1

Bk-2

Find

Bk

Bk-2

Bk-1

Bk-2

Bk-1

Bk

_1111319147.unknown

_1111319982.unknown

_1111386321.unknown

_1111575131.unknown

_1111575139.unknown

_1111575108.unknown

_1111320013.unknown

_1111319527.unknown

_1111319361.unknown

_1111318576.unknown

_1111319046.unknown

_1111319146.unknown

_1111318575.unknown

