COS 423


Problem Set No. 5-revised


Due Wed. April 23, 2003

Spring 2003





Collaboration Allowed 

1. Let G be a connected, undirected graph with real-valued edge weights, let r be a distinguished vertex of G, and let k be an integer.  A k-tree of G is a spanning tree of G in which vertex r has degree k. Devise an efficient algorithm to compute a minimum-total-weight k-tree of G if one exists. Prove the correctness of your algorithm, and analyze its running time.

Hint: Prove that (if a minimum k-tree exists) there is a minimum k-tree all of whose edges are either incident to r or in a minimum spanning tree of 
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. Thus prove that by means of a single minimum spanning tree computation, the k-tree problem can be reduced to a k-tree problem on a subgraph G′ of 
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edges, consisting of the union of a tree and the set of edges incident to r. Prove that a minimum k-tree can be obtained from a minimum 
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tree by doing a single edge swap (adding one edge and deleting one other edge). Using this result, show how to find a minimum k-tree in G′ fast. (A minimally acceptable solution is 
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time; there is a way to do it in 
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time.)

2. Let G be a directed graph with real-valued edge weights and two distinguished vertices, s and t. Describe an efficient algorithm to find a path from s to t whose minimum edge weight is maximum. Prove the correctness of your algorithm and analyze its running time. A minimally acceptable solution is 
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time; there is a way to do it in 
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time. To obtain the latter, think about using median-finding in combination with an incremental search process.)

3. (See CLRS Problem 24-5, page 617.) Let G=(V,E) be a strongly connected directed graph with real-valued edge weight
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for each edge e. A minimum mean-weight cycle is a cycle that minimizes the sum of edge weights divided by the number of edges. Prove the correctness of the following algorithm to compute a minimum mean-weight cycle, and show how to implement it to run in 
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Step 1.
Let s be any vertex of G. For each vertex 
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and integer k, 0≤k≤n, compute dk(s,v), the length of a shortest path of exactly k edges from s to v.

Step 2.
Compute 
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Step 3.
Replace each edge weight 
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by 
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. Compute shortest distance from s to all vertices with respect to the modified edge weights. Denote these distances by 
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Step 4.
Replace each edge weight 
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Find a cycle in the reweighted graph all of whose edges have exactly zero weight.

Note: 
Among other things, you need to prove that there are no negative-weight cycles with respect to 
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so that shortest paths exist in Step 3, and that some cycle with zero weight edges exists in Step 4.

4. (See CLRS exercise 26.2-8, page 664.) (a) Show that a maximum flow in a network 
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can always be found by a sequence of at most m augmenting paths. 

Note: for purposes of this problem, an augmenting path is a path from s to t in the residual network, but the flow along it need not be maximum. (The augmentation need not saturate an edge.)

5. Let G be a bipartite graph with maximum vertex degree d. Show that the edges of G can be colored with d colors so that no two edges having a common end vertex are the same color.
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