Computer Graphics

CS 217

Overview

• Introduction
 ◦ What is computer graphics?

• Applications
 ◦ What is it good for?

• Systems & software
 ◦ How does it related to this course?
Introduction

• What is computer graphics?

Luxo, Jr.

What issues must be addressed by a computer graphics system?
Overview

• Topics in computer graphics
 ○ Imaging = representing 2D images
 ○ Modeling = representing 3D objects
 ○ Rendering = constructing 2D images from 3D models
 ○ Animation = simulating changes over time
What is an Image?

- An image is a 2D rectilinear array of pixels

Continuous image

Digital image

A pixel is a sample, not a little square!
What is an Image?

- An image is a 2D rectilinear array of pixels

Continuous image Digital image

A pixel is a sample, not a little square!

Representing Digital Images

typedef struct pixel {
 float red, green, blue;
} Pixel;

typedef struct image {
 int width, height;
 Pixel *pixels;
} Image;

Digital image
Image Abstract Data Type

```c
/* Create and delete image */
Image *Image_new(int width, int height);
void Image_free(Image *image);

/* Get image properties */
int Image_getWidth(Image *image);
int Image_getHeight(Image *image);

/* Pixel manipulation */
Pixel *Image_getPixel(Image *image, int i, int j);
void Image_setPixel(Image *image, int i, int j, Pixel *pixel);

/* Image manipulation */
void Image_brighten(Image *image, float factor);
void Image_blur(Image *image, float factor);
void Image_swirl(Image *image, float angle);
void Image_composite(Image *image, Image *image2, Image *mask);
void Image_morph(Image *image1, Image *image2, Array *features);

etc.
```

Processing Digital Images

- Examples
 - Filtering
 - Warping
 - Composition
 - Morphing

- Image Warping
- Image Composition
 (Michael Bostock, CS 426, Fall 99)
- Image Morphing
 (All students in CS 426, Fall 99)
Processing Digital Images

• Example from the movies …

The Matrix Reloaded
(Warner)

Overview

• Topics in computer graphics
 ◦ Imaging = representing 2D images
 ◦ Modeling = representing 3D objects
 ◦ Rendering = constructing 2D images from 3D models
 ◦ Animation = simulating changes over time
Geometric Modeling

How can this object be represented in a computer?

Example: 3D Polygons

typedef struct point {
 float x, y, z;
} Point;

typedef struct polygon {
 int npoints;
 Point *points;
} Polygon;

typedef struct object {
 int npolygons;
 Polygon *polygons;
} Object;

typedef struct scene {
 int nobjects;
 Object *objects;
} Scene;
typedef struct point {
 float x, y, z;
} Point;

typedef struct polygon {
 int npoints;
 Point *points;
} Polygon;

typedef struct object {
 int npolygons;
 Polygon *polygons;
} Object;

typedef struct scene {
 int nobjects;
 Object *objects;
} Scene;
Example: 3D Polygons

typedef struct point {
 float x, y, z;
} Point;

typedef struct polygon {
 int npoints;
 Point *points;
} Polygon;

typedef struct object {
 int npolygons;
 Polygon *polygons;
} Object;

typedef struct scene {
 int nobjects;
 Object *objects;
} Scene;
Polygonal Meshes

• Can make complex objects

Stanford Graphics Laboratory
Polygonal Meshes

- Can make very complex objects

More Geometric Representations

- Subdivision Surfaces
- Spline Surfaces
- Solids
Tin Toy

Overview

- Topics in computer graphics
 - Imaging = representing 2D images
 - Modeling = representing 3D objects
 - Rendering = constructing 2D images from 3D models
 - Animation = simulating changes over time
What issues must be addressed by a computer graphics rendering algorithm?

Rendering Methods

- Mathematical models for:
 - Light sources
 - Surface reflectances
 - Camera response

- Algorithms to find:
 - Visible surfaces
 - Indirect light paths
 - etc.
Rendering Methods

- Mathematical models for:
 - Light sources
 - Surface reflectances
 - Camera response

- Algorithms to find:
 - Visible surfaces
 - Indirect light paths
 - etc.

Simple Rendering Algorithm

- For each pixel …
 - Construct ray from eye position through pixel
 - Find front-most surface intersected by ray
 - Compute color of sample based on models of light sources and surface reflectances
Simple Rendering Algorithm

• For each pixel ...
 ◦ Construct ray from eye position through pixel
 ◦ Find front-most surface intersected by ray
 ◦ Compute color of sample based on models of light sources and surface reflectances
Simple Rendering Algorithm

```c
Image *RayCast(Camera *camera, Lights *lights, Scene *scene, int width, int height)
{
    Image *image = Image_new(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Point intersection = FindIntersection(ray, scene);
            Color = ComputeReflectance(lights, intersection, scene);
            SetPixel(image, i, j);
        }
    }
    return image;
}
```

Better Rendering Algorithms

- Consider indirect light paths
 - Inter-object reflections
 - Caustics
 - etc.

Trike
(James Percy, CS 426, Fall99)

Rendering Caustics
(Michael Bostock, James Percy & Casey McTaggert, CS 426, Fall99)
Overview

• Topics in computer graphics
 ○ Imaging = representing 2D images
 ○ Modeling = representing 3D objects
 ○ Rendering = constructing 2D images from 3D models
 ○ Animation = simulating changes over time

Diagram:
- Camera
- Light
- View Plane
- 3D Model
- 2D Image
Animation

- Describing how models move
 - Kinematics
 - Dynamics
 - Planning
 - Learning

Animation

- Difficult combination of:
 - Desired behavior
 - Simulating physics
 - Artistic control

Chen, Guan, Liu, and Qie
CS426, Fall98

Hodgins et al.

Baraff & Witkin
Monsters, Inc.

Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- Education
- E-commerce
- Computer art
Computer Graphics Applications

- **Entertainment**
 - Computer-aided design
 - Scientific visualization
 - Training
 - Education
 - E-commerce
 - Computer art

- **Computer-aided design**
 - Scientific visualization
 - Training
 - Education
 - E-commerce
 - Computer art

Examples:
- **Jurassic Park**
 (Industrial, Light, & Magic)
- **Quake**
 (Id Software)
- **Geri’s Game**
 (Pixar Animation Studios)
- **Los Angeles Airport**
 (Bill Jepson, UCLA)
- **Gear Shaft Design**
 (Intergraph Corporation)
- **Boeing 777 Airplane**
 (Boeing Corporation)
Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- Education
- E-commerce
- Computer art

Airflow Inside a Thunderstorm
(Rob Wilhelmson, University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)

Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- Education
- E-commerce
- Computer art

Driving Simulation
(Evans & Sutherland)

Desk Assembly
(Silicon Graphics, Inc.)

Flight Simulation
(NASA)
Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- **Education**
 - E-commerce
 - Computer art

![Human Skeleton](sgi.png)
Human Skeleton (SGI)

![Forum of Trajan](forum.png)
Forum of Trajan (Bill Jeppson, UCLA)

Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- **Education**
- **E-commerce**
- Computer art

![Interactive Kitchen Planner](matsushita.png)
Interactive Kitchen Planner (Matsushita)

![Virtual Phone Store](tele.png)
Virtual Phone Store (Lucent Technologies)
Computer Graphics Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- Education
- E-commerce

► Computer art

Blair Arch
(Marissa Range & Adam Finkelstein, Princeton University)

How Is This Related to the Course?

- Computer graphics uses …
 - Parsers (lexical and syntactic analysis)
 - Abstract data types
 - Memory management
 - Multiple processes
 - Networking
How Is This Related to the Course?

- Computer graphics uses …
 - Parsers (lexical and syntactic analysis)
 - Abstract data types
 - Memory management
 - Multiple processes
 - Networking
 - Assembly code
 (maybe, a little)

Alone in the Dark 4
(Darkworks/Infogrames)