“Every mathematical problem can be solved. We are convinced of that. After all, one of the things that attracts us most when we apply ourselves to a mathematical problem is precisely that within us we always hear the call: here is the problem, search for the solution, you can find it by pure thought, for in mathematics there is no ignorabimus.”

A Puzzle: Post’s Correspondence Problem

Given a set of cards:
- N card types (can use as many of each type as needed).
- Each card has a top string and bottom string.

Example 1:

<table>
<thead>
<tr>
<th>BAB</th>
<th>A</th>
<th>AB</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ABA</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Puzzle:
- Is it possible to arrange cards so that top and bottom strings are the same?

Example 2:

<table>
<thead>
<tr>
<th>A</th>
<th>ABA</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAB</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Puzzle:
- Is it possible to arrange cards so that top and bottom strings are the same?

PCP Puzzle Contest

Contest:
- Additional restriction: string must start with 'S'.
- Be the first to solve this puzzle!
 - extra credit for first correct solution
- Check solution from Lectures web page.

Hopeless challenge for the bored:
- Write a program that reads a set of Post cards, and determines whether or not there is a solution.
Background

Abstract models of computation help us learn:
- Nature of machines needed to solve problems.
- Relationship between problems and machines.
- Intrinsic difficulty of problems.

Deep questions.
- Are there problems that no machine can solve?
- Are there limits on the power of machines that we can imagine?

Pioneering work in the 1930’s. (Princeton == center of universe)
- Gödel, Turing, Church, von Neumann. (inspiration from Hilbert)
- Automata, languages, computability, complexity, logic, rigorous definition of “algorithm.”

A Notational Simplification

Decision problems.
- Rigorously express computational problems as yes/no queries.
- Captures essence of computation.
- Cleaner to understand and study.

Example. Is 977 a prime number?

This lecture:
- What is an "algorithm"?
- Is it possible, in principle, to write a program to solve any problem?

Church-Turing Thesis

Church-Turing Thesis (1936).
Q. Which decision problems can a Turing machine solve?
A. Any decision problem that any real computer can solve.

"Thesis" and not a mathematical theorem.
- Can’t be proved because we can’t precisely define solving a problem (computability).

Implications:
- Provides rigorous definition for ALGORITHM.
 - describing an algorithm = building a TM
- Universality among computational models.
 - if a problem can be solved by some TM, then it can be solved on EVERY general-purpose computer
 - if a problem can’t be solved by any TM, then it can’t be solved on ANY physical computer

Evidence Supporting Church-Turing Thesis

Imagine TM with more power.
- Composition of TM’s, multiple heads, more tapes, 2D tapes.
- Nondeteminism.

Different ways to define "computable."
- TM, RAM machine, circuits, grammar, λ-calculus, μ-recursive functions, cellular automata, Conway’s game of life.

Conventional computers.
- ENIAC, TOY, Pentium 4, . . .

New speculative models of computation.
- DNA computers, quantum computers, soliton computers.
TM: As Powerful As TOY Machine

Power = ability to solve more problems.

Turing machines are at least as powerful as a TOY machine:
- Encode state of memory, registers, PC, onto Turing tape.
- Design TM states for each instruction.
- Can do because all instructions:
 - examine current state
 - make well-defined changes depending on current state

Works for all real machines.
- Can simulate at machine level, gate level,

TM: Power Equal to TOY and C

Turing machines are equivalent in power to C programs.
- C program ⇒ TOY program (Lecture A2)
- TOY program ⇒ TM (previous slide)
- TM ⇒ C program (TM simulator, Lecture T1)

Works for all real programming languages.

Assumption: TOY machine and C program have unbounded amount of memory. Otherwise TM is strictly more powerful.

Undecidable Problems

Hilbert’s 10th Problem.
- “Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root.”

Example 1: $f(x, y, z) = 6x^3yz^2 + 3xy^2 - x^3 - 10$

Example 2: $f(x, y) = x^2 + y^2 - 3$

Problem resolved in very surprising way. (Matijasevic, 1970)

- How can we assert such a mind-boggling statement?
Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Program Equivalence.
Optimal Data Compression.
Virus Identification.

Impossible to write C program to solve any of these problem!

Busy Beaver

Busy beaver.
- N state Turing machine over \{0, 1\} alphabet.
- Initial tape = all 0’s.
- Leaves as many 1’s on tape as possible, while still halting.

Known Turing machines.

<table>
<thead>
<tr>
<th>N</th>
<th>Ones</th>
<th>Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4098</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Halting Problem

Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug

- Program 1.
  ```c
  #include <stdio.h>

  int main() {
      int x = 8;
      while (x > 1) {
          if (x > 2)
              x = x - 2;
          else
              x = x + 2;
      }
      return 0;
  }
  ```
  ```
  odd.c
  ```

Undecidable Problems

Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug

- Program 2.
  ```c
  #include <stdio.h>

  int main() {
      int x = 8;
      while (x > 1) {
          if (x % 2 == 0)
              x = x / 2;
          else
              x = 3 * x + 1;
      }
      return 0;
  }
  ```
  ```
  hailstone.c
  ```

Warmup: Grelling’s Paradox

Grelling’s paradox:

- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

- How do we categorize heterological?
 - suppose it’s heterological

Proof intuition.

- Self-reference.
- Grelling’s paradox.

Theorem (Alan Turing, 1937). Halting problem is undecidable.

- Most famous of all undecidable problems.
- No TM can solve the halting problem.
- Not possible to write a C program either.

<table>
<thead>
<tr>
<th>autological adjectives</th>
<th>heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
<tr>
<td><code>heterological</code></td>
<td><code>heterological</code></td>
</tr>
</tbody>
</table>
Warmup: Grelling’s Paradox

Grelling’s paradox:
- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

<table>
<thead>
<tr>
<th>autological adjectives</th>
<th>heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
</tbody>
</table>

- How do we categorize heterological?
 - not possible
 - we can’t have words with these meanings!
 (or we can’t partition adjectives into these two groups)

Halting Problem Proof

Assume the existence of \(Halt(f, x) \) that takes as input: any function \(f \) and its input \(x \), and outputs \(yes \) if \(f(x) \) halts, and \(no \) otherwise.
- We prove \(Halt(f, x) \) can’t exist by contradiction.
- Note: \(Halt(f, x) \) always returns \(yes \) or \(no \).
 - infinite loop not possible

```c
#define YES 1
#define NO 0

int Halt(char f[], char x[]) {
    if ( ??? )
        return YES;
    else
        return NO;
}
```

Call \(\text{Strange()} \) with ITSELF as input.
- if \(\text{Strange(Strange)} \) does not halt then \(\text{Strange(Strange)} \) halts
- if \(\text{Strange(Strange)} \) halts then \(\text{Strange(Strange)} \) does not halt

Either way, a contradiction. Hence \(Halt(f, x) \) cannot exist.
Consequences

Halting problem is not "artificial."
- Undecidable problem reduced to simplest form to simplify proof.
- Closely related to practical problems.
 - Hilbert’s 10th problem, Post’s correspondence problem,
 program equivalence, optimal data compression

Practical implications.
- Work with limitations.
- Recognize and avoid unsolvable problems.
- Learn from structure.
 - same theory tells us about efficiency of algorithms (stay tuned)

Philosophical Implications

Caveat: ask a philosopher.

We "assume" that any step-by-step reasoning will solve any technical
or scientific problem.
- "Not quite" says the halting problem.
- Anything that is like (could be) a computer has the same flaw:

A More Powerful Computer???

Post machine (PCP-286).
- Input: set of Post cards.
- Output.
 - YES light if PCP is solvable for these cards
 - NO light if PCP has no solution

PCP is strictly more powerful than:
- Turing machine.
- TOY machine.
- C programming language.
- iMac.
- Any conceivable super-computer.

Why doesn’t it violate Church-Turing thesis?