Confidentiality, Privacy and Security

Privacy

• The desire of a person to control the disclosure of personal health information

Confidentiality

• The ability of a person to control release of personal health information to a care provider or information custodian under an agreement that limits further release of that information

Security

• Protection of privacy and confidentiality through policies, procedures and safeguards.

Why do they matter?

- Ethically, privacy and confidentiality are considered to be rights (in our culture)
- Information revealed may result in harm to interests of the individual
- The provision of those rights tends to ensure that the information is accurate and complete
- Accurate and complete information from individuals benefits society in limiting spread of diseases to society (i.e. HIV)

Why do they matter?

• The preservation of confidentiality assists research which in turn assists patients

Users of health information

- Patient
 - Historical information for current and future care
 - Insurance claims
- MD's
 - Patient's medical needs
 - Documentation
 - Interface with other providers
 - Billing

- Health insurance company
 - Claims processing
 - Approve consultation requests
- Laboratory
 - Process specimens
 - Results reporting
 - Billing

- Pharmacy
 - Fill prescription
 - Billing
- Hospital
 - Care provision
 - Record of services
 - Billing
 - Vital statistics
 - Regulatory agencies

- State bureau
 - Birth statistics
 - Epidemiology
- Accrediting organization
 - Hospital review
- Employer
 - Request claims data
 - Review claims for \$ reduction
 - Benefits package adjustments

- Life insurance companies
 - Process applications
 - Process claims
 - Risk assessment
- Medical information bureau
 - Fraud reduction for life insurance companies
- Managed care company
 - Process claims
 - Evaluate MD's

- Lawyers
 - Adherence to standard of practice
 - Malpractice claims
- Researcher
 - Evaluate research program

Security

- Availability
- Accountability
- Perimeter definition
- Rule-limited access
- Comprehensibility and control

Privacy solutions

- Forbid the collection of data that might be misused
- Allow the collection of health information within a structure, but with rules and penalties for violation pertaining to collecting *organizations*
- Generate policies to which *individual* information handlers must adhere

Security controls

• Management controls

Program management/risk management

- Operational controls
 - Operated by people
- Technical controls

– Operated by the computer system

Management controls

- Establishment of key security policies, i.e. policies pertaining to remote access
 - Program policy
 - Definition, scope, roles and responsibilities of the computer security program
 - Issue specific policy
 - Example: Y2K
 - System specific policy
 - Who can access what functions where

Core security policies

- Confidentiality
- Email
- System access
- Virus protection
- Internet/intranet use
- Remote access
- Software code of ethics

- Backup and recovery
- Security training and awareness

Biometrics

- The scientific discipline of measuring relevant attributes of living individuals or populations to identify active properties or unique characteristics
 - Can be used to evaluate changes over time for medical monitoring or diagnosis
 - Can be used for security

Approaches to identification

- Token based simple security
 House key, security card, transponder
- Knowledge based
 - SSN, password, PIN
- Two-factor

Approaches to identification

Identification

- Certain and unambiguous – Deterministic
- Certain with small probability of error – Probabilistic
- Uncertain and ambiguous
- Biometric schemes are probabilistic

Probabilistic

- False acceptance rate (type I error)
 - Percentage of unauthorized attempts that will be accepted
 - Also relevant for medical studies
- False rejection rate (type II error)
 - Percentage of authorized attempts that will be rejected
 - Also relevant for medical studies
- Equal error rate
 - Intersection of the lowest FAR and FRR

Biometric ID

- Acquire the biometric ID
 - How do you ensure that you got the right guy
- Localize the attribute
 - Eliminate noise
 - Develop a template (reduced data set)
- Check for duplicates

Biometric applications

- Identification
 - Search the database to find out who the unknown is
 - Check entire file
- Authentication
 - Verify that the person is who he says he is
 - Check his file and match

Biometric identifiers

- Should be universal attribute
- Consistent shouldn't change over time
- Unique
- Permanent
- Inimitable (voice can be separated from the individual)
- Collectible easy to gather the attribute
- Tamper resistant
- (Cheaply) comparable template

Biometric technologies

- Fingerprint
 - Automated fingerprint ID systems (law enforcement)
 - Fingerprint recognition derives template form features for ID
 - Validating temp and /or pulse
 - Optical vs. solid state (capacitance)
 - Low FAR and FRR

Fingerprint

Exhibit 11-5. Fingerprint recognition process.

Hand geometry

- Dimensions of fingers and location of joints unique
- Low FAR FRR

Retinal scan

- Very reliable
- More expensive than hand or fingerprint
- Extremely low FAR FRR

Retinal scan

Exhibit 11-6. Retinal recognition process.

Voice recognition

- Automatic speaker verification (ASV) vs. automatic speaker identification (ASI)
 - ASV = authentication in a two-factor scheme
 - -ASI = who is speaker
 - Feature extraction and matching
 - Problems with disease/aging etc.

Iris scanning

- Less invasive than retinal scanning
- Technically challenging balancing optics, ambient light etc.
- Can be verified (live subject) by iris response to light

Face recognition/thermography

- Facial architecture and heat signature
- Relatively high FAR/FRR
- Useful in two factor scenarios

Hand vein

• Infrared scanning of the architecture of the hand vessels

Signature

- Architecture of the signature
- Dynamics of the signature (pressure and velocity)

	Attribute						System			Suitability			
	Jniversal	Consistent	Jnique	³ ermanent	nimitable	Collectible	famper Resistant	Comparable	¹ erformance	Authoritative	teliability	celative Cost	Acceptability
Fingerprint	0	0		•		•	•			0	•	0	0
Hand Geometry	0	•	•	•	•	•	0	•	•	0	•	0	0
Retinal Scan	•	•	•	•	•	0	•	•	•	•	•	•	0
Voice Print	0	•	0	•	0	•	0	0	0	0	0	0	0
Iris	•	•	•	•	•	•	•	•	•	•	•	0	0
Hand Vein	•	•	0	•	•	•	•	0	0	0	•	0	0
Signature	0	0	0	0	0	0	0	0	0	0	0	0	0
Face Recognition	•	0	0	0	0	•	0	0	0	0	0	•	0
Thermogram	•	0	0	O	0	•	•	0	0	O	0	•	0

High = ullet

- Medium = \mathbf{O}
 - Low = O

Exhibit 11-7. Comparison of representative technologies.

Biometric identification issues

- Privacy, anonymity
- Legal issues not defined

Security: availability

• Ensures that accurate, up-to-date information is available when needed at appropriate places

Security: accountability

• Ensures that users are responsible for their access to and use of information based on a documented need and right to know

Security: perimeter definition

• Allows the system to control the boundaries of trusted access to an information system both physically and logically

Security: rule-limited access

• Enables access for personnel to only that information essential to the performance of their jobs and limits the real or perceived temptation to access information beyond a legitimate need

Security: comprehensibility and control

• Ensures that record owners, data stewards and patients can understand and have effective control over appropriate aspects of information confidentiality and access

Availability

- Backups with local and off-site copies of the data
- Secure housing and power sources for CPU even during disasters (when system availability may be crucial)
- Virus protection

Accountability

- Audit trails and warnings
- User
 - Authentication unique ID process
 - Authorization to perform set of actions, i.e.
 access only their own patients

Perimeter definition

- System knows users and how they are using the system
 - Define the boundaries of the system (i.e. within the firewall) Princeton-Penn-HUP
 - How do you permit/monitor off-site access
 - Modems?
- Tools
 - Cryptographic authentication

Perimeter definition

- Public key-private key
 - Encryption
 - Privacy and confidentiality
 - Digital signatures
 - Prescription signature
 - Content validation
 - Message hasn't been messed with
 - Nonrepudiation
 - "I didn't say that"

Role limited access

- Spheres of access
 - Patient list: patients one has a role in the care of
 - Content specific: billing clerk/billing info
 - Relevant data: researcher on heart disease shouldn't be able to learn about HIV status

Taxonomy of organizational threats

- Motive
 - Health records have economic value to insurers, employers, journalists, enemy states etc.
 - Curiosity about the health status of friends, romantic interests, coworkers or celebrities
 - Clandestine observation of employees (GE)
 - Desire to gain advantage in contentious situations (divorce)

Resources

- Attackers may range from
 - Individuals
 - Small group (e.g. law firm)
 - Large group (e.g. insurer, employer)
 - Intelligence agency
 - Organized crime

Initial access

- Site access
- System authorization
- Data authorization

Billing clerk

Technical capability

- Aspiring attacker (limited skills)
 - Research target
 - Masquerade as an employee
 - Guess password
 - Dumpster diving
 - Become temporary employee

Technical capability

- Script runner
 - Acquire software from web-sites for automated attacks
- Accomplished attacker
 - Able to use scripted or unscripted (ad-hoc) attacks

Levels of threat

- Threat 1
 - Insiders who make "innocent" mistakes and cause accidental disclosure
 - Elevator discussion, info left on screen, chart left in hallway etc.
- Threat 2

– Insiders who abuse their privileges

Threat

- Threat 3
 - Insiders who access information inappropriately for spite or profit
 - London Times reported that anyone's electronic record could be obtained for \$300
- Threat 4
 - Unauthorized physical intruder
 - Fake labcoat

Threats

- Threat 5
 - Vengeful employees or outsiders bent on destruction or degradation, e.g. deletion, system damage, DOS attacks

Latent problem

Countering threats

- Deterrence
 - Create sanctions
 - Depends on identification of bad actors
- Imposition of obstacles
 - Firewalls
 - Access controls
 - Costs, decreased efficiency, impediments to appropriate access

Countermeasures

Туре	System	Data	Site	Threat	Counter
1	Y	Y	Y	Mistake	Org and technical measures
2	Y	Y	N/A	Improper use of access privileges	Authentication and auditing
3	Y	N	N/A	Unauthorized for spite of money	Authentication and auditing
4	Y	N	Y	Unauthorized physical intrusion	Physical security and access control
5	Y	N	N	Technical breakin	Authentication

- Behavioral code
- Screen savers, automated logout
- ? Patient pseudonyms

- Deterrence
- Sanctions
- Audit
- Encryption (user must obtain access keys)

- Audit trails
- Sanctions appropriate to crime

- Deterrence
- Strong technical measures (surveillance tapes)
- Strong identification and authentication measures

- Obstacles
- Firewalls

Issues with countermeasures

- Internet interface
- Legal and national jurisdiction
- Best balance is relatively free internal environment with strong boundaries
 - Requires strong ID/auth

- Individual user ID and authentication
 - Automated logout
 - Password discipline
- Access controls
 - Role limited
 - Role definitions
 - Cardiologist vs. MD
- Audit trails

- Physical security and disaster recovery
 - Location of terminals
 - Handling of paper printouts
- Remote access points
 - VPN's
 - Encrypted passwords
 - Dial-ins

- External communications
 - Encrypt all patient related data over publicly available networks
- Software discipline
 - Virus checking programs
- System assessment
 - Run scripted attacks against one's own system

- Develop security and confidentiality policies
 - Publish
 - Committees
 - ISO's
 - Sanctions
- Patient access to audit logs
 - Who saw my record and why

Future recommendations

- Strong authentication
 - Token based authentication (two factor)
- Enterprise wide authentication
 One-time login to authorized systems
- Access validation
 - Masking
- Expanded audit trails
- Electronic signatures

Universal patient identifier

- Methodology should have an explicit framework specifying linkages that violate patient privacy
- Facilitate the identification of parties that make improper linkages
- Unidirectional should facilitate helpful linkages of health records but prevents identification of patient from health records or the identifier

