Multimedia

Outline
- Compression
- RTP
- Scheduling

Compression Overview

- Encoding and Compression
 - Huffman codes
- Lossless
 - data received = data sent
 - used for executables, text files, numeric data
- Lossy
 - data received does not != data sent
 - used for images, video, audio

Lossless Algorithms

- Run Length Encoding (RLE)
 - example: AAABBCDDDD encoding as 3A2B1C4D
 - good for scanned text (8-to-1 compression ratio)
 - can increase size for data with variation (e.g., some images)
- Differential Pulse Code Modulation (DPCM)
 - example: AAABBCDDDD encoding as A0001123333
 - change reference symbol if delta becomes too large
 - works better than RLE for many digital images (1.5-to-1)
Dictionary-Based Methods

- Build dictionary of common terms
 - variable length strings
- Transmit index into dictionary for each term
- Lempel-Ziv (LZ) is the best-known example
- Commonly achieve 2-to-1 ration on text
- Variation of LZ used to compress GIF images
 - first reduce 24-bit color to 8-bit color
 - treat common sequence of pixels as terms in dictionary
 - not uncommon to achieve 10-to-1 compression (x3)

Image Compression

- JPEG: Joint Photographic Expert Group (ISO/ITU)
- Lossy still-image compression
- Three phase process
 - process in 8x8 block chunks (macro-block)
 - grayscale: each pixel is three values (YUV)
 - DCT: transforms signal from spatial domain into and equivalent signal in the frequency domain (loss-less)
 - apply a quantization to the results (lossy)
 - RLE-like encoding (loss-less)

Quantization and Encoding

- Quantization Table

| 3 5 7 9 11 13 15 17 |
| 5 7 9 11 13 15 17 19 |
| 7 9 11 13 15 17 19 21 |
| 9 11 13 15 17 19 21 23 |
| 11 13 15 17 19 21 23 25 |
| 13 15 17 19 21 23 25 27 |
| 15 17 19 21 23 25 27 29 |
| 17 19 21 23 25 27 29 31 |

- Encoding Pattern
MPEG

• Motion Picture Expert Group
• Lossy compression of video
• First approximation: JPEG on each frame
• Also remove inter-frame redundancy

MPEG (cont)

• Frame types
 – I frames: intrapicture
 – P frames: predicted picture
 – B frames: bidirectional predicted picture

• Example sequence transmitted as I P B I B B

MPEG (cont)

• B and P frames
 – coordinate for the macroblock in the frame
 – motion vector relative to previous reference frame (B, P)
 – motion vector relative to subsequent reference frame (B)
 – delta for each pixel in the macro block

• Effectiveness
 – typically 90-to-1
 – as high as 150-to-1
 – 30-to-1 for I frames
 – P and B frames get another 3 to 5×
MP3

- CD Quality
 - 44.1 kHz sampling rate
 - $2 \times 44.1 \times 1000 \times 16 = 1.41$ Mbps
 - $49/16 \times 1.41$ Mbps = 4.32 Mbps
- Strategy
 - split into some number of frequency bands
 - divide each subband into a sequence of blocks
 - encode each block using DCT + Quantization + Huffman
 - trick: how many bits assigned to each subband

RTP

- Application-Level Framing
- Data Packets
 - sequence number
 - timestamp (app defines "tick")
- Control Packets (send periodically)
 - loss rate (fraction of packets received since last report)
 - measured jitter

Transmitting MPEG

- Adapt the encoding
 - resolution
 - frame rate
 - quantization table
 - GOP mix
- Packetization
- Dealing with loss
- GOP-induced latency
Layered Video

- Layered encoding
 - e.g., wavelet encoded
- Receiver Layered Multicast (RLM)
 - transmit each layer to a different group address
 - receivers subscribe to the groups they can “afford”
 - Probe to learn if you can afford next higher group/layer
- Smart Packet Dropper (multicast or unicast)
 - select layers to send/drop based on observed congestion
 - observe directly or use RTP feedback

Real-Time Scheduling

- Priority
- Earliest Deadline First (EDF)
- Rate Monotonic (RM)
- Proportional Share
 - with feedback
 - with adjustments for deadlines