Problem Set No. 5
Collaboration is allowed

1. Suppose that a graph G has a minimum spanning tree already computed. Describe an $O(n)$-time algorithm to update the minimum spanning tree if a new vertex and incident edges are added to G.

2. (Bi-directional search) The following version of Dijkstra’s algorithm finds the length of a shortest path from a vertex s to a vertex t by searching concurrently forward from s and backward from t. For a vertex v, $d_s(v)$ is the tentative distance from s to v and $d_t(v)$ is the tentative distance from v to t. The edge length function is $c(v,w)$, assumed nonnegative.

Initialization: Set $d_s(s) = d_t(t) = 0$. For $v \neq s$ set $d_s(v) = \infty$. For $v \neq t$ set $d_t(v) = \infty$. Set $r_s(s) = r_t(t) = true$. For $v \neq s$ set $r_s(v) = false$. For $v \neq t$ set $r_t(v) = false$. Set $Q_s = \{s\}$ and $Q_t = \{t\}$.

Main loop: While no vertex v has $r_s(v) = r_t(v) = true$, perform one or the other of the following steps:

Forward from s: Delete from Q_s a vertex v with $d_s(v)$ minimum. Set $r_s(v) = true$. For each edge (v,w), if $d_s(v) + c(v,w) < d_s(w)$, set $d_s(w) = d_s(v) + c(v,w)$ and add w to Q_s (if it is not already in Q_s).

Backward from t: Delete from Q_t a vertex v with $d_t(v)$ minimum. Set $r_t(v) = true$. For each edge (u,v), if $d_t(u) > c(u,v) + d_t(v)$, set $d_t(u) = c(u,v) + d_t(v)$ and add v to Q_t (if it is not already in Q_t).

Describe how to extract the length of a shortest path from s to t when this algorithm terminates. Your extraction method should take $O(n)$ time. Prove the correctness of your answer.

3. A path cover of a directed graph $G = (V,E)$ is a set P of vertex-disjoint paths such that every vertex in V is included in exactly one path in P. Paths may start and end anywhere, and they may be of any length, including 0. A minimum path cover of G is a path cover containing the fewest possible paths.

b. Does your algorithm work for directed graphs that contain cycles? Explain.