Problem Set No. 4 – Re-Corrected
Collaboration allowed on all problems

1. A strong red-black tree is a red-block tree such that each red node not only has a black parent but also a black sibling. Describe in detail insertion and deletion algorithms for strong red-black trees that run in $O(\log n)$ time on an n-node tree.

2. Consider the following three stack operations: push, which pushes symbol α on the stack, top, which writes the top symbol on the stack, and pop, which pops the top element on the stack. Given a sequence of symbols $\alpha_1, \alpha_2, \ldots, \alpha_n$, we will determine a minimum number of stack operations that wish to write $\alpha_1, \alpha_2, \ldots, \alpha_n$ (in order), starting and ending with an empty stack.

 (a) Prove that the minimum number of stack operations needed is $C(1,n)$, where $C(i,j)$ for $1 \leq i \leq j \leq n$ is defined by the following recurrence:

 $$C(i,j) = \begin{cases}
 3 & \text{if } i=j \\
 \min \{ \text{if } \alpha_i=\alpha_j \text{ then } 1+C(i+1,j) \text{ else } 3+C(i+1,j), \\
 \min \{ 1+C(i+1,k)+C(k+1,j) \mid i<k<j \text{ and } \alpha_k=\alpha_k \} \}
 \end{cases}$$

 (b) Show how to compute $C(1,n)$ in $O(n^3)$ time.

3(a) Show that every strongly connected graph G is either a single vertex or can be represented, for some $k \geq 1$, as a sequence of graphs G_1, G_2, \ldots, G_k and a sequence of arcs $(v_{10}, v_{2i}), (v_{20}, v_{3i}), \ldots, (v_{ki}, v_{1i})$ such that:

 (i) the vertices of G_1, \ldots, G_k partition the vertices of G;
 (ii) the union of the arcs of G_1, \ldots, G_k and $(v_{10}, v_{2i}), \ldots, (v_{ki}, v_{1i})$ is the set of arcs of G;
 (iii) each arc (v_{ai}, v_{bi}) has v_{ai} a vertex in G_a and v_{bi} a vertex in G_b;
 (iv) each G_i is either strongly connected or consists of just a single vertex.

 Note: for $k = 1$, there is one arc (v_{10}, v_{1i}). Both v_{ai} and v_{ao} belong to graph G_a, they may or may not be different..

 (b) By applying the decomposition in part (a) recursively, we can break any strongly connected graph up into a nested decomposition of “cycles inside cycles”. Design an efficient algorithm (one as fast as possible) to compute such a nested decomposition. Include a description of the data structure your algorithm uses to
represent the decomposition. What is the worst-case running time of your algorithm?