Minimum Spanning Tree

Minimum spanning tree (MST). Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices.

Cayley’s Theorem (1889). There are V^{V-2} spanning trees on the complete graph on V vertices.

- Can’t solve MST by brute force.

Applications

MST is fundamental problem with diverse applications.

- Designing physical networks.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
 - delete long edges leaves connected components
 - finding clusters of quasars and Seyfert galaxies
 - analyzing fungal spore spatial patterns
- Approximate solutions to NP-hard problems.
 - metric TSP, Steiner tree
- Indirect applications.
 - max bottleneck paths
 - describing arrangements of nuclei in skin cells for cancer research
 - learning salient features for real-time face verification
 - modeling locality of particle interactions in turbulent fluid flow
 - reducing data storage in sequencing amino acids in a protein

Optimal Message Passing

Optimal message passing.

- Distribute message to N agents.
- Each agent can communicate with some of the other agents, but their communication is (independently) detected with probability p_{ij}.
- Group leader wants to transmit message to all agents so as to minimize the total probability that message is detected.

Objective.

- Find tree T that minimizes: $1 - \prod_{(i,j) \in T} (1 - p_{ij})$
- Or equivalently, that maximizes: $\prod_{(i,j) \in T} (1 - p_{ij})$
- Or equivalently, that maximizes: $\sum_{(i,j) \in T} \log(1 - p_{ij})$
 - MST with weights $= - \log(1 - p_{ij})$ weights p_{ij} also work!
Prim’s Algorithm

Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

- Initialize $F = \emptyset$, $S = \{s\}$ for some arbitrary vertex s.
- Repeat until S has V vertices:
 - let f be smallest edge with exactly one endpoint in S
 - add other endpoint to S
 - add edge f to F

Prim’s Algorithm: Proof of Correctness

Theorem. Upon termination of Prim’s algorithm, F is a MST.

Proof. (by induction on number of iterations)

Invariant: There exists a MST T^* containing all of the edges in F.

- Base case: $F = \emptyset \implies$ every MST satisfies invariant.
- Induction step: true at beginning of iteration i.
 - at beginning of iteration i, let S be vertex subset and let f be the edge that Prim’s algorithm chooses
 - if $f \in T^*$, T^* still satisfies invariant
 - o/w, consider cycle C formed by adding f to T^*
 - let $e \in C$ be another arc with exactly one endpoint in S
 - $c_f \leq c_e$ since algorithm chooses f instead of e
 - $e \notin F$ by definition of S
 - $T^* \cup \{ f \} - \{ e \}$ satisfies invariant

Prim’s Algorithm: Classic Implementation

Use adjacency matrix.

- S = set of vertices in current tree.
- For each vertex not in S, maintain vertex in S to which it is closest.
- Choose next vertex to add to S using $\min dist[w]$.
- Just before adding new vertex v to S:
 - for each neighbor w of v, if w is closer to v than to a vertex in S, update $dist[w]$
Prim’s Algorithm: Classic Implementation

Use adjacency matrix.
- \(S \) = set of vertices in current tree.
- For each vertex not in \(S \), maintain vertex in \(S \) to which it is closest.
- Choose next vertex to add to \(S \) using \(\min \ dist[w] \).
- Just before adding new vertex \(v \) to \(S \):
 - for each neighbor \(w \) of \(v \), if \(w \) is closer to \(v \) than to a vertex in \(S \), update \(dist[w] \).

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Nearest</th>
<th>Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>E</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>D</td>
<td>6</td>
</tr>
</tbody>
</table>

Running time.
- \(V - 1 \) iterations since each iteration adds 1 vertex.

Each iteration consists of:
- Choose next vertex to add to \(S \) by minimum \(dist[w] \) value.
 - \(O(V) \) time.
- For each neighbor \(w \) of \(v \), if \(w \) is closer to \(v \) than to a vertex in \(S \), update \(dist[w] \).
 - \(O(V) \) time.

\(O(V^2) \) overall.

Prim’s Algorithm: Priority Queue Implementation

Prim’s Algorithm pseudocode

```plaintext
Q ← PQinit()
for each vertex v in graph G
    key(v) ← ∞
    pred(v) ← nil
    PQinsert(v, Q)

key(s) ← 0
while (!PQisempty(Q))
    v = PQdelmin(Q)
    for each edge v-w s.t. w is in Q
        if key(w) > c(v,w)
            PQdecreasekey(w, c(v,w), Q)
            pred(w) ← v
```

Analysis of Prim’s algorithm.
- \(PQinsert() \): \(V \) vertices.
- \(PQisempty() \): \(V \) vertices.
- \(PQdelmin() \): \(V \) vertices.
- \(PQdecreasekey() \): \(E \) edges.

Priority Queues

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array</th>
<th>Binary heap</th>
<th>Fibonacci heap*</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>N</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>delete-min</td>
<td>N</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>decrease-key</td>
<td>1</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>is-empty</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prim</td>
<td>(V^2)</td>
<td>E log V</td>
<td>E + V log V</td>
</tr>
</tbody>
</table>
PFS vs. Classic Prim

Which algorithm is faster?
- Classic Prim: $O(V^2)$.
- Prim with binary heap: $O(E \log V)$.

Answer depends on whether graph is SPARSE or DENSE.
- 2,000 vertices, 1 million edges
 - Heap: 2-3 times SLOWER
- 100,000 vertices, 1 million edges
 - Heap: 500 times FASTER
- 1 million vertices, 2 million edges
 - Heap: 10,000 times FASTER.

Bottom line.
- Classic Prim is optimal for dense graphs.
- Heap implementation far better for sparse graphs.

Kruskal’s Algorithm

Kruskal’s algorithm (1956).
- Initialize $F = \emptyset$.
- Consider arcs in ascending order of weight.
- If adding arcs to forest F does not create a cycle, then add it. Otherwise, discard it.

Kruskal’s Algorithm: Implementation

How to check if adding an edge to F would create a cycle?
- Naïve solution: use depth first search.
- Clever solution: use union-find data structure from Lecture 1.
 - each tree in forest corresponds to a set
 - to see if adding edge between v and w creates a cycle, check if v and w are already in same component
 - when adding $v-w$ to forest F, merge sets containing v and w

Kruskal’s Algorithm: C Implementation

```c
// Fill up mst[] with list of edges in MST of graph G
void GRAPHmstE(Graph G, Edge mst[]) {
    int i, k, v, w;
    Edge a[MAXE]; // list of all edges in G
    int E = GRAPHedges(a, G); // # edges in G
    sort(a, 0, E-1); // sort edges by weight
    UFinit(G->V);
    for (i = k = 0; i < E && k < G->V-1; i++) {
        v = a[i].v;
        w = a[i].w;
        // if edge a[i] doesn’t create a cycle, add to tree
        if (!UFfind(v, w)) {
            UFunion(v, w);
            mst[k++] = a[i];
        }
    }
}
```
Kruskal’s Algorithm: Proof of Correctness

Theorem. Upon termination of Kruskal’s algorithm, F is a MST.

Proof. Identical to proof of correctness for Prim’s algorithm except that you let S be the set of nodes in component of F containing v.

Corollary. "Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit."

Gordon Gecko
(Michael Douglas)

Kruskal’s Algorithm: Running Time

Kruskal analysis. O(E log V) time.
- Sort(): O(E log E) = O(E log V).
- UFinit(): V singleton sets.
- UFfind(): at most once per edge.
- UFunion(): exactly V − 1 times.

If edges already sorted. O(E log* V) time.
- Any sequence of M union-find operations on N elements takes O(M log* N) time.
- In this universe, log* N ≤ 6.

Advanced MST Algorithms

Deterministic comparison based algorithms.
- O(E log V) Prim, Kruskal, Boruvka.
- O(E log (log*V)). Gabow-Galil-Spencer-Tarjan (1986).
- O(E α (E, V)). Chazelle (2000).
- O(E). Holy grail.

Worth noting.