Prototypical divide-and-conquer algorithm

Why study mergesort?
Guaranteed to run in $O(N \log N)$ steps
Method of choice for linked lists

Drawback:
- Linear extra space
- (can only sort half the memory)

An "optimal" sorting method
Leads us to consider
- recurrence relationships
- computational complexity
- deep hacking
- fractals

Merging two sorted files

```c
#define T Item

merge(T c[], T a[], int N, T b[], int M)
{ int i, j, k;
  for (i = 0, j = 0, k = 0; k < N+M; k++)
    { if (i == N) { c[k] = b[j++]; continue; } 
      if (j == M) { c[k] = a[i++]; continue; } 
      if (less(a[i], b[j]))
        c[k] = a[i++]; else c[k] = b[j++];
    }
}
```

Merging example

Trivial computation?
Try doing it without using linear extra space
Abstract inplace merge

Easier for calling routine to assume merge is inplace
- assume files to be merged are both in arg array
- copy files into temp array
- merge back into arg array

Trick: reverse second file when copying
- avoids special tests for ends of arrays

```
Item aux[maxN];
merge(Item a[], int l, int m, int r)
{
    int i, j, k;
    for (i = m+1; i > l; i--) aux[i-1] = a[i-1];
    for (j = m; j < r; j++) aux[r+m-j] = a[j+1];
    for (k = l; k <= r; k++)
        if (less(aux[i], aux[j]))
            a[k] = aux[i++];
        else a[k] = aux[j--];
}
```

Mergesort example

Tree structures describe merge file sizes
Recurrences

Direct relationship to recursive programs
- (most programs are "recursive")

Easy telescoping recurrences
- \(T(N) = T(N-1) + 1 \) \(T(N) = N \)
- \(T(2^n) = T(2^{n-1}) + 1 \) \(T(N) = \lg N \) if \(N = 2^n \)

Short list of important recurrences
- \(T(N) = T(N/2) + 1 \) \(T(N) = \lg N \)
- \(T(N) = 2T(N/2) + 1 \) \(T(N) = N \)
- \(T(N) = 2T(N/2) + N \) \(T(N) = N \lg N \)

Details in Chapter 2

Mergesort analysis

\textbf{THM:} Mergesort uses \(N \lg N \) comparisons

\textbf{Proof:}
- From code,
 \(T(N) = 2T(N/2) + N \)
- For \(N = 2^n \) (\(n = \lg N \)),
 \(T(2^n) = 2T(2^{n-1}) + 2^n \)
- Divide both sides by \(2^n \)
 \(T(2^n)/2^n = T(2^{n-1})/2^{n-1} + 1 \)
- Telescope:
 \(T(2^n)/2^n = n \)
- Therefore,
 \(T(N) = N \lg N \)

Exact for powers of two, approximate otherwise

Guaranteed worst-case bound

Mergesort and numbers

\textbf{THM:} Number of compares used by Mergesort for
- is the same as number of bits in the binary representations of all the numbers less than \(N \) (plus \(N-1 \)).

\textbf{Proof:} They satisfy the same recurrence
- \(C(2N) = C(N) + C(N) + 2N \)
- \(C(2N+1) = C(N) + C(N+1) + 2N+1 \)

Mergesort and fractals

Divide-and-conquer algs exhibit erratic periodic behavior

\textbf{number of bits in numbers less than \(N \)}
 \(= \text{number of 0 bits} + \text{number of 1 bits} \)
 \(= (N \lg N)/2 + \text{periodic term} \)
 \(+ (N \lg N)/2 + \text{periodic term} \)
 \(= N \lg N + \text{periodic term} \)
Divide-and-conquer

Basic algorithm design paradigm

"Master Theorem" for analyzing algorithms
- \(T(N) = aT(N/b) + N^c(lg N)^d \)

Interested in learning more?
- Stay tuned for a few more in CS 226
- Take CS 341, CS 423
- Read "Introduction to the Analysis of Algs" by Sedgewick and Flajolet

Complexity of sorting

N \(lg \) N comparisons necessary and sufficient

Upper bound: \(N \ lg \ N \) (Mergesort)
Lower bound: \(N \ lg \ N - N/(ln 2) + lg N \)

THM: All comparison-based sorting methods must use at least \(N \ lg \ N \) comparisons

Proof:
- COMPARISON TREE (all sequences of comparisons)

Computational Complexity

Framework to study efficiency of algorithms

Machine model: count fundamental operations

Average case:
- predict performance (need input model)

Worst case:
- guarantee performance (any input)

Upper bound: algorithm to solve the problem
Lower bound: proof that no algorithm can do

Complexity studies provide
- starting point for practical implementations
- indication of approaches to be avoided

Comparison tree for sorting

Path from root to leaf describes operation of sorting algorithm on given input

Claim 1: at least \(N! \) leaves
Claim 2: height at least \(lg N! \)
Claim 3: (Stirling's formula for \(lg N! \))
- height at least \(N \ lg \ N - N/(ln 2) + lg N \)

Caveat: what if we don't use comparisons??
Stay tuned for radix sort
Mergesort without move

Alternative to abstract inplace merge

```c
void mergesort(T a[], T b[], int l, int r)
{ int m = (l+r)/2;
  if (r-l <= 10)
    { insertion(a, l, r); return; }
  mergesort(b, a, l, m);
  mergesort(b, a, m+1, r);
  merge(a+l, b+l, m-l+1, b+m+1, r-m);
}
```

```c
void sort(Item a[], int l, int r)
{ int i;
  for (i = l; i <= r; i++) aux[i] = a[i];
  mergesort(a, aux, l, r);
}
```

Deep hacking on Mergesort inner loop

CODE OPTIMIZATION: Improve performance by tuning code
- concentrate on inner loop

For mergesort,
- Avoid move with recursive argument switch
- Avoid sentinels with “up-down” trick

Combine the two? Doable, but mindbending

Can make mergesort almost as fast as quicksort
- mergesort inner loop: compare, store, two incs
- quicksort inner loop: compare, inc

Bottom-up mergesort

Pass through the file
- merge adjacent subfiles
- size doubles each time through

```
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
ASORTINGEXAMPLE
```

Bottom-up mergesort implementation

```c
void mergesort(Item a[], int l, int r)
{ int i, m;
  for (m = 1; m < r-l; m = m+m)
    for (i = l; i <= r-m; i += m+m)
      merge(a, i, i+m-1, min(i+m+m-1, r));
}
```

Different set of merges than for top-down
- unless N is a power of two
Merging linked lists

Problem: sort data on a linked list
(rearrange list so items are in order)

typedef struct node *link;
struct node { Item item; link next; };

First step: merge implementation

link merge(link a, link b)
{ struct node head, c = &head;
 while ((a != NULL) && (b != NULL))
 if (less(a->item, b->item))
 { c->next = a; c = a; a = a->next; }
 else
 { c->next = b; c = b; b = b->next; }
 c->next = (a == NULL) ? b : a;
 return head.next;
}

Top-down list mergesort

Split, sort, and merge

link mergesort(link c)
{ link a, b;
 if (c->next == NULL) return c;
 a = c; b = c->next;
 while ((b != NULL) && (b->next != NULL))
 if (b != NULL) && (b->next != NULL))
 { c = c->next; b = b->next->next; }
 b = c->next; c->next = NULL;
 return merge(mergesort(a), mergesort(b));
}

Bottom-up list mergesort

Cycle through a circular list

link mergesort(link t)
{ link u;
 for (initQ(); t != NULL; t = u)
 { u = t->next; t->next = NULL; putQ(t); }
 t = getQ();
 while (!emptyQ())
 { putQ(t); t = merge(getQ(), getQ()); }
 return t;
}