Symbol Table, Dictionary
- records with keys
- INSERT
- SEARCH

Balanced trees, randomized trees
- use O(lgN) comparisons

Is lgN required?
- (no, and yes)
Are comparisons necessary?
- (no)

Hashing: basic plan

Save keys in a table, at a location determined by the key
KEY-INDEXED TABLE

HASH FUNCTION
- method for computing table index from key

COLLISION RESOLUTION STRATEGY
- algorithm and data structure to handle
two keys that hash to the same index

Time-space tradeoff
- No space limitation:
 trivial hash function with key as address
- No time limitation:
 trivial collision resolution: sequential search
- Limitations on both time and space
hashing

Hash function for short keys

Treat key as integer, use PRIME table size M
- \(h(K) = K \mod M \)

Ex: four-character keys, table size 101

<table>
<thead>
<tr>
<th>bin</th>
<th>01100001011000100110001101100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>hex</td>
<td>6 1 6 2 6 3 6 4</td>
</tr>
<tr>
<td>ascii</td>
<td>a b c d</td>
</tr>
</tbody>
</table>

Key "abcd" hashes to 11
- \(0x61626364 = 1633831724 \)
- \(1633831724 \mod 101 = 11 \)

Key "dcba" hashes to 57
- \(0x64636261 = 1684234849 \)
- \(1633831724 \mod 101 = 57 \)

Key "abbc" also hashes to 57
- \(0x61626263 = 1633837667 \)
- \(1633837667 \mod 101 = 57 \)

Obvious point:
- huge number of keys, small table: most collide!

Hash function for long keys (strings)

Same function: \(h(K) = K \mod M \)

Need multiprecision arithmetic calculation
- Use Horner's method

Ex: (check with 4 chars; works for any length)

<table>
<thead>
<tr>
<th>hex</th>
<th>6 1 6 2 6 3 6 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>a b c d</td>
</tr>
</tbody>
</table>

\[
0x61626364 = 256 \times (256 \times (256 \times 97 + 98) + 99) + 100
\]

take mod after each multiplication:
- \(256 \times 97 + 98 = 24930 \mod 101 = 84 \)
- \(256 \times 84 + 99 = 21603 \mod 101 = 90 \)
- \(256 \times 90 + 100 = 23140 \mod 101 = 11 \)
String hash function implementation

```c
int hash(char *v, int M)
{
    int h, a = 117;
    for (h = 0; *v != ' '; v++)
        h = (a*h + *v) % M;
    return h;
}
```

Scramble by replacing 256 by 117

Uniform hashing:
- use a different random value for each digit

Collisions

N keys, table size M
How many insertions until the first collision?

BIRTHDAY PARADOX (classical probability theory)
- Assume hash function "random"
- Expected insertions to first collision (table size M):
 \[
 M \approx \sqrt{\pi M/2}
 \]

<table>
<thead>
<tr>
<th>M</th>
<th>sqrt(\pi M/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>1000</td>
<td>40</td>
</tr>
<tr>
<td>10000</td>
<td>125</td>
</tr>
</tbody>
</table>

Option 1: Allow N >> M
- put keys hashing to i in a list
- about N/M keys per list

Option 2: Keep N < M
- put keys somewhere in table
- complex collision pattern

Collisions (continued)

Experiment 1:
- generate random probes between 0 and 100
- 84 35 45 32 89 1 58 38 69 5 90 16 53 61 ...
- collision at 13th as predicted

Experiment 2:
- use hash function to scatter 4-char keys

<table>
<thead>
<tr>
<th>bcba 47</th>
<th>ccad 1</th>
<th>baca 26</th>
<th>abad 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>bddc 43</td>
<td>bdac 83</td>
<td>dbcb 24</td>
<td>cada 85</td>
</tr>
<tr>
<td>dabc 85</td>
<td>dabb 84</td>
<td>dbab 17</td>
<td>dabd 86</td>
</tr>
<tr>
<td>dbdb 78</td>
<td>dcbd 60</td>
<td>dbdd 80</td>
<td></td>
</tr>
<tr>
<td>babb 74</td>
<td>bccc 2</td>
<td>addd 39</td>
<td></td>
</tr>
<tr>
<td>bcdb 50</td>
<td>adbc 31</td>
<td>bcsa 55</td>
<td></td>
</tr>
</tbody>
</table>

collision after 20 probes
- still as predicted (standard dev. not small)

Separate chaining

Simple, practical, widely used
Cuts search time by a factor of M over sequential search

Method: M linked lists, one for each table

<table>
<thead>
<tr>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L A A A</td>
</tr>
<tr>
<td>2</td>
<td>M X</td>
</tr>
<tr>
<td>3</td>
<td>N C</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E P E E</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G R</td>
</tr>
<tr>
<td>8</td>
<td>H S</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Separate chaining analysis

Insert cost: 1
Avg. search cost (successful): N/2M
Avg. search cost (unsuccessful): N/M

Classical balls-and-urns "occupancy" problem
- Probability that some list length is > t(N/M)
 exponentially small in t
- Long lists unlikely PROVIDED hash is random
- [Analysis doesn't account for bugs or bad hashes]

M large: CONSTANT avg. search time
- independent of how keys are distributed (!)

Keep lists sorted?
- increases insert time to N/2M
- cuts unsuccessful search time to N/2M

Linear Probing

No links, keep everything in table

Method: start linear search at hash position
 (stop when empty position hit)

Still get O(1) avg. search time if table sparse

Very sparse table: like separate chaining
As table fills up: CLUSTERING occurs
 (infinite loop on full table)

Linear probing code

```c
void STinit(int max)
{ int i;
  N = 0; M = 2*max;
  st = malloc(M*sizeof(Item));
  for (i = 0; i < M; i++) st[i] = NULLitem;
}

void STinsert(Item item)
{ Key v = key(item);
  int i = hash(v, M);
  while (!null(i)) i = (i+1) % M;
  st[i] = item; N++;
}

Item STsearch(Key v)
{ int i = hash(v, M);
  while (!null(i))
    if eq(v, key(st[i])) return st[i];
    else i = (i+1) % M;
  return NULLitem;
}
```

Linear probing example
CLUSTERING
- bad phenomenon: items clump together
- long clusters tend to get longer
- avg. search cost grows to M as table fills
Precise analysis very difficult.

THM (Knuth):
- Insert cost: approx. $(1 + 1/(1-N/M)^2)/2$
- Search cost (hit): approx. $(1 + 1/(1-N/M))/2$
- Search cost (miss): same as insert

Too slow when table gets 70%-80% full

Double Hashing
Avoid clustering by using 2nd hash to compute step for search

THM: (Guibas-Szemerédi) Nearly equivalent to random probe ideal
- Insert cost: approx. $1/(1-N/M)$
- Search cost (hit): approx. $\ln(1+N/M)/(N/M)$
- Search cost (miss): same as insert

Not too slow until table gets 90%-95% full

Amortized analysis of algorithms
Measure running time for X operations by
\[
\frac{\text{total cost of all } X \text{ operations}}{X}
\]

Ex:
- insert N elements in a heap:
 \[
 (\log_1 + \log_2 + \ldots + \log N) / N = \log N + O(1)
 \]

Ex:
- insert N elements in a binomial queue:
 \[
 (1 \cdot N/2 + 2 \cdot N/4 + 3 \cdot N/8 + \ldots)/N < 2
 \]

Worst case for a SEQUENCE of operations
- guarantee bound on TOTAL
 (same as cost per operation)
- individual operation may be slow
Dynamic hashing

Hashing:
- grow table while keeping search cost \(O(1) \)
- when number of keys in table doubles
 rebuild to double the size of the table

Ex: separate chaining
- avg search cost \(< 2\)
- \(4M\) keys in table of size \(M\)
- proof by induction: amortized cost \(< 2\)
 cost to build: \(x \times 4M\)
 cost to rebuild to new table size \(2M\): \(4M\)
 amortized cost of first \(8M\) insertions:
 \((x \times 4M + 4M + 4M)/8M\)
 \(x/2 + 1 < x\)
Same argument works for other basic ADTs!

Ex: stacks, queues in arrays, double hashing

Separate chaining vs. double hashing

Space for separate chaining w/ rehashing
- \(4M\) keys (or links to keys)
- \(M\) table links (approx same size as keys)
- \(4M\) links in nodes
- Total space: \(9M\) words for \(4M\) items
- Avg search time: \(2\)

Double hashing in same space
- \(4M\) items, table size \(9M\)
- avg search time: \(1/(1-4/9) = 1.8\) (10% faster)

Double hashing in same time
- \(4M\) items, avg search time \(2\)
- space needed: \(8M\) words \((1/(1-4/8) = 2)\) (11% less)

Separate chaining advantages
- idiot-proof (doesn't break)
- no large chunks of memory (is that good?)

Other ST ADT operations

DELETION
- Separate chaining: trivial
- Linear probing: rehash keys in cluster
 or use indirect method (see below)
- Double hashing: no easy direct method
 mark deleted nodes as "deadwood"
 rebuild periodically to clear deadwood

SORT, FIND kth largest
- Separate chaining w/ sorted lists
- Linear probing/double hashing
 have to do full sort

JOIN
- Separate chaining: easy
- Linear probing/double hashing
 rehash whole table

Reasons not to use hashing

Hashing achieve ST ADT implementation goal
- search and insert in constant time.

Why use anything else?
- no performance guarantee
- too much arithmetic on long keys
- takes extra space
- doesn't support all ADT ops efficiently
- compare abstraction works for partial order
 (searching without keys)
Other hashing variants

Perfect hashing
 - fixed set of keys
 - hash function with no collisions
 - good hack for small tables
 - not practical for large tables
 - totally static

Coalesced hashing
 - properly account for link space
 - mix hash table, storage allocation

Ordered hashing
 - cut costs in half as with ordered lists

Brent's variation
 - guarantee constant search cost
 - up to M insert cost