Important applications involve geometry
- models of physical world
- computer graphics
- mathematical models

Ancient mathematical foundations
Most geometric algorithms less than 25 years old

Knowledge of fundamental algorithms is critical
- use them directly
- use the same design strategies
- know how to compare and evaluate algs

Humans have spatial intuition in 2D and 3D
- computers do not!
- neither have good intuition in high dimensions

Ex: Is a polygon convex?
we think of this alg sees this or even this
Approaches to solving geometric problems

• incremental (brute-force)
• divide-and-conquer
• sweep-line algs
• multidimensional tree structures
• randomized algs
• discretized algorithms
• online and dynamic algs

Algorithm design paradigms

Draw from knowledge about fundamental algs
Move up one level of abstraction
• use fundamental algs and data structures
• know their performance characteristics

More primitives lead to wider range of problems
Some problems too complex to admit simple algorithms

For many important problems
• classical approaches give good algorithms
• need research to find “best” algorithms
• no excuse for using “dumb” algorithms

Algorithm design paradigms (continued)

Progression of algorithm design (oversimplified)

<table>
<thead>
<tr>
<th>all possibilities</th>
<th>double recursion</th>
<th>2^N</th>
</tr>
</thead>
<tbody>
<tr>
<td>brute force</td>
<td>nested for loops</td>
<td>N^2</td>
</tr>
<tr>
<td>divide-and-conquer</td>
<td>recursion, trees</td>
<td>$N \log N$</td>
</tr>
<tr>
<td>elegant idea</td>
<td>1 "for" loop</td>
<td>N</td>
</tr>
<tr>
<td>randomization</td>
<td>random choices</td>
<td>N</td>
</tr>
</tbody>
</table>

Many examples in geometric algorithms

Geometric primitives (2D)

POINT two numbers (x, y)
LINE two numbers a and b \(ax + by = 1\)
LINE SEGMENT four numbers (x_1, y_1) (x_2, y_2)
POLYGON sequence of points

No shortage of other geometric shapes
TRIANGLE
SQUARE
CIRCLE

• 3D and higher dimensions more complicated
Building algorithms from geometric primitives

First, need good implementations of primitives!
- is polygon simple?
- is point on line?
- is point inside polygon?
- do two line segments intersect?
- do two polygons intersect?

Algorithms search through sets of primitives
- all points in specified range
- closest pair in set of points
- intersecting pairs in set of line segments
- overlapping areas in set of polygons

Line segment intersection

Do two line segments intersect?

To implement INTERSECT(l1, l2)
- use simpler primitive SAME(p1, p2, l):
 Given two points p1, p2 and a line l,
 are p1 and p2 on the same side of l?

To implement SAME
- use simpler primitive CCW(p1, p2, p3):
 Given three points p1, p2, p3,
 is the route p1-p2-p3 a ccw turn?

Two ccw tests to implement SAME
Four ccw tests to implement INTERSECT

CCW implementation

compare slopes
- less:
- greater:
- equal: points are collinear

```c
typedef struct point POINT
int ccw(POINT p0, POINT p1, POINT p2)
{
    int dx1, dx2, dy1, dy2;
    dx1 = p1.x - p0.x; dy1 = p1.y - p0.y;
    dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;
    if (dx1*dy2 > dy1*dx2) return 1;
    if (dx1*dy2 < dy1*dx2) return -1;
    return 0;
}
```

CCW implementation (continued)

Still not quite right! Bug in degenerate case

- four collinear points
- Does AB intersect CD?
 on the line in the order ABCD: NO
 on the line in the order ACDB: YES

Can’t just return 0 if dx1*dy2 = dx2*dy1 (see book)

CCW is an important basic primitive
Ex: is point inside convex N-gon? N CCW tests

Lesson:
- geometric primitives are tricky to implement
- can’t ignore degenerate cases
Convex hull of a point set

Basic property of a set of points

CONVEX HULL:
 * smallest convex polygon enclosing the points
 * shortest fence surrounding the points
 * intersection of halfplanes defined by point pairs

Running time of algorithm can depend on
 * N: number of points
 * M: number of points on the hull
 * point distribution

Package-wrap algorithm

Operates like selection sort

Abstract idea
 * sweep line anchored at current point CCW
 * first point hit is on hull

Implementation
 * compute angle to all points
 * pick smallest angle larger than current one

Package-wrap implementation

int wrap(POINT p[], int N)
{
 int i, min, M; float th, v; struct point t;
 for (min = 0, i = 1; i < N; i++)
 if (p[i].y < p[min].y) min = i;
 p[N] = p[min]; th = 0.0;
 for (M = 0; M < N; M++)
 {
 t = p[M]; p[M] = p[min]; p[min] = t;
 min = N; v = th; th = 360.0;
 for (i = M+1; i <= N; i++)
 if (theta(p[M], p[i]) > v)
 if (theta(p[M], p[i]) < th)
 { min = i; th = theta(p[M], p[min]); }
 if (min == N) return M;
 }
}

Use pseudo-angle theta to save time (see text)

Package-wrap example

...
Graham Scan

Sort points on angle with bottom point as origin
- forms simple closed polygon
Proceed through polygon
- discard points that would cause a CW turn

```
int grahamscan(struct point p[], int N)
{
    int i, min, M; struct point t;
    for (min = 1, i = 2; i <= N; i++)
        if (p[i].y < p[min].y) min = i;
    for (i = 1; i <= N; i++)
        if (p[i].y == p[min].y)
            if (p[i].x > p[min].x) min = i;
    t = p[1]; p[1] = p[min]; p[min] = t;
    quicksort(p, 1, N);
    p[0] = p[N];
    for (M = 3, i = 4; i <= N; i++)
    {
        while (ccw(p[M],p[M-1],p[i]) >= 0) M--;
        M++; t = p[M]; p[M] = p[i]; p[i] = t;
    }
    return M;
}
```

Divide-and-conquer convex hull algorithms

divide points

divide space

Incremental convex hull algorithm

Consider next point
- if inside hull of previous points, ignore
- if outside, update hull

Two subproblems to solve
- test if point inside or outside polygon
- update hull for outside points
Both subproblems
- can be solved by looking at all hull points
- can be improved with binary search
Randomized algorithm
- consider points in random order
- $N + M \log M$
"Sweep line" convex hull algorithm

Sort points on x-coordinate first

Eliminates "inside" test

Total time proportional to \(N \log N \) (for sort)

Quick elimination

Improve the performance of any convex hull algorithm by quickly eliminating most points (known not to be on the hull)

Use points at "corners": \(\max, \min x+y, x-y \)

Check if point inside quadrilateral: four CCW tests
Check if point inside rectangle: four comparisons

Almost all points eliminated if points random
 number of points left proportional to \(N^{(1/2)} \)

LINEAR algorithm

Summary of 2D convex hull algos

Package wrap
 - NM
Graham scan
 - \(N \log N \) (sort time)
Divide-and-conquer
 - \(N \log N \) (with work)
Quick elimination
 - \(N \) (fast average-case)
One-by-one elimination
 - \(N \log M \)
Sweep line
 - \(N \log N \) (sort time)

How many points on the hull?
Worst case: \(N \)
Average case: depends on distribution
 - uniform in a convex polygon: \(\log N \)
 - uniform in a circle: \(N^{(1/3)} \)
requires understanding of basic properties of DATA

Higher dimensions

Multifaceted (convex) polytope encloses points

NOT a simple object

Ex: \(N \) points \(d \) dimensions
 - \(d=2 \): convex hull
 - \(d=3 \): Euler's formula \((v - e + f = 2) \)
 - \(d=3 \): exponential number of facets at worst

EXTREME POINTS
 - return points on the hull, not necc in order

Package-wrap
 Divide-and-conquer
 Randomized
 Interior elimination
Geometric models of mathematical problems

Impact of geometric algs extends far beyond physical models

Geometric problem
- find point where two lines intersect in 2D
- find point where three planes intersect in 3D

Mathematical equivalent
- solve simultaneous equations
- algorithm: gaussian elimination

Geometric problem
- find convex polytope defined by intersecting half-planes
- find vertex hit by line of given slope moving in from infinity

Mathematical equivalent
- LINEAR PROGRAMMING
- algorithm: SIMPLEX (stay tuned)

Linear programming example

Maximize $a+b$ subject to the constraints
- $b - a < 5$
- $a + 4b < 45$
- $2a + b < 27$
- $3a - 4b < 24$
- $a > 0$
- $b > 0$

Diagram showing the feasible region defined by the constraints with vertices at (0,5), (5,10), (9,9), (12,3), and (8,0).