Symbol Table, Dictionary
- records with keys
- INSERT
- SEARCH

Goal: Symbol table implementation
- with O(lgN) GUARANTEED performance
- for both search and insert
- (and other ST operations)

Three approaches
1. PROBABILISTIC "guarantee"
2. AMORTIZED "guarantee"
3. WORST-CASE GUARANTEE

Randomized BSTs
IDEA: new node should be root with probability 1/(N+1)
DO IT!

```c
link insertR(link h, Item item)
{ Key v = key(item), t = key(h->item);
  if (h == z) return NEW(item, z, z, 1);
  if (rand() < RAND_MAX/(h->N+1))
    return insertT(h, item);
  if less(v, t) h->l = insertR(h->l, item);
  else h->r = insertR(h->r, item);
  (h->N)++; return h;
}

void STinsert(Item item)
{ head = insertR(head, item); }
```

Other operations in randomized BSTs
FIND kth largest
- another use of size field already there
JOIN disjoint STs
- straightforward recursive implementation
- to join STs A (of size M) and B (of size N)
 - use A root with probability M/(M+N)
 - use B root with probability N/(M+N)
 - join other tree with subtree recursively
DELETE
- remove the node, do join (above)

THM: Trees still random after delete (!!)
Randomized BSTs

Always look like random BSTs

- implementation straightforward
- support all symbol-table ADT ops
- $O(\log N)$ average case
- bad cases provably unlikely

Skip lists

Idea: Add links to linked-list nodes to make "fast tracks"

Challenges (see Section 13.5 for details):
 - how to maintain structure under insertion
 - how many links in a particular node?

Bottom line: similar to randomized BSTs
 - plus: easier to understand
 - minus: more pointer-chasing

Splay trees

Idea: slight modification to root insertion
 Check two links above current node
 Orientations differ: same as root insertion
 Orientations match: do top rotation first

Splay tree balance

THM: Splay rotations halve the search path

guaranteed performance over SEQUENCE of operations
Splay tree implementation

```c
link splay(link h, Item item)
{
    Key v = key(item);
    if (h == z) return NEW(item, z, z, 1);
    if (less(v, key(h->item)))
    {
        if (hl == z) return NEW(item, z, h, h->N+1);
        if (less(v, key(hl->item)))
        {
            hll = splay(hll, item); h = rotR(h);
        }
        else
        {
            hlr = splay(hlr, item); hl = rotL(hl);
            return rotR(h);
        }    
    }
    else
    {
        if (hr == z) return NEW(item, h, z, h->N+1);
        if (less(key(hr->item), v))
        {
            hrr = splay(hrr, item); h = rotL(h);
        }
        else
        {
            hrl = splay(hrl, item); hr = rotR(hr);
            return rotL(h);
       }
    }
}
```

2-3-4 trees

- Allow one, two, or three keys per node
- Keep link for every interval between keys
 - 2-node: one key, two children
 - 3-node: two keys, three children
 - 4-node: three keys, four children

SEARCH
- compare search key against keys in node
- find interval containing search key
- follow associated link (recursively)

INSERT
- search to bottom for key
 - 2-node at bottom: convert to a 3-node
 - 3-node at bottom: convert to a 4-node
 - 4-node at bottom: ??

Top-down 2-3-4 trees

Transform tree on the way DOWN
- to ensure that last node is not a 4-node

Local transformations to split 4-nodes:

Invariant: "current" node is not a 4-node
- One of two local transformations must apply at next node
- Insertion at bottom is easy (not into a 4-node)

Top-down 2-3-4 tree construction

Trees grow up from the bottom
Balance in 2-3-4 trees

In top-down 2-3-4 trees,
- all paths from top to bottom are the same length

Tree height:
- worst case: \(\lg N \) (all 2-nodes)
- best case: \(\frac{\lg N}{2} \) (all 4-nodes)
- between 10 and 20 for a million nodes
- between 15 and 30 for a billion nodes

Comparisons within nodes not accounted for

Red-black trees

Represent 2-3-4 trees as binary trees
- with "internal" edges for 3- and 4-nodes

Correspondence between 2-3-4 and RB trees

Not 1-1 because 3-nodes swing either way

Top-down 2-3-4 tree implementation

Fantasy code (sketch):

```c
link insertR(link h, Item item)
{
  Key v = key(item);
  link x = h;
  while (x != z)
    { x = therightlink(x, v);
      if fourNode(x) then split(x); }
  if twoNode(x) then makeThree(x, v); else
    if threeNode(x) then makeFour(x, v); else
      return head;
}
```

Direct implementation complicated because of
- "therightlink(x, v)"
- maintaining multiple node types
- large number of cases for "split"

Search also more complicated than for BST
Red-black tree implementation

```c
link RBinsert(link h, Item item, int sw)
{ Key v = key(item);
  if (h == z) return NEW(item, z, z, 1, 1);
  if ((hl->red) && (hr->red))
    { h->red = 1; hl->red = 0; hr->red = 0; }
  if (less(v, key(h->item)))
    {
      hl = RBinsert(hl, item, 0);
      if (h->red && hl->red && sw) h = rotR(h);
      if (hl->red && hll->red)
        { h = rotR(h); h->red = 0; hr->red = 1; }
    }
  else
    {
      hr = RBinsert(hr, item, 1);
      if (h->red && hr->red && !sw) h = rotL(h);
      if (hr->red && hrr->red)
        { h = rotL(h); h->red = 0; hl->red = 1; }
    }
  return h;
}
void STinsert(Item item)
{ head=RBinsert(head, item, 0); head->red=0; }
```

Red-black tree construction

In red-black trees,
- LONGEST path at most twice as long as SHORTEST path
- Comparisons within nodes *are* counted

Balance in red-black trees

worst case: less than \(2\lg N\)
B-trees

Generalize 2-3-4 trees: up to M links per node
Split full nodes on the way down
Red-black abstraction still works
 • But might use binary search instead of internal links

B-trees for external search
 • Node size = page size
 • Typical: M = 1000, N < 1,000,000,000,000

Main advantage: flexibility to do fast insert/delete

Space-time tradeoff
 • M large: only a few levels in tree
 • M small: less wasted space

Bottom line:
 • \log_M N page accesses (3 or 4 in practice)
GOAL: ST implementation with $O(\lg N)$ GUARANTEE for all ops
probabilistic guarantee: random BSTs, skip lists
amortized guarantee: splay trees
optimal guarantee: red-black trees
Algorithms are variations on a theme (rotations when inserting)

Different abstractions, but equivalent
Ex: skip-list representation of 2-3-4 tree

```
   A
  /   \
 E  C   G
 /   /   \
 I   H   N
 /     /   \
 M     L   P
```

Are balanced trees OPTIMAL?
- worst-case: no (can get $C\lg N$ for $C>1$)
- average-case: open

Abstraction extends to give search algs for huge files
- B-trees