
Princeton University
COS 217: Introduction to Programming Systems

SPARC Assembly Language Summary

Abbreviations Used in Instruction Descriptions
rs Source register
rd Destination register
ris Source register, or

Source immediate constant represented in machine language using 13
bits

is Source immediate constant represented in machine language using 13
bits

is22 Source immediate constant represented in machine language using 22
bits

is32 Source immediate constant represented in machine language using 32
bits

addr Memory address expressed in one of these formats:
 rs
 rs + ris
 rs – is
 is + rs
 is

label Label represented in machine language as a 22-bit displacement
relative to %pc

label30 Label represented in machine language as a 30-bit displacement
relative to %pc

Z Zero condition code
N Negative condition code
V oVerflow condition code
C Carry condition code
r[31] Bit 31 of r

Load and StoreInstructions (Format 3)
ldub [addr], rd Load an unsigned byte from addr into rd
ldsb [addr], rd Load a signed byte from addr into rd
lduh [addr], rd Load an unsigned halfword from addr into rd
ldsh [addr], rd Load a signed halfword from addr into rd
ld [addr], rd Load a word from addr into rd
ldd [addr], rd Load a doubleword from addr and addr+1 into rd and rd+1
swap [addr], rd Swap the contents of addr and rd
stb rs, [addr] Store a byte from rs into addr
sth rs, [addr] Store a halfword from rs into addr
st rs, [addr] Store a word from rs into addr
std rs, [addr] Store a doubleword from rs and rs+1 into addr and addr+1
clrb [addr] Synthetic instruction for: stb %g0, addr
clrh [addr] Synthetic instruction for: sth %g0, addr
clr [addr] Synthetic instruction for: st %g0, addr

Shift Instructions (Format 3)
sll rs, ris, rd rd = rs << ris
srl rs, ris, rd rd = rs >> ris (fill with zeros)
sra rs, ris, rd rd = rs >> ris (fill by extending sign)

Page 1 of 4

Arithmetic Instructions (Format 3)
add rs, ris, rd rd = rs+ ris
addcc rs, ris, rd rd = rs + ris

N = rd[31] == 1
Z = rd == 0
V = (rs[31] & ris[31] & ~rd[31]) | (~rs[31] & ~ris[31] & rd[31])
C = (rs[31] & ris[31]) | (~rd[31] & (rs[31] | ris[31]))

addx rs, ris, rd rd = rs – ris + C
addxcc rs, ris, rd rd = rs + ris + C

N = rd[31] == 1
Z = rd == 0
V = (rs[31] & ris[31] & ~rd[31]) | (~rs[31] & ~ris[31] & rd[31])
C = (rs[31] & ris[31]) | (~rd[31] & (rs[31] | ris[31]))

sub rs, ris, rd rd = rs – ris
subcc rs, ris, rd rd = rs – ris

N = rd[31] == 1
Z = rd == 0
V = (rs[31] & ~ris[31] & ~rd[31]) | (~rs[31] & ris[31] & rd[31])
C = (~rs[31] & ris[31]) | (rd[31] & (~rs[31] | ris[31]))

subx rs, ris, rd rd = rs – ris – C
subxcc rs, ris, rd rd = rs – ris - C

N = rd[31] == 1
Z = rd == 0
V = (rs[31] & ~ris[31] & ~rd[31]) | (~rs[31] & ris[31] & rd[31])
C = (~rs[31] & ris[31) | (rd[31] & (~rs[31] | ris[31]))

neg rs, rd Synthetic instruction for: sub %g0, rs, rd
neg rd Synthetic instruction for: sub %g0, rd, rd
inc rd Synthetic instruction for: add rd, 1, rd
inc is, rd Synthetic instruction for: add rd, is, rd
inccc rd Synthetic instruction for: addcc rd, 1, rd
inccc is, rd Synthetic instruction for: addcc rd, is, rd
dec rd Synthetic instruction for: sub rd, 1, rd
dec is, rd Synthetic instruction for: sub rd, is, rd
deccc rd Synthetic instruction for: subcc rd, 1, rd
deccc is, rd Synthetic instruction for: subcc rd, is, rd
cmp rs, ris Synthetic instruction for: subcc rs, ris, %g0

Logical Instructions (Format 3)
and rs, ris, rd rd = rs & ris
andcc rs, ris, rd rd = rs & ris; N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
andn rs, ris, rd rd = rs & ~ris
andncc rs, ris, rd rd = rs & ~ris; N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
or rs, ris, rd rd = rs | ris
orcc rs, ris, rd rd = rs | ris; N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
orn rs, ris, rd rd = rs | ~ris
orncc rs, ris, rd rd = rs | ~ris; N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
xor rs, ris, rd rd = rs ^ ris
xorcc rs, ris, rd rd = rs ^ ris; N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
xnor rs, ris, rd rd = ~(rs ^ ris)
xnorcc rs, ris, rd rd = ~(rs ^ ris); N = rd[31] == 1; Z = rd == 0; V = 0; C = 0
clr rd Synthetic instruction for: or %g0, %g0, rd
mov ris, rd Synthetic instruction for: or %g0, ris, rd
tst rs Synthetic instruction for: orcc %g0, rs, %g0
btst ris, rs Synthetic instruction for: andcc rs, ris, %g0
bset ris, rd Synthetic instruction for: or rd, ris, rd
bclr ris, rd Synthetic instruction for: andn rd, ris, rd
btog ris, rd Synthetic instruction for: xor rd, ris, rd
not rs, rd Synthetic instruction for: xnor rs, %g0, rd
not rd Synthetic instruction for: xnor rd, %g0, rd

Page 2 of 4

Integer Branch Instructions (Format 2)
 Unconditional branching:
ba{,a} label Branch to label always
bn{,a} label Branch to label never
 Signed number branching:
bl{,a} label Branch to label if N ^ V
ble{,a} label Branch to label if Z | (N ^ V)
bge{,a} label Branch to label if ~(N ^ V)
bg{,a} label Branch to label if ~(Z | (N ^ V))
 Unsigned number branching:
blu{,a} label Synonym for: bcs{,a} label
bleu{,a} label Branch to label if C | Z
bgeu{,a} label Synonym for: bcc{,a} label
bgu{,a} label Branch to label if ~(C | Z)
 Individual condition code branching:
be{,a} label Branch to label if Z
bne{,a} label Branch to label if ~Z
bpos{,a} label Branch to label if ~N
bneg{,a} label Branch to label if N
bcs{,a} label Branch to label if C
bcc{,a} label Branch to label if ~C
bvs{,a} label Branch to label if V
bvc{,a} label Branch to label if ~V
bz{,a} label Synonym for: be{,a} label
bnz{,a} label Synonym for: bne{,a} label

Control Instructions (Format 3)
jmpl addr, rd Store %pc in rd, and jump to addr
jmp addr Synthetic instruction for: jmpl addr, %g0
call ris Synthetic instruction for: jmpl ris, %o7
ret Synthetic instruction for: jmpl %i7 + 8, %g0
retl Synthetic instruction for: jmpl %o7 + 8, %g0
save rs, ris, rd Save register window. rd = rs + ris
restore rs, ris, rd Restore register window. rd = rs + ris
restore Synthetic instruction for: restore %g0, %g0, %g0

Control Instructions (Format 2)
nop No operation
sethi is22, rd Set the high-order 22 bits of rd to is22, and set the low-order 10

bits of rd to 0
set is32, rd Synthetic instruction for:

 sethi %hi(is32), rd
 or rd, %lo(is32), rd

Control Instructions (Format 1)
call label30 Store %pc in %o7, and jump to label30

Trap Instructions (Format 3)
ta addr Trap always to addr (typically 0)
...

Floating-Point Instructions (Format 3)
...

Page 3 of 4

Pseudo-Ops
symbol: Define a label named symbol whose value is the current

location counter.
symbol = expr Define an assembler constant. The assembler replaces

symbol with the value of expr.
.section “.text” Add the following code to the text section. The text

section contains executable code.
.section “.data” Add the following code to the data section. The data

section contains program-initialized read-write data.
.section “.bss” Add the following code to the bss section. The bss

section contains read-write data that is initialized to
0.

.section “.rodata” Add the following code to the rodata section. The rodata
contains read-only data.

.skip n Skip n bytes of memory.

.align n Increase the location counter so its value is evenly
divisible by n.

.byte bytevalue1, bytevalue2,

...
Allocate memory containing bytevalue1, bytevalue2, ...

.half halfvalue1, halfvalue2,

...
Allocate memory containing halfvalue1, halfvalue2, ...

.word wordvalue1, wordvalue2,

...
Allocate memory containing wordvalue1, wordvalue2, ...

.ascii “string1”, “string2”,

...
Allocate memory containing the characters from string1,
string2, ...

.asciz “string1”, “string2”,

...
Allocate memory containing string1, string2, ... where
each string is NULL terminated.

.common symbol, size Declare the name and size of a common area of memory to
be shared by multiple object files.

.global symbol1, symbol2, ... Mark symbol1, symbol2, ... so they are available to the
linker.

.empty Suppress assembler warnings about the next instruction's
presence in a delay slot.

Copyright  2002 by Robert M. Dondero, Jr.

Page 4 of 4

	Princeton University
	COS 217: Introduction to Programming Systems
	SPARC Assembly Language Summary
	
	Abbreviations Used in Instruction Descriptions
	Load and StoreInstructions (Format 3)

	swap [addr], rd
	Swap the contents of addr and rd
	stb rs, [addr]
	Store a byte from rs into addr
	sth rs, [addr]
	Store a halfword from rs into addr
	st rs, [addr]
	Store a word from rs into addr
	std rs, [addr]
	Store a doubleword from rs and rs+1 into addr and addr+1
	clrb [addr]
	Synthetic instruction for: stb %g0, addr
	clrh [addr]
	Synthetic instruction for: sth %g0, addr
	clr [addr]
	Synthetic instruction for: st %g0, addr
	Shift Instructions (Format 3)
	Logical Instructions (Format 3)
	Trap Instructions (Format 3)
	Floating-Point Instructions (Format 3)
	Pseudo-Ops

