
1

Operating Systems

CS 217

Operating System (OS)

• Provides each process with a virtual machine
� Promises each program the illusion of

having whole machine to itself

Hardware

OS Kernel

User
Process

User
Process

User
Process

User
Process

2

Operating System

• Coordinates access to physical resources
� CPU, memory, disk, i/o devices, etc.

• Provides services
� Protection
� Scheduling
� Memory management
� File systems
� Synchronization
� etc.

Hardware

OS Kernel

User
Process

User
Process

OS as Government

• Makes lives easy
� Promises everyone whole machine

(dedicated CPU, infinite memory, …)
� Provides standardized services

(standard libraries, window systems, …)

• Makes lives fair
� Arbitrates competing resource demands

• Makes lives safe
� Prevent accidental or malicious damage

by one program to another

Randy
Wang

3

OS History

• Development of OS paradigms:
� Phase 0: User at console
� Phase 1: Batch processing
� Phase 2: Interactive time-sharing
� Phase 3: Personal computing
� Phase 4: ?

Computing price/performance affects OS paradigm

Randy
Wang

Phase 0: User at Console

• How things work
� One program running at a time
� No OS, just a sign-up sheet for reservations
� Each user has complete control of machine

• Advantages
� Interactive!
� No one can hurt anyone else

• Disadvantages
� Reservations not accurate, leads to inefficiency
� Loading/ unloading tapes and cards takes forever and

leaves the machine idle

Randy
Wang

4

Phase 1: Batch Processing

• How things work
� Sort jobs and batch those with similar needs

to reduce unnecessary setup time
� Resident monitor provides “automatic job sequencing”:

it interprets “control cards” to automatically run a bunch
of programs without human intervention

• Advantage
� Good utilization of machine

• Disadvantagess
� Loss of interactivity (unsolvable)
� One job can screw up other jobs,

need protection (solvable)

Good for
expensive hardware
and cheap humans

Good for
expensive hardware
and cheap humans

Randy
Wang

Phase 2: Interactive Time-Sharing

• How things work
� Multiple users per single machine
� OS with multiprogramming and memory protection

• Advantages:
� Interactivity
� Sharing of resources

• Disadvantages:
� Does not always provide

reasonable response time Good for
cheap hardware

and expensive humans

Good for
cheap hardware

and expensive humans

Randy
Wang

5

Phase 3: Personal Computing

• How things work
� One machine per person
� OS with multiprogramming and memory protection

• Advantages:
� Interactivity
� Good response times

• Disadvantages:
� Sharing is harder Good for

very cheap hardware
and expensive humans

Good for
very cheap hardware

and expensive humans

Randy
Wang

Phase 4: What Next?

• How will things work?
� Many machines per person?
� Ubiquitous computing?

• What type of OS?

Good for
very, very cheap hardware

and expensive humans

Good for
very, very cheap hardware

and expensive humans

Randy
Wang

6

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Kernel

Stdio L ibrary FI LE * stream

Appl Prog
User

process

System Calls

• Processor modes
� user mode: can execute normal instructions and

access only user memory
� supervisor mode: can also execute privileged

instructions and access all of memory (e.g., devices)

• System calls
� user cannot execute privileged instructions
� users must ask OS to execute them - system calls
� system calls are often implemented using traps
� OS gains control through trap, switches to supervisor

model, performs service, switches back to user mode,
and gives control back to user

7

System Calls

• Method by which user processes invoke kernel
services: “protected” procedure call

• Unix has ~150 system calls; see
� man 2 intro
� /usr/include/syscall.h

File System

Stdio L ibrary

Appl Prog

open, cl ose, r ead,
wr i t e, seek

f open, f c l ose, pr i nt f ,
f get c , get char , …

user

kernel

Interrupt-Driven Operation

• Everything OS does is interrupt-driven
� System calls use traps to interrupt

• An interrupt stops the execution dead in its tracks,
control is transferred to the OS

� Saves the current execution context in memory
(PC, registers, etc.)

� Figures out what caused the interrupt
� Executes a piece of code (interrupt handler)
� Re-loads execution context when done,

and resumes execution

Randy
Wang

8

Interrupt Processing
Randy
Wang

System Calls (cont)

• Parameters passed…
� in fixed registers
� in fixed memory locations
� in an argument block, w/ block’s address in a register
� on the stack

• Usually invoke system calls with trap instructions
� t a 0
� with parameters in %g1 (function), %o0. . %o5,

and on the stack

• Mechanism is highly machine-dependent

9

Read System Call

• Read call
nr ead = r ead(f d, buf f er , n) ;

• Reads n bytes from f d into buf f er
� returns number of bytes read, or –1 if there’s an error

• In the caller
mov f d, %o0
mov buf f er , %o1

mov n, %o2

cal l r ead; nop

mov %o0, nr ead

Read System Call (cont)

• User-side implementation (l i bc)
r ead: set 3, %g1

t a 0
bcc L1; nop
set _er r no, %g1
st %o0, [%g1]
set –1, %o0

L1: r et l ; nop

• Kernel-side implementation
� sets the C bit if an error occurred
� stores an error code in %o0

(see /usr/include/sys/errno.h)

10

Write System Call

i nt saf e_wr i t e(i nt f d, char * buf , i nt nbyt es)
{

i nt n;
char * p = buf ;
char * q = buf + nbyt es;
whi l e (p < q) {

i f ((n = wr i t e(f d, p, q- p)) > 0)
p += n;

el se
per r or (“ saf e_wr i t e: ”) ;

}
r et ur n nbyt es;

}

Buffered I/O

• Single-character I/O is usually too slow

i nt get char (voi d) {
char c;
i f (r ead(0, &c, 1) == 1)

r et ur n c;
r et ur n EOF;

}

11

Buffered I/O (cont)

• Solution: read a chunk and dole out as needed

i nt get char (voi d) {
s t at i c char buf [1024] ;
s t at i c char * p;
s t at i c i nt n = 0;

i f (n- -) r et ur n * p++;

n = r ead(0, buf , s i zeof (buf)) ;
i f (n <= 0) r et ur n EOF;
n = 0;
p = buf ;
r et ur n get char () ;

}

Standard I/O Library
#def i ne get c(p) (- - (p) - >_cnt >= 0 ? \

(i nt) (* (uns i gned char *) (p) - >_pt r ++) : \

_f i l buf (p))

t ypedef s t r uct _i obuf {

i nt _cnt ; / * num char s l ef t i n buf f er * /

char * _pt r ; / * pt r t o next char i n buf f er * /

char * _base; / * begi nni ng of buf f er * /

i nt _buf s i ze; / * s i ze of buf f er * /

shor t _f l ag; / * open mode f l ags, et c . * /

char _f i l e; / * assoc i at ed f i l e descr i pt or * /

} FI LE;

ext er n FI LE * s t di n, * st dout , * st der r ;

12

Summary

• OS virtualizes machine
� Provides each process with illusion of having whole

machine to itself

• OS provides services
� Protection
� Sharing of resources
� Memory management
� File systems
� etc.

• Protection achieved through separate kernel
� User processes uses system calls to ask kernel

to access protected stuff on its behalf

