
An Interactive 3D Toolkit for Constructing 3D Widgets

Robert C. Zeleznik, Kenneth P. Herndon, Daniel C. Robbins,
Nate Huang, Tom Meyer, Noah Parker and John F. Hughes

Brown University
Department of Computer Science

Providence, RI 02912
(401) 863-7693; fbcz,kph,dcr,nth,twm,nfp,jfhg@cs.brown.edu

CR Categories
I.3.6 [Computer Graphics]: Methodology and Techniques; Inter-
action Techniques D.1.7 [Programming Languages]: Programming
Techniques; Visual Programming D.2.2 [Software Engineering]:
Tools and Techniques; User Interfaces

1 Introduction
Today’s user interfaces for most 3D graphics applications still de-
pend heavily on 2D GUIs and keyboard input. There have been
several recent attempts both to extend these user interfaces into 3D
and to describe intermediary 3D widgets1 that control application
objects [3; 4; 5; 7; 13; 15]. Even though this style of interaction is
a straightforward extension of interaction through intermediary 2D
widgets such as dials or sliders, we know of no efforts to develop
interactive 3D toolkits akin to UIMX or Garnet [11].

The Brown Graphics Group has had considerable experience us-
ing its Unified Graphics Architecture (UGA) system [16] to script
3D widgets such as deformation racks [14], interactive shadows [9],
parameterized models, and other constrained 3D geometries. Us-
ing this experience, we have developed an interactive toolkit to
facilitate the visual programming of the geometry and behavior of
such interactive models. The toolkit provides both a core set of 3D
widget primitives for constructing interactive behaviors based on
constrained affine transformations, and an interactive 3D interface
for combining these primitives into more complex widgets.

This video paper describes the fundamental concepts of the
toolkit and its core set of primitives. In particular, we describe
(i) the conceptual structure of the primitives, (ii) the criteria used
to select a particular primitive widget set that would be expressive
enough to let us construct a wide range of interactive 3D objects,
and (iii) the constraint relationships among the primitives.

2 Overview of our 3D Toolkit
The traditional approach to designing user interface toolkits is to
create a library of software objects and customize them through
instantiation and specialization within standard programming lan-
guages [12; 15]. Although this approach is extremely powerful, ex-
ploring the full potential requires that programmers be able to visual-
ize complex relationships among software objects (e.g., constraint

1That is, encapsulations of geometry and behavior.

networks, data- and control-flow graphs). A second paradigm,
based on graphically manipulating function networks [1; 8; 10], is
more accessible to the non-programmer, but still suffers because
inherently geometric relationships must be specified by wiring 2D
boxes together.

Our toolkit uses direct manipulation of 3D widgets to model the
construction of widgets and application objects whose geometric
components are affinely constrained. This paradigm is more natural
than scripting or dataflow programming because the process of
constructing such objects is inherently geometric, and also enables
non-programmers and designers to construct these objects visually.
The scope of these constructions includes, for example, all of the
widgets we have built in the last few years and standard joints such
as slider, pin, and ball joints.

We introduce the notion of primitive 3D widgets that can be
combined with other primitive 3D widgets, using a process called
linking, to establish one or more constraint relations between them.
In some cases, the resulting composite objects are still considered
widgets; in others, they are thought of as the behavioral scaffolding
to which the geometry of application objects can be attached. The
fact that the interface and application objects exist in the same
underlying system, UGA, allows us to blur the distinction between
them. We feel that such blurring is natural for 3D applications in
general, and especially for virtual reality applications.

Linking is related to snapping [3], but differs in requiring explicit
interactive selection of source and destination objects, followed
by explicit user confirmation. This protocol reduces clutter by
eliminating alignment objects. In the interest of simplifying the
user interface, all linking operations are unparameterized, although
in future work, parameterized linking for more advanced users and
more complicated widgets will be explored.

3 Conceptual Structure of Widget Primitives
A primitive widget combines the geometries and behaviors of its
ports and other more simple primitives. A port is an encapsulation of
one or more constraint values and a geometric representation. It can
be loosely considered a data type with the additional requirement
that its visual appearance suggest the meaning of the data. Ports are
related to one another within a single widget via a network of bi-
directional constraints. In addition, specific interaction techniques
are associated with each port. Each interaction technique tells how
to modify a port while maintaining constraints on other ports. For
example, if a user manipulates a point that is constrained to be on
a line, the constraint could be resolved by moving the line with
the point, by restricting the user’s interaction so that the point never
leaves the line, or by a combination of the two. We must choose one
of these as we implement the toolkit. These interaction techniques
can be thought of as hints to a constraint solver when the constraint
network is underdetermined so it can provide real-time, precise
interactions.

In addition to having an internal constraint network, a primitive
widget can be related to another primitive widget by linking a port
of the former to a port of the latter. This establishes a constraint
(bi- or uni-directional) between the two ports. Ports are already
constrained by the internal constraint network of a primitive, and
the new constraints must be consistent with the existing constraints.
Therefore, associated with each port is a function that determines
how to attach new constraints to that port and how to modify its
interaction techniques so as to facilitate constraint maintenance.

4 Description of the Toolkit Primitives

Having selected this framework to build our toolkit, we designed a
general set of primitives to allow the interactive construction of not
only the various 3D widgets previously scripted,but also application
objects such as parameterized geometric models. These primitives
are intended to be general enough to allow exploration of a wide set
of object designs without having to resort to hand-coding.

We chose a “coordinate system” metaphor as a basis for our
primitives. Each primitive visually represents a 0D, 1D, 2D, or 3D
coordinate system and each can be constrained by affine transforma-
tions to the coordinate systems of other primitives. This metaphor
can be used to express a wide variety of user interactions, includ-
ing those of our previous 3D widgets [5; 14; 9]. However, the
coordinate-system metaphor is only a framework for conceptual-
izing the primitives, not a strict definition of them. That is, the
primitives were designed with regard to the sometimes antagonistic
desires both to represent the coordinate system metaphor faithfully
and to provide the semantics most useful for geometric and behav-
ioral constructions.

The toolkit has primitives that correspond to position, orienta-
tion, measure (linear and angular), 2D and 3D Cartesian coordinate
systems, a general extension mechanism for importing an arbitrary
relationship, and the full set of UGA’s geometric models.

The two most basic primitives, Point and Ray, encapsulate po-
sition and orientation respectively. Points and Rays represent 0D
coordinate system entities; i.e., there is only one element2 of a Point
or a Ray and therefore 0 coordinates are required to specify it. (Con-
trast this with a line, which has an infinite number of elements, each
specified by one coordinate.) The Point primitive, represented by
a small sphere, is an abstraction of a single 3D point. The Ray
primitive, represented by an arrow, corresponds to a based vector,
although we often treat it as just a vector (its position being a display
convenience). Both primitives can be freely translated in space, but
only the Ray can be rotated.

The notion of distance (linear measure) is represented through
a 1D coordinate system primitive, the Length, represented by two
Points, a port for the 1D coordinate system (represented by a thin
cylinder connecting the Points), and a port for the Length’s measure
(represented by a small marker at the middle of the thin cylinder).
While the Length appears as a bounded line segment, it actually
encapsulates the notion of an infinite 1D coordinate system whose
origin is at the line’s start point (indicated by a small disc) and whose
unit length is equal to the distance between the two points measured
in the world coordinate system. We reuse the Point for the endpoints
to help define the user interaction with the Length. Each of the
Length’s endpoints can be directly translated while the other remains
fixed. Translating the cylinder joining the two Points translates
both endpoints by the same amount. An alternate formulation of
the Length would have both endpoints move whenever either was
translated. Choosing either formulation is difficult in the absence of
an application, so we chose the technique that seemed most useful.

Angular measure is represented by a two-handedclock-like prim-
itive, the Angle. Each hand of the clock represents a vector and the
outer ring of the clock represents the angle between the two vectors.

2In the sense of sets.

Normal
Vector

Projection of
Up Vector

Resize Handle

Center

3D
coordinate

system 2D coordinate
system

Up Vector

Figure 1: The ports of the Plane primitive.

The most complex primitive, the Plane, represents both a 2D
Cartesian plane and a 3D Cartesian space. We opted to combine
both concepts into a single primitive because users frequently use
the two concepts in conjunction with one another and because the
sets of ports are nearly identical, with a space being a superset of a
plane. Visualizing an oriented plane requires ports for the plane’s
normal, center, and up-vector (similar to the PHIGS VUP), and for
the size of a unit vector in each of the plane’s axes. In addition,
a port is required for the concept of the plane itself (as opposed to
parameters that define the plane). A rectangle in the plane represents
this port; its size determines the magnitude of each unit vector in
the Plane’s coordinate system. We also include a useful port for the
projection of the plane’s up-vector onto the plane, although this is
not a required part of a Cartesian plane. To handle a 3D Cartesian
space, the only additional port required is something to represent
the concept of the space itself. The Plane reuses Points and Rays
and introduces new geometry to represent the concept of the plane
(a rectangle) and the space (a cube at the top of the up vector).

In order that the toolkit be extensible enough to handle new
problem domains, there are also Black-box primitives, each rep-
resenting a relationship with some number of ports that lacks a
natural geometric representation. Ports on black-boxes are geomet-
rically represented as labeled buttons. The accompanying video
shows two Black-boxes: an interface to Barr’s nonlinear deforma-
tion functions [2] and a PHIGS camera specification [6].

Finally, all the geometric objects in 3D modeling environments
(cubes, spheres, CSGs, etc.) are considered collectively as a single
primitive class called Geometries. In terms of the data it represents,
each of the Geometries is essentially equivalent to a Cartesian space,
although it is not annotated with additional geometry (as is the
Plane primitive). In our system, each geometric object has an
internal boundaryrepresentation relative to a local object coordinate
system. This local coordinate system is used as a default coordinate
system associatedwith a Geometry primitive to make it functionally
equivalent to a Cartesian space. Since Geometries are not annotated
with the ports of a Plane primitive, linking operations must infer
from the context of the link operation which port of the implicit
Cartesian space is intended. Linking operations usually apply to
the origin of the Geometry’s local coordinate system, though they
can apply to the local coordinate system’s normal and up-vector.
When the default linking operation chooses the wrong port, the
user can override the choice by making the object’s local coordinate
system explicit and choosing ports directly.

5 Linking the Toolkit Primitives
We now describe what occurs in the toolkit when a port of one
primitive is linked to a port of another. Again, our choices for

the semantics of inter-primitive linking are guided by the desire
to stay close to the coordinate-system metaphor and the desire to
have reasonable behaviors when there is no obvious answer in the
underlying metaphor.

A linking operation generally asserts one of two types of re-
lations: it either establishes a bi-directional equality relationship
between two similarly typed ports or projects one port into the coor-
dinate system of the other port, using their common 3D embedding
as the medium of projection.

Consider linking a Point to another Point: here, the first Point
is set to be positionally equivalent to the second Point. However,
linking a Ray to a Ray is slightly different in that the orientation of
the first Ray is made equivalent to that of the secondRay, but the po-
sitions of the two Rays remain distinct. Rotating either Ray causes
the other to change, but translating either Ray has no effect on the
other. This choice of how to link two Rays together is ambiguous,
because a Ray actually represents two geometric values, a position
and an orientation. Thus the action is chosen by considering the
context of the linking operation. In linking a Ray to a Ray, the user
typically wants them both to have the same orientation, so only the
orientation values are linked. If a user wishes to equate the positions
of the Rays, then the position port of the Ray must be made explicit
by linking each Ray to a common Point.

A different form of linking occurs when a lower-dimensional
primitive is linked to a higher-dimensional one. Such a link causes
the lower-dimensional primitive to be geometrically projected onto
the implied span3 of the higher-dimensional primitive. After this
projection, the lower-dimensional primitive is associated with a
coordinate in the higher-dimensional primitive based on the loca-
tion of the lower-dimensional primitive in the span of the higher-
dimensional primitive. This association is then enforced during
subsequent manipulation. Typically, higher-dimensional primitives
are composed of a number of lower-dimensional primitives, each of
which can still be linked to higher-level primitives (e.g., the center
point of a Plane primitive is a Point primitive and can be linked to
other higher-dimensional primitives.)

To illustrate, consider linking a Point to a Plane. This link
operation causes the Point’s position to be projected onto the Plane.
The Point is then constrained to be at the coordinate associated with
that projection point, unless it is moved directly. Whenever the
Plane is manipulated, the Point will remain at the same position
relative to the origin and orientation of the Plane. Yet, if the Point
is manipulated, it will move in the span of the Plane, and thereby
change its associated coordinate in the Plane’s span.

Some link operations do not fall directly into either category.
When this occurs, we chose what we considered the most reason-
able solution. For example, we defined the linking of a Geometry
primitive to a Length’s measure port as a scale operation on the
Geometry primitive along the axis of the Length. If the Length’s
orientation is linked to a principal axis of the Geometry primitive
(or vice versa), then the Length acts as a standard 1D scale operation
along that axis; otherwise it is a shear.

Figure 2 displays the link behavior that applies to the toolkit
primitives when neither primitive has been linked to anything else.
In cases where one primitive has already been linked, very different
behavior may result; space prevents us from defining all these pos-
sibilities. Consider a Point linked to a Plane. The Point becomes
constrained to move only in the Plane. If the Point is subsequently
linked to a second Point, a different table takes into account the pre-
existing constraints on the first Point. In this case, the first Point
is constrained to lie at the position of the projection of the second
Point onto the Plane.

3In the linear algebra sense; a Length’s span is the line defined
by the endpoints, a Plane’s span is the plane defined by the Plane’s
center point and normal vector.

6 Implementation details

The toolkit is implemented in UGA’s scripting language, with ge-
ometry provided by UGA’s interactive solids modeler. The linking
constraints between primitives are established using UGA’s object-
dependency network.

User feedback is provided in the course of a linking operation
to aid in link specification. When the user picks a primitive to be
linked, it is highlighted and the cursor changes to indicate that the
system is waiting for the user to pick the object to link to. After the
user picks the object to link to, the system indicates its “ready” state
through a cursor change that prompts for a mouse click to confirm
the link.

Other highlighting methods indicate a primitive’s degreesof free-
dom. For example, a Ray, like other primitive widgets, is green
when it is created, indicating that it is unconstrained. If it is linked
to another Ray, its orientation is linked but not its translation, and it
turns yellow to indicate a partial constraint. When it is linked again
to a Point, it turns red, indicating that all of its degrees of freedom
are constrained. Another possibility would have been to change the
primitive geometries after linking (e.g., a spherical Point primitive
could become a thin cylinder when it is linked to a Length, and
could become a disc when linked to a Plane, although this strategy
can result in a overly large collection of shapes).

7 Future Work

The toolkit as described lacks techniques for specifying range limits
on a primitive’s degrees of freedom. These would be especially
useful when modeling the behavior of real-world objects, or when
creating interface objects such as bounded sliders, joints, and dials.
We intend to add this functionality (and perhaps other inequality
constraints too), and also extend the range of our toolkit to deal with
other graphics concerns, such as surface and volumetric modeling,
scientific data exploration of scalar and vector fields, and behavior
modeling including dynamic simulations.

When two primitives are linked together,a single constraint based
on Figure 2 is installed. However, it would often be useful to
have a set of possible link behaviors that the user can select from.
Advanced users would be able directly select the desired behavior
with only a single link operation.

Once a complex widget has been constructed from primitives,
it is useful to interactively encapsulate it, along with appropriate
parameters, for reuse in a tool library. For example, having con-
structed a shadow widget, the user should be able to easily apply
the same process to any other object. This amounts to interac-
tively defining a function and embodying it in a new, higher-level
primitive.

Highly complex widgets linked together from dozens of primi-
tives may present efficiency problems, especially for real-time inter-
action. It may be necessary to optimize the constraint network after
the widget has been completed in order to maximize the toolkit’s
evaluation speed. It would also be useful to display graphically the
constraint relations between primitives to provide feedback on the
links established on any widget.

8 Conclusions

This toolkit provides a methodology for interactively constructing
the geometric behavior of a variety of 3D widgets and parameter-
ized 3D application objects, so that non-technical users can rapidly
and interactively generate constrained 3D objects. Previously, such
widget construction required programming in C or our scripting lan-
guage. Even for experienced programmers, graphical construction
is a more suitable and efficient environment to conceive, prototype,
and implement many types of interactive 3D objects.

so
ur

ce
destination

Linking
constrains Point Ray Length Body Length

Measure
Angle

Measure
Plane
Frame

Plane
Space Geometry

Point
positions are
equated

Point to lie on
Ray

Point to lie on
Length body

Point to lie in
Plane

Point to be in
Plane’s 3D
coordinate
system

position of
Point to
position of
Geometry

Ray
Ray to position
of Point

orientations
are equated

orientation of
Ray to
orientation of
Length

orientation of
Ray to be
orientation of
length measure

orientation and
position of Ray
to lie in Plane

Ray to be in
Plane’s 3D
coordinate
system

orientation of
Ray to
orientation of
Geometry

Length
Body

End Points of
Length to lie on
Ray

End Points of
Length to lie in
Plane

End Points of
Length to be in
Plane’s 3D
coordinate
system

Length
Measure

End Points of
Length to lie on
Ray

length of first
Length to be
length of
second Length

length of
Length to map
to Angle’s
measure

Angle
Measure

Angle’s
measure to map
to length of
Length

first Angle’s
measure to be
second Angle’s
measure

Geometry
position of
Geometry to
position of
second Point

orientation of
Geometry to
Ray’s
orientation

Geometry to
lie on Length
body

scale of
Geometry to
length of
Length

Geometry to
lie in Plane

Geometry to
be in Plane’s
3D coordinate
system

positions are
equated

Figure 2: Linking behaviors for unconstrained primitives.

Acknowledgments
This work was supported in part by the NSF/ARPA Science and
Technology Center for Computer Graphics and Scientific Visualiza-
tion and by ONR Contract N00014-91-J-4052, ARPA Order 8225.
We also gratefully acknowledge the sponsorship of IBM, NCR, Sun
Microsystems, Hewlett Packard, Digital Equipment Corporation,
and NASA. We thank Andries van Dam and the members of the
Brown University Graphics Group for their help and support. Please
contact the authors for a copy of the accompanying videotape.

References
[1] AVS, Inc. AVS Developer’s Guide, v. 3.0 , 1991.

[2] A. H. Barr. Global and local deformations of solid primitives.
Computer Graphics (SIGGRAPH ’84 Proceedings) , 18(3):21–
30, July 1984.

[3] Eric A. Bier. Snap-dragging in three dimensions. Com-
puter Graphics (1990 Symposium on Interactive 3D Graph-
ics), 24(2):193–204, March 1990.

[4] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay.
The information visualizer, an information workspace. In
Proceedings of ACM CHI’91 Conference on Human Factors
in Computing Systems, pages 181–188, 1991.

[5] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon,
Daniel C. Robbins, Robert C. Zeleznik, and Andries van Dam.
Three-dimensional widgets. Computer Graphics (1992 Sym-
posium on Interactive 3D Graphics) , 25(2):183–188, March
1992.

[6] James D. Foley, Andries van Dam, Steven Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice .
Addison-Wesley, 2nd edition, 1990.

[7] Michael Gleicher and Andrew Witkin. Through-the-lens cam-
era control. Computer Graphics (SIGGRAPH ’92 Proceed-
ings), 26(2):331–340, July 1992.

[8] Paul E. Haeberli. Conman: A visual programming language
for interactive graphics. Computer Graphics (SIGGRAPH ’88
Proceedings), 22(4):103–111, August 1988.

[9] Kenneth P. Herndon, Robert C. Zeleznik, Daniel C. Robbins,
D. Brookshire Conner, Scott S. Snibbe, and Andries van Dam.
Interactive shadows. 1992 UIST Proceedings , pages 1–6,
November 1992.

[10] Michael Kass. CONDOR: Constraint-based dataflow. Com-
puter Graphics (SIGGRAPH ’92 Proceedings) , 26(2):321–
330, July 1992.

[11] Brad A. Myers, Dario A. Guise, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin, An-
drew Mickish, and Philippe Marchal. GARNET comprehen-
sive support for graphical, highly interactive user interfaces.
IEEE COMPUTER magazine, pages 71–85, November 1990.

[12] Open Software Foundation. OSF/Motif Reference Guide.

[13] Steve Sistare. Graphical interaction techniques in constraint-
based geometric modeling. In Steve MacKay and Evelyn M.
Kidd, editors, Graphics Interface ’91 Proceedings , pages
161–164. Canadian Man-Computer Communications Society,
March 1991.

[14] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins,
D. Brookshire Conner, and Andries van Dam. Using defor-
mations to explore 3d widget design. Computer Graphics
(SIGGRAPH ’92 Proceedings) , 26(2):351–352, July 1992.

[15] Paul S. Strauss and Rikk Carey. An object-oriented 3d graphics
toolkit. Computer Graphics (SIGGRAPH ’92 Proceedings) ,
26(2):341–349, July 1992.

[16] Robert C. Zeleznik, D. Brookshire Conner, Matthias M.
Wloka, Daniel G. Aliaga, Nathan T. Huang, Philip M. Hub-
bard, Brian Knep, Henry Kaufman, John F. Hughes, and An-
dries van Dam. An object-oriented framework for the integra-
tion of interactive animation techniques. Computer Graphics
(SIGGRAPH ’91 Proceedings) , 25(4):105–112, July 1991.

