w11 TOOL"

WORLD TOOLKIT®

REFERENCE MANUAL

RELEASE 9

ENGINEERING ANIMATION, INC.
SENSE8® PRODUCT LINE

100 Shoreline Highway, Suite 282
Mill Valley, CA 94941

O

THE SENSES PRODUCT LINE

This Reference Manual copyright1991 - 1999 by Engineering Animation, Inc. All
rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written
consent of Engineering Animation, Inc.

SENSES, WorldToolKit, and World Up are registered trademarks of Engineering
Animation, Inc. World2World is a trademark of Engineering Animation, Inc. Sound
technology provided by DiamondWare, Ltd. Portions Copyright 1994-1999
DiamondWare, Ltd. All rights reserved. Other brand and product names are
trademarks or registered trademarks of their respective holders.

WorldToolKit is based in part on the work of the Independent JPEG Group.
Current versionApril 1999

ENGINEERING ANIMATION, INC.
SENSES8 Product Line

100 Shoreline Highway, Suite 282
Mill Valley, CA 94941 USA
Telephone: 415/339-3200
Facsimile: 415/339-3201

Web site: www.sense8.com

Acknowledgements to the WorldToolKit team: Leon Franzen, Hans Kessock, Dave
Hinkle, Sumanth Ravulakollu and Mukund Bhakta.

This book was printed in the United States of America.

Contents in Brief

Introduction to WOorldTOOIKItcccoviiiieiiiiiiiiiiiiiieeeeceee e 1-1
THE UNIVEISE ..ottt e e e e e e e e 2-1
Object/Property/Event ArchiteCtureccccovvveevviiiiiiiiiiiieeeeeen. 3-1
SCENE GraphSeuiiiiii i 4-1
MOVADIE NOAESeuuiiiiiii e 5-1
(CT=T0] 4[] ([P RPURPRPRR 6-1
(0] 1Yo o] o P PPPPUPPR 7-1
MALEIIAIS .ottt e e e e e e e arnaane 8-1
T I 1= A EERRURSUPRRR 9-1
TEXIUIES .ottt e e e e e e e e e e e eennnas 10-1
1=] TR 11-1
LIGNES e 12-1
SEBINSOIS ittt e e e e 13-1
PatiNS ..o 14-1
MOLION LINKS .o e e e e e eeeeaeeees 15-1
VIEWPOINES .. 16-1
WINGOWS ...t e e e e e as 17-1
Adding User Interface (Ul) Objectsccccvviiiiiiiiiiiis 18-1
Drawing FUNCLIONSccoooiiiiiiceeess s 19-1
SOUNG i e e e e e e e e e e e e erarrae 20-1
Client-Server Networking

(Via the World2World Servers)cccccovieeeeeeeeiieeeeeceeee e 21-1
Multicast Networkingccceuuviiiiiiiiiiiiiiee e 22-1
S T=T = L o £ T 23-1
POrtabilityoouvieiiiii i e 24-1
Math LIDIarycooooiiiiiii e 25-1
CH++ Programmingooooooooueiiiiiniiieieee e ee e e e e e e e e s ssasneeeeees 26-1
Frequently Asked QUESLIONScoovvviiiiiiiiiiiiiee e, A-1
Environment Variablesooovviiiiiiiiiiiiiiienee e B-1
Defined COoNSIANTS.....cooiiiie i C-1
Error Messages and WarningsS.............uceeeiiiiieeeeeeeeeeeeeeeeeeesnnnnnns D-1
WIiting @ SENSOF DIIVET ...ccoiiiiiiiiiei ittt E-1
WTK Neutral File FOrmat............cccooviviiiiiiiiciin e F-1
Transitioning From

Version 2.1 To Release 6/7/8/9 ..o G-1

Transitioning From Release 6 To Release 7/8/9..........cccccccc.uuu. H-1

Third-party SOftWare..........ccuvviiiiiiiiieee e -1
Sources of COMPONENTS.......uuiiiiiiiiie e J-1
The WTK USEIrS’ GIrOUPccceeeiiieiiieeeeieiiiiiiis s e s e e e e e e e e e e e e eeeeeaeennnnns K-1
Technical SUPPOIT ... L-1
GlOSSANNY ..uiii i ——————— M-1

it WorldToolKit Reference Manual

Contents

1: Introduction to WorldTOOIKIteieiiiiiiiiieieiiiieeeeceeveiiins 1-1
L= [T 4T RSP 1-1
WAL IS WTK? ot 1-1

Scene Graph ArChiteCIUIEooiiiiiiiiieeiee e 1-2
What WTK DOES ...coooiiiiiiieeee e 1-2
Overview Of the WTK CIaSSESciiiiiiiiiiiiiiii et e e eeaaens 1-3
Naming CONVENTIONScccvvviiiiiiiie et e e e e e e eae s 1-4
Additional FEATUIEScoiiiiii i 1-5
WTK DOCUMENTALION ...ttt e e eee e 1-7
Special INtEIreSt GrOUPeiiiiieiiiiiiiiieiie et 1-11
Basic System Configurationcccveiiiiieeeiiiiiiiie e 1-12
INPUt SENSOIS SUPPOIEAcooeeiiiiie e e 1-12
Extending a System for Virtual Realityc.coovviiiiiiiii e 1-12
A Sample WTK APPHCALIONciiiiieciieeeeics e 1-13
Important WTK FUNCHONScooiiiiiiiiiiie et 1-14
(0 g1} = U 1-15
GBOIMBIIY i 1-15
POIYGON e e e e e e 1-16
Y] 0 {0] TP PUPPPPPPPRTRTN 1-16
[T | o | P PPPT T PRUPPRPRRPR 1-17
VIBWPOINT ..ttt e e e s e e e e e e et r e e e e e e aa 1-17
o 11 o SRR PUOOUPSSRR 1-17
A4 o [0 1 PR 1-18
Yot =] =] = T o I 1-18
9 = .Y/ T 1-19
USEI INEITACE ...t 1-19
ST 10 T O UPPPRTTRR 1-19
2. The UNIVEISEcooieeeecei et 2-1
INEFOAUCTION .. 2-1
Universe Construction and DeStruCtionc.eeevveiiiiiiiiiiiieeeeee e 2-1
Simulation Managementooviiiiiiiiiiiiiiieiee et 2-5
The Universe ACtion FUNCHONooiiiiiiiiiiiiiiiciee e 2-11
The UNiverse’s ODJECTScooiiiiiiiiiiiiicccece e 2-12

Global Rendering Parametersccccccvvveeiiiiiiiiieeee e 2-18

ReNdEering OPLIONSvvviiiiiiiiieiiieeeee e 2-18
Other Global FUNCLIONScooiiiiiiiiiiiiiee e 2-20
Performance and Timer FUNCLIONS ..., 2-22
UNIVEISE OPLIONS ...eiiiiiiiiiie ettt ettt e e e e e e e e e e e s 2-24
RESOUICE FlES ..o, 2-28
The Resource HierarChyccovoiieiiiiiiiiiiii e ee e 2-29
Choosing an Appropriate Resource Fileccveeviiiiiiiveieiiicii e, 2-29
WTK Parameters Specified in a Resource Filecccccviieiiiiiirieiiinnnnnn. 2-30
Telling WTK to Use Resource INformationccoocecvvvveeeeeeennnniiienne. 2-32
Modes of Stere0SCOPIC VIBWINGccooiuiiiiiiiiieeeeeiiiiiiie e e e e 2-34
Field Sequential MOdec.ooiiiiiiiiie e 2-34
OVEr/UNAEr MOAE ..., 2-35
INterlaced MOOE ... e e e e e e e e e 2-36
3: Object/Property/Event Architectureccccceeeeeeeeeeiivinnennnnn, 3-1
L@ YT QT T 3-1
Supported Types and Supplied Propertiesccccccoeeeeiiiiiiiiiieeeie e 3-2
WTNOAE PrOPEILIES ..covvvveeiiieeiee e, 3-3
WTVIEWPOINT PrOPEILIES ...veiieeiicee s 3-4
WTWINAOW PTOPEITIES ..vvevviiiiiiiieeeeee et e e e e e e e e e e e e e 3-4
WTSENSON PrOPEITIES ..cooiiiiiieii ettt 3-5
WTPAN PTOPEITIES ..ottt e e e s 3-6
WTbase Objects and FUNCLIONScoooiiiiiiiiiiiieeice e 3-7
WTbase Functions for WThase ODbJectscccooveeiviiiiiiiiiiiccceeieic e 3-7
WTbase Functions for the Supported WTK Object Typescccevvvnnnnn.n. 3-10
(0] 01T 1= 3-14
BV BN e e e e e e e e eaeas 3-23
L1101 3-27
4: Scene Graphsccoooiiiiiec e 4-1
INEFOAUCTION . e e e et e e e e e e anes 4-2
THE SCENE ..t 4-2
Elements Of A SCENEooiiiiiiiiie e 4-2
THE VIEWPOINT ..o e e 4-3
THe SCENE Graph ...ccooiiieeiiie e 4-3
Why WTK Uses the Scene Graph StruCtureccccceevvviiniiiieeeeeeeeeniiee 4-4
Scene Graph Concepts in Detailcoovviiiiiiiiiiiee e 4-5
THE NOE bbbttt bbbt e e e e 4-5
The Scene Graph HIierarChycccooiiiiiiiiiiiiii e 4-6
Viewing your Scene Graphoiiiiiiiiie e 4-8
How WTK Draws the Scene Graphccccviiiiiiiieiiiiiiiieeeeeeeeeeeeee 4-9

iv. WorldToolKit Reference Manual

Why the Ordering of Children is Importantccce oo, 4-15

State Accumulation and State Propagationcccccoooie . 4-17
State ENCAPSUIALIONuvuiiiiiiiiiiiiiiiiiiiceeiieeee e a e e e e aaaaaaa e 4-21
Other NOGE TYPES ..ottt 4-25
Building @ SCENE Graphcooiiiiiiiiiiieie e 4-29
How to Create the Scene Graph Tree ... 4-29
Building a Composite Object in the Scene —
Composite TransSforMatioONScoiieeiirieiiii i e e e e e e e eeaaens 4-30
WTK Scene Graph FUNCLIONSccooiiiiiiiiii e 4-39
Constructing NOAE TYPES ...cooiiiiiiiiiiiee e 4-39
Constructing LiIght NOUESoeviiiiiiiiiiiiiiieeee e 4-43
Constructing Geometry NOUESouvviiiiiiiiiiiiiiieie e 4-44
Constructing Movable NOUESccovvviiiiiiiiii e 4-45
Constructing FOG NOGESovvuiiiiicii e e e 4-45
Loading a File into a Scene Graph ..., 4-45
Saving & SCENE Graphooooiiiiiiiee e 4-48
Node Property FUNCHONScc.uviiiiiiiiiiiiiiee e 4-48
Geometrical Property FUNCLIONScooiiiiiiiiiiiii e 4-51
LOD NOAE FUNCLIONScoeiiiiieei et 4-55
Separator Node FUNCHONSoioiiiiiiieecs et e e 4-56
Switch NOde FUNCLIONSooooiiiiiiiiieeeeee e 4-57
Transform NOde FUNCHONSuvviiiiiiiiiiiiieiieeeeee e 4-58
URL for Anchor and Inline NOJEScovvvvvviiiiiiiiiiiiiiieeeeeeeeeeeeee e 4-62
ANCOr NOE FUNCLIONSeeiiiiiiiiiiiiiiiiiiiiiiiieiibiiibieeeb e 4-63
INline NOdEe FUNCHIONS ...ttt e e 4-63
FOg NOdE FUNCLONSuuiiiiic i e e e e e e annnans 4-64
Open GL Callback Node FUNCHONSoevvieiiiiiiiiiiiiiieeeeee e 4-67
BOUNGING BOXES ...oeiiiiiiiieieeee ettt e e 4-72
Scene Graph ASSEMDIYooiiiiiiii e 4-74
ULIILY FUNCHIONS ..t e e e e et e e e e e e e e e ennnens 4-76
Scene Graph Structure INQUITYoouveiinie e 4-76
Scene Graph TraVvVerSal ... ceeeeiiiis e e e 4-78
Additional Topics Related to the Scene Graphccccccvviiiiiiiiiniiiee e, 4-79
N0 0 [N == 11 1 PRSP SRRR 4-79
INtErSECHION TESHING ..vviiiiiiiiiiiiiie ittt 4-85
o T Vo T o] Yo o 1 4-91
SENSOr AACHIMENTuiiiiiiiiiiiii e e e e e e e e e e e e e aaeeeas 4-92
5: Movable NOAESvuvuiiiiiiie e 5-1
INEFOAUCTION .. 5-1
What Makes Up a Movable NOUE?oooiviiiiiiiiieeeee e 5-1
Movable Node Creation FUNCHONSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeenes 5-3

Geometry and Light Movable Node Creationccccccevvvvvvvviiiiiiiiiiccne, 5-3

Group Movable NOde Creationeeeeviiiiirmiiriiiiiriieerr.———- 5-4
Movable Nodes Compared to ‘Regular’ Nodescccccoeeeeiii, 5-6
Movable Node Position and Orientation ... 5-7
Movable Node HIierarChi€seoeiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiiieiieeeeeeeeeeeeeeneeeenees 5-9
Movable NOde INSTANCINGuvviiiiiiiiiiiiie e 5-13
(N CT=T0] 1] 1= SR 6-1
INEFOAUCTION ...t e e e e s et eee e e aaes 6-1
Modeling CONSIAEratioNScevvvuieeeiiierieeiiiriiieesiererieerererrrer ... 6-2
File Formats Supported By WTK ..o 6-2
WTK VRML 1.0 LIMItAtIONS ...evvvieieiiiiiiiiee e 6-4
Exporting a File in the VRML FOrmatcccccooiiiiiiiiiiiiiciiieeeeee 6-4
Notes on the Autodesk 3DStudio Mesh readerccceeeivii 6-5
Notes on the MultiGen OpenFlight File Readerccccoooovviviiiiiiiiiiiencenn, 6-5
Subfaces in MultiGen/ModelGen ... 6-7
Constructing a World with Multiple ObJectsccccvveeiiiiiiiii e 6-7
Vertex Normals and Gouraud Shadingccccvvvviiiieeiiinniiiieeeee e 6-8
Vertex Colors and RAIOSILYcovvuuiuiiiiiiiiiiireeis e 6-9
Back Face REJECHONccovvueiiiiiiiieiies e s 6-10
Overlapping POIYQONScoovuiiiiicece e 6-12
RouNndoff and SCalINGuuviiiiiiiieeii e 6-13
Creating Predefined GEOMELIIEScccuiiiiiiiiiieeei e 6-14
Creating CUStOM GEOMELIESccueiiiieiieee et e e 6-21
Other Geometry FUNCLIONSooouuiiiiiiie st e e e e e 6-26
LT g Loy Y wd (0] 01T [6-28
Materials used with GEOMELIIESeeiiiiiiiiiiiiiiie 6-30
Geometry Polygons and VErtiCESuuiiiiiiiiiiiiiiiiiiiieee e 6-32
Geometry MOIfICALIONcooiiiiiiiiiiii e 6-37
Geometry OPIMIZALIONuviiiiiieeiiiiie e 6-39
Creating Reflection Mapped Optimized Geometriescccccceeeeiveeevrnnnnes 6-41
Vertex-level Geometry EAitiNgooeeiiiiiiiiii e 6-42
A 01 Y/o o] 1P 7-1
1o T [Tod 1] o ISR 7-1
010 o oI N 11] 01U (=SSR 7-2
(0] Y7o o 1N 1 PP 7-6
Geometry that Contains a Polygon ... 7-7
POIYOON ACCESS ..ottt e e e et e e e e e e e 7-8
VEIMEX ACCESS ..ttt ettt e e e et et e et e e e e e e e e e s 7-8
Dynamic Polygon Creationeeieieeeiiiiiiiiiiieee e 7-10
Deleting POIYGONS ..o 7-12

vi WorldToolKit Reference Manual

Polygon Intersection TESHNGcvvvviviiiiiiiiiiieeeeeeeeeeeee e 7-13

8. MALEIAIS ... 8-1
1] (oo [FTox 1o] o IR P PP PRPTPT 8-1
Material PrOPEITIES ..o 8-1
Calculations Made to Determing ColOrccccooiiiiiiiiiie e 8-3
About “In” and “OUt” VECIOISuuuuiiiiiiiiiiiiiiiiiiiiiiiii e 8-5
Using Material TabIlescooii i e eeaaaees 8-5
Material Table FUNCHONSiiiiiiiiiiiiiiiiiiiiiiiii e e e eeeeeeas 8-7
Example: Adding Shininess to a Multi-colored Geometrycccccvvvnn... 8-10
Material Table Entry FUNCLIONSooiiiiiiiiiiiiie e 8-14
AAVANCEA TOPICS ittt e e e e e e e e e e e e 8-17
How WTK Deals With Out-Of-Range INdIiCeSccccuvrriiieeeeeeniniiiiinee, 8-17
Using Material Index Table ENLHESccoveiieiiiiiiiiiiie e 8-18
Using Materials Tables With GEOMEtriesccccccvvieiiiiiivveeiiiiin e, 8-18
Notes on Specific File FOrmatscccvvviiiiiieeeee e 8-19
OpenGL Compatibilityccvviiiiiieiii e 8-19
97 3D TeXE e 9-1
Creating Three-dimensional Text in WTKccccciiii, 9-1
NFF 3D FONEFIIES ittt 9-5
L10: TEXIUIES .ottt eaaa s 10-1
INEFOAUCTION ..ttt e e eeeeee 10-2
Supported Texture File FOrMALS ... 10-3
APPIYING TEXIUIES ...eiiiiieeiiiiiite et e e e e e eas 10-4
How WTK Applies a Texture to a Polygonccccooeeeeiiii e, 10-5
TEXEUIMNE SIZE ..vitiiiiiiiiiiiitit ittt ettt ettt e et ettt e et e e e e e e e e e e e e e e e eaaeaaeaeas 10-7
Texture Naming CONVENTIONScccuuuiiiiiieeieieeiiiies e e e 10-8
TransSpParent TEXIUIEScooeuriiiiii e e e e 10-8
Applying Textures with Explicit uv Valuescccoooiiiiiiiiiiieiiiniiiinne, 10-13
ANIMALING TEXIUINES ...eeeiiiiieiiiiete e 10-18
Assigning Textures in 3D File FOrmMatscccccvviiiiiee e, 10-22
Deleting TEXIUIES ...ovvvvieiii it e e 10-23
Changing Texture PrOPertieSccoiiieiiiieiiiiie e e e e e e e e eeans 10-23
FIENNGTEXIUMES ..ottt e e 10-24
Setting the Default Texture Filter ... 10-25
Manipulating TEXIUIESccoiiiiiiiiiiie e 10-27
Texture Rotation, Scaling, and Other Operationscccccceeeevvevvivennnnnn. 10-27
Manipulating Texture uv Values DIreCtlyccccevvviiiiiiiiiinieiiiieee, 10-32
Yo =TS o TN 10T Vo 11 o TSP 10-33

vii

L0 T ASKS e 11-1

10T [Td 1 o ISR 111
Creation and Deletion FUNCLONSooiiiiiiiiiiiiiiiieeeee e 11-2
Other WTLask FUNCLONSoooiiiiiiiiiiiiiie e 11-5
12 LIgNES oo e 12-1
INEFOAUCTION ..o 12-1
LIght NOAES ..o 12-1
Light Node ARIHDULESoooiiiiiiieeeee e 12-2
(01 (o1] F=1 1] o [OX0] o] SR USRS 12-3
Determining INTENSILYuvveii e s 12-3
Creating SNAadOWSouviiiiiii e e 12-4
USING LIGNT FIIES .o 12-4
PerformanCeooooiiiiiiiii e 12-4
Constructing LiIght NOUEScoviiiiiiiiiiiieieie e 12-5
[0 1O o] 01T 1= 12-12
13: SENSOIS .ottt et aaees 13-1
Introduction to the SENSOr ClaSSoeeiiiiiiiiiiiiiiiiieiiieiieeeeieeeieeeeeeeeeeeeeeeeeeeeeees 13-2
Sensor Lag and Frame-Tatecccoccoooooioriioieeareee e 13-5
Sensor Construction and DesStruCtioncoooeeeiiiiiie e 13-5
ACCESSING SENSON STALE ..vvvvviiiiiiiiiiiiiiiiiiiiier i nae 13-11
Rotating SENSOr INPULeeeiiiiiiiieceie e e e e e e eaeaene 13-16
Geometry Motion Reference Framescccovviiiiiieeiiiiiin e ee e 13-19
Constraining SENSOT INPULuvviiiiii e 13-21
Using Different Baud RAIESccoiiiiiiiiiiiiiiieeiiiee e 13-22
SENSON NAME .ot e e e e e ee bbb e a e e e aeeaaenes 13-23
User-specifiable SENSOr Datacceuuiiiiiiiiiiiieicis e 13-23
CUSLOM SENSOI DIVEIS oo 13-24
TRE IMOUSE ..t 13-26
ASCENSION Bl ...ttt ee e e e e eeee e 13-39
Streaming-Mode Flock of Birds DIiVErccooiiiiiiiiiiiiiieeiiiiiieeeeeeeenn 13-44
Ascension Extended Range Birdccooocuiiiiiiiiieiiiiiiiiee e 13-51
CIS Graphics Geometry Ball, Jr.cooooiiiiiiiiiii e 13-53
Fakespace BOOM DEVICESccoiveiiiiiiiiiiiiiii et e e e 13-55
Fakespace Pinch GIove SYSIeMccooviiiiiiiiiiiiii e 13-59
Fifth Dimension Technologies’ 5DT GIOVecccccvviieiiiiiiiiiiieeceeeee 13-63
GamEPOIt JOYSHICK ...ooeviiiiiiie e 13-67
T 1 2= 11T LSRR 13-67
Installing the joystick driver under NTcoviiiiiieiiiiece e, 13-67
Configuring and calibrating the joystickccovviiiiii e, 13-67
Creating a Gameport Joystick Sensor Objectccccceviiiiiiiiviirieiiieennn. 13-68

viii WorldToolKit Reference Manual

Logitech 3D Mouse (Red Baron)ccuvvveiiiiiiiiiiiiiieeeeiiieeeeevivieeesvsssiennnenes 13-73

Logitech Head Tracker ..., 13-77
Logitech Space Control Mouse (Magellan)cevvvvvvvvvveivieiierinninninnnnn. 13-81
PolnemuUs ISOTRAK ...t ee e e eeees 13-85
Polhemus ISOTRAK Il ... 13-88
Polhemus INSIdeTRAK ..o 13-90
POINEMUS FASTRAK .ottt 13-92
Precision Navigation Wayfinder-VRcccoiiiiiiiiiiiiiiiineeeeeeeee e 13-96
Spacetec IMC Spaceball ... 13-100
Spacetec IMC Spaceball SpaceControllercoovvvvveeiieevieeiiieeiieiiiieeee. 13-104
StereoGraphics CrystalEyes and CrystalEyesVR LCD Shutter Glasses ..13-108
ThrustMaster Formula T2 Steering Console ..., 13-111
ThrustMaster Serial JOYSHCKccooeviiiiiiii e e 13-113
VictorMaxx Technologies’ CyberMaxx2 HMDcccccccvcieiieiiivveeninnnnn, 13-119
Virtual i-O 1-glasSes!oovvveiii i 13-121
Virtual Technologies CyberGIoVecccooiiiiiiiiiiiciiiieeee e 13-123
Initializing the CyberGIloVe ... 13-124
Calibrating the CyberGIoVeccovvuiiiii e e 13-126
Creating a Graphical Hand Model for CyberGlovecccovvvvvnnnnn. 13-127
Setting the Visibility of the Hand Modelcccoooviiiiiiiiiiiii e, 13-130
Accessing Hand Model ODJECESooooiiiiiiiiiiiieeeieeee e 13-130
Accessing the CyberGlove Bend Angle Dataeevvvvveieiniiiniinnnnnnns 13-132
Defined Constants for the CyberGlove Hand Modelooo.... 13-134
FOr WindOWS NT USEIS: ...oiiiiiiiiiiiiiiiiieiitiiiiieniienenaineeennenreeenneenreennnnnneenne 13-135
14: PathS oo 14-1
1] (oo [FTox 1o] o PP PP PRPR 14-1
Path Construction and DeStrUCLIONuuueeuiiuumeiiiiiiiiiiiiiieeieneenennnnns 14-2
LT Tod 1o RSP UUREER 14-4
Path ManagemENTouiiiiiieiiiii et e e e e 14-8
Loading and Saving Pathsccooiiiiiiiiiiiii e e 14-11
Path File FOrmat ... 14-12
Recording and Playbackcoooiiiiiiiiiiiiicc e 14-13
Path Element Management ... 14-24
The WTpathelement CIaSScoeeiiiiiiiiiiieeeee e 14-24
Path EQITING ..eeeeeeiiiiiiiiee et 14-27
Path Name ... 14-29
User-specifiable Path Datacccccvvviiiiiiiic s, 14-29
15: MOION LINKS weviiiieiiii e e e e 15-1
10T ¥ Td 1] o ISP 15-1
Motion Link Sources and TargetsSccccoveeeeirieiiiiiiieeeeeeeeiiese e e e 15-1

REFEIENCE FramMES ...oeieiiie e r e e 15-2

CONSITAINTS ..eiiiiiiei it e e e e e s s e e e e e s e s e e e e e e e e enanne 15-3
MOtioN LINK FUNCLIONSviiiiiiiiiiiiieeeeeee et 15-3
Constraints on Motion lINKScooiiiiiiiii e 15-9
16: VIEWPOINTS ..evviiiiiiiiiieeeeeeie ettt e e e e e e e e 16-1
T 10T [Td 1T o ISR 16-1
Basic Viewpoint ManagemeENtuuuuuueeiuerriiereeeiiirrersesrrrnnerrnnn.. 16-3
Linking a Sensor to a VIiewpoint ..., 16-6
Accessing Viewpoint Position and Orientationcccccvvveevvvivivevvinniiinnnnn, 16-8
Using a Specified Reference Framecccccoeeeiiiiiiiiiiiieeeeeeeeeeeeen 16-14
Viewpoint ASPECE RALIOevviiiiiiiiiiiiiiiiie e 16-18
STEIEO VIBWING ...evtiiiieeeeieitiie ettt e e e e e e e e e eeeeas 16-19
Coordinate TransformMationSceeiiiuiiiiiiiieiiiiiiiiiiieeieeeiieeeeeereeeeeeeeeeeaeee 16-24
ViIEWPOINT NAIME ..ot e e e e e s e e e e e eeaeees 16-25
User-specifiable Viewpoint Dataccccceevviiiiiniiciiecccie e 16-25
Viewpoint INTErSECHION TESTuviiiieiiiiiiiiie e 16-26
17 WINAOWS ..ooviiiiiiiiieeeee ettt 17-1
INEFOAUCTION ... e s ee e as 17-1
Window Construction and DeStruCtionceeeeviiiiiiiiieinee e 17-2
Accessing Universe’s WIindows ... 17-8
Associating Scene Graphs with WiNdOWSccviiiiiiiiiiiiiiieeeeieee 17-8
Window Size and PlaCemMENTcooiiiiiiiieie e 17-10
WiINAOWS and VIEWPOINTSueiiiiiiiiiiiiiiiiie e e e e e 17-11
Zooming the WIindow VIEWPOINTccooviiiiiiiiiiiiinee e 17-13
Window-projection FUNCLONSuuuiiiiiiiiiiiiiics e 17-14
Other Window-projection FUNCLIONSc.coovviiiiiiiiieccccecin e 17-17
Picking and Ray CaStNGccooiiuiiiiiiiiiiee e 17-20
Window-rendering Properti€s ... 17-22
WINAOW NAME ..o e 17-27
User-specifiable WIindow Dataccooveeiiiiiiiiiiiiiieecceeeiis e 17-28
System-specific WINAOW IDcoooiiiiiiiiiiis et 17-29
V22277 Lo 1 17-30
18: Adding User Interface (Ul) ObJectscevvvvvvvvvvnciiiinnenn. 18-1
Creating a Ul Application ... 18-2
User INterface ODJECLSuiiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e eeeeeeas 18-13
OIS e 18-13
File-SeIeCtioN BOXESuciiiiiiiiiiiiiiiiiiee et 18-13
MESSAGE BOXES ..uiiiiiiiiiiiiii ettt 18-15
TeXt-INPUL DIAIOGS ...cooiiiiiiie e 18-15

x WorldToolKit Reference Manual

(01 gT=Tod (o TU)1 (0 =TT 18-16

LADEIS ..o 18-17
PUSHDULIONS ..ot 18-18
RAAIODOXES ..o 18-18
Yo 1= SRS 18-19
Yo (o] 1= o I IR £ SR 18-21
Yol (o] =T o B I =) PP PP PPPPPPPPPP 18-23
TeXt FIEIAS oo 18-24
IMIBINUS ettt e e et e a e e e e e s 18-24
10T 7= 1 18-28
User Interface Object’s Utility FUNCLIONSovviiiiiiiiiiiiieeeceeeees 18-29
Accessing the Scale FACIOrS ...t 18-29
Accessing the Text for Text Ul ODJectScoeviveviiiiiiiiiieeee e, 18-29
Accessing the Position of a Selection (Scrolled Lists and Radioboxes) .18-31
Accessing the Number of Items (Scrolled Lists and Radioboxes) 18-32
Accessing Text of Scrolled LisSt HemSovvvviiiiiiiiiiieeee e 18-32
Inserting or Deleting Items (Scrolled LiStS)ccccvviiviiiieeeiiniiiiieeeee, 18-33
Accessing Status of Ul ODJECESccevvviiiiiiiiiiieein e 18-34
Accessing State of Ul Objects (Menu Items and Checkbuttons) 18-35
Accessing the Position of Ul 0bJects ..o, 18-36
Extending The Ul Functionality of Your Applicationccccccoveunnne 18-37
Controlling the WorldToolKit Simulation LOOpcccccvvvevveeeiniiiiiiiee. 18-37
Miscellaneous FUNCHONSuveiiiiiiieeiiiiiiieieiieiiieeeaeerieereeereeeeeeeeneenenennne 18-40
19: Drawing FUNCLIONSccccoeeiiiiieiieeeiiiii e e e e e e 19-1
User-defined Drawing FUNCLIONSccoooviiiiiiiiiieeeeeeeeeeeeeeeee e 19-1
2D DIraWiNg oooeeeeeiiieieeeeee e —————— 19-1
Pre-defined 2D Drawing FUNCLIONScooiiiiiiiiiiiiieeeeiiiiee e 19-1
3D DIFAWING ettt e e e e e e e e e e s 19-8
Pre-defined 3D Drawing FUNCLIONScooiiiiiiiiiiiiieeeeeie e 19-8
120 LS Yo 11] o P UPPPUTRRRS 20-1
1] (oo [FTox 1o] o PP PP PRPR 20-1
SUPPOMEA DEVICES ..o 20-1
Device-level FUNCIONAIILYccciviiiiiiiiee e 20-3
CRE DeVvice Parameterscoooieiiiiieeeeee e 20-7
Device-level Spatializing FUNCLIONScoviiiiiiiiiiieeeee e 20-9
Sound-level FUNCLONAIILYcoouuiiiiiiicee e 20-10
Sound-level Spatializing FUNCLONSuiiiiiiiiiinin e 20-17

21: Client-Server Networking
(Via the World2World SEervers)ccccieeeeeieeiieeeeeceee e 21-1

Xi

1) 100 [WTo3 1 o] o RPN 21-1

Sharing Propertiescooooveiiiiii 21-2
LOCKEA PrOPEITIES ...vvviiiiiiiiiiiiiiieiiiieeee ettt ettt a e a e 21-3
Persistent PrOPEITIESuuiiiiiiiiiieeii et e 21-3
Update FIEQUENCIESooviiiieiiiiiiiiie et e e 21-3
Time SeNSItiVe PrOPEITIESccoviiiiiieiiee et 21-4
WTbase — Working with Unsupported Object Typesccccevvvevvvviviieninnnn. 21-5
Property Sharing FUNCLIONScoovuiiiiiiiciicieiee e e e 21-5

] = TE=To] fo TN o PP 21-11
LOCKEd Shar€groUPSeeeeiieeiiiiiiiiiiiiiie et e e e e e e 21-12
Registered INTEIeStc.eiiiiiiee e 21-13
Persistent SNAregroUPSccuvvieeiiiieie e 21-14
Sharegroup FUNCHONSocoiiiiiiiiii et e e e eaeae 21-15

Network CONNECLIONScooiiiiiiiii e 21-22
Synchronous and Asynchronous Connectionscccovvevveveeviiiiinieeeeeennnns 21-22
UPALE RALESeiiiiiiieiiiiiieie et 21-23
Connection CallDACKSuuuuuiiiiiiiiiiiiiiiiiiiiiieeeineeeeeeenee e 21-23
(07e] o1 gT=Toti o] o I iU o1 1 (0] o I SR 21-26

ENUMETALION ...uutiiiiiiiiiiiiiiiiiei ittt ettt ettt e 21-34
Example of an Enumeration Treecuceiiiieieiiieiiiiii e eee e 21-34

WorldToolKit and World Up Compatible Propertiescccccccovvviiiriinnnen. 21-38

22: Multicast NetWOorkingccccooveeeeeeeiiiiiicices e 22-1
Introduction to Networking in WTK ..., 22-1
How the Transport Layer WOrks ..., 22-2
How the Protocol Layer WOrkS ..., 22-3
How the WorldToolKit Layer WOTKScc..uuiiiiiiiiisiciee e e 22-3
How the Application Layer WOrKScoccuiiiiiiiieiiiiieeeee e 22-4
SaMPIE TraNSACTHIONuuviiiiiieeiiiiie e 22-4

Yo=Y = Tod o1 T PP 22-4

Remote MacChinNeS ... 22-5
MESSAQE LAIEINCY ..ivvviiiiiiii ittt e e e et e e e e 22-5
Y (=3 © 00 1= o PP 22-6
NEIWOIK FUNCLIONSiiiiiiiiiiiiiiieee ettt a e e e e e e e e 22-7

23 Serial POIMS ...uiiiiiiiiiiiiiiiiiiiieieiteeeee et 23-1
Introduction to the Serial Port Classcooooviiviiiiiiiiiiie e 23-1
Serial Port Construction and DeStruCtioNccccvveiiiieeeiiniiiiiiieeee e 23-1
Reading and Writing to a Serial Port Objectccccc, 23-3
User-specifiable Serial Dataeevviiiiiiiiiiiiiriiiiiii————. 23-4
Platform Specific FUNCLIONSccoiiiiiiiiiiiiiiiecee e 23-5

xii WorldToolKit Reference Manual

24 POrtabilitycccoooeeiiiie e 24-1

Providing for Portability
Reading the Keyboardccccuvuiiiiiiiiiiiiiiiiiiiiiiiieeeireennnennernnnns 24-1
Reading File Directories

Messages and Errors

WWRITING ettt e e e e e e e e s e e e e e e 24-8

MemMOTY ANIOCALIONeiiiiiiee et 24-9
25: Math LIDrary ... 25-1

1] (oo [FTox 1o] o PP PP PRPT 25-1

WTK Math CONVENLIONScoiiiiiiiiiiiieie st 25-2

WTPZ2: 2D VECLOIS ..ottt ettt e e e e eeaes 25-4

WTP3: 3D VECLOIS ...ttt ettt e e e e e e 25-5

WTQ: QUALEINIONS ...ttt e e e e e e e e e 25-12

WTpQq: Coordinate Frame StrUCIUIecoccvviriiieeeeiiiiiiieeeeee e 25-19

WTM3: 3D MALMCES ..ieniieiiiteiiee ettt e e e et e e e e e e aaaeeas 25-21
WTMA: 4D MALTCES ..oeeiieiieeiee ettt e et e et r e et e e aaeens 25-22
CONVEISION FUNCLIONS ...iieiiee ettt et e e et e e e e e e eaaeens 25-25
Floating-point COMPATISONSeviiiiiiiiiiiiiiii et 25-33
Reference-frame Math ULIIITIESooeiieiiiei et 25-34
26: C++ Programmingoooeveeveiiiiiimiiiinneeeeeeeeeeeeeeeeeeeeeneennnnnn 26-1
Ta) 100 [UTe3 1 o] o IR 26-1
Class DIAQraIMScuvuiiiiiiiiiiieiiee e r e e e e e e e aaaaaaaaans 26-2
Classes and their MEthOASoouniiiiiiiie e 26-4
Prototypes for Global fUNCLIONSccoooiiiiiiiiiiiiee e 26-5
World2World Client C++ Applicationsoevvveiiiiiiiiiiiiiieeeee e 26-5
WWEBASE ClASSES ..uiiviiiiiiiieeee ettt et e et et e e e et e eaaas 26-6
StANA-AI0NE CIASSES ...ouiiviiiiii ettt a e e 26-33
V= 11 O =T 26-39
(B L= {1 g =T 26-45
Appendix A: Frequently Asked QUESLIONSccoevvvvveviviiiennnn. A-1
INEFOAUCTION ...ttt e e e e eeeas A-1

What Is The Difference Between WTnode_load And WTgeometrynode_load?
A-3
What Is The Difference Between WTmovnode_load and WTnode_load? ... A-4

How Do | Display Multiple Instances Of An ODJect?cccccceeeviiiiiiiiiienennn. A-5
How Do | Pick The Frontmost Polygon At A Specific Point In A Specific Win-
OW? e A-6
Can WTK Detect Keyboard EVENIS?coiiiiieiiiiiiieiiee et e e e A-8
How Can | Detect Button Events Using the “Misc Data” Functions? A-10

xiii

How Do | Use Material Tables for Colors?oouueviiieiieeiieie e A-11

How Do | Get Transparencies In A TEXIUIE?ccccevvveveeeiiie e, A-12
How Do | Dynamically Change The Appearance Of A Geometry? A-13
How Do | Create Special Effects: Clouds, Missile Trails, Exhaust and Explo-
£ T0] 0 1 USSR A-13
7= 1S3 O o] Lo SR A-13
MISSIE PIUMES ... e e e e e e eaeene A-14
Spaceship eXNaUSE ... ——————— A-14
(0] (0] 0] 1 S SPPPPPPR A-15
How Do | Load Lights AS MOVabIES?cc.eiiiiiiiiieiiiie e A-15
How Do | Make An Object Follow A Light?cccviiiiiiiiiiiiiieeeeeeeee A-16
How Do | Make An Object Follow The Viewpoint?ccccvviieeeeernnnns A-16
How Do | Recursively “Walk” Down The Scene Graph?cccccvvveennnn. A-19
How Do | Get A Pointer To A Node Using Its Name?ccccoooevvvvivviinnnnnn. A-20
How Do | Associate A Task With a Particular Object?cccccveeeiviennnns A-21
How Do | Handle Portals In This Release?ccccooivviiiieee A-22

How Do | Test For Intersections Between The Viewpoint And The Universe? .
A-24
How Do | Test For Objects Intersecting With Other Objects In The Universe? .
A-25

How Do | Get The Rendered Position Of An Object?ccccccveeiiiiiiiiinen. A-25
How Do | Create A Simple Animation Using Switch Nodes? A-26
How Can | Optimize Performance Using LOD Nodes?ccccovcuvvvvvnnnenn. A-29
What Is Terrain FOIOWING?ccoiiiiiiieeiii e A-31
How Do | Keep An Object Perpendicular To The Viewpoint Direction At All
TS 2 e A-33
How Do | Change The EVENt Order?cc.eevvivieiiiiiiiiiieiieeee e A-34
How Do | Integrate A WTK Rendering Window With A Host-Specific Win-
(0 01 PRSP P R S A-35
Orienting Sensors Differently ... A-36
How Do | Use Orientation-Tracking Sensors (On A Head-Mount-Display)
That Are Not Positioned Along The Central Axis Of The HMD? A-36
EXQMPIE COUE ..o A-37
How Do | Measure Performance On My Machin€?cccccccvivieeieeinnnnnns A-38
On UNIX Platforms, How Do | Get A Pointer To The Display That WTK Is Us-
] o A-38
How do | use Boston Dynamic's DiGuy with WTK (or any other BDI character
LS) U A-39
Appendix B: Environment Variablesccccccccciiiiiiiiii B-1
WTKCODES ..ottt e e e e e e e e ae e e e e s s ensnneeeeeeeeeanns B-1
WTIMAGES ... e e e e e e e e e e e e nereees B-2

xiv. WorldToolKit Reference Manual

WTMODELS ...oiiiiiiiiiiiiiiiiie e B-2

WTKZBUFFERSIZE ..ot B-3
WTKALPHATEST .ottt B-3
WTKMAXTEXSIZE ...ttt ettt a e B-4
WTKSQRTEX ..ottt ettt ettt et e e e e e e et e aeeaeens B-4
MW T K P RO XY ittt ettt e e e e e se e e e B-4
WTKALPHAENABLEooiiiiiiiiiiie e B-5
WTBIRDDELAY ..ttt e et e e e e e e ans B-5
WTKLS e e e e e et e e e e e e e et e e e e e e e e e nnnneees B-5
WTKNOSTEREOQ ...ooeiiiiiiieeeeeee ettt B-6
WTKMULTISAMPLEooiiiiiiiiiiiiiiiieeeeeeeeee ettt ettt e e e e e e e e e aaaaaaaa e B-6
WK C P U i ettt e eennes B-6
WTKDISPLAY .ttt e e e e e e e e e eneees B-7
WTKSHMEM ..t B-8
Appendix C: Defined Constantscccccoovveeeeeiiiiieeeiiiiccee e, C-1
Constraint CONSLANTScooiiiiiir et eeeeeeeeeeees C-1
Display CONSLANTScoviiieiiiiiiiii e C-2
Drawing CONSLANTSuuvuiiiiiiiiiiiiiiriieerieerrrreerrreerrerrrrrrrrrerrrrereaeaarereaaasaaaees Cc-2
Event Order CONSIANTScooouiiiiiiiiieee e C-3
EYE CONSLANIS ouuiiiiiiiiii it e e e e e e C-3
Filetype CONSTANTSoviiiiiiiiiiieie e C-3
Frames of Reference CONSLaNtSc.coovuiiiiiiiiiiirieeiis et e e e C-4
Keyboard CONSLANTSoveiiiiiiiiiiiii e C-14
Light TYPe CONSLANLS ...cevvuiiiiiieicccceeis s e e e e e e e e e e e eenenes C-5
Material Table Property CONStaNtSccoovviiiiiiiiiieeieeeeiie e C-5
Mathematical CONSIANTScoiiiiiiiiiiiiiiiiiiiee e C-6
Message CONSLANTScccoeiiiiiee e eeeeeees C-6
Motion Link Source and Target CONSLANTScoooviiiririeieeeniiiiieieeeeeenn C-7
N[00 [T O] g 151 v= 1 o | £ USPERPPT C-7
(O] o] 1{0] N @X0] 015 =T] 1P C-9
Path CoNSIANTSoooiiiie C-9
Projection Type CONSLANLSccovuviiiiiiiee e C-10
ReNdering CONSTANTSuiiiiiieiiiiiiiiiee e C-10
ST 0] g 0]] 7= g | £ C-11
Serial Port CONSIANTSuuviiiiiieii e C-17
SoUNd CONSLANTS ..ooiiiiiiiiiiie e C-18
Sound Device CONSLANTScooiiiiieiiieee s C-19
TeXIUrE CONSLANTS ...coeiiiiiiei et e e e e eeeeees C-20
User Interface CONSLANTScoiiiiiiiiiiiiiiee e C-20
WINAOW CONSLANTS ...oeviiiiiiiie e e e et e e e e e eeaeees Cc-21
Other CONSLANTScoeiiiiiiii it e e e e e e eeraaa Cc-21

XV

Appendix D: Error Messages and Warningsccccccevvvvvevvnnnns D-1

e o Y (<2 1T= T = PP D-1
L ATz Ut 11 o PP D-5
Appendix E: Writing a Sensor DIVEr ... E-1
OVEIVIBW ittt ettt ettt e e e e ettt e e e e e bbb et e e e e et e e e e e e e s sabbaneeeeesanns E-2
WTK Math CONVENTIONSeeiiiiiiiiiiiiiiiieee e E-2
Sensor Records Must Be Relativeueeiiiiiiees e E-2
Constraining SENSOr RECOIASuviiiiiiieiiiiiiii e E-3
Scaling SeNSOr RECOIAScociiiiiiiiiiiie e E-3
Talking t0 the Serial POrtuoiiiiiiceecc e E-4
INCIUAE FHlES ..t e e e e E-4
DrVer FUNCLIONS ..o eeeeeee E-5
Example 1: Update Function for the MOUSEcccvviiiiieieiiiiiiiiiieeeen E-8
Example 2: Driver for the Geometry Ball Jr.ccceeiiiiiiiiiiiiiiees E-10
Example 3: Update Function for Absolute Device (Pseudocode) E-15
Appendix F: WTK Neutral File Format ..., F-1
The NFF FOrMal ..o F-1
The BFF Format (Binary NFF)coooriiii e F-1
NFF SYNTAX .o F-2
NFF HEAUET ...ttt e e e e F-2
N L e O] o] =X £ P F-3
NFEF MatErIalS ...ccooeeieiiiiieeee e e F-4
N YT 1o = R F-4
NFF POIYGONS ..o e e F-6
NFF Format EXIENSIONS ...ttt eeeeeeeeeeeees F-8
Automatic Normal Generationccccceviiiiiiiiiii F-8
NFF Version History, Backward Compatibilityccccccviiiiiiiiiiiiiiiiiicennn, F-9
A SamPle NFF FIle ... e e e e e e F-10
Appendix G: Transitioning From
Version 2.1 To Release 6/7/8/9 ... G-1
INEFOAUCTION ...ttt e e e e e e G-1
Paradigms of this REIEASEccccoiiiiiiciiieee e G-2
The Scene Graph ... G-2
INSTANCING ...t e e e e e e e e e e annr e G-5
Y= LT = 1S G-5
[T | | €T PP PPPRPPPPTPP G-6
Special EffECtS (FOQ) ..ovvvvriiiiiiiiieieeiie e e e e G-6
3D SOUNA ..ttt G-7
MUItIPIe WINAOWS ... G-7

xvi WorldToolKit Reference Manual

User-Interface (Ul) ODJECES ...oovvvviiviiiiiiiiii G-7

MOLION LINKS ..eeeiiiieeiiiite ettt e e e et ee e e e e aae G-7
Switches and Level of Detail NOUESccooeiiiiiiiiiiiiiieieee e G-8
REPIACET FEAIUIESoiiiiiieiiiiieei et G-8
Mapping WTK V2.1 Functions To This Releasecccccceciiiiiiiiiinnnnnen. G-9
Details on Mapping WTK V2.1 Functions to This Release G-22
[IoF=To [o TN [T @ o] 1= ox £ UUPPPPPRN G-22
Changes in Reading/Writing NFF FileSccoooviiiiiiiiiicee e, G-24
Attaching Objects To One AnOther ... G-25
Handling Of Lights In This Release ... G-26
Moving from WTxx_addsensor to Motion Linkscccccvviiiiiiniiins G-27
Rotating A Movable About I1tS Midpointcccvveeieeeniiiiiiieeeeeeee G-28
Changing Vertex POSItIONSciiiiiiiiiiiiiiiis et ee e e e e G-28
Differences in APPIYING TASKSvviiiiiiiiieiei e G-29

Positioning And Moving Objects In Your Scene: WTobject and WTgeometry
G-30

PICKING ettt G-31
ANIMEALION Lottt e ettt et e e et e e et e e e e e e e aaaaaaaaaaaaaaaaeaaaans G-31
The Lack of WTQroup_* FUNCLIONSccvviiiiiiiiiiiiiiiie e G-32
Pivot Points ANd HaNIESueiiiiiiiiiiiiiiiiie G-32
Coordinate Framesuuciiiiii e e e G-34
New Functions to Facilitate Incorporation of WTK V2.1 Applications into the
R6/R7/R8/RO PAradigiMcoeiiiiiiiiiiiiiiiieee ettt G-34
Scene Graphs and NOAESc.uuuiiiiiiiiierc e e e aeees G-34
Material ColOrSoooeeiieeiiee e G-35

Appendix H: Transitioning From Release 6 To Release 7/8/9H-1
Changed Functions from Release 6 to

REIEASE 7/819 ... e H-1
WTK User-Interface (Ul) FUNCLIONS ..o H-1
TranSTOrMALIONSuuviiiiiiiiiiiiiiiiieee e e e e e e e e e e e e e aaaeaas H-4

Appendix I: Third-party Software ... -1
Image ConVersion (SGI) oo -2
Image Conversion (Windows 32-bit Platforms)cccccvvvviiiiiiiiiiiiiiiinnnnee. -2
MOdel CONVEISION .ooeiiiiieeeeeee e 1-3
1T N 1Y/ oo L] = =PSRRI -3
Appendix J: Sources of COMPONENESccceveeeeeeeiiveieiiiiiiiiieeeennn J-1
INPUL DBVICES ...vvviiiiiiiiiiiiiiieiiiiiiiesseesasreeeeeeesreeseeeeeeeeeeseeeeeaeeaeetaaataaaeeaeaaaaaaaaes J-1
OULPUL DBVICES ..ot J-2
Vide0 ACCEIEIALOrS ...ooeeiieiiieeeeeeeeee e J-3

XVii

Appendix K: The WTK USErs’ GroUpccceeeeeeeeeeeeeeeeeieeeeeeiiennnnnnns K-1

Participating in SIG-WTKe e K-1
Communicating with SIG-WTK ..., K-2
SIG-WTKEMAIl ArCRIVESeiiiiiiiiiiiic e K-2

Appendix L: Technical SUPPOItccooeiiiiiiiiiiiicie e L-1
(W RS T =Tod o g Tor= VST o] o Lo i APPSR L-1
NOoN-US TechniCal SUPPOIToueiiiieeiieiiiiieeeeie e L-2
SIG-WTK USEIS" GIOUP ...iiieieiiies i eeeeeeeeees L-2

APPENTIX M: GIOSSANYveiiiiiiiiiiiiiiiiiiieiie ettt M-1

80 [R Index-1

xviii WorldToolKit Reference Manual

1

Introduction to WorldToolKit

Welcome

Welcome to WorldToolKit (WTK), an advanced cross-platform development environment
for high-performance, real-time 3D graphics applications. WTK has the function library
and end-user productivity tools you need to create, manage, and commercialize your
applications. With the high-level application programmer’s interface (API), you can
quickly prototype, develop, and configure your applications as required.

From writing custom sensor drivers to rapidly developing virtual reality applications, WTK
offers an intuitive set of functions that provide a wide range of functionality. This chapter
introduces you to the WTK application development environment, highlights the major
concepts and features in this release, and reviews the basic hardware and software
components of a WTK development system.

What is WTK?

Simply stated, you build your virtual world by writing code to call WTK functions. WTK
is a library of over 1000 functions written in C that enable you to rapidly develop new

virtual reality applications. One function call can do the work of hundreds of lines of C
code, dramatically shortening development time.

WorldToolKit is so named because your applications can resemble virtual worlds, where
objectscan have real-world properties and behavior. You control these worlds with a
variety of input sensors, from a simple mouse to “six degrees of freedom” input devices.
Users can experience these worlds with a computer display (which acts as a movable
window into a world) or by using a position-tracked, head-mounted, stereoscopic display.

WTK is structured in an object-oriented way, although it does not use inheritance or
dynamic binding. WTK functions are object-oriented in their naming convention, and are

Chapter 1: Introduction to WorldToolKit

organized into over 20 classes. These classes include the Universe (which manages the
simulation and contains all other objects), Geometries, Nodes, Viewpoints, Windows,
Lights, Sensors, Paths, Motion Links, and others. (Bamview of the WTK Classen

page 1-3.) Functions are included for things such as device instancing, display setup,
collision detection, loading geometry from a file, dynamic geometry creation, specifying
object behavior, manipulating textures, and controlling rendering.

Scene Graph Architecture

The architecture of this release of WTK incorporates the power of scene hierarchies. With
WTK you can build a simulation by assembling nodes into a hierarcltieaé graph

which dictates how the simulation is rendered and allows all of the efficiencies of a state-
preserving, stack-oriented rendering architecture. Each node of the scene graph (or scene
graphs) represents part of the simulation.

This efficient visual database representation provides increased performance, control, and
flexibility through features such as hierarchical object culling, efficient use of transform
information, Level of Detail switching, object grouping, VRML compatibility, and the

ability to load in models and data from the Internet. With the scene graph approach, you
can create a light, and specify the light's location in the scene graph such that it only effects
the geometry you choose.

While providing the expressiveness and flexibility of constructing the scene graph for your
visual database node-by-node, WTK also contains functions that let you create scene
graphs by loading in files that contain scene graph descriptions. For example, loading a
VRML file from the Internet into your scene graph requires just a single function call. WTK
also provides functions for easily modifying and reconfiguring scene graphs.

What WTK Does

WTK manages the tasks of rendering, reading input sensors, importing geometries, and a
wide range of simulation functions. You are left free to concentrate on developing the
details of your 3D applications.

At the core of an application written using WTK is a simulation loop that reads input
sensors, updates objects, and renders a new view of your scene onto the display. WTK is
designed to be used in real-time applications such as simulations, where frame rates on the

1-2

WorldToolKit Reference Manual

Overview of the WTK Classes

order of 5 to 30 frames per second are maintained. WTK's main loop and event dispatching
mechanisms are similar to those of a conventional window manager, but WTK applications

differ in that they are intended for use in situations where the user’s viewpoint or objects in

the universe are continuously changing.

WTK incorporates the philosophy of OpenM8 which means it is portable across
platforms, including SGI, Sun, DEC, Intel, and Evans and Sutherland. WTK is optimized
to leverage the power of each hardware platform it supports, enabling your applications to
use the “fast path” through whatever graphics acceleration system you are using.

WTK supports a wide variety of input and output devices, and allows you to incorporate
existing C code (such as device drivers, file readers, and drawing routines) into your WTK
application.

Overview of the WTK Classes

WTK is structured in an object-oriented way. Most WTK functions are object-oriented in
their naming conventions and are grouped into the following classes:

* Universeis the “container” of all WTK objects such as geometries, nodes,
viewpoints, sensors, etc. While you can have multiple scene graphs and
simulations, there is only one universe. You can temporarily add or remove
geometries and nodes from being considered by the simulation manager. You can
also define the sequence of events in the simulation.

* Geometriesare graphical objects that are visible in a simulation, such as a block,
sphere, cylinder, and 3D text. You can dynamically create geometries or import
them from other sources. Once you create a geometry, you need to create a
corresponding (geometry) node so that it can be included in a scene graph.

* Nodesare the building blocks from which scene graphs are constructed. Node
types other than geometry nodes, such as light nodes, fog nodes, transform nodes,
level-of-detail (LOD) nodes, and switch nodes are not visible, though they can
affect the appearance of geometry nodes.

e Polygonscan be dynamically created and texture-mapped using various sources
of image data. You can render polygons in either wireframe, smooth-shaded or
textured modes.

e Verticescan be dynamically created or read from a file. You can also associate
vertices with vertex normals for gouraud shading.

WorldToolKit Reference Manual 1-3

Chapter 1

: Introduction to WorldToolKit

Lights can be dynamically created or loaded from a file.

Viewpoints define the position and orientation in a virtual world from which all

of the geometries in a simulation are projected to the screen and rendered. WTK
supports one or more viewpoints. You can also control a viewpoint’s position and
orientation by attaching sensors to it.

Windows display your scene. A WTK application can have multiple windows
into the same virtual world and/or multiple windows into different virtual worlds.

Sensorscan be connected to transform nodes, viewpoints, movable nodes, etc., to
manipulate object motion. Multiple sensor objects are supported.

Path objects allow geometric or viewpoints to follow predefined paths. You can
dynamically create, interpolate, record, and play paths.

Taskscan be used to assign behaviors (such as movement, change in appearance)
to individual objects.

Motion Links connect a source of position and orientation information with a
target that moves to correspond with that changing set of information. For
example, you can have a motion link between a sensor and a viewpoint.

Soundobijects can be loaded, associated with 3D objects in the scene, and played.

User Interfaceelements can be created for both X/Motif and Microsoft Windows
environments.

Networking capabilities enable you to build applications that can asynchronously
communicate over an Ethernet between several PC and UNIX workstations. This
allows distributed simulations to be created where a mixture of PCs and UNIX
workstations support a single simulation.

Serial Port functions simplify the task of communicating over serial ports.

Naming Conventions

Naming conventions for WTK functions are such that each class of objectymesiaf

(type definition) defining an object of that type. For instamz&sensor is a sensor object,
andWTserial is a serial port object. Objects are always dealt with through pointers. In fact,
the internal state of WTK objects is not accessible except through WTK function calls
provided for this purpose. Objects in WTK are “opaque,” enforcing data abstraction. The
state of any object must be accessed through “set” and “get” access functions defined in the
WTK library.

1-4 WorldToolKit Reference Manual

Additional Features

All functions acting on a given class have, by convention, a name that begins with the class
name. In addition, all classes accessible by the user have an object constructor whose name
ends in_new, which returns a new object of the given class, and an object destructor ending

in _delete, which accepts and destroys an object of the given class.

For instance, the function:
WTviewpoint *WTviewpoint_new();
creates a new viewpoint object and returns a pointer to that object, as in:
newview = WTviewpoint_new();
This new viewpoint could subsequently be destroyed by the call:
WTviewpoint_delete(newview);
Most functions expect a pointer to an object of their class as the first argument. This is the
object to which the function is directéb copy a viewpoint, you would call the function
WTviewpoint_copy, which takes a pointer to an already-existing viewpoint and returns a

pointer to a newly-created copy of that viewpoint:

WTviewpoint *old_viewpoint, *new_viewpoint;
new_viewpoint = WTviewpoint_copy(old_viewpoint);

The universe object is special in that there is only one universe at any given time. For this
reason, universe functions do not require a universe pointer as the first argument.

Additional Features

SOUND

WTK provides a cross-platform API for creating 3D and stereo sound. On Windows 32-bit
systems, WTK supports Windows-compatible sound cards, DiamondWare sound, and
Crystal River Engineering products. On Silicon Graphics Workstations, WTK supports the
SGI system audio and Visual Synthesis 3D sound product@@peadix H, Third Party
Software and the SENSES8 web siteaitp://www.sense8.cofar the latest information on

third party sound device support.

WorldToolKit Reference Manual 1-5

Chapter 1: Introduction to WorldToolKit

WTK's sound API provides support for 3D spatialization of sounds, doppler shifts, volume
and roll-off controls, and other effects. It supports output to a variety of devices including
headphones, surround sound, and stereo systems.

USER-INTERFACE OBJECTS

You can add a user interface (UI) to your simulations by using WTK's cross-platform user-
interface objects. These objects let you quickly and easily create a (2D) graphical user
interface. These Ul objects have been designed in both Motif and Windows styles, to match
the native operating system. The Ul object types provided include: toolbars, bitmaps,
menus, message boxes, text boxes, file-request dialogs, and others. When you recompile
your simulation on another platform, the Ul objects automatically change to match the new
operating system. For example, if you develop an application using toolbars for
X-Windows, and then recompile it in Windows, your simulation will use Windows style
toolbars.

MULTIPIPE/MULTI-PROCESSOR SUPPORT

A multipipe/multi-processor version of WTK is also available. It provides support for
rendering to multiple graphics pipes or screens and utilizes the additional power available
on multi-processor systems. This is useful for creating high-resolution stereo displays for
Computer-Assisted Virtual Environment’'s (CAVES).

VRML SUPPORT

WTK supports the reading and writing of VRML 1.0 files.

OTHER FEATURES

Other features of this release include the following:

» Materials and Translucency- Complete control of coloring geometries,
including specular highlights. WTK takes full advantage of the features available
with OpenGL.

» Task Objects- You can specify the behavior of any geometry, node, or C
structure by assigning tasks to it.

1-6

WorldToolKit Reference Manual

WTK Documentation

« Performance Optimizations for Rendering- Support for triangle stripping,
state sorting, etc.

« Atmospheric Effects- Support for special effects, such as fog, haze, and cloud
layers.

e Constraints - Available on the translations and rotations of your geometry or
other scene graph components.

» Textures from Memory - For video and playback onto object surfaces.

* Orthographic Projections - Useful for plan views or anytime a perspective
projection is not desired.

* Cross-Platform 2D Drawing Calls- Support for geometrical shapes, lines,
bitmaps, etc.

e Support for Many Sensors- See the table on page 13-3 for a list of the WTK
supported sensors.

e Support for 3D Text - Capability of creating 3D text in your virtual world.

e Support for Many File Formats - Supports WRL, FLT, DXF, NFF, OBJ, 3DS,
BFF, SLP, and GEO file formats.

* C++ Wrappers - Provides the choice of programming in either C or C++.

WTK Documentation

The available sources of documentation for WTK include the following:

REFERENCE MANUAL

The Reference Manual describes the core functionality of WTK. This reference manual has
23 chapters and 12 appendices:

Chapter 1, Introduction to WorldToolKitprovides an overview of the WTK application
development system, introduces key concepts pertaining to WTK'’s object-oriented nature,
and reviews the basic hardware and software components of a WTK development system.

Chapter 2, The Universgintroduces the universe class and describes many of the key
functions for interacting with and managing your simulation.

WorldToolKit Reference Manual 1-7

Chapter 1: Introduction to WorldToolKit

Chapter 3, Object/Property/Event Architecturdescribes the new Object/Property/Event
programming paradigm that has been introduced with WTK Release 8.

Chapter 4, Scene Graphgescribes how scene graphs are created and describes the
various kinds of nodes used to construct a scene graph.

Chapter 5, Movable Nodesdescribes the concept and basic structure of movable nodes,
and how they are created, positioned and built into hierarchies.

Chapter 6, Geometriesintroduces the concept of geometries, and provides file format and
instancing information. Functions are provided to create predefined geometries, copy
existing geometries, add materials to geometries, etc.

Chapter 7, Polygons discusses the polygonal surfaces that geometrically describe an
object. Functions for polygon construction, querying, and intersection-testing with other
graphical entities are also presented.

Chapter 8, Materials, introduces material tables and their functions, including setting
values in the material table and creating new material tables.

Chapter 9, 3D Text shows how to create 3D text in your simulation. 3D text objects are
special forms of graphical objects.

Chapter 10, Texturesdescribes the textures that can be applied to the surfaces of graphical
objects, and the functions to apply, manipulate, and animate them.

Chapter 11, Tasks discusses the way tasks are assigned to a geometry (or other object) to
provide movement, change its appearance, detect intersections with other geometries, etc.

Chapter 12, Lights describes the WTK functions used to manage lighting conditions in the
graphical environment.

Chapter 13 Sensorsprovides information about the WTK sensor functions, using the data
from sensors, and using various manufacturers’ hardware with your simulation.

Chapter 14, Paths introduces the concept of a path, which is a sequence of position and
orientation information. Functions are described for creating paths, editing them, and using
them to guide the viewpoint or other objects.

1-8

WorldToolKit Reference Manual

WTK Documentation

Chapter 15, Motion Links introduces the concept of linking sources and targets of position
and orientation information with a motion link. Functions are provided to link targets to
sensors or paths.

Chapter 16, Viewpointsintroduces the WTK “viewpoint” object, which defines how your
simulation is projected onto your display device. Functions are described for viewpoint
construction, movement, coordination with sensor input data, and stereo viewing.

Chapter 17, Windows shows how to create windows, associate viewpoints with windows,
and set or change the characteristics of a window.

Chapter 18, Adding User Interface (Ul) Objectdescribes how to add a cross-platform
graphical user interface to your simulations.

Chapter 19, Drawing Functionsprovides information on 2D and 3D drawing functions
supported by WTK.

Chapter 20, Soundintroduces spatialized and regular sound support for a variety of
hardware platforms. Options and functions give you the ability to control how, when, and
where sound is included in your simulation.

Chapter 21, Client-Server Networking (Via the World2World Servedglscribes how to
create multi-user client-server applications for use with Sense8’s World2World server
product.

Chapter 22, Multicast Networkingdescribes how you can create applications that
asynchronously communicate over an Ethernet network.

Chapter 23, Serial Ports describes the class of functions that simplifies the task of
communicating over serial ports.

Chapter 24, Portability, discusses issues associated with constructing platform-
independent WTK applications, and describes functions for using the keyboard, working
with files and directories, and handling messages or errors.

Chapter 25, Math Library, provides a description of the WTK math functions for
managing position and orientation data.

Appendix A, Frequently Asked Questigr@rovides answers to some common questions
on how to use many of WTK'’s powerful features.

WorldToolKit Reference Manual 1-9

Chapter 1: Introduction to WorldToolKit

Appendix B, Environment Variablesilescribes the environment variables that you can use
to customize WTK'’s operation on your computer.

Appendix C, Defined Constantdists WTK’s constants.

Appendix D, Error Messages and Warning®views the error messages and warnings,
and how to suppress or redirect them.

Appendix E, Writing a Sensor Driverintroduces the functions available to simplify the
task of writing a custom sensor driver. Sample sensor driver programs are also given in this
chapter.

Appendix F, WTK Neutral File Formatdescribes WTK'’s generic ASCII and binary
formats for describing polygonal geometry, and gives sample NFF files.

Appendix G, Transitioning From Version 2.1 To Release 6/7/dt®vides key
information to smooth your transition from WTK V2.1 to this Release 6/7/8/9.

Appendix H, Transitioning From Release 6 To Release 7/% the functions that have
changed from Release 6 to Release 7/8/9, and describes what you need to do if your
application uses these functions.

Appendix I, Third-party Softwargincludes a list of other software products and their
vendors that you may find useful.

Appendix J, Sources of Componeniscludes a list of hardware products and their vendors
that you may find useful.

Appendix K, The WTK Users’ Groumives you contact information for the WTK Users’
Group.

Appendix L, Technical Supportgives technical support contact information for WTK.

Appendix M, Glossary provides definitions for many important WTK terms and concepts.

THE WTK INSTALLATION AND HARDWARE GUIDES

System-specific aspects of WTK are described in the appropriate WTK Installation and
Hardware Guide. There is a version of the Installation and Hardware Guide for most
platforms on which WTK runs. Throughout this Reference Manual you're referred to this

1-10 WorldToolKit Reference Manual

Special Interest Group

Installation and Hardware Guide whenever there are system-specific considerations for a
particular subject.

THE WTK QuICK REFERENCE GUIDE

An alphabetical summary of all WTK functions, macros, and constants is given in the WTK
Quick Reference Guide. This Quick Reference Guide is available in PDF format on the
WTK product CD. A hardcopy of the Quick Reference Guide@s shipped with the

WTK product.

ONLINE DOCUMENTATION

An online version of this manual and the (platform-specific) Installation and Hardware
Guide is installed with WTK in the portable document format (PDF). PDF is a cross-
platform file format that you can read with an Adobe Acrobat reader. This reader was
installed during WTK installation unless you chose not to install it.

These online documents are identical with the printed documents but allow you to use a
search feature to quickly find WTK functions and other valuable reference information.
(TIP: While you are viewing a document in the PDF reader, click the second icon on the
toolbar to display the bookmarks. Then, click a bookmark to go to any chapter.) For more
information on using the PDF reader, see the Adobe Acrobat help file.

ADDITIONAL SOURCES

See the Readme file that was installed with WTK for last minute information or reported
problems. You can also find the latest product information by accessing the SENSE8 web
site (http://www.sense8.com)

Special Interest Group

WTK users are invited to join the WTK User’s Group (SIG-WTK). The WTK User’s
Group has been organized by WTK customers with assistance from EAI/SENSES. SIG-
WTK provides a worldwide electronic forum for the discussion of shared interests.

WorldToolKit Reference Manual 1-11

Chapter 1: Introduction to WorldToolKit

To subscribe or unsubscribe to SIG-WTK, e-mail your request to:
sig-wtk-request@sense8.covith the textsubscribeor unsubscribeas the body of the
message.

Basic System Configuration

A basic WTK development system includes several key hardware and software
components. These components are listed as follows. Additional system-dependent
components that may not be necessary with your system are also listed [in square brackets].

* Host computer(s)

» [Hardware graphics accelerator board]

« WTK library

e C compiler

e [3-D modeling program]

* [Bit-map editing software]

It is also suggested that you have a mouse and at least one 3D/6D input sensor such as the
Spacetec IMC Spaceball.

Input Sensors Supported

WTK supports a wide range of 3D and 6D input sensors, both desktop devices and devices
that can be worn on the body to sense position and orientation. Routines to read supported
sensor types are part of the WTK library. (f&eoduction to the Sensor Class page

13-2 for a list of the sensors that WTK supports.) Not all devices are supported on all
systems, so please check your Hardware Guide to see which devices are supported on your
system.

Extending a System for Virtual Reality

To extend the basic system configuration for a virtual reality interactive display, additional
hardware components are required. The following list assumes that you have the software

1-12

WorldToolKit Reference Manual

A Sample WTK Application

and hardware listed undBasic System Configuratiam page 1-12, including a 3D/6D
input sensor:

A stereoscopic head-mounted display or stereo projection system.

Video signal conversion, typically from the RGB signals of the graphics device to
the NTSC video inputs on the head-mounted display.

One or more position tracking devices (to track the head position and orientation
and/or other body gestures).

These components are system-dependent, so talk to your local distributors or directly to
SENSES8 when configuring your system.

A Sample WTK Application

A WTK application is C source code that includes WTK function calls. These applications
may be as simple or as complex as you like. Because WTK includes many “high-level”
function calls, you can prototype an application with a few lines of code, and then extend
it based on the demands of your application.

The following example is a simple, but complete WTK application; here’s what it does:

Creates a new universe (with an empty scene graph).

Loads a graphical model of a planet into the scene graph.

Attaches a mouse device to the viewpoint.

Assigns a behavior (task) to the planet, causing it to spin about its axis.

Allows the user to fly around the planet using the mouse.

/* simple.c Usage: Use the mouse buttons to fly around a spinning planet. */

#include “wt.h”

void spin(WTnode *);
#define Y_AXIS 1
void main(int argc, char *argv[])

WorldToolKit Reference Manual 1-13

Chapter 1: Introduction to WorldToolKit

{
WTnode *root;
WTnode *planet;
WTsensor *sensor; [* the Mouse */
WTviewpoint *view; /* the Viewpoint */
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
root = WTuniverse_getrootnodes();
planet = WTmovnode_load(root, “PLANET.NFF”, 1.0);
sensor = WTmouse_new();
view = WTuniverse_getviewpoints();
WTviewpoint_addsensor(view, sensor);
WTtask_new(planet, spin, 1.0);
WTuniverse_ready();
WTuniverse_go(); [* Starts simulation */
WTuniverse_delete(); /* All done */

}

void spin(WTnode *planet)

{
WTmovnode_axisrotation(planet, Y_AXIS, 0.1);

}

Important WTK Functions

Some of the most widely used WorldToolKit functions are briefly described here; the
actual WTK functions are described in their respective chapters. They're also listed in the
index. Also see youQuick Reference Guidehich includes all the WTK functions,

macros, and constants, with a brief description of each one.

Note: Most classes usewto create an objecgddto add it to the simulatiomemoveto
remove it from the simulation, anigleteto delete it from memory. Aetfunctions
have a correspondingetfunction.

1-14 WorldToolKit Reference Manual

Universe

Universe

WTuniverse_framerate
WTuniverse_go

WTuniverse_setactions

WTuniverse_setbgrgb

WTuniverse_seteventorder

Geometry

WTgeometry newvertex

WTgeometry begin
WTgeometry beginedit

WTgeometry close
WTgeometry deletetexture

WTgeometry_endedit

WTgeometry_getvertices
WTgeometry save

WTgeometry_settexture

WTgeometry_settextureuv

WTgeometry setvertexnormal

WTgeometry setvertexmatid

WTgeometry_stretch

Returns the current simulation framerate.
Starts the simulation.

Defines actions that take place within the
simulation event loop.

Sets the background color of the universe.

Changes the processing order of the events in
the simulation.

Adds a vertex to a geometry object.

Creates a new geometry object for vertex
addition.

Informs WTK that you are going to edit a
geometry.

Finishes the definition of the geometry.
Removes all textures from the geometry.

Informs WTK that you are finished editing a
geometry.

Gets the first vertex of a geometry.
Saves a geometry to a file.

Globally applies a texture to a geometry
object.

Drapes a texture over the geometry.
Sets the vertex normal.
Sets the material of a vertex.

Stretches the geometry along the X, Y, or Z
axis.

WorldToolKit Reference Manual 1-15

Chapter 1: Introduction to WorldToolKit

Polygon

WTpoly_addvertex

WTpoly_begin

WTpoly _close
WTpoly_intersectpolygon
WTpoly_deletetexture
WTpoly_rotatetexture
WTpoly_scaletexture
WTpoly_setmatid
WTpoly _settexture
WTpoly_settexturestyle

WTpoly_settextureuv
WTpoly_setuv

WTpoly_stretchtexture

WTpoly_translatetexture

Sensor

WTsensor_getmiscdata

WTsensor_setconstraints
WTsensor_setsensitivity

WTsensor_setrecord

WTsensor_setupdatefn

Adds a vertex to a polygon under
construction.

Adds an empty polygon to a geometry.
Finishes the definition of a polygon.

Tests for intersection between two polygons.
Removes a texture from a polygon.

Rotates a texture on a polygon.

Scales and automatically tiles a texture.
Sets the material of a polygon.

Applies a texture to a polygon.

Sets the shading and transparency values of a
texture.

Maps texture onto a polygon in a user-
specified way.

Changes the way a texture is mapped to a
polygon’s vertices.

Stretches a polygon's texture.

Shifts a texture on a polygon by a pixel
amount.

Retrieves button-press information from the
sensor object.

Constrains values read in from a sensor.
Sets the sensitivity value of a sensor.

Stores the current relative position and
orientation record.

Changes a sensor's update function.

1-16

WorldToolKit Reference Manual

Light

Light
WTlightnode_load

WTlightnode_newdirected
WTlightnode_newpoint
WTlightnode_newspot
WTlightnode _newambient
WTlightnode_setambient
WTlightnode_setangle
WTlightnode_setattenuation
WTlightnode_setdirection
WTlightnode_setposition

Viewpoint

WTviewpoint_addsensor

WTviewpoint_moveto

WTviewpoint_setaspect
WTviewpoint_setconvergence

WTviewpoint_setparallax

Path

WTpath_copy
WTpath_interpolate

WTpath_play

Reads a formatted file to create spot, point,
directed, and/or ambient lights.

Creates a directed light.

Creates a point light.

Creates a spot light.

Creates an ambient light.

Sets the ambient light color.

Sets the half-angle of a spot light's cone.
Sets the attenuation of point and spot lights.
Sets the direction of a light.

Sets the location of a light.

Attaches a sensor to control the viewpoint.

Moves the viewpoint to a particular location
and orientation.

Adjusts the aspect ratio of the image.
Adjusts the convergence of the image.

Adjusts the parallax of the image.

Copies a path.

Performs a Bezier, B-spline, or Linear
interpolation of a path.

Begins the playback of a path.

WorldToolKit Reference Manual 1-17

Chapter 1: Introduction to WorldToolKit

WTpath_record

WTpath_setmode

Window

WTwindow_setbgrgb

WTwindow_setprojection

WTwindow_setviewangle
WTwindow_setyonvalue

WTwindow_zoomviewpoint

Scene Graph

WTnode_load
WTnode_addchild

WTnode_getchild
WTnode_getparent
WTnode_numchildren

WTnode_remove

WTnode_boundingbox
WTnode_getextents

WTnode_intersectnode

Begins recording the viewpoint position and
stores the information in a path.

Sets the path’s playback mode.

Sets the background color of a window.

Sets symmetric, asymmetric, or general
window projections.

Sets the window's horizontal view angle.
Sets the window's yon clipping value.

Moves the window's viewpoint so the entire
scene is in view.

Loads a data file into the scene graph.

Makes a node a child of the specified parent
node.

Retrieves the specified child of the specified
parent node.

Retrieves the specified parent of the specified
child node.

Returns the number of children for a
specified node.

Removes a node from all of its parent nodes.

Highlights a node of the scene graph with a
bounding box that is visible in the simulation.

Obtains the extents of the scene graph sub-
tree.

Tests for intersection between parts of the
scene graph.

1-18

WorldToolKit Reference Manual

Drawing

Drawing

WTwindow_draw2Dcircle
WTwindow_draw2Drectangle
WTwindow_drawZ2Dpoint
WTwindow_draw2Dline
WTwindow_draw3Dpoints

WTwindow_draw3Dlines

User Interface

WTuimessagebox_new
WTuiscrolledtext_new
WTuimenubar_new

WTui_dimitem

Sound

WTsound_load
WTsound_play
WTsound_setnodepath

Draws a 2D circle.
Draws a 2D rectangle.
Draws a 2D point.
Draws a 2D line.
Draws a 3D point.

Draws a 3D line.

Creates a message box.
Creates a scrollable text box.
Creates a menu bar.

Grays out a menu item.

Loads a sound from a file.
Plays the sound.

Assigns the sound to a source.

WorldToolKit Reference Manual 1-19

Chapter 1: Introduction to WorldToolKit

1-20 WorldToolKit Reference Manual

2

The Universe

Introduction

The universe is the “container” of all WTK objects. These objects can include geometries,
sensors, lights, viewpoints, serial ports, paths, or other object types. Once you create these
objects, they are automatically maintained by the WTK simulation manager (see
Simulation Managememin page 2-5). While you can have multiple scene graphs (see the
next chapterScene Graphsn your universe simulation, there is only one WTK universe.

As a result, unlike the methods for other WTK objects, universe methods do not require a
pointer as the first argument.

This chapter describes WTK'’s functions for constructing (or destroying) a universe,
managing a simulation, specifying universe rendering styles, calculating an application’s
performance, setting global parameters for WTK, and using a resource file to set
parameters for your universe.

Universe Construction and Destruction

In a WTK application, you create the universe using the funetiomiverse_new.
WTuniverse_new must be the first WTK call in your main program and must be called only
once in an application. This function initializes the universe’s state and initializes the
graphics device, configuring it for the output device with which the virtual world is to be
viewed.

The universe is deleted using th&universe_delete function. This function frees all of the
objects in the universe, including those that have been removed from the simulation with
the remove function appropriate for that object type, suthiTamde_remove. The
WTuniverse_delete function also cleans up and closes the graphics hardware or WTK
display.

Chapter 2: The Universe

WTuniverse_new

void WTuniverse_new(
int display_config,
int window_config);

This function initializes the universe’s state and the graphics device used to view the
simulation. The graphics device used to view the simulation may be a stereo head-mounted
display, stereo shutter glasses, or (for a monoscopic view) simply your computer monitor.
Other than for functions whose names begin withinit_ (for example WTinit_defaults),
WTuniverse_new must be the first WTK call in your main program and must be called only
once in an application.

Note: If using WTK’s Ul functionality, make the callW@universe_new after the call to

WTui_init, which is used for creating the top-level application shell.

WTuniverse_new also creates a viewpoint for the universe. In WTK there can be many
viewpoints. The viewpoint created ByTuniverse_newis by default the viewpoint through
which the simulation is displayed.

See alsdVTviewpoint_new on page 16-3 and WTwindow_setviewpoint on page 17-11.

The display_config parameter specifies the number of windows which are displayed. For
information on stereoscopic viewing, see page 2-34.

The possible values falisplay config are:

WTDISPLAY DEFAULT Creates a single window.

WTDISPLAY _NOWINDOW No windows will be created. Sometimes
useful when creating a GUI using Moatif,
MFC, or WTK’s Ul functions.

WTDISPLAY CRYSTALEYES For CrystalEyes glasses. Creates a single full
screen stereo window which has no border.

WTDISPLAY _STEREO Creates two windows. Should only be used
by legacy code.

WTDISPLAY NEEDSTENCIL This constant can be combined with

WTDISPLAY_DEFAULT or
WTDISPLAY_NOWINDOW by using the
bitwise OR operator (|), to request the use of
the stencil buffer on systems which contain

2-2

WorldToolKit Reference Manual

Universe Construction and Destruction

stencil buffer hardware. It should only be
used if you want to use your system'’s stencil
buffer hardware to obtain interlaced stereo in
your window(s) or if your application uses
the stencil buffer hardware for application
specific purposes.

The values fowindow_config specify the characteristics of the window or windows created

by WTuniverse_new. With window_config, you can specify host-system specific window
parameters. Your Hardware Guide also describes how to configure your system ifan NTSC
(television) signal is required by your display device. (Many head-mounted displays
require an NTSC signal.) For information on stereoscopic viewing, see page 2-34.

These are the possible valuesi@rdow_config:

WTWINDOW _DEFAULT Creates a window with no special attributes.
The window has a border unless
WTWINDOW_NOBORDER is used in
combination with this constant (via the
bitwise OR operator).

WTWINDOW _STEREO Creates a stereo window on systems that have
hardware support for stereo. On systems
without hardware stereo support, this option
will create 2 images in the window (one on
the top with the left eye view, the other on the
bottom with the right eye view). On Windows
platforms, if this option is selected and the
WTDISPLAY _NEEDSTENCIL option is
selected in thelisplay _config parameter, the
behavior you will obtain is that of
WTWINDOW _STEREOVSPLIT.

WTWINDOW_STEREOVSPLIT This constant can be combined with the
WTWINDOW _STEREO option by using the
bitwise OR operator (|), to create 2 images in
the window (one on the top with the left eye
view, the other on the bottom with the right
eye view) even if your system has hardware
stereo support. In essence, this option will
cause WTK to disable your system’s stereo

WorldToolKit Reference Manual 2-3

Chapter 2: The Universe

WTWINDOW _RBSTEREO
WTWINDOW _INTERLACEEVENODD

WTWINDOW_INTERLACEODDEVEN

WTWINDOW_NOBORDER

WTWINDOW_SCREENnN

hardware and to create a “vertically split”
stereo window instead.

Creates a window with red/blue stereo.

Creates an interlaced stereo window whose
even numbered scanlines correspond to the
left eye view and whose odd numbered
scanlines correspond to the right eye view.
This option requires that the

WTDISPLAY _NEEDSTENCIL option be
selected in thelisplay config parameter.

Creates an interlaced stereo window whose
odd numbered scanlines correspond to the
left eye view and whose even numbered
scanlines correspond to the right eye view
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in thelisplay_config parameter..

This constant can be combined with any of
the above listed options by using the bitwise
OR operator (|), to create a window without
a border.

Where n is a number from 0 to 8. In the multi-
pipe/multi-processor version of WTK, this
constant can be combined with any of the
above listed options by using the bitwise OR
operator (|), to specify which screen the
window is to be placed on.

If the window_config parameter is set to any of the stereo optigh8(NDOW _STEREO,
WTWINDOW _RBSTEREO, WTWINDOW _INTERLACEEVENODD, or
WTWINDOW_INTERLACEODDEVEN), you will need to adjust the viewpoint’'s parallax
and convergence values. S&&viewpoint_setparallax and WTviewpoint_setconvergence.

This is an example of calling/Tuniverse_new to create a display appropriate for
monoscopic, flat-screen viewing directly from the monitor:

WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

WorldToolKit Reference Manual

Simulation Management

while the following is an example of callingTuniverse_new to create a display with a
stereo window which has no border:

WTuniverse_new(WTDISPLAY _DEFAULT, WTWINDOW_STEREO |
WTWINDOW_NOBORDER);,

WTuniverse_delete

void WTuniverse_delete(
void);

This function frees all of the objects in the universe, including those that have been
removed from the simulation with the remove function appropriate for that object type,
such aswTnode _remove. WTuniverse_delete also cleans up and closes the graphics
hardware or WTK display. Thishould be the last WTK call in your main program.

Simulation Management

The simulation loop is the heart of a WTK application. Every aspect of the simulation takes
place in the universe. The simulation loop is entered by cahgniverse_go and is

exited by callingWTuniverse_stop. Alternatively, you can use the function

WTuniverse_gol to go through the simulation loop exactly once and then exit the loop
automatically. Figure 2-1 shows the default order of events in the simulation loop. The
order can be changed by using the functiéruniverse_seteventorder.

WorldToolKit Reference Manual 2-5

Chapter 2: The Universe

WTuniverse_go() or WTuniverse_gol()
to enter simulation loop

A

Sensors are read.

A

r The universe’s action function is called.
The order in L
which these
items are Objects are updated with sensor input
executed is if WTuniverse_go() was called.
user-definable. ¢

Objects perform tasks.

v

Paths in record or playback mode are stepped.

v

The universe is rendered.

WTuniverse_stop()
to exit simulation loop
(if WTuniverse_go() was called)

l

Figure 2-1: The default simulation loop

WTuniverse_ready

void WTuniverse_ready(
void);

This function prepares your application for entry into the main simulation @alpthis
function before starting the simulation for the first time (i.e., before the first call to either
WTuniverse_go or WTuniverse_gol), but after all graphical entities have been created.

2-6 WorldToolKit Reference Manual

Simulation Management

Subsequently, you also need to ¢&ffuniverse _ready before re-entering the simulation
loop if new graphical entities have been created or existing ones removed or deleted.

WTuniverse_go

void WTuniverse_go(
void);

This function starts the main simulation loop, and can only be called once. Control does not
return to the statement following the callw@universe_go until the WTuniverse_stop

function is called. However, your application can gain control through a universe action
function or through a task function. The universe has a user-specifiable action function (set
by calling WTuniverse_setactions described ompage 2-12), which is called before the
rendering occurs for each frame. Individual objects can also have task functions, which are
called for the object once per frame ($&€task_new on page 11-2). The principle is

similar to the “callback” or “event” functions typically provided by a window management
system.

Note: You cannot callvTuniverse _go from the universe’s action function or from a task
function.

Before callingWTuniverse _go for the first time you must call/Tuniverse_ready. You
should also calWTuniverse_ready before subsequent calls Wruniverse go if new
graphical entities have been created since the last a#iifdoiverse_ready. See the above
description ofWTuniverse_ready.

Note: If using WTK’s Ul functionality to create a user interface, waili_go instead of
WTuniverse_go.

WTuniverse_gol

void WTuniverse_gol(
void);

This function starts the main simulation loop for one loop only. This is useful for creating
a splash screen, for example, which is displayed while a program is loading. It is not
necessary to call/Tuniverse_stop to exit the simulation loop whenTuniverse gol is

called.

WorldToolKit Reference Manual 2-7

Chapter 2: The Universe

An example is shown here:

main()
{
WTuniverse_new();
/* code to load graphical entities */
WTuniverse_ready();
WTuniverse_go1(); /* draw 1 frame */
/* code to initialize simulation */
WTuniverse_go();
WTuniverse_delete();

Before callingWTuniverse go1 for the first time WTuniverse_ready must be called. You
should callwTuniverse_ready before subsequent callsWoruniverse_gol if new graphical
entities have been created since the last caéllToniverse_ready. See the previous
description ofWTuniverse_ready.

Note thatWTuniverse gol is not reentrant; it must not be called from the universe’s action
function or from an object task function.

WTuniverse_stop

void WTuniverse_stop(
void);

Call this function to exit the main simulation loop, which was entered by calling
WTuniverse_go. WhenWTuniverse_stop is called, the simulation continues to the bottom
of the loop and then exits. It does not exit mid-way through the loop.

2-8

WorldToolKit Reference Manual

Simulation Management

Typically WTuniverse_stop is called from the universe’s action function. The following is
an example of such an action function, wheteise is a pointer to a sensor object created
earlier in the application:

[* Exit the simulation loop if the left mouse button has been pressed. */
void actions()

{
if (WTsensor_getmiscdata(mouse) &
WTMOUSE_LEFTBUTTON) {
WTuniverse_stop();
}
}

WTuniverse_seteventorder

FLAG WTuniverse_seteventorder(
short nevents,
short *events);

This function allows you to change the order of activity in the simulation loop. When a
WTK application is running, the simulation loop (as illustrated in figure 2-1 on page 2-6)
is repeatedly executed. The functisMTuniverse_seteventorder allows you to change the
order of activity in the simulation loop from the default order shown.

There are four items in the simulation loop that you can rearrange. They are specified in the
function WTuniverse_seteventorder using the following constants, (listed here in the
default order in which the corresponding events occur in the simulation):

WTEVENT_ACTIONS The user-defined universe action function is
called.

WTEVENT_OBJECTSENSOR Graphical objects and viewpoints are updated
by the sensors attached to them.

EVENT_TASKS Object task functions are called.

WTEVENT_PATHS Paths in record or playback mode are stepped.

To change the order of events, define an array of shorts containing the constants in the
desired order and pass itWdTuniverse_seteventorder as thesvents argument. Theevents
argument should always be 4.

WorldToolKit Reference Manual 2-9

Chapter 2: The Universe

For example, you may use this function in an application where input from a sensor is used
to move the viewpoint, while keeping the viewpoint within a certain room. To accomplish
this, you would want to have the viewpoint moved with input from the sensor before it is
tested for inclusion in the rooiVTEVENT_OBJECTSENSOR is the constant

corresponding to the viewpoint update with sensor inputVaneVENT_ACTIONS is the
constant corresponding to the test of the viewpoint location relative to the “room” geometry
(assuming that a universe action function has been written to perform this test).

The following code fragment shows how to set this event order by calling
WTuniverse_seteventorder so that the universe action function is called last:

short myevents[4];

/* set the order so the action function is last */
myevents[0] = WTEVENT_OBJECTSENSOR,;
myevents[1] = WTEVENT_TASKS;
myevents[3] = WTEVENT_PATHS;
myevents[2] = WTEVENT_ACTIONS;
WTuniverse_seteventorder(4, myevents);

Each of the four constants must occur exactly once in the array passed in to
WTuniverse_seteventorder. If a valid array is passed in, then the event order is set and the
function returns TRUE. If an invalid array is passed in (for example, if one of the tokens
occurs twice), then the event order is unaffected and the function returns FALSE.

WTuniverse_geteventorder

short *WTuniverse_geteventorder(
void);

This function returns the order of events currently set to occur in the simulation loop. See
the functionWTuniverse_seteventorder for a description of the constants and their default
order. The return value of this function is an array of shorts where:

array[0] : is the number of events in this array (4 in the current release), and

array[1] ... array[N] : are the N event tokens, where N is given in array[0]

Note: Do not modify the returned array, or the results may be undefined!

2-10 WorldToolKit Reference Manual

The Universe Action Function

The following illustrates how to use this function:

short *events, event, i;
events = WTuniverse_geteventorder();
for (i = 0; i < events[0]; i++) {
event = events[i+1];
WTmessage(“Event %d is “, i);
if (event==WTEVENT_OBJECTSENSOR)
WTmessage(“OBJECTSENSOR\n);
if (event==WTEVENT_TASKS))
WTmessage(“TASKS\n");
if (event==WTEVENT_ACTIONS)
WTmessage(“ACTIONS\n");
if (event==WTEVENT_PATHS)
WTmessage(“PATHS\n");

The Universe Action Function

You use the universe action function to define and control the activity in your simulations.
Using the action function, you can specify actions involving any WTK objects, graphical
or otherwise. The action function is a user-defined function that is called by the simulation
manager each time through the simulation loop. Figure 2-1 on page 2-6 shows the order in
which the action function is called with respect to the other events in the simulation loop.
This order can be changed with the functighuniverse_seteventorder.

Some examples of actions that might be specified in the universe action function are:

e Program termination by having a button press trigger a célifumiverse_stop.

» Simulation activities such as terrain-following, object manipulation, intersection
testing, or others.

» Changes to rendering parameters such as lighting conditions or background color.

« Event handling for a user interface, for example, calfgvindow _pickpoly to
enable the user to interactively select a polygon, and specifying what is to be done
with the selected polygon; processing keyboard input using/tikeyboard
functions.

WorldToolKit Reference Manual 2-11

Chapter 2: The Universe

Actions pertaining to a specific graphical object can be specified in the object’s task
function usingWTtask_new.

WTuniverse_setactions

void WTuniverse_setactions(
void (*actionfn) (void));

This function sets the universe action function. An example of a simple but useful action
function is the following, which tests whether BUTTONL of a Spaceball has been pressed,
and callsWTuniverse_stop if so. This example assumes that a Spaceball sensor object has
been previously constructed in the application.

WTsensor *spaceball;

void myactions(void)

{
/* stop by pressing the 1 button on the Spaceball. */
if (WTsensor_getmiscdata(spaceball)
& WTSPACEBALL_BUTTON1)
WTuniverse_stop();
}

The universe action function is set for the example above by calling:

WTuniverse_setactions(myactions);

The Universe’s Objects

The following functions provide access to the universe’s lists of objects (for example,
WTuniverse_getsensors returns a pointer to the sensor list). To iterate through this list, use
the corresponding iterator function (suchvéEsensor_next) to return the next object on

the list.

2-12

WorldToolKit Reference Manual

The Universe’s Objects

WTuniverse_getsensors

WTsensor *WTuniverse_getsensors(
void);

This function returns a pointer to a list of all sensors currently in the universe. This list
includes all sensors that have been constructed using the funtiensor_new or one of

the sensor macros, suchiéSspaceball_new, but does not include any sensors deleted with
WTsensor_delete. Use the functiom/Tsensor_next to iterate through this list.

WTsensor_next

SeeWTsensor_next on page 13-10 for a description.

WTuniverse_getpaths

WTpath *WTuniverse_getpaths(
void);

This function returns a pointer to a list of all paths in the universe. You can use
WTpath_next to iterate through the universe’s list of paths.

WTpath_next

SeeWTpath_next on page 14-10 for a description.

WTuniverse_getwindows

WTwindow *WTuniverse_getwindows(
void);

This function returns a pointer to a list of all windows currently in the universe. You can
then iterate through the list of existing windows udivivindow_next. When new

windows are created, they are added onto the end of the universe’s list of windows, so the
first window returned byVTuniverse getwindows is the first window that was created (i.e.,

the window opened by th&Tuniverse_new call, unless that window has been deleted with
WTwindow _delete).

WorldToolKit Reference Manual 2-13

Chapter 2: The Universe

Consult your Hardware Guide for information about support for the WTK window class on
your system.

WTwindow_next

SeeWTwindow_next on page 17-8 for a description.

WTuniverse_getcurrwindow

WTwindow *WTuniverse_getcurrwindow(
void);

This function returns a pointer to the window that has input focus. Normally, this is the
WTK window in which the mouse cursor lies, or NULL if the cursor is not in a WTK

window.

However, if the mouse is moved out of a window while a mouse button is held down, the
window will still retain input focus. See al$@Twindow_getidx on page 17-29.

WTuniverse_getcurrwinidx

WTuiwinidtype WTuniverse_getcurrwinidx(
void);

This function returns the system-specific window ID of the window that has input focus.

The return value’s type is host-system specific; on UNIX platforms the return type is
Widget, while on the Windows platform, the return type is HWND.

WTuniverse_getcurrscridx

int WTuniverse_getcurrscridx(
void);

This function returns the number of the screen that has input focus.

2-14

WorldToolKit Reference Manual

The Universe’s Objects

WTuniverse_getviewpoints

WTviewpoint *WTuniverse_getviewpoints(
void);

This function returns a pointer to a list of all viewpoiintshe universe. When the universe
is created wittWTuniverse_new, a viewpoint is automatically created and is by default the
first viewpoint returned byWTuniverse_getviewpoints. You can then iterate through the list
of existing viewpoints usin@/Tviewpoint_next.

If VRML files have viewpoint information, new viewpoints are created and added to the
beginning of the list of viewpoints. Thus, once you load a VRML file, a call to
WTuniverse_getviewpoints will not return the same viewpoint as it would have before the
VRML file was loaded. To associate a sensor with a viewpoint, you would usually call
WTuniverse_getviewpoints to get a pointer to the viewpoint associated with the window. If
a VRML file with viewpoints was just loadew@/Tuniverse_getviewpoints does not return

the viewpoint associated with the window. That is why you have to get a pointer to the
window's viewpoint before you load a file.

WTviewpoint_next

SeeWTviewpoint_next on page 16-5 for a description.

WTuniverse_setviewpoint

void WTuniverse_setviewpoint(
WTviewpoint *viewpoint);

Some WTK functions make use of the concept of a “current” viewpoint. This function
allows you to designate a particular viewpoint as the current viewpoint.

Note: WTK won't delete the viewpoint if it is the universe’s current viewpoint. You can,
however, delete any other viewpoint.

In the following example, a new viewpoint is created with the same position as the
viewpoint initially constructed for the universe, but pointing in the opposite direction. It is
then set to be the current viewpoint.

WorldToolKit Reference Manual 2-15

Chapter 2: The Universe

WTviewpoint *newview; /*new viewpoint for rotated view */

/*make a new viewpoint by copying the universe’s initial viewpoint */
newview = WTviewpoint_copy(WTuniverse_getviewpoints());

[*rotate the viewpoint to point in opposite direction */
WTviewpoint_rotate(newview, Y, Pl, WTFRAME_VPOINT);

[*finally, switch to this new viewpoint */
WTuniverse_setviewpoint(newview);

WTuniverse_getinitialview

void WTuniverse_getinitialview(
WTpq *position);

WhenWTnode_load reads in a model from a DXF or NFF file, it reads in and saves the
viewpoint information contained in the fil&/Tuniverse_getinitialview extracts the saved
viewpoint position and orientation from the most recently loaded model and plagas it in

The initial viewpoint location is useful for resetting the viewpoint to a specific start-up
location, like when the end-user has moved around enough to become lost with respect to
the model.

Here’s how to set the viewpoint to the stored location, so that you can return to where you
started:

[* get the stored viewpoint from the most recently loaded universe */

WTpq initialview;
WTuniverse_getinitialview(&initialview);

/* move the current viewpoint to the location read in from the model */
WTviewpoint_moveto(WTuniverse_getviewpoints(), &initialview);

See alsdVTnode_load on andpage 4-46 antiVTnode_save on page 4-48.

2-16 WorldToolKit Reference Manual

The Universe’s Objects

WTuniverse_getrootnodes

WTnode *WTuniverse_getrootnodes(
void);

This function returns a pointer to the first root node in the universe’s list of root nodes. You
can useéVTrootnode_next to iterate through the universe’s list of root nodes.

WTrootnode_next

SeeWTrootnode_next on page 4-77 for a description.

WTuniverse_getmotionlinks

WTmotionlink *WTuniverse_getmotionlinks(
void);

This function returns a pointer to the first motion link in the universe’s list of motion links.
You can useVTmotionlink_next to iterate through the universe’s list of motion links.

WTmotionlink_next

SeeWTmotionlink_next on page 15-8 for a description.

WTuniverse_deletelink

void WTuniverse_deletelink(
void *source,
void *target);

This function deletes any motion link connecting the indicated source and target objects
from the universe’s list of motion links. All memory used by the motion link is released.

WorldToolKit Reference Manual 2-17

Chapter 2: The Universe

Global Rendering Parameters

The functions in this section pertain to WTK rendering parameters and display options.
Please consult your Hardware Guide for system-specific information on these subjects.

Rendering Options

The rendering style applied to a geometry is a combination of the universe’s rendering style
and the geometry’s rendering style. For example, if you set the universe’s rendering style
to smooth shaded and textured, but set one geometry’s rendering style to wireframe, then
all of the objects in the universe will be rendered smooth shaded and textured except for the
one specified geometry, which is rendered in wireframe mode. For more information on
rendering styles for geometries, see page 6-33.

WTuniverse_setrendering

void WTuniverse_setrendering(
FLAG style);

This function specifies the universe’s rendering style. sijle argument is a bitmask that
allows you to set several different rendering flags simultaneously. The default rendering
style for the universe is lighting enabled, smooth shaded and texturing enabled (i.e., the
style flag is set toWTRENDER_LIGHTING |WTRENDER_SMOOTH |
WTRENDER_TEXTURED).

Note: WTuniverse_setrendering has no effect on a prebuilt geometry, since you cannot

change the rendering style of prebuilt geometry.
The following are valid styles:

WTRENDER_ANTIALIAS Enables anti-aliasing. Note that solid fill
polygon anti-aliasing is only available on
SGI RE systems that have at least two raster
managers. Wireframe anti-aliasing is
available when using the OpenGL version of
WTK (i.e., WTRENDER_ANTIALIAS]
WTRENDER_WIREFRAME).

2-18

WorldToolKit Reference Manual

Rendering Options

WTRENDER_BEST Enables lighting, smooth shading, textures,
perspective texturing, and anti-aliasing (i.e.,
WTRENDER_LIGHTING|WTRENDER_
SMOOTH|WTRENDER_TEXTURED)|
WTRENDER_PERSPECTIVE]
WTRENDER_ANTIALIAS).

WTRENDER_GOURAUD Enables gouraud shading and lighting (this is
an outdated style from WTK 2.1, see note
below).

WTRENDER_LIGHTING Turns on lighting.

WTRENDER_NOSHADE Disables shading, lighting, and texturing.

WTRENDER_PERSPECTIVE Enables perspectively correct texturing.

WTRENDER_SMOOTH Enables smooth shading (gouraud shading).

WTRENDER_TEXTURED Enables texturing.

WTRENDER_WIREFRAME Enables wireframe mode. Note that when

WTK renders in wireframe mode, all
texturing and lighting is ignored, and the lines
are drawn in a solid color based on the diffuse
material components of the vertices.

For example, if the style parameter is SSMDRENDER_WIREFRAME, all of the

geometries in the universe will be rendered as wireframe entities, instead of solid entities
(with WTRENDER_WIREFRAME, the only additional rendering option available is
WTRENDER_ANTIALIAS, which causes the wireframe image to be anti-aliased).

Note: WTRENDER_GOURAUD is an outdated WTK 2.1 style that has been replaced with
WTRENDER_LIGHTING and WTRENDER_SMOOQTH.

In many cases you will want to simply change one of the rendering flags while leaving the
current set active. For example, if you want to turn texturing off while leaving the rest of
the currently active rendering flags on, you would do something like this:

FLAG style;

/* get the current rendering flags */

style = WTuniverse_getrendering();

/* now turn off the texturing flag, leaving the rest alone */
style = style & ~(WTRENDER_TEXTURED);

WorldToolKit Reference Manual 2-19

Chapter 2: The Universe

/* now pass the modified flag set back to WTK */
WTuniverse_setrendering(style);

WTuniverse_getrendering

FLAG WTuniverse_getrendering(
void);

This function returns the current value of the universe rendering style. See the
WTuniverse_setrendering function above, for possible return values.

Other Global Functions

WTscreen_setyblank

void WTscreen_setyblank(
int distance);

This function allows you to adjust the vertical blanking interval between the left and right
eye images, which are stacked vertically on the display. This interval is measured in pixels,
and appears as a solid bar between the upper and lower imagegT&tseen setyblank

for certain hardware platforms when a field-sequential viewing device is being used and
you are using the display optioWTDISPLAY CRYSTALEYES.

If you are using one of these devices and experience a rolling vertical sync problem or
problem with the vertical alignment of the left and right eye images, adjust this value until
the problem disappears. Examine your Hardware Guide for platform-specific information
about this feature.

It is often useful to be able to interactively adjust the vertical blanking interval one pixel at
a time, until the correct value is found. Increasing the vertical blanking interval value by
one is accomplished by calling:

WTscreen_setyblank(WTscreen_getyblank() + 1);

For more information about creating a display appropriate for CrystalEyes or the
BOOM2C, see your WTK Hardware Guide. SeeSkasorshapter for information about
the BOOM (page 13-55) and CrystalEyesVR (page 13-108) as serial port devices.

2-20

WorldToolKit Reference Manual

Other Global Functions

WTscreen_getyblank

int WTscreen_getyblank(
void);

This function returns the current value of the screen blanking interval used for field-
sequential devices as described urit@screen_setyblank. Check your Hardware Guide
to see if your platform supports this feature.

WTuniverse_setbboxrgb

void WTuniverse_setbboxrgb(
floatr,
float g,
float b);

This function sets the color of all active bounding boxes in the universe. The default color
is white.

WTuniverse_setbgrgb

void WTuniverse_setbgrghb(
unsigned charr,
unsigned char g,
unsigned char b);

This function sets the background color of the universe (0 to 255 are valid rgb values). The
default color is blue (0, 0, 255).

WTuniverse_getbgrgb

void WTuniverse_getbgrgb(
unsigned char *r,
unsigned char *g,
unsigned char *b);

This function returns the current background color of the universe.

WorldToolKit Reference Manual 2-21

Chapter 2: The Universe

WTuniverse_setsubfaceoffset

void WTuniverse_setsubfaceoffset(
float val);

This function sets the distance by which a subface is offset from its parent polygon. The
default offset value is 0.65, which seems to work well for many models. For more
information, se&ubfaces in MultiGen/ModelGem page 6-7.

Note: The subface offset set through this function is only appicable to models loaded from

MultiGen .FLT files.

WTuniverse_getsubfaceoffset

float WTuniverse_getsubfaceoffset(
void);

This function returns the value of the subface offset.

Performance and Timer Functions

For optimizing performance, it is often useful for applications to know how fast the
simulation is running. Although the speed could easily be checked outside of WTK by
making calls to system timer functions, the need for such functions is common enough that
they are provided as part of the WTK library.

WhenWTuniverse_new s called, the universe clock starts and WTK provides access to the
following simulation statistics: simulation time, frame count, and average frame rate.

WTuniverse_time

float WTuniverse_time(
void);

This function returns the number of seconds the simulation has been running since the last
time WTuniverse_new or WTuniverse_resettime was called.

2-22

WorldToolKit Reference Manual

Performance and Timer Functions

WTuniverse_resettime

void WTuniverse_resettime(
void);

This function resets the universe time as if the simulation had just started.

WTuniverse_framecount

int WTuniverse_framecount(
void);

This function returns the number of frames drawn since the lasWtifoeiverse _new or
WTuniverse_resetframecount was called.

WTuniverse_resetframecount

void WTuniverse_resetframecount(
void);

This function resets the universe frame count as if the simulation had just started.

WTuniverse_framerate

float WTuniverse_framerate(
void);

This function returns the number of frames per second at which the simulation is currently
running. The number returned is actually a running average of the frame rate of the
preceeding 30 frames, in an attempt to stabilize the reading to at least one decimal digit.
Therefore, you should wait at least 30 frames prior to accessing this function to obtain a
meaningful result.

WorldToolKit Reference Manual 2-23

Chapter 2: The Universe

WTuniverse_avgframerate

float WTuniverse_avgframerate(
int samples);

This function returns the number of frames per second, averaged over a user-specified
number of updates. Currently the maximum number of samples is 30. Passing in a sampling
value of less than zero or greater than 30 will return -1. Passing in 30 is the same as calling
WTuniverse_framerate.

Universe Options

WTuniverse_setoption

void WTuniverse_setoption(
int option,
int value);

This function sets certain global parameters. It can be called at any time after
WTuniverse_new has been called. However, for the option to have effect,
WTuniverse_setoption must be called before calling the WTK function that the option will
affect.

The following options, allowed values, and default values (shown in parentheses) are
currently supported:

WTOPTION_3DSCHGTEXEXT This option pertains only to the reading of 3D
Studio files when a file references a texture
whose name ends in “.gif", “.tif", or “.cel”.
These formats are unsupported in WTK, so if
WTOPTION_3DSCHGTEXEXT is set to
TRUE, then the texture extension is
automatically changed to “.rgb” for UNIX
platforms or “.tga” for Windows platforms.
Note that “.jpg” extensions are no longer
automatically changed. TRUE/FALSE
(FALSE)

2-24 WorldToolKit Reference Manual

Universe Options

WTOPTION_MGENREADVCOLOR

WTOPTION_NFFWRITE12

WTOPTION_NFFWRITEUV

WTOPTION_NFFWRITEVZ21

WTOPTION_OLD3DS

WTOPTION_OLDTEXTROT

This optionreads vertex colors when loading
MultiGen/ModelGen flt files. (Sometimes
vertex colors are computed and saved out
with flt files which are not needed when
using the file with another program.) TRUE/
FALSE (FALSE)

This option writes polygon colors out in 12-
bit format rather than 24-bit when NFF files
are written out. (Note that vertex colors are
always written out in 24-bits.) TRUE/FALSE
(FALSE)

This option writes texture uv information out
(as part of the vertex description) when NFF
files are written out. (Se&ppendix E, WTK
Neutral File Format for information about
how uv values are stored in the NFF file.)
TRUE/FALSE (FALSE)

This option writes model files out in version
2.1 NFF format. It is only used with
WTobject_save, since there was no
WTgeometry entity in WTK 2.1. When this
option is set to FALSE, the new version 3.0
NFF is used when writing and separate .mat
files are written which contain material
information. TRUE/FALSE (FALSE)

This option loads 3D Studio files using the
object and texture orientation used in Version
2.0. TRUE/FALSE (FALSE)

This option pertains to non-SGI systems
only. In Version 2.1 Beta and earlier releases
of WTK on non-SGI platforms,
WTpoly_rotatetexture (and therot parameter

in the NFF file) rotated the texture opposite to
the direction indicated under
WTpoly_rotatetexture. This was corrected in
Version 2.1. To obtain the previous
(incorrect) behavior, set this option to TRUE.
TRUE/FALSE (FALSE)

WorldToolKit Reference Manual 2-25

Chapter 2: The Universe

WTOPTION_OLDWFRONT

WTOPTION_VERTWARN

WTOPTION_USEWTPUMP

WTOPTION_XFORMSCALE

WTOPTION_NOPOSTQUIT

WTOPTION_NOAUTOALPHA

This option loads in Wavefront files using the
object orientation used in Version 2.0.
TRUE/FALSE (FALSE)

This option produces a warning when
vertices not referenced by a geometry object
are found and discarded. TRUE/FALSE
(FALSE)

This option pertains to windows applications.
Ifitis FALSE, WTK stops processing events,
and it is up to the application to process
events. TRUE/FALSE (TRUE)

This option causes WTK to use the scaling
factors (if any) contained in transform and
movable nodes. Normally, WTK ignores
scaling factors in the transformations
contained in transform and movable nodes
due to some severe side effects. If this option
is enabled so that scaling factors are
incorporated into WTK’s computations, it is
likely that intersection tests and math
functions pertaining to matrices will operate
incorrectly.

This option must be set if you want to
incorporate WTK in a Netscape or ActiveX
plug-in. This option prevents WTK from
automatically shutting down when WTK’s
last rendering window is closed. Since a
Netscape or ActiveX plug-in may require a
WTK window at certain times and not others,
you must set this option so that a kill signal is
not sent to your plug-in when WTK is not
active at a particular time.

Causes the alpha value of texture elements
(texels) of textures which do not contain
alpha values to be set to 255 (completely
opaque). If this option is not set, texels whose
R, G, and B values are equal to 0, i.e. those
texels which are colored black, will have their

2-26 WorldToolKit Reference Manual

Universe Options

WTOPTION_ NEWMGENREAD

alpha value set to 0 (completely transparent)
while pixels which are not completely black
will have their alpha value set to 255. By
setting this option, you can prevent WTK
from assigning black texels an alpha value of
0. SeeWTpoly_settexture.

This option allows you to select the method
used to read in MultiGen flt files. If this
option is set to TRUE, WTK will use
MultiGen’s Read/Write API to read in the .flt
file. By using the MultiGen Read/Write API,
WTK can read in even the newest versions of
flt files (including v15.x). If this option is set
to FALSE, WTK will use an older reader
which is only capable of reading in flt files
up to v14.2. For backward compatibility with
WTK R8, set this option to FALSE. Valid
values: TRUE/FALSE (FALSE).

In the following example, the writing out of texture uv information to NFF and binary NFF

files is enabled:

WTuniverse_setoption(WTOPTION_NFFWRITEUV, TRUE);

WTuniverse_getoption

int WTuniverse_getoption(
int option);

This function returns the value of the specified option. ddtien parameter can be any of

the following:

WTOPTION_3DSCHGTEXEXT
WTOPTION_MGENREADVCOLOR

WTOPTION_NFFWRITE12
WTOPTION_NFFWRITEUV
WTOPTION_NFFWRITEV21
WTOPTION_OLD3DS

WorldToolKit Reference Manual 2-27

Chapter 2: The Universe

WTOPTION_OLDTEXTROT
WTOPTION_OLDWFRONT
WTOPTION_VERTWARN
WTOPTION_USEWTPUMP
WTOPTION_XFORMSCALE
WTOPTION_NOPOSTQUIT
WTOPTION_NOAUTOALPHA
WTOPTION_ NEWMGENREAD

If the option parameter is invalid, this function will return -1.

Resource Files

WTK provides the ability to set certain parameters from a file when your application starts
up. For example, you can specify background color, viewing angle, window size and
window position this way. On UNIX platforms, you do this with X Resources. For other
platforms, consult your Hardware Guide.

To use this capability, follow these steps:

1. Add the desired parameters to the appropriate X Resource file.

2. Register those resources with the X Resources Database using xrdb. For example,
if using the .Xdefaults file, when adding new resource values to the file, use:

xrdb -merge ~myuserid/.Xdefaults

To find out what values are currently in your X Resource Database, you can type:

xrdb -query

3. Call WrTinit_defaults before callingWTuniverse_new.

Each of these steps is examined more closely, in the following sections.

2-28 WorldToolKit Reference Manual

The Resource Hierarchy

The Resource Hierarchy
This is the order in which WTK processes resource files:

1. Jusr/lib/X11/app-defaults/Wtk
(except for SUN which uses /usr/openwin/lib/app-defaults/Wtk)

$HOME/. Xdefaults
File specified by XENVIRONMENT environment variable
$HOME/app-defaults/Wtk

o > w0

$HOME/app-defaults/<app-name>

where app-name is the name of the application executable, with its first letter
capitalized. For example, if your application is named Kitchen, then the file
processed is named Kitchen. If the -name option is specified on the command line,
the next parameter following this option is used instead of the application name.

6. Finally, command line arguments used when you run your application will
override X Resource values obtained from any of the above files. Use of command
line arguments is described below un8pecifying Parameters on the Command
Line on page 2-31.

When resource specifications are made in more than one of the files above, the last file
processed takes precedence over previously processed files.

The resource database “class” chosen for WTK resourd¢s ighile the “name” iswtk.

Choosing an Appropriate Resource File

It is recommended that you create files in the application defaults directory that will allow
different resource definitions for different applications. If you use the .Xdefaults file, then
it is recommended that you use th class instead of thetk name.

WorldToolKit Reference Manual 2-29

Chapter 2: The Universe

WTK Parameters Specified in a Resource File

The following table describes the WTK parameters specified in a resource file, and
indicates which parameters take boolean values (TRUE or FALSE):

Boolean Values

Parameter (.. TRUE/FALSE) Description

bgcolor Universe background color (default: 0x0000ff)

ambient Ambient light intensity (default: 0.4)

ambientrgb Ambient light color (default: Oxffffff)

geometry Window size and placement (default: system-
dependent)

fov Total horizontal view angle, in degrees (default: 80.0)

hither Hither clipping value (default: 1.0)

yon Yon clipping value (default: system-dependent)

border X Whether initial windows have a border (default: TRUE)

coplanar X Whether coplanarity testing is on when models are
loaded (default: TRUE)

write12 X Write out NFF files using 12-bit polygon color (default:
FALSE)

writeuv X Write out NFF using texture uv coordinate values,
rather than texture rotation, translation, scale, and
mirror values
(default: FALSE)

old3ds X 3D Studio objects and textures load in as they did in
Version 2.0 (upside down) (default: FALSE)

oldwfront X Wavefront objects load in as they did in Version 2.0

(default: FALSE)

How TO SPECIFY THESE PARAMETERS

The following examples show how to specify these parameters in an X Resource file:

2-30

WorldToolKit Reference Manual

WTK Parameters Specified in a Resource File

Wik.fov: 40 * specifies a default field of view of 40 degrees */
Witk.coplanar: True /* enables coplanarity testing */

Witk.border: False [* does not display window border */

Witk.writeuv: True [* Enables writing of uv values in nff files */
Witk.write12: True /* Enables write of 12-bit color value in nff */

Wtk.geometry: 640x480+0-0 [* places a 640 by 480 window in bottom-left
corner of screen */
Witk.bgcolor: 0xff0000 /* specifies a red background color */

Witk.ambient: 0.5 /* specifies an ambient intensity of 0.5 */
Witk.hither: 2.0 /* specifies a default hither value of 2.0 */
Witk.screen: 1 /* specifies default screen to be screen # 1 */

Wtk.ambientrgb: 0x0000ff [* specifies an ambient color of blue */

Note: Do not place the comments in the above examples into the resource file. To put
comments into a resource file, begin a line with an exclamation mark “!"— the line is
then considered to be a comment.

SPECIFYING PARAMETERS ON THE COMMAND LINE

In addition to the values specified in the resource files, you can also use the command line
to specify the display and the resource file (usingitiiee option). For example:

wtk -fov 60 -border -hither 2.0 -name xyz

This runs the WTK application with an fov of 60 degrees, no border, and a hither value of
2.0, using the resource fi#OME/app-defaults/xyz instead o88HOME/app-defaults/Wik.

Note: When specifying parameters on the command line, the full resource name must be
used. WTK does not support abbreviations.

WorldToolKit Reference Manual 2-31

Chapter 2: The Universe

Telling WTK to Use Resource Information

To have WTK use the resource information, simply @atinit_defaults before calling
WTuniverse_new. Make this call before the call $oan_args in the demos since it removes
the X resource arguments.

To use the WTK's support for X Resources, you mustWathit_defaults before calling
WTuniverse_new.

For example:

int main(int argc, char **argv)

{
/* initialize WTK application defaults. NOTE the use of “&” before argc */
WTinit_defaults(&argc, argv);
/* Call scan args fn for this demo */
scan_args(argc, argv);
/* Now call WTuniverse_new */
WTuniverse_new(WT......, WT......);
A */
}

/* scan_args fn, for example, as provided in many WTK demo programs. */
void scan_args(int argc, char **argv)

{

WTinit_defaults

FLAG WTinit_defaults(
int *argc,
char **argv);

This function creates an X Resource database that ovewiti@sverse structure values
(UNIX only). Given an X display and the command line arguments, this function creates

2-32

WorldToolKit Reference Manual

Telling WTK to Use Resource Information

an X Resource Database, then looks through it for program option values. Usually, all
option values modify information in théTuniverse structure. Thus, X Resources
processed here overridtéTuniverse structure values set via function calls in the main
application before calling this function. Precedence for default option values (lowest to
highest) is as follows:

1. Function calls in the main application before calls to this function.
2. X Resources set from resource file.

3. Command line arguments.

WTinit_setmodels

void WTinit_setmodels(
const char *paths);

This function sets the path to the models directories, so that WTK functions that read in
geometry, light and/or sound files will search for the file in the specified directory path.
This function is an embeddable alternative to using the WTMODELS environment
variable. Refer to your system-specific Hardware Guide for more information about
environment variables.

WTinit_setimages

void WTinit_setimages(
const char *paths);

This function sets the path to the images directories, so that WTK functions that read in
image, texture, and/or bitmap files will search for the file in the specified diretory path. This
function is an embeddable alternative to using the WTIMAGES environment variable.
Refer to your system-specific Hardware Guide for more information about environment
variables.

WorldToolKit Reference Manual 2-33

Chapter 2: The Universe

Modes of Stereoscopic Viewing

Depending on the graphics hardware installed in your computer, you may find one or more
of the following methods useful to generate a stereo image. You may find it helpful to have
at hand the vendor's manual that describes your hardware.

To display a stereoscopic effect, the software must render two images — one as seen from
the left eye, and the second as seen from the right eye. There are essentially three different
ways in which these two images can be displayed:

* Render the full images of both eyes into one single window.

« Divide the display into two along a horizontal axis and render the left eye image
in the top part of the display and the right eye image in the bottom part of the
display.

« Interleave the left and right eye images as alternate scan lines on a display.

These three stereoscopic methods are described below in more detail.

Field Sequential Mode

This is also known as quad-buffering, since it requires the graphics hardware to have quad-
buffers — left, right, front and back buffers. This means it has sufficient memory and
performance capabilities to render two full views (the left and right eye images) and then
swap the images at 120Hz to generate a field sequential view at 60Hz. Both the images are
thus drawn onto a single display, which is why this mode is called ‘stereo in a window’.
The monitor should be capable of supporting a 120Hz update frequency. However, since
this mode uses twice as much frame buffer memory, you may have to lower your screen
resolution.

You can turn on this option by passing in WTDISPLAY_DEFAULT and
WTWINDOW_STEREO as arguments to th&universe_new call. WTK will determine
whether your graphics hardware is indeed capable of supporting this mode. If it is
supported, a single window will be created into which both eye views will be drawn. If not,
WTK will default to theOver/Under Modes described in the next section.

This mode requires the graphics hardware to have an emitter signal to synchronize the
swapping with the LCD displays. This mode will work with most LCD shutter systems as

2-34

WorldToolKit Reference Manual

Over/Under Mode

long as the emitter signal is compatible. Your graphics card should have the capability to
plug in an emitter box that sends the sync signal.

The advantages of using this mode are:

e you obtain stereo in a window
+ there is no loss of vertical resolution

» if you are using any GUI, there is no distortion

The stereoscopic hardware known to support this mode are Stereographics, NuVision and
most LCD shutter systems. The graphics hardware Intergraph Z13/Z225 as well as most SGI
and SUN systems support this mode.

Over/Under Mode

This is another form of the field sequential mode and hence there is some confusion about
the terms used. If the graphics board is incapable of supporting quad-buffers (four buffers),
the display is divided into two parts along the horizontal axis, to have two borderless
viewports within one borderless window. The left eye image is drawn into the top half and
the bottom eye image is drawn into the bottom half.

This mode also requires a monitor that supports a 120Hz update frequency. Moreover, if
the graphics board is incapable of generating a 120Hz vertical sync signal, a special adapter
box is used to double the vertical frequency to 120Hz (in this case the graphics board is set
to 60Hz vertical sync). This adapter box is called a vertical sync doubling box. The video
signal is passed through this box before it is fed to the monitor. The top and bottom images
are merged into one by the adapter box.

You can force this option to be activated by using the WTWINDOW_STEREOVSPLIT as
the window configuration flag in the call WTuniverse_new. When you use this flag, you

are forcing a vertical split in the display to generate the over/under images, even if your
system is capable of supporting stereo in a window.

This mode works with any graphics system. The Diamond 4000 is a special case because
Evans & Sutherland has provided the ability to generate the 120Hz vertical signal from
their graphics board. You don't need the sync doubling box in this case.

WorldToolKit Reference Manual 2-35

Chapter 2: The Universe

The stereoscopic hardware known to support this mode are Stereographics, NuVision and
most LCD shutter systems.

Interlaced Mode

The interlaced mode interleaves the left and right eye images as alternate scan lines in a
single window. All the even scan lines belong to the left eye image and all the odd scan
lines belong to the right eye image (or vice-versa). There are two distinct approaches to the
interlaced mode — stencil interlaced and hardware interlaced. WTK supports both these
approaches.

STENCIL INTERLACED

This is a method for supporting interlaced displays through stencils. However, your
graphics board must support stencils for this to work. You must inform WTK that you want
to use the hardware stencils via the display option WTDISPLAY_NEEDSTENCIL.

You may use the window options WTWINDOW _INTERLACEEVENODD (or
WTWINDOW_INTERLACEODDEVEN) to inform WTK to draw the left and right eye
images as even and odd scan lines respectively (or vice-versa).

The advantages to this mode are

e you obtain stereo in a window
e it supports many different LCD glasses
e it works with a 60Hz monitor (and graphics board).
However, not all graphics boards support stencils. There is also a performance impact

because of the use of stencils and the vertical resolution is halved because of the alternating
scan lines.

The stereoscopic hardware known to support this mode are VREX, Virtual i-O i-glasses!,
and many cheap LCD solutions.

The graphics hardware known to support this mode are the Diamond 4000, the Intergraph
Z25, 3D Labs’ GLINT TX/MX designs, most SGI systems and some SUN systems.

2-36

WorldToolKit Reference Manual

Interlaced Mode

HARDWARE INTERLACED

This mode of interlaced display is controlled entirely by the hardware. Intergraph supports
two methods of hardware-interlacing their displays. Their modes are called "Interlaced"
and "Hardware Interlaced". You can select these from the driver settings. Support for these
modes have varied with versions of Intergraph drivers. The latest versions support these
modes.

The "Interlaced" mode forces the hardware to generate an interlaced display at 120Hz. The
main reason for doing this is to support the 120Hz display devices.

The stereoscopic hardware known to support Intergraph’s interlaced mode are
Stereographics, and 120Hz LCD shutters. The Intergraph Z13/Z225 boards support this
mode.

The "Hardware Interlaced" mode lets you set the vertical sync frequency to something
other than 120Hz. This is necessary in order to work with 60Hz interlaced stereo devices
like VREX and Virtual i-O i-glasses!.

The stereoscopic hardware known to support Intergraph’s hardware interlaced mode are
VREX, Virtual i-O i-glasses!, and 60Hz interlaced devices. The Intergraph GLZ1T/z213/
Z25 boards support this mode.

WorldToolKit Reference Manual 2-37

Chapter 2: The Universe

2-38 WorldToolKit Reference Manual

3

Object/Property/Event Architecture

Overview

WorldToolKit (WTK) Release 8 has been enhanced through the addition of an Object/
Property/Event (OPE) architecture. This new architecture provides you with the following
capabilities:

Treat most WTK object types as genericl{asg objects, which can all be stored,
manipulated, and retrieved in a uniform manner using certain WTbase_*
functions. (See page 3-2 for a list of WTK object types supported by the new
architecture.)

Create your own properties for objects, in which to easily store user-defined data.
This provides a convenient alternative to the setdata and getdata functions for each
object type.

Trigger reactions to property changes for both user-defined and pre-defined
properties (see page 3-3 for a list of the WTK pre-defined properties.). A property
change is known as awvent and the optional reaction that is triggered in response
to an event is controlled by the propertgigent handler(s)

Share properties, allowing you to create multi-user simulations to be used with
Sense8's World2World product. If you have not purchased World2World, contact
Sense8 to learn more about this client/server networking solution.

The OPE architecture can simplify many of the programming tasks encountered by WTK
programmers and represents an alternative programming paradigm to the one described in
the WorldToolKit Reference Manual. If you are developing multi-user simulations that
connect to Sense8’s World2World servers, use the OPE programming paradigm described
here. Otherwise, you can use either programming paradigm.

Chapter 3: Object/Property/Event Architecture

For new WTK applications, we recommend that you make use of the OPE architecture
programming paradigm, for the following reasons.

It is easier to associate user-defined data with objects.

The event-based architecture corresponds more closely with other modern event-
based programming paradigms.

Should you decide to extend your simulation to be used with World2World as a
multi-user simulation, you will save development time if the application has
already been written using the OPE paradigm.

Supported Types and Supplied Properties

Note:

The OPE architecture supports the following WTK object types:

WTnode
WTviewpoint
WTwindow
WTsensor
WTpath
WTbase

WTbase is a new object type that you can use to create generic, empty objects

distinguished only by the properties that you add to them. Use the WThase object type
when you want to create properties for unsupported object types (such as WTgeometry
or WTpoly), or when you want to create an object that does not suit the characteristics
of any of the WTK supplied object types. For more information on the WTbase object
type, see page 3-7.

The tables below list the pre-defined properties supplied by WTK for each of the supported
object types.

3-2

WorldToolKit Reference Manual

WTnode Properties

WTnode Properties

WTnode Properties Data Type
WTANCHOR_LOCATION WTSTRING
WTFOG_COLOR WTQ (R,G,B,A)
WTFOG_LINEARSTART WTFLOAT
WTFOG_MODE WTINT
WTFOG_RANGE WTFLOAT
WTINLINE_LOCATION WTSTRING
WTLIGHT_AMBIENT WTP3
WTLIGHT_ANGLE WTFLOAT
WTLIGHT_ATTENUATION WTP3
WTLIGHT_DIFFUSE WTP3
WTLIGHT_DIRECTION WTP3
WTLIGHT_EXPONENT WTFLOAT
WTLIGHT _INTENSITY WTFLOAT
WTLIGHT_POSITION WTP3
WTLIGHT_SPECULAR WTP3
WTLOD_CENTER WTP3

WTLOD_RANGE

WTMOVNODE_ATTACHMENTS

WTNODE_BOUNDINGBOX
WTNODE_CHILDREN
WTNODE_ENABLED
WTNODE_ROTATION

WTNODE_TRANSLATION

WTSTRING (form of "range;range;range”)
WTSTRING (form of "name;name;name")
WTINT

WTSTRING (form of "name;name;name")
WTINT

WTQ

WTP3

WorldToolKit Reference Manual 3-3

Chapter 3: Object/Property/Event Architecture

WTnode Properties Data Type
WTSEP_CULLMODE WTINT
WTSWITCH_WHICHCHILD WTINT

WTviewpoint Properties

WTviewpoint Properties Data Type
WTVIEWPOINT_ASPECT WTFLOAT
WTVIEWPOINT_CONVDISTANCE WTFLOAT
WTVIEWPOINT_CONVERGENCE WTINT
WTVIEWPOINT_ORIENTATION WTQ
WTVIEWPOINT_PARALLAX WTFLOAT
WTVIEWPOINT_POSITION WTP3

WTwindow Properties

WTwindow Properties Data Type
WTWINDOW_BGRGB WTP3
WTWINDOW_BOTTOMRIGHT WTP2
WTWINDOW_ENABLED WTINT
WTWINDOW_EYE WTINT
WTWINDOW_HITHER WTFLOAT
WTWINDOW_KEY WTINT
WTWINDOW_LBUTTON WTINT (1=down, O=up)

WTWINDOW_LBUTTONDBLCLK WTINT

3-4 WorldToolKit Reference Manual

WTsensor Properties

WTwindow Properties

Data Type

WTWINDOW_RBUTTON
WTWINDOW_RBUTTONDBLCLK

WTWINDOW_MBUTTON

WTINT (1=down, O=up)
WTINT

WTINT (1=down, O=up)

WTWINDOW_MBUTTONDBLCLK WTINT
WTWINDOW_POSITION WTP2
WTWINDOW_PROJECTION WTINT
WTWINDOW_ROOTNODE WTSTRING
WTWINDOW_SIZE WTP2
WTWINDOW_TOPLEFT WTP2
WTWINDOW_VIEWANGLE WTFLOAT
WTWINDOW_VIEWPOINT WTSTRING
WTWINDOW_VIEWPOINT2 WTSTRING
WTWINDOW_YON WTFLOAT
WTsensor Properties

WTsensor Properties Data Type
WTSENSOR_ANGULARRATE WTFLOAT
WTSENSOR_LASTROTATION WTQ
WTSENSOR_LASTTRANSLATION WTP3
WTSENSOR_MISCDATA WTINT
WTSENSOR_RAWDATA WTPOINTER
WTSENSOR_ROTATION WTQ

WTSENSOR_ROTATIONALOFFSET

WTQ

WorldToolKit Reference Manual 3-5

Chapter 3: Object/Property/Event Architecture

WTsensor Properties Data Type
WTSENSOR_SENSITIVITY WTFLOAT
WTSENSOR_TRANSLATION WTP3
WTSENSOR_UPDATEFN WTPOINTER
WTpath Properties

WTpath Properties Data Type
WTPATH_CONSTRAINTS WTINT
WTPATH_DIRECTION WTINT
WTPATH_MARKER WTPOINTER)
WTPATH_MODE WTINT
WTPATH_PLAYING WTINT
WTPATH_PLAYSPEED WTINT
WTPATH_ROTATION WTQ
WTPATH_RECORDING WTINT
WTPATH_RECORDLINK WTPOINTER
WTPATH_SAMPLES WTINT
WTPATH_TRANSLATION WTP3
WTPATH_VISIBILITY WTINT

3-6 WorldToolKit Reference Manual

WTbase Objects and Functions

WTbase Objects and Functions

The addition of the WTbase object type with Release 8 allows you to create generic, empty
objects, distinguished only by the properties that you add to them. Just like the other object
types supported by the OPE architecture (see page 3-2), you can add properties to WTbase
objects, add event handlers to those properties to react to their value changes, and share
those properties across the network when using World2World servers. WTK object types
that are not supported by the OPE paradigm cannot contain properties and, thus, do not
generate events or allow for the sharing of data over a network. To extend the OPE
paradigm, create WTbase objects and user-defined properties (see page 3-14) to represent
the desired attributes of the unsupported objects.

Suppose you have a texture applied to a geometry, and each time the texture on the
geometry changes, you want to intensify one of your lights. Since the WTgeometry object
type is not supported by the OPE architecture, you would create a WTbase object, add a
Texture property to that object (S@&property_new on page 3-15), and add an event
handler (se&VTproperty_addhandler on page 3-25) to the Texture property. In the event
handler, you would calWTgeometry settexture to modify the actual geometry, followed

by a call towTlightnode_setintensity. Remember to always modify the geometry’s texture
via the WTbase object in order to trigger the property change event. By using this
technique, you can share the Texture property with other clients when using World2World
servers.

You can arrange WTbase objects in a hierarchy so that user data can be organized in a
coherent fashion.

WTbase Functions for WTbase Objects

This section describes the WTbase functions that operate on WTbase objects only. See page
3-10 for information on the WTbase functions that operate on WTbase objects as well as
other object types supported by the OPE architecture.

WorldToolKit Reference Manual 3-7

Chapter 3: Object/Property/Event Architecture

WTuniverse_getbases

WTbase* WTuniverse_getbases(
void);

This function returns a pointer to the first WTbase object in the universe’s list of WTbase
objects.

WTbase_ next

WTbase* WTbhase_next(
WTbase *object);

This function returns the next WTbase object in the universe’s list of WThase objects. Use
WTuniverse_getbases to obtain a pointer to the first WTbase object in the universe’s list of
WThbase objects.

WTbase_new

WTbase* WTbase_new(
WTbase *parent);

This function creates a new WThbase object as a chipdreht and returns a pointer to it.

If parentis NULL, the WTbase object will be created as an orphan, i.e. it will not have any
parent(s) unles®/Tbase_addparent is used to add a parent to the newly created WThase
object. This new WTbase object is added to the universe’s list of WTbase objects.

WTbase_addparent

void WTbase_addparent(
WTbase *object
WTbase *parent);

This function adds the specifigdrent WTbase object as a new parenbbject.

3-8

WorldToolKit Reference Manual

WTbase Functions for WTbase Objects

WTbase_removeparent

void WTbase_removeparent(
WTbase *object
WTbase *parent);

This function removes the specifipdrent WTbase object as a parentadfect so that the
object WTbase object is no longer a childgzfrent.

WTbase_numparents

int WTbhase_numparents(
WTbase *object);

This function returns the number of parents of the specified WThase object.

WThbase_getparent

WTbase* WTbase_getparent(
WTbase *object
int parentnum);

This function returns a pointer to therentnum'th parent of a WTbase objegtarentnum
can range from O toATbase_numparents - 1).

WTbase_numchildren

int WTbase_numchildren(
WTbase *object);

This function returns the number of children of the specified WThase object.

WorldToolKit Reference Manual 3-9

Chapter 3: Object/Property/Event Architecture

WTbase_getchild

WTbase* WThbase_getchild(
WTbase *object
int childnum);

This function returns a pointer to theildnum’th child of the specified WTbase object.
childnum can range from O tdATbase_numchildren - 1).

WThbase_ischild

FLAG WTbase_ischild(
WTbase *parent
WThbase *child);

This function returns TRUE ifhild is a first generation child gfarent.

WThbase_findchild

WTbase* WTbase_findchild(
WTbase *object
const char *name);

This function returns a pointer to the WTbase object which is a first generation child of the
specified WTbase object and whose hame matchesathe parameter.

WTbase Functions for the Supported WTK Object Types

In addition to the WTbase_* functions described in the previous section, there are a number
of additional WTbase_* functions that can be used with WTbase objects as well as with the
other WTK object types supported by the OPE architecture (see page 3-2). This provides
WTK programmers a uniform way to store, manipulate, and retrieve user and WTK data.

By using these WTbase functions, WTK applications can now generically access any of the
supported WTK objects and their properties. So, for example, if you wish to set the name
of a WTnode object, you can use either tfifnode_setname function or the

WTbase_setname function on the WTnode object.

3-10

WorldToolKit Reference Manual

WTbase Functions for the Supported WTK Object Types

WTbase_gettype

int WTbase_gettype(
void *object);

This function returns the type of the object passed in (WTBASE, WTNODE,
WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH).

WTbase_delete

void WTbase_delete(
void *object);

This function deletes an object.

WThbase_print

void WTbase_print(
void *object);

This function prints information about an object.

WTbase_setdata
void WTbase_setdata(
void *object

void *data);

This function sets the user-defined data field in an object.

WTbase_getdata

void* WTbase_getdata(
void *object);

This function returns the user-defined data field from an object.

WorldToolKit Reference Manual 3-11

Chapter 3: Object/Property/Event Architecture

WTbase_setname
void WTbase_setname(

void *object
const char *name);

This function sets the name of an object.

WTbase_getname

char* WTbase_getname(
void *object);

This function returns the name of an object.

WTbase_numproperties

int WTbhase_numproperties(
void *object);

This function returns the number of properties associated with an object.

WTbase_getproperty

char* WTbase_getproperty(
void *objecty
int propnum);

This function returns theropnum'th property of the specified objegiropnum can range
from 0 to WTbase_numproperties - 1). To get the value of the property, use
WTproperty_get (see page 3-20).

3-12 WorldToolKit Reference Manual

WTbase Functions for the Supported WTK Object Types

WThbase_nfindproperty

char* Wtbase_nfindproperty(
void *object
const char *propname
int ntocmp);

This function returns the full property name of the first property of an object whose first
ntocmp characters of the property name match the finstmp characters opropname.

WTbase_deleteproperties

FLAG WTbase_deleteproperties(
void *object);

This function deletes all user-defined properties from the specified object.

WTbase_find

void* WTbase_find(
int objtype
const char *name);

This function finds an object of the specifielgitype by name objtype can be WTBASE,
WTNODE, WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH.

WTbase_nfind

void* WTbase_nfind(
int objtype
const char *name
int ntocmp);

This function finds an object of the specifiggtype whose name’s firsitocmp characters
matches the firsttocmp characters ofiame. objtype can be WTBASE, WTNODE,
WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH.

WorldToolKit Reference Manual 3-13

Chapter 3: Object/Property/Event Architecture

Properties

Objects that are supported by the OPE architecture (see page 3-2) are distinguished from
one another by their properties. Properties describe characteristics of an object. For
example, WTviewpoint objects (as shown in the table on page 3-2) have the following pre-
defined properties:

WTVIEWPOINT_ASPECT
WTVIEWPOINT_CONVDISTANCE
WTVIEWPOINT_CONVERGENCE
WTVIEWPOINT_ORIENTATION
WTVIEWPOINT_PARALLAX
WTVIEWPOINT_POSITION

One of the advantages of the OPE architecture is that additional user-defined properties can
be added to an object of any of the supported types. This allows WTK to treat user data in
a similar fashion to pre-defined properties. Consequently, changes to user data (events) can
now trigger reactions to those changes and can be shared on the network. Note that WTK
still allows user data to be associated with WTK objects through their ‘data’ field via calls

to functions such ag/Tviewpoint_setdata andWTviewpoint_getdata. However, you cannot

trigger event reactions or share data across the network for data associated with WTK
objects in this manner.

Properties are specified by their property name. Each property’s name (within a given
object) must be unique. That is, no two properties of an object can have identical property
names. Each property is of a specific data type. The table below lists the property data types
available in WTK.

WTdatatype Actual data Range WTProperty _getasstring
WTINT int —2,147,483,648 to "10"
2,147,483,647
WTUINT unsigned int 0to 4,294,967,295 “100003223"
WTFLOAT float 3.4E +/- 38 (7 digits) "10.25"
WTDOUBLE double 1.7E +/- 308 (15 digits) "1034.2342342343424"

3-14

WorldToolKit Reference Manual

Properties

WTdatatype Actual data Range WTProperty getasstring
WTP2 float [2] 3.4E +/- 38 (7 digits) "1.0,2.0"

WTP3 float [3] 3.4E +/- 38 (7 digits) "1.0,2.0,3.0"

WTQ float [4] 3.4E +/- 38 (7 digits) "0.0,0.0,0.0,1.0"
WTSTRING char* - "this is a string value"
WTPOINTER void* - "0x00000000"

Following are the functions that allow you to create, access, and delete properties. Note that
some of the functions listed below take values of type ‘void *' as a parameter and its usage
is dependent upon the property’s data type. See the examples shaMipfaperty set on

page 3-17 antl/Tproperty _get on page 3-20 for clarification.

WTproperty_new

FLAG WTproperty_new(
void *object
const char *propname
WTdatatype dtype);

This function creates a new user-defined property whose namspigme and whose data
type isdtype for the specified object.

WTproperty_delete

FLAG WTproperty_delete(
void *object
const char *propname);

This function deletes the user-defined property whose napnegsame from a specified
object.

WorldToolKit Reference Manual 3-15

Chapter 3: Object/Property/Event Architecture

WTproperty_exists
FLAG WTproperty_exists(

void *object
const char *propname);

This function returns TRUE if the property whose nanp@agname exists on a specified
object.

WTproperty_setdata
void WTproperty_setdata(
void *object
const char *propname

void *data);

This function sets the user-defined data field for a property.

WTproperty _getdata
void* WTproperty_getdata(

void *object
const char *propname);

This function returns the user-defined data field for a property.

WTproperty getdatatype
WTdatatype WTproperty_getdatatype(

void *object
const char *propname);

This function returns the datatype of the specified obj@etisname property.

3-16 WorldToolKit Reference Manual

Properties

WTproperty getsizeofdata
unsigned int WTproperty_getsizeofdata(

void *object
const char *propname);

This function returns the number of bytes used by the specified olgjegitzame property
value.

WTproperty_set
FLAG WTproperty_set(
void *object

const char *propname
void *value);

This function sets the specified objeqti®pname property’s value twvalue.

Usage of WTproperty_set:

WTINT intv =10; WTproperty_set(o, p, (void*)(&v));
WTUINT unsigned int v = 23423452345; WTproperty_set(o, p, (void*)(&v));
WTFLOAT float v = 2314.2134f; WTproperty_set(o, p, (void*)(&v));

WTDOUBLE double v =234234.234234234; WTproperty_set(o, p, (void*)(&v));

WTP2 WTp2 v ={0.0f, 1.0f}; WTproperty_set(o, p, (void*)v);
WTP3 WTp3 v ={0.0f, 1.0f, 0.0f}; WTproperty_set(o, p, (void*)v);
WTQ WTq v ={0.0f, 0.0f, 0.0f, 1.0f}; WTproperty_set(o, p, (void*)v);
WTSTRING char v[] = "Test message"; WTproperty_set(o, p, (void*)v);
WTPOINTER void *v = WTproperty_set(o, p, V);

WTuniverse_getrootnodes();

WorldToolKit Reference Manual 3-17

Chapter 3: Object/Property/Event Architecture

Alternatively, you could use the following type-specific WTproperty _set functions:

WTproperty_seti

FLAG WTproperty_seti(
void *object
const char *propname
int value);

WTproperty_setui

FLAG WTproperty_setui(
void *object
const char *propname
unsigned int value);

WTproperty_setf

FLAG WTproperty_setf(
void *object
const char *propname
float value);

WTproperty_setd

FLAG WTproperty_setd(
void *object
const char *propname
double value);

WTproperty_setp2

FLAG WTproperty_setp2(
void *object
const char *propname
WTp2 value);

3-18 WorldToolKit Reference Manual

Properties

WTproperty_setp3

FLAG WTproperty_setp3(
void *object
const char *propname
WTp3 value);

WTproperty_setq

FLAG WTproperty_setq(
void *object
const char *propname
WTq value);

WTproperty_sets

FLAG WTproperty_sets(
void *object
const char *propname
const char *value);

WTproperty_setp

FLAG WTproperty_setp(
void *object
const char *propname
void *value);

WTproperty_setat

FLAG WTproperty_setat(
void *object
const char *propname
void *value
double time);

This function sets the specified objeqti®pname property’s value tvalue at a specified
time. For more information on time values, see page 3-27. For examples of usage, see
WTproperty_set on page 3-17.

WorldToolKit Reference Manual 3-19

Chapter 3: Object/Property/Event Architecture

WTproperty_get
FLAG WTproperty_get(
void *object
const char *propname
void *value);

This function retrieves the specified obje@ispname property value.

Usage of WTproperty_get:

WTINT int v; WTproperty_get(o, p, (void*)(&v));
WTUINT unsigned int v; WTproperty_get(o, p, (void*)(&v));
WTFLOAT float v; WTproperty_get(o, p, (void*)(&v));
WTDOUBLE double v; WTproperty _get(o, p, (void*)(&v));
WTP2 WTp2 v; WTproperty_get(o, p, (void*)v);
WTP3 WTp3; WTproperty_get(o, p, (void*)v);
WTQ WTqv; WTproperty_get(o, p, (void*)v);
WTSTRING char *v; WTproperty_get(o, p, (void*)(&v));
WTPOINTER void *v; WTproperty_get(o, p, (void*)(&v));

Note: Thechar*result of a WTproperty _get or WTproperty_gets on a WTSTRING property
is a pointer to the actual string stored in WTK. DO NOT maodify this string directly
with calls to WTfree, WTrealloc, strcat, strcpy, etc. If you need to modify the string
value, make a local copy of the string before modifying it.

For example:

{

char *value;

char *newvalue;

value = WTproperty _gets(obj, "myprop™);

newvalue = WTmalloc(strlen(value)+strlen("addtostring")+1);
strcpy(newvalue, value);

3-20 WorldToolKit Reference Manual

Properties

strcat(newvalue, "addtostring");
WTproperty_sets(obj, "myprop”, newvalue);
WTfree(newvalue);

}

As an alternative to thi&/Tproperty_get function, you could use the following type-specific
functions:

WTproperty _geti

int WTproperty_geti(
void *object
const char *propname);

WTproperty_getui

unsigned int WTproperty_getui(
void *object
const char *propname);

WTproperty_getf

float WTproperty_getf(
void *object
const char *propname);

WTproperty_getd

double WTproperty_getd(
void *object
const char *propname);

WTproperty_getp2

FLAG WTproperty_getp2(
void *object
const char *propname
WTp2 value);

WorldToolKit Reference Manual 3-21

Chapter 3: Object/Property/Event Architecture

WTproperty_getp3

FLAG WTproperty_getp3(
void *object
const char *propname
WTp3 value);

WTproperty_getq

FLAG WTproperty_getq(
void *object
const char *propname
WTq value);

WTproperty_gets

char* WTproperty_gets(
void *object
const char *propname);

Note: See page 3-20 for special information on the usage of WTSTRING properties.

WTproperty_getp

void* WTproperty_getp(
void *object);

WTproperty _getasstring

char* WTproperty_getasstring(
void *object
const char *propname);

This function returns the specified objegtispname property value as a string. (Strings
returned are only good until another calWWGproperty getasstring is executed).

3-22 WorldToolKit Reference Manual

Events

WTvalue_tostring

char* WTvalue_tostring(
WTdatatype dtype
void *value);

This function returns the datalue of typedtype as a string. (Strings returned are only good
until another call taVTvalue_tostring is executed).

Events

Events occur when the value of a property changes. The value of a property can change due
to a property being set with a callWorproperty_set or via typical WTK calls such as
WTnode_settranslation, WTviewpoint_setposition, etc., or through internal processes like
motion link updates.

These value changes can be acted on by adding any nungsenvhandlergcallback
functions) to the property. When a property value changes, an event is internally generated
which will trigger the execution of that property’s event handlers in the main WTK
simulation loop, right before the universe’s actions function is called. If WTK’s simulation
loop is not active (that is, if your application has not callediniverse_go or

WTuniverse_gol), a call toWTuniverse _processevents will execute the handlers.

The event handler is given a pointer to the object, the property that generated the event, the
new value of the property, the source from which the property change event was generated,
and the time the event was generated. diiject pointer points to an object of one of the
object types supported by the OPE architecture (see page 3-2). To find out what type of
object it is, useVThase_gettype (see page 3-11). Theopname passed to the event

handler is the name of the property that generated the event (this is either a pre-defined
WTK property like WTNODE_TRANSLATION or a user-defined property created with
WTproperty _new).

The value argument contains the new value of the property. The value is passed into the
function as a void* and must be treated differently depending on the datatype of the
property. To find out what datatype the property is, Walbroperty getdatatype (see page
3-16). The table below describes how to treat this void* for each datatype.

WorldToolKit Reference Manual 3-23

Chapter 3: Object/Property/Event Architecture

Property change events can be triggered from sexezat sourceSVTLOCAL events are
events that originate from the local computer, while WTNETWORK events originate from
another computer on the network involved in a World2World simulation.
WTLOCAL_TIMER and WTNETWORK_TIMER events can occur due to property
changes that result from a callWorproperty _setat (see page 3-19).

Thetime argument, which is passed to a connection callback for networked simulations, is
the time at which the property changed. This may not be the current time, since events are
gueued and executed at different times.

An event handler callback function takes the form:

void WTeventhandler(
void *object, <— object which generates the event
const char *propname, <— property whose value has changed
void *value, <— new value of the property
double time, <— time of the change
WTeventsource src); <— source of the change (WTLOCAL, WTNETWORK, etc.)

Treat the value parameter which is of type ‘void * as follows:

‘void *value’ Cast to Usage

WTINT int *value printf("Value: %d\n", *((int*)value));

WTUINT unsigned int *value printf("Value: %u\n”, *((unsigned int*)value));
WTFLOAT float *value printf("Value: %f\n", *((float*)value));
WTDOUBLE double *value printf("Value: %f\n", *((double*)value));
WTP2 float *value printf("Value: X=%f\n", ((float*)value)[0]);
WTP3 float *value printf("Value: Y=%f\n", ((float*)value)[1]);
WTQ float *value printf("Value: W=%f\n", ((float*)value)[3]);
WTSTRING char* printf("Value: %s\n", (char*)value);
WTPOINTER void* Wrintf("Value: %x\n", value);

3-24 WorldToolKit Reference Manual

Events

Note that if your application does not c@truniverse_go or WTuniverse_gol then it must
call WTuniverse_processevents in order for WTK to process these events and execute the
callback handlers.

Following are the functions that pertain to events and event handlers.

WTproperty _addhandler

FLAG WTproperty_addhandler(
void *object
const char *propname
WTeventhandler eh);

This function adds an event handler callback to the specified ohpegtisame property.

WTproperty_removehandler

FLAG WTproperty_removehandler(
void *object
const char *propname
WTeventhandler eh);

This function removes an event handler callback from the specified otyesisame
property.

WTproperty_numhandlers

int WTproperty_numhandlers(
void *object
const char *propname);

This function returns the number of handlers assigned to the specified objeatame
property.

WorldToolKit Reference Manual 3-25

Chapter 3: Object/Property/Event Architecture

WTproperty gethandler
WTeventhandler WTproperty_gethandler(
void *object

const char *propname
int handlernum);

This function returns theandlenum’'th handler for the specified objectsopname
property.

WTproperty_removeallhandlers
void WTproperty_removeallhandlers(

void *object
const char *propname);

This function removes all handlers for the specified objeetisname property.

WTbase_removeallhandlers

FLAG WTbase_removeallhandlers(
void *object);

This function removes all event handlers from all the properties of the specified object.

WTuniverse_processevents

void WTuniverse_processevents(
void);

This function processes all events in the universe. You must call it if your application’s
simulation loop is not active (that is, if your application has not caéif@dniverse _go or

WTuniverse_gol) in order to ensure that all of the events are processed.

3-26

WorldToolKit Reference Manual

Time

Time

Time values are measured in seconds since January 1st, 1970 and include fractions of a
second. These time values are used by event handlers and timed functions like
WTproperty_setat (see page 3-19).

WTtime_update
void WTtime_update(void);

If not in aWTuniverse_go loop, call this function to update the time value returned from
WTtime_getcurrent.

WTtime_getcurrent

double WTtime_getcurrent(void);

This function returns the current Greenwich mean time (GMT) in seconds from 01-01-70.

WTtime_getcurrentlocal

double WTtime_getcurrentlocal(void);

This function returns the current (local timezone) time in seconds from 01-01-70.

WTtime_getcurrentsec

int WTtime_getcurrentsec(void);

This function returns the whole number of seconds from 01-01-70 Greenwich mean time
(GMT).

WTtime_getcurrentseclocal

int WTtime_getcurrentseclocal(void);

This function returns the whole number of seconds from 01-01-70 in the local timezone.

WorldToolKit Reference Manual 3-27

Chapter 3: Object/Property/Event Architecture

WTtime_getcurrentmsec

unsigned short WTtime_getcurrentmsec(void);

This function returns the number of milliseconds beyond the current second in Greenwich
mean time (GMT).

WTtime_getcurrentmseclocal

unsigned short WTtime_getcurrentmseclocal(void);

This function returns the number of milliseconds beyond the current second in local time.

WTtime_getdouble

double WTtime_getdouble(
int sec
unsigned short msec);

This function returns a ‘double’ version of a seconds and milliseconds time value.

WTtime_getsec

int WTtime_getsec(
double time);

This function returns the seconds part of a ‘double’ time value.

WTtime_getmsec

unsigned short WTtime_getmsec(
double time);

This function returns the milliseconds part of a ‘double’ time value.

3-28

WorldToolKit Reference Manual

A

Scene Graphs

This chapter describes the fundamental building blocks of your WTK application, how they
are created, their properties, and how to assign behaviors. The main sections of this chapter
are as follows:

Introduction— introduces the hierarchical scene graph, and explains why WTK
uses the scene graph structure. (see page 4-2)

Scene Graph Concepts in Detaibffers a more detailed discussion on the scene
graph and its concepts. (see page 4-5)

Building a Scene Graph provides a general discussion of how to build a
hierarchical scene graph and explains several important scene building concepts.
(see page 4-29)

WTK Scene Graph Functiorsgives descriptions of the scene graph functions.
(see page 4-39)

Additional Topics Related to the Scene Gragihcludes a section of additional
topics related to the scene graph, including node paths, intersection testing,
picking polygons, and attaching sensors. (see page 4-79)

Chapter 4: Scene Graphs

Introduction

This section introduces the hierarchical scene graph, and explains why WTK uses the scene
graph structure.

The Scene

A scends a collection of geometries and lights, along with the positional information that
places these elements at particular locations. In WTK, the only other element that is
considered to be part of the scene directly is fog. So, in very simple terms, a scene is built
from the following four content elements: geometries, lights, positional information, and
fog.

Elements Of A Scene

GEOMETRIES

Geometries include static geometry files you load into WTK (using WTK's file import
functions) and dynamic geometries you create within WTK at the polygon and vertex
levels.

LIGHTS

Lights include the lights that may be part of a file you load into WTK and the lights you
dynamically create in WTK. You can use lights in WTK to illuminate some or all of the
geometries in a scene.

POSITIONAL INFORMATION

Positional information includes any positional information that is associated with
geometries and lights read in from a file, and dynamic positional information created and
managed within WTK. It describes where particular elements (geometries and lights)
should be placed in the scene, either in relation to another object, or in relation to the scene
as a whole.

4-2

WorldToolKit Reference Manual

The Viewpoint

FoG

Fog is a special effect that simulates environmental conditions such as smoke, haze, mist,
and of course fog. A geometry that is further away from the viewer becomes obscured by
fog. You can use fog to affect some or all of the geometries in a scene.

The Viewpoint

In order to render a collection of objects in 3D space to the screen, WTK needs to know
where and how in the scene the viewer is oriertweliewpoint is the WTK object that

contains this information#/Tviewpoint defines the position of the viewer in the scene, the
direction in which the viewer is looking, and the viewer’s twist about the directional axis.
For example, if you look at a scene with your head tilted to one side, you will see an image
that is the same as the one you see with no tilt, except that it has been slightly rotated in the
direction opposite to your head'’s tilt.

The Scene Graph

WTK maintains your scene in a hierarchical structure knownsasree graphYou can
think of the scene graph as an upside-down tree, where the root is on the top and the
branches and leaves are on the bottom.

The scene graph is the structure that holds all of the current elements of the scene, such as
geometries, lights, fog, and positional information. As shown in figure 4-1, the scene graph

is an ordered collection of nodes, in the form of a directed acyclic (defined on page 4-29)
graph, which holds hierarchical scene data.

WorldToolKit Reference Manual 4-3

Chapter 4: Scene Graphs

Figure 4-1: Simple scene graph

The basic element of the scene graph is the node, which either holds geometry, light, fog,
and position data, or is a structural element that you use to maintain the hierarchy of the
graph.

Why WTK Uses the Scene Graph Structure

The scene graph provides a very powerful scene structure for real-time 3D simulation.
Specifically, it provides the hierarchical framework for easily grouping objects together
spatially. This is essential for maintaining performance in scenes that contain many
individual objects. Because you can group objects together in a positional hierarchy, you
are able to use the scene graph to easily construct and maintain efficient simulations which
contain individual moving parts.

The scene graph enhances performance of the WTK’s rendering stage (drawing the scene)
because it facilitates spatial culling of the scene. In other words, WTK calculates which
parts of the scene (or scene graph) are visible from the current viewpoint, and quickly
rejects non-visible geometry before drawing begins.

In addition to culling, the scene graph enhances the performance of both picking into the
scene (using a mouse, for example) and general intersection testing (e.g., collision
detection). WTK’s scene graph also easily supports advanced procedural elements such as

4-4 WorldToolKit Reference Manual

Scene Graph Concepts in Detail

level-of-detail (LOD) switching and hierarchical file formats such as VRML and
MultiGen.

To create a 3D scene, you build a scene graph that describes this scene. One of the primary
functions of the WTK API (Application Programmer’s Interface) is to provide you with the
tools and methods to build scene graphs. This includes functions to create the core elements
(nodes), and functions to assemble, disassemble, rearrange and query the relationships
between these elements.

Scene Graph Concepts in Detall

This section offers a detailed discussion of the scene graph and its concepts.

The Node

Thenodeis the fundamental element of the scene graph; it is the basic building block that
you use to construct scene graphs. A node is simply an elenwmiteht or a
grouping/proceduraklement you use to maintain scene hierarchy.

CONTENT NODES

Contentnodes are easy to understand. They are containers for the four basic elements of a
scene: geometry, light, position, and fog. Geometry nodes contain geometry information,
light nodes contain light information, and fog nodes contain fog information. Positional
information is contained in nodes callednsform nodes

Objects (geometry or lights) in 3D scenes can have both a position (X,Y,Z in cartesian
space), and an orientation about this position (pitch, yaw, roll). For example, you can stand
at some particular place in a room (position), and turn your body to face any direction
(orientation). Transform nodes store both a position and an orientation internally in a 4x4
matrix.

WorldToolKit Reference Manual 4-5

Chapter 4: Scene Graphs

GROUPING NODES

Grouping(organizational) nodes contain no content directly, however they are the essential
structuring nodes used in building a scene graph. To understand the role that grouping
nodes play, it is important to understand the structure of the scene graphhéSgeene

Graph Hierarchybelow.) Briefly, organizational nodes, such as the group node, the
separator node and the transform separator node, let you group together and encapsulate a
set of nodes that share common states, such as position or lighting effects.

Proceduralnodes are like organizational nodes but they contain additional information that
they use to activate one of their child nodes while deactivating the others. The level-of-
detail (LOD) node and the switch node are procedural nodes.

The Scene Graph Hierarchy

Nodes are ordered in a directed hierarchical fashion. In other words, nodes are attached
together from top to bottom, in a tree-like structure. A node that has nodes attached to it
from the bottom is a “parent” to those nodes. Those nodes attached immediately underneath
another node are the “children” of that node. If two nodes share the same parent, then they
are considered to be “siblings.” Figure 4-2 illustrates the parent, child, sibling structure.

S)

Siblings

Figure 4-2: Parent, child, and sibling relationships

4-6

WorldToolKit Reference Manual

The Scene Graph Hierarchy

All scene graphs in WTK require a starting point. This starting point is calteat aode

Because the scene graph is hierarchical, or structured in a top to bottom manner, the root
node represents the top point on the scene graph. Each scene graph has a single root node,
and this node cannot be shared with other scene graphs. WTK allows multiple scene graphs,
and these are uniquely identified by their individual root nodes.

SCENE GRAPH TERMINOLOGY

Figure 4-3 illustrates a number of terms that are used throughout this guide to discuss the
way WTK implements scene graphs.

.

Figure 4-3: A schematic diagram of a scene graph

Ancestor Since node A (in figure 4-3) has a sub-tree that includes
node E, it is amncestorof node E. Note that node J is not
an ancestor of node I.

Child node A node’s direct descendant. In figure 4-3, nodes B and C
are both children of node A. J is natlald of A.
Descendant Any node that is contained in the sub-tree of another node

is considered to bedescendandf that node. In figure 4-3,
node F is one of the descendants of node A.

Leaf node A node without children. Nodes B, D, F, G, H, |, and J are
all leaf nodes.

WorldToolKit Reference Manual 4-7

Chapter 4: Scene Graphs

Parent node A node’s direct ancestor. Node A iparentof node C, but
not of node E. It is possible for a node to have several
parents.

Predecessor Since nodes B and C are processed before node J, they are

its predecessorsA node’s predecessors can affect the
rendering of that node, even though they may not be
ancestors.

Root node Each scene graph has only eoet node The root node in
figure 4-3 is node A.

Scene graph tree All of the nodes in a scene graph, arranged in a hierarchical
order. The nodes in figure 4-3 are all in @gene graph
tree

Sub-tree A node and all of its descendantsséb-treein figure 4-3
is shaded.

Sibling Children of the same parent node sitdings Nodes F, G,

H, and | are siblings.

Traversal order The order in which nodes in a scene graph are processed
while the simulation is running. The nodes in the scene
graph in figure 4-3 have been labeled so that their
alphabetical order indicates the propawersal order For
more information, se€raversing the Scene Graph Trae
page 4-9.

Viewing your Scene Graph

It may help you visualize the scene graph(s) in your simulation by seeing a printout of the
scene graph hierarchy (or any part of it). UseWT@ode print function (see page 4-76) to

print the scene graph hierarchy, starting at the specified node. If you specify the root node,
the whole scene graph hierarchy is printed; if you specify any other node, only the specified
node and its sub-tree hierarchy are printed.

4-8 WorldToolKit Reference Manual

How WTK Draws the Scene Graph

How WTK Draws the Scene Graph

As previously discussed, the scene graph is the hierarchical structure that contains all of the
elements of a scene, and their relationships to each other. Every WTK window has both a
scene graph (referenced via its root node) and a viewpoint associated with it, providing
WTK with everything necessary to draw a scene (the scene graph), as viewed from a certain
position and orientation (the viewpoint), to some place on the screen (the window).

TRAVERSING THE SCENE GRAPH TREE

The root node is the entry point into the scene graph, and is the point where WTK starts to
draw the scene. Once at the root node, WTK begins “walking” (traversing) the scene graph
tree. This “walking” process is always the same. WTK traverses the tree, visiting each node
of the tree in a top to bottom, left to right order. In other words, when WTK encounters a
node with more than one child, it walks down the first child's branch, completely traversing
this portion of the tree before returning back up and processing the second child’s branch.
Figure 4-4 illustrates this “walking” the scene graph tree process.

Start Root Finish
Node
1 4 16
3 8 9
15
Light Xform Sep Geom
Node Sep Node Node
Node
4 7 10 13
5 6 11 12
Xform Light Xform Geom
Node Node Node Node

Figure 4-4: Walking the scene graph

It is during this process of traversing the scene graph tree that WTK draws the scene. As
WTK encounters nodes in the scene graph tree, it evaluates and processes them depending
on their type. Very simply, when WTK encounters a geometry node, it draws it (at the
current position and orientation, with the current lighting and current fog); when it

WorldToolKit Reference Manual 4-9

Chapter 4: Scene Graphs

encounters a light node, it adds this light to the currently active set of lights; when it
encounters a transform node, it modifies the current orientation and position information;
and when it encounters a fog node, it sets the current fog.

WTK traverses the entire scene graph tree once per frame. Recall from the Universe
chapter, WTK runs in a simulation loop that includes six different stages: reading the
sensors, calling the universe action function, updating objects, performing tasks, stepping
paths, and rendering the universe. It is in this last stage that WTK traverses the scene graph
(or multiple scene graphs) and draws the scene to a window (or multiple scenes to multiple
windows).

ENCOUNTERING CONTENT NODES

WTK performs the actual act of drawing when it encounters a geometry node in a scene
graph. Since WTK traverses the entire scene graph tree once per frame, it will encounter all
the active geometry nodes in that tree for that frame, and thus draw all of the active
geometries (objects) in the scene. The other three content nodes (light, transform, and fog)
do not directly result in drawing by WTK, but they do affeatvWTK draws the geometry.

All three node types contribute to, and/or modify, the current drawing “state” which WTK
maintains as it traverses the scene graph tree.

Every geometry in a 3D scene has a specific position, orientation, color, and brightness that
is affected by any active lights shining on the geometry. Also, the geometry is obscured by
any surrounding fog. When WTK traverses the scene graph tree, it maintains a current
transformation state, a current lighting state, and a current fog state. When it encounters a
geometry node while traversing the tree, WTK draws this geometry at the position and
orientation defined by the current transformation state, lit by the lights of the current
lighting state, and obscured by the fog of the current fog state.

It is important to know that the current transformation, lighting, or fog state at any time
during scene graph traversal is totally dependent on which transform, light and fog nodes
WTK has encountered up to that point. When WTK encounters a transform node, it updates
the transformation state. Transformation update is a concatenation, or combination of the
newly encountered transform node with the current transformation state. If the current
transformation state contains a rotation and the newly encountered transform node contains
a translation, the resulting transformation state will contain a translation and a rotation.

When WTK encounters a light node, it adds the light contained in the light node to the list
of active lights maintained in the current light state. When WTK processes a geometry
node, all of the active lights in the current light state cumulatively affect how the geometry

4-10

WorldToolKit Reference Manual

How WTK Draws the Scene Graph

is rendered. It is important to note that the current transformation state comes into play
when WTK encounters a light node. Though light nodes have their own position and
direction, these positions and directionsraaifiedby the current transformation state.

When WTK encounters a directed light node, it modifies the direction of this light by the
current transformation state. If the current transformation state is not set (that is, WTK has
not encountered any transform nodes at this point), then the direction remains as set in the
light node. If there is a current transformation state, then WTK rotates the direction of this
light by the orientation component of the current transformation Is¢tddeeit adds the

light to the current list of active lights. When WTK encounters a point light, the same
process occurs, but with the positional component (point lights only have position), and
when WTK encounters a spot light in the scene graph, this same process occurs with both
the position and direction components. When WTK encounters a fog node, it replaces the
current fog state based on the values of the current fog node.

Table 4-1 summarizes the content node types, and indicates where you can find
descriptions of them in this manual.

Table 4-1: Content Nodes

. Can have Affects Where
e piaiiees children? state? described
Geometry Displays a set of No No Page 4-2
polygons, together with
a WTK material.
Fog Simulates fog, smoke, No Yes Page 4-3
murkiness.
Light Specifies a WTK light. No Yes Page 4-2
Transform | Provides position and No Yes Page 4-24
orientation information.
Movable Specifies a movable No Yes See the
light light node. There are Movables
three types of movable chapter, starting
light nodes. on page 5-1.
Movable Specifies a movable No No See the
geometry geometry node. Movables
chapter, starting
on page 5-1.

WorldToolKit Reference Manual 4-11

Chapter 4: Scene Graphs

ENCOUNTERING GROUPING NODES

The four content-specific nodes discussed so far can only exist as children of other nodes,
they cannot have children themselves. The content nodes are not involved in forming the
actual hierarchical structure of the scene graph tree because they are all leaf nodes of the
tree. The hierarchy of the scene graph tree is provided by a general class of nodes called
grouping nodesThe grouping node class is made up of all the WTK node types capable of
having children attached to them, and in general, this includes all the other node types
available in WTK beyond the four content-specific nodes.

The grouping nodes include the following:
e group node
e separator node
» transform separator node
e procedural nodes (the level-of-detail node and the switch node)

» specialized nodes (the root node, the inline node, and the anchor node)

* movable separator

The group node itself is a grouping node with no other special properties; its only function
in the scene graph is to serve as a parent to one or more nodes in the tree. A group node, as
shown in figure 4-5, can serve as a parent to both content nodes and other grouping nodes.

Figure 4-5: Group node

WorldToolKit Reference Manual

How WTK Draws the Scene Graph

Table 4-2 summarizes the grouping node types, and indicates where you can find
descriptions of them in this manual.

Table 4-2: Grouping Nodes

Can have Affects Where

ok Gt I gl children? state? described

Anchor Contains a string Yes No Page 4-28
property (URL) that
references a data file.

Group Has child nodes, butno | Yes No Page 4-40
other properties.

Inline Contains a string Yes No Page 4-28
property (URL) that
references a data file
which can be
automatically read in.

Level-of- Swaps in objects as a Yes No Page 4-26
detail (LOD) | function of viewpoint
distance.

Root Acts as the top node in Yes No Page 4-7
a scene graph.

Each scene graph has
only one root node,
which is not shared with
any other scene graph.
As the top node in its
hierarchy, this node has
no parent node.

Separator Prevents state Yes No Page 4-21
information from
propagating from its
descendant nodes to
its sibling nodes.

Switch Controls which of its Yes No Page 4-25
children are traversed.

WorldToolKit Reference Manual 4-13

Chapter 4: Scene Graphs

Table 4-2: Grouping Nodes (continued)

. Can have Affects Where
Noee et cloze children? state? described
Transform Prevents just the Yes No Page 4-24
separator transformation state
from propagating from
its descendant nodes
to its sibling nodes. All
other states are allowed
to propagate.
Movable Specifies a movable Yes No See the
separator separator node. Movables
chapter,
starting on
page 5-1.

THE IMPORTANCE OF A SCENE GRAPH TREE HIERARCHY

One of the main reasons why you would want to use the scene graph hierarchy is that it is
often very desirable to group several objects (such as geometries) together spatially in a
scene. A good example of this is a car object that is composed of four tire geometries and
a car body geometry. It is much easier to deal with this composite car object in the scene if
you can group all of its parts together under one node, rather than five disparate geometry
nodes. Remember, these geometries have positions and orientations too, so that gives you
(potentially) another five transform nodes that you need to maintain as well.

Imagine if you wanted to move this five piece car around the scene as a whole, you would
have to figure out a position and orientation to move the car body to, and then individually
move each wheel to its proper location. The scene graph allows you to set up a hierarchy,
under a grouping node, which creates a composite car object, which holds all the geometric
information for the car, as well as the position and orientation of all the wheels relative to
the car body.

4-14

WorldToolKit Reference Manual

Why the Ordering of Children is Important

Why the Ordering of Children is Important

Recall the order in which WTK traverses the scene graph tree. Starting from the root node,
WTK walks down the tree to the first child node of the root node. If this child node is one
of the four content nodes, then WTK processes this node. If this child node is a grouping
node, then the traversal continues down to this node's first child node, and so on.

Because WTK processes the children of a grouping node in fixed order (first child branch
first, second child branch second, etc.), the ordering of childierportant. Suppose, for
example, you have a simple case of a scene graph with five nodes, wherein the root node
has one child, being a group node, as shown in Case #1 of figure 4-6. The group node’s
three children are a transform node, a light node and a geometry node. Assume the light
node ischild #1, the transform node @hild #2 and the geometry nodedkild #3of the

group node.

Light state = 0
Transform state = 0

Light state = L
Transform state = T

Light state = L
Transform state = 0

1 2 3
Geometry G is drawn with Geometry G is drawn with
Light state = L, Transform state = T Light state =L, Transform state =0

Figure 4-6: The importance of child order in the scene graph

WTK starts the tree traversal at the root node, and goes to its first (and only) child, the group
node. When WTK encounters a group node, it does not do anything special, it just processes
all the group node's children in order. The first child of the group node in this case is the
light node. Encountering the light node, WTK adds this light to the current lighting state.
After processing this node, the current lighting state contains one light, the light that was
set by this node. (Recall the current lighting state defines the lights that will affect the
drawing of any future geometry encountered in the tree.) Because the light node does not

WorldToolKit Reference Manual 4-15

Chapter 4: Scene Graphs

(and cannot) have any children, WTK moves back up to the group node and processes its
second child.

The second child is a transform node, so WTK updates its current transform (position and
orientation) state. Since there is no current transformation state set, this node now defines
the current transformation state. (Recall that the transformation state defines the position
and orientation where any geometry encountered on the tree will be drawn. Again, since
the transform node does not (and cannot) have any children, WTK now moves back up to
the group node and processes the third and final child.

The third child is a geometry node, so WTK draws this geometry node, using the current
transform state to position and orient the geometry in the scene, and using the lights in the
current lighting state to illuminate the geometry. Note that the transform node has told
WTK where to draw this geometry, so you can say the geometry was “affected” by this
transform node. Note that the light node has told WTK how to light this geometry node, so
you can say the geometry was “affected” by this light node.

Suppose you take exactly the same case as above, but make the geometry node the second
child of the group node, the transform the third child of the group node, and the light node
remains the first child (see Case #2 of figure 4-6). When WTK walks this tree, and
processes the children of the group node, it encounters the light node first, adding the light
to the current light state, just like before. The second child of the group node is the geometry
node, so WTK draws it with the current lighting state and the current transformation state.
Just like last time, the light node has been processed before the geometry node, so it affects
the illumination of the geometry. The current transformation state, however, has not been
set yet, so the geometry is drawn in the default position in the scene, the origin (0,0,0) with
the default orientation. Because the transform node is the third child, it has not been
processed yet, so it has not altered the current transformation state, and thus, has not
affected the drawing of the geometry.

So you can see that the ordering of children, even in very simple cases, affects how things
are drawnMake sure transform nodes that you want to affect a geometry are processed
prior to that geometry node, and make sure light nodes you want to affect a geometry are
processed before that geometry nd@emember that directed light nodes, point light

nodes and spot light nodes have either an orientation component or a position component,
or both, and are affected by the current transformation state. If you don’t want your lights’
positions and/or orientations changed, they must be at a place in the scene graph where no
transform nodes can affect them (usually, this is at the top of the scene graph, as children
of the root node).

4-16 WorldToolKit Reference Manual

State Accumulation and State Propagation

State Accumulation and State Propagation

As discussed previously, WTK has a concept of “state” (that is, the current
transformation, lighting and fog state) for any particular place in the scene graph. These
states affect the way any geometry nodes at that particular place in the scene graph are
drawn. Because the current transformation state at some point in a scene graph is a
concatenation of the transform nodes processed up to that point, and the current lighting
state includes all the lights activated by processing light nodes up to that point, you can say
that transform and light state “accumulate” as the scene graph tree is traversed, as shown
in figure 4-7.

Light state = L1

/ Transform state = T1

Light state = L1 + L2

/ Transform state = T2 T1

@ Light state = L1 + L2 + L3

Transform state = T3 T2 T1

Figure 4-7: State accumulation

WTK also uses the concept of state “propagation” when traversing a scene graph tree. That

is, should it encounter and process a transform node, the transformation state created by this
node propagates, or moves along, as WTK continues to process the remainder of the scene
graph. Geometry nodes that are drawn after encountering a transform, light or fog node are

affected by these transform, light, and fog nodes, even if these nodes were processed long
before, or farther up the tree than the current geometry.

WorldToolKit Reference Manual 4-17

Chapter 4: Scene Graphs

It is important to be aware of the state propagation because, if you are not careful, transform
nodes can affect geometries that you did not want affected. For example, suppose you
wanted to build a scene with two geometrical objects, each independently placed in the
scene, and both lit by a scenewide directed light source. To do this, you would build a scene
graph piece by piece. The following example describes the scene graph illustrated in figure
4-8 in detail.

Example: Building a Simple Scene Graph Piece by Piece

First, consider the case of a geometry independently placed in the scene. This means you
need a geometry, say a model of a dog, and a method to place this dog somewhere in the
scene. The method you need to place this dog somewhere in the scene is a transformation
(which is contained in a transform node). Thus, you need both a geometry node (the dog),
and a transform node (the dog’s position in the scene). Since this geometry node and this
transform node conceptually go together (that is, you don’t want this transform node to
affect anything else but the dog), you would group these two nodes together as children of
a group node, making the transform node the first child and the geometry node the second
child of the group node. Now, the dog and its position are grouped together, and can be
added to the scene. The scene is currently empty (i.e., it contains just a root node). Once the
group node is attached to the root node, you have a scene containing a dog (and its position).

Suppose you want to add light to the scene. Assuming you want the light to affect the dog
geometry, put it in a place where it will be processed in the scene graph prior to the dog
geometry. You accomplish this by making the light node the first child of the root node.
Since that is the very first node processed in the scene graph after the roetveogle,
geometry in the scene will be affected by it. This means the dog object group node should
be the second child of the root node. If you wanted, you could now create a second
geometry/transformation pair for your second object in the scene, say a fire hydrant. You
create the fire hydrant object the same way you created the dog object. Create a fire hydrant
geometry node, a transform node for its position, and a group node to group the two
together. Then, you add your new fire hydrant group node to the scene graph as the third
child of the root node. The scene graph now contains all the content to fulfill the goal, two
geometries independently placed in the scene, both lit by scenewide light.

4-18

WorldToolKit Reference Manual

State Accumulation and State Propagation

How transform T1
propagates from the
left branch to the right

Transform state = T1

Transform state = T2 T1

Dog is drawn with Fire Hydrantis drawn with
transform state T1 transform state T2 T1

Figure 4-8: State propagation

Since you independently placed your geometries in the scene, you should expect to be able
to move them in the scene independently of each other. To do this, simply modify the
information contained in the transform nodes which affect the individual geometries. There
are a number of WTK functions that allow you to do this, sudvasode_settranslation

(see page 4-59) arWiTnode_setrotation (see page 4-60).

Assuming that you have set the dog’s transform node to position it at the left of your scene
and that you have set the fire hydrant’s transform node to position it at the right of your
scene, you can take a walk through the scene graph to make sure you have constructed it
properly. The root node’s first child is the light node, so now there is a single active light
that will affect all succeeding geometry nodes.

The root node’s second child is the dog object group node, so now walk down into the
children of the group node. The first child is the dog’s transform node, which you want to

WorldToolKit Reference Manual 4-19

Chapter 4: Scene Graphs

use to place the dog somewhere in the scene. The current transform state is set to the
information in the dog’s transform node, as you move to the group node’s second child, the
dog’s geometry node. This geometry of the dog itself is now drawn at the position defined
by the dog’s transform node, and lit by your one light. So far, so good. Their are no more
children in the dog group node, so you move back up the tree to the root node and continue
to process the root node’s children.

The root node’s next and last child is the fire hydrant object’s group node. You process the
first child of this group node, the fire hydrant’s transform node. It is important to remember
that when WTK encounters a transform node, it takes the information in the node and
concatenates it with the current transform state. In this case, the current transform state
previously set by the dog’s transform node has “propagated,” so the resulting
transformation state after processing the fire hydrant’s transform nodadswamulation

of both the dog’s transform node and the fire hydrant’s transform node. A discussion of
how transforms are combined is givertuising Frames of Reference (Coordinate Frames)

on page 4-32.

Assume, however, that you do not want the fire hydrant’s transformation to be affected by
the dog’s transformation. The following section describes how you can prevent a transform
node from affecting the remaining nodes in the scene graph.

When WTK processes the fire hydrant’s second child, the geometry node, it draws this
geometry not at the place defined by the fire hydrant’s transform node as you intended, but
instead at the place defined by the combination of the dog’s transifattine fire hydrant’s
transform. Your scene graph containing objects with independent positions behaves as
expected, because the first transform “propagates” and affects both the intended geometry,
the dog, as well as succeeding geometries in the scene graph, the fire hydrant. The
transform state at the point in the scene graph tree where the fire hydrant geometry exists
is an “accumulation” of all the transform nodes before it.

How do you remedy this situation2ry simply. Instead of using group nodes, you can use
a different type of node, the separator node. Replacing the group nodes with separator
nodes solves the problem, because the separator node “encapsulates” all of the state
changes underneath itself.

4-20

WorldToolKit Reference Manual

State Encapsulation

State Encapsulation

SEPARATOR NODE

As you have seen, transform nodes combine with the current states in the scene graph tree
to set new values for the states. There are often times when you want to have a transform
node affect only certain geometries in the scene graph. In order to do this, you must
“encapsulate” the effects of a transform node to just one part of the scene graph tree.
Continuing the example in the previous section, let's say you wish to encapsulate the
effects of the dog’s transform node so that it only affects the dog’s geometry. You need
some way to prevent the transform state changes in the dog object’s branch of the scene
graph tree from propagating over to the fire hydrant object’s branch. This is exactly what
you use the separator node for.

The separator node is a grouping node that encapsulates all of the effects of the transform
nodes, light nodes, and fog nodes beneath it, as shown in figure 4-9.

Separato ;
Node '

The effects of L1 and T1 are seen when drawing G1.
They have been encapsulated by the separator node

Figure 4-9: Separator nodes

WorldToolKit Reference Manual 4-21

Chapter 4: Scene Graphs

Internally, the separator node makes copies of the current transformation, lighting and fog
state, processes it and all of its children, and then restores those states to what they were
prior to processing this portion of the scene graph. In other words, the transform, light and
fog state changes which occur underneath the separator only affect the nodes underneath
the separator, as shown in figure 4-10.

T1 does NOT propagate
out of S1, so it does not
affect the transform state
anywhere except below S1

Transform state = 0

Transform state = T1

Encapsulated by S1 Encapsulated by S2

Figure 4-10: Separator diagram

As stated, you can use the separator node instead of the group node in cases where you want
to prevent states from propagating across branches of the scene graph tree. You will use
separators often to encapsulate transform ndugsyhen would you want to encapsulate

light and fog nodes?

If a separator node sits above a light node or fog node, it prevents this light or fog from
affecting any other part of the tree beyond the nodes underneath the separator. Usually, you
use a separator to constrain a light to only a certain group of geometries, having it light only
those geometries and no others. Because lighting geometry is a computationally expensive

4-22 WorldToolKit Reference Manual

State Encapsulation

task, you are able to improve application performance by using as few lights as possible,
and only having lights affect the specific geometries you need affected. Imagine a building,
where each room may have several local lights, say point lights simulating lamps, or spot
lights simulating track lighting. Because you only need and want lights in a particular room
to light the geometry in that room, you can use a separator to group the lights and room
geometry together, as shown in figure 4-11.

“lamp 1”7 “track 1" “lamp 2” “track 2”

Figure 4-11: Light encapsulation

This results in both the desired effect of having lights localized to their respective rooms as
well as improved performance since WTK only needs to apply a light to a specific number
of polygons, rather than every polygon in the scene.

WorldToolKit Reference Manual 4-23

Chapter 4: Scene Graphs

TRANSFORM SEPARATOR NODE

The transform separator node is exactly like the separator node, except it only encapsulates
the transformation stateptthe light or fog state. In other words, the effects of light nodes
and fog nodes propagate out through the transform separator node, and only the transform
node’s effects are blocked by it. Generally, you use the transform separator node in
conjunction with the pairing of a light node and transform node. For example, assume you
want to have a light whose position/direction are controlled by a transform node. You want
to have this light illuminate the whole scene, but you want to encapsulate the transform
node, so it only affects the light's position/direction, and no other elements of the scene. A
plain separator node would encapsulate the transformation, but it would also encapsulate
the light, thus preventing the light from affecting any part of the scene. The solution is to
use a transform separator node instead, allowing the encapsulation of the light's position/
direction, but still allowing the light itself to add to the current light state, as shown in figure
4-12.

Transform state = T1

Transform state = 0

/ Light state =L1

Transform state = T2
Light state = L1

Gl is affected by L1,
but not by T1

Figure 4-12: Transform (Xform) Separator

4-24

WorldToolKit Reference Manual

Other Node Types

Other Node Types

This section describes the other scene graph node types that have yet to be defined.

SwITCH NODES

A switch node is a grouping node that enables only one of its child branches at a time, as
shown in figure 4-13. The switch node can have multiple children, but only one of the
children is active at any one time. When WTK traverses the scene graph tree and encounters
a switch node, the switch node informs WTK which child branch to process. After
processing this child branch, WTK traverses back out of the switch node, leaving all the
other children unprocessed. You control which child is active via the call to
WTswitchnode_setwhichchild (see page 4-57).

Only one of the switch
node’s child branches is
processed when
traversing the scene
graph tree.
In this case, it's child #3

Figure 4-13: Switch node

Although you can duplicate the functionality of a switch node by using a group node and
manually adding the active child and removing the previously active child, this is generally

WorldToolKit Reference Manual 4-25

Chapter 4: Scene Graphs

both more work and results in poorer performance than using a switch node. Because there
can be a significant amount of internal work involved in adding and removing children
from the scene graph tree, it is best to use a switch node whenever it is applicable.

A switch node is useful in a number of situations, including multiple representations,
geometry animations, and portalling, to name a few. Multiple representations means having
several representations for a particular object, only one of which you want drawn at any one
time. Take the simple example of a tank simulator which might have three different
geometrical representations for an enemy tank, either undamaged, damaged or destroyed.
You could use a switch node, having each geometry as its child. Changing the
representation of the tank based on whether its been hit and/or destroyed is as simple as
calling WTswitchnode_setwhichchild to choose the proper geometry.

Switch nodes are useful in any case where you might wish to do animation using a sequence
of geometries rather than dynamically altering a single geometry at the vertex level. You
can simulate a human walking by having multiple geometries, each being the same human
geometrical model, but in a different sequential position of walking forward. Together, you
can play the models back in sequence, like a flipbook animation, showing a human walking
in place. You can define the sequence of geometries representing the human in the different
walking positions as children of a switch node. Using a transform node to move the human
forward in space, you can use the switch node to sequence through the different walking
position models, simulating a human walking forward.

Portalling refers to jumping from one scene to another, or one part of the scene to another
part. In a walkthrough environment, taking an elevator to another floor would be an
example of portalling. You can build a scene graph that has a switch node near the top, and
each floor of the building is a child branch of the switch node. When someone rides the
elevator to a new floor, the proper child branch of the switch node is activated to draw that
floor of the building. In cases like this, you definitely want to turn off any parts of the scene
graph that you know are not visible, as this vastly increases performance. Switch nodes are
a good way to disable the portions of a scene graph you know will not be visible.

LOD NODES

The level-of-detail (LOD) node is a specialized switch node that selects its currently active
child automatically based on its distance from the viewpoint, as shown in figure 4-14. You
use an LOD node to dynamically select between a set of different representations, each of
which is a different level of detail. For example, suppose your application involves a train
that passes close to the viewer and then recedes into the distance. After you create an LOD
node, you would add several children to it — each of which is a less-detailed representation

4-26

WorldToolKit Reference Manual

Other Node Types

of the same train. WTK allows you to specify the distance at which the LOD node could
“swap in” a new representation. As the train recedes into the distance, simpler models
(which require less and less computational effort to process) are progressively swapped in,
freeing up memory and system resources.

Figure 4-14: LOD nodes

Of course, your object doesn’t have to be moving — LOD nodes are useful whenever the
distance varies between the viewpoint and a geometric object.

The LOD node allows you to specify the same object with varying level of detail. An LOD
node’s children are arranged from highest level of detail (closest) to lowest level of detail
(furthest away). In general you build geometries with a larger number of polygons (more
detail) for the highest level of detail representation and you build geometries with fewer
polygons for the lowest level of detail representation.

An LOD node automatically chooses among its child nodes based on the distance between
the user’s viewpoint and the position you have designated asritexof your (LOD)
representation. WTK computes the distance between the viewpoint and the position of the

WorldToolKit Reference Manual 4-27

Chapter 4: Scene Graphs

center, compares that distance with the ranges that you have specified, and chooses the
appropriate representation.

The range for an LOD node is an array of floats specifying the switch-out distances for the
children of the LOD node. The input paramatamis the number of ranges passed in.

There does not have to be a one-to-one correspondence between range values and number
of child nodes. If there are more child nodes than range values, then the excess child nodes
are never traversed. If there are more range values than child nodes, then range values that
have no corresponding child nodes are not entered into the determination of which child
node to traverse.

ANCHOR NODES

An anchor node is a group node which contains a string property indicating the path and
filename of a VRML file that is associated with the node. However, an anchor node does
not retrieve the file automatically. In order to retrieve the file, some sort of user action
(e.g., a mouse click) is required to trigger the execution of a programmer defined action
function which causes the file to be read.

The string property is a character string representing a URL (Uniform Resource Locator)
and can be set using the functioti$anchornode_setlocation and

WTinlinenode_setlocation. The default URL of an anchor node is NULL. You can set or
retrieve the anchor string (URL) corresponding to the anchor node using the functions,
starting page 4-63.

INLINE NODES

An inline node is a group node whose children are read from a file without user interaction.
An inline node contains a string property indicating the path and filename of a VRML file
that is associated with the node. You set or retrieve the inline string (URL) corresponding
to the inline node using the functions starting on page 4-63.

Note that an inline node’s children are only read into WTK when inline nodes are created
by reading VRML (.wrl) files. If you manually create an inline node by calling
WTinlinenode_new (see page 4-40), and then d&ffinlinenode_setlocation (see page 4-63)

to set the node’s string property, WTK will not read the inline node’s children into the scene
graph. Therefore, you would have to manually create the nodes representing the inline
node’s children.

4-28

WorldToolKit Reference Manual

Building a Scene Graph

When a scene graph is written out to a VRML file udivithode_save (see page 4-48),
WTK outputs the inline node along with the string property but does not write out the inline
node’s children.

Building a Scene Graph

This section offers a general discussion on how to build a scene graph, and explains several
important concepts related to building scene graphs.

How to Create the Scene Graph Tree

There are several ways to build a scene graph. You can build it dynamically, as discussed
in the example on page 4-18, you can load it directly from a file, or you can use a
combination of both methods. The hierarchical file formats that WTK reads are VRML and
MultiGen. You can us&/Tnode_load (see page 4-46) on a VRML .wrl file or MultiGen .flt

file to load in the entire scene graph sub-tree stored in the file and attach it to the WTK
scene graph tree at the point specified by the “parent” argument field. Inline nodes that are
part of a VRML file will also be loaded in and added to the scene graph tree.

When you build and modify a scene graph tree, there are several issues you need to be
aware of.

As discussed on page 4-7, every scene graph requires a starting point, a node that is unique
to its specific scene graph tree, the root node. The root node is the only node that cannot be
shared between multiple scene graphs; its only purpose is to serve as the unique parent to
all the top nodes of a particular scene graph. Once you have a root node, either using the
default root node created by WTK (accessed by califigniverse_getrootnodes) or

creating a new root node via the function ¢#lfrootnode_new (see page 4-39), you are

ready to begin building your scene graph tree.

It is important to keep in mind that the scene graph tree must be acyclic, that is, no cycles
are allowed in the tree structure. A cycle occurs when a node is an ancestor of itself. WTK
disallows this because it becomes impossible for it to traverse a cyclic tree without going
into an infinite loop, as shown in figure 4-15. In fact, WTK prevents you from adding a
child node if it causes a cycle in the scene graph tree.

WorldToolKit Reference Manual 4-29

Chapter 4: Scene Graphs

This causes a cycle in Thisis allowed in
the scene graph,
which is illegal

the scene graph

Figure 4-15: Cyclic scene graph tree

Building a Composite Object in the Scene —
Composite Transformations

Accumulated transformation occurs when the current transformation state in a scene graph
tree is an accumulation of all the transform nodes processed before the current traversal
position in the tree. By using separator nodes or transform separator nodes, you are able to
prevent accumulated state from propagating from sibling branch to sibling branch, as in the
case of the dog and fire hydrant example (see page 4-19).

In general however, yado want the transformation state to accumulate as WTK walks
down any particular branch of the scene graph tree. One of the most important reasons to

4-30

WorldToolKit Reference Manual

Building a Composite Object in the Scene — Composite Transformations

have a hierarchical structure to hold your scene data is to help define the composite
positional and orientational relationships between objects in the scene.

It is often the case that you want to build a composite object in the scene. This composite
object is treated as a single object in relation to the rest of the scene, however its individual
parts are considered to be a collection of distinct objects in relation to the composite object.
A common example of this would be a composite car, which would be built from five parts:
the car body, the left front wheel, the right front wheel, the left rear wheel, and the right rear
wheel, as shown in figure 4-16. When the composite car moves forward, all of its parts
move forward together as a whole (i.e., as the car moves forward 20 feet, each part of the
car moves forward exactly the same amount, 20 feet.) You can think of this as a frame of
reference. All of the parts of the car are in a composite car frame of reference. When the
composite car frame of reference moves forward, all the sub-parts of the car also move
forward.

The composite car can also be thought of as having sub-frames of reference, that is, there
are parts of the composite car which move individually in relation to the whole car, as well
as moving in conjunction with the whole car. The wheels are an example of a sub-frames
of reference for the composite car. Although they move forward when the whole car moves
forward, they also rotate around the axles individually when the car rolls forward. The
orientation and position of a wheel is a combination of its individual frame of reference
(which rotates about the axle) and the composite car frame of reference (which moves
forward, backward, etc., in the scene).

WorldToolKit Reference Manual 4-31

Chapter 4: Scene Graphs

Separator
‘composite

The composite car’s position

'

Separator
“right rear”

Separator
“left front”

“left rear”

Geom
wheel

Figure 4-16: Composite car

USING FRAMES OF REFERENCE (COORDINATE FRAMES)

In building scene graphs and composite objects, it is important to understand the concept
of frames of referencgr coordinate frames). This section discusses this concept in more
detail.

Since the current transformation state at any place in the scene graph defines a unique frame
of reference, as WTK traverses down the scene graph tree and encounters transform nodes,

4-32 WorldToolKit Reference Manual

Building a Composite Object in the Scene — Composite Transformations

these nodes change the current transformation state and thus change the current frame of
reference in which WTK draws the ensuing geometry. A transform node essentially defines
a relationship between the frame of reference (transformation state) prior to it being
processed and the frame of reference after it is processed.

Just as transformations accumulate as you traverse down the scene graph tree, frames of
reference accumulate as you wafkthe tree. From any point in the scene graph, when you
walk up the tree (opposite from how WTK actually traverses the scene graph), you
encounter transform nodes in the reverse order as you would encounter in a normal
traversal. You can view each transform node in a reverse walk as a change in coordinate
systems.

This may seem complicated, however, the concept is impoftaatpurpose of a
transformation is to place and orient an object (geometry or light) in the ecemplace
and orient an object in the scamdativeto another object. Usually, you do not care exactly
where an object is in the scene, only where it is in relationship to some other object.

Consider the previous example of the composite car made from four wheels and a body,
and suppose you break down the transformations you use to place the components together
and then move them as a whole. Assume you do not care exactly where the wheels are in
the scene, only that they are placed in their proper positions relative to the body of the car.
In other words, you don’t want to specify the wheels’ position relative to the whole scene’s
frame of reference, but only their position relative to the composite car’s frame of
reference. In this case, you would want to use another transformation to specify the
composite car’s frame of reference to the scene.

Assume you want your composite car to move around the scene, and the wheels to roll as
your car drives along.

What are all the coordinate frames involved here?

From the scene’s point of view, there is only one coordinate frame, the base coordinate
frame that exists when no transformations have been applied. This coordinate frame is
WTK’s world coordinate frame, and defines the three dimensional space in which the entire
scene exists. With no transformations applied, geometries are drawn in the world
coordinate frame. Move down the scene graph to your first encapsulated object, the
composite car. The transformation associated with the composite car defines how the
composite car will be placed into its parent’s coordinate system.

WorldToolKit Reference Manual 4-33

Chapter 4: Scene Graphs

What is the composite car’s parent coordinate system?

It is the coordinate system defined by the current transformation state before processing the
composite car’s transform node, therld coordinate systen$o from the composite car’s

point of view, there are two coordinate systemss (local) coordinate systemwhich

is the coordinate system all of its parts will be placed into, aqpdent’'s coordinate
systemwhere it will be placed after its transform node is proces3eekhy is this useful?

You can assemble all of the car’s parts together in the composite car’s local coordinate
system, and then move them together as a whole using the composite car’s transform node.

So, you can use a transform node to move all the parts assembled in an object’s local
coordinate system to some place in the object’s parent coordinate system. In this case, you
have placed (drawn) the car body in the composite car’s coordinate system.

Assume you modeled the car body in a way such that the origin (0,0,0) is at the center of
the car body. Also assume that you have modeled the wheel geometries at the origin, such
that the center axis point on the wheel is at (0,0,0). Obviously if you put the wheels into the
composite car’s coordinate frame without transforming them first, they will all end up in

the same place, at the center of the car body, not where you want them. What you need to
do is add a transform node for each wheel that translates it from its local coordinate system
(where 0,0,0 is its center) to the proper place in its parent coordinate system (the composite
car, where 0,0,0 is in the middle of the car). So from a wheel’s point of view, there are three
coordinate systems, its local coordinate system, its parent coordinate system, and the world
coordinate system. In general, you will only be concerned with the first two coordinate
systems. However, there will be cases when you are interested in an object’s position
relative to the scene as a whole (world coordinate system), particularly when you are
interested in positional relationships between two independent objects. You now have an
assembled car in its coordinate system, as shown in figure 4-17.

4-34

WorldToolKit Reference Manual

Building a Composite Object in the Scene — Composite Transformations

Separator
‘composite
car”

Composite car's
coordinate system.The
transform node places
the car into its parent

coordinate system (the WCS)

Separator
“left front”

Geom
car body,

Wheel

geometry’s
local
coordinate
Left wheel's coordinate system. Rotated wheel system
The transform node places the geometry’s coordinate
wheel into the proper place in the system. The transform
composite car’s coordinate system rotates the wheel in place

Figure 4-17: Car's frames of reference

WorldToolKit Reference Manual 4-35

Chapter 4: Scene Graphs

You can move the car about the scene using its transform node. Now, you want to have the
wheels roll (rotate) when you move the car along. Rolling is simply rotation about the
wheel’s center axis, and since you have built this car using several different coordinate
systems, it will be very easy to make these wheels rotate as you move the car about.
Remembering that you have modeled the wheels with their center axis point being at
(0,0,0), all you have to do is rotate the wheel within its local coordinate system prior to
transforming it into its parent coordinate system. Although you can combine this rotation
with the transformation into the composite car coordinate system, for simplicity, just insert
another transform node to hold this rotation.

Assuming you rotate each wheel slightly about its local center axis each frame, then across
multiple frames, you will see the wheels rotating in place. Mixing this with the translation

of the composite car along a single direction, you are able to simulate a car rolling along.
As WTK traverses down the scene graph, it preconcatinates each transform node’s internal
4x4 matrix with the current transform state’s internal 4x4 matrix, forming a new current
transform state, as shown in figure 4-18.

~—— Transform state = identity

Transform state = T1

Figure 4-18: Internal matrix

WorldToolKit Reference Manual

Building a Composite Object in the Scene — Composite Transformations

ADDING A NODE TO YOUR SCENE MULTIPLE TIMES — INSTANCING

You can add a single node to a scene graph multiple times; this is knaveteasing
Instancing is another important concept to understand when building your scene graph.
When you add a node to a scene graph multiple times, WTK creates a reference to the
original node and then adds that reference to the node at the point of insertion. It does not
copy this node internally, thus significantly saving memory for every additional reference
to a node in a scene graph(s).

There are a number of cases where instancing can significantly improve performance. For
example, suppose you have a terrain with trees on it. Assuming the trees on this terrain are
identical in shape and size, then this is an ideal situation to use instancing. Instead of having
a separate transformation and a separate geometry for each tree, you instead have only a
separate transformation for each tree and a single instance of the tree geometry, as shown
in figure 4-19.

Each instance has a unique position in the scene graph. The route (in the scene graph) to
that position is called aode pathSee page 4-79 for a description of node paths.

Instancing obviously saves memory usage, particularly when you can instance a large
number of geometries. Instancing also improves performance in such situations by
significantly improving data cache hit ratios, thereby decreasing memory usage
requirements. This can be critical when running on machines that do not have a large
amount of physical RAM.

WorldToolKit Reference Manual 4-37

Chapter 4: Scene Graphs

Root
Node

Separato
“tree2”

Separato
“treed”,

“treel”

Geom
tree

Figure 4-19: Instancing

4-38 WorldToolKit Reference Manual

WTK Scene Graph Functions

WTK Scene Graph Functions

This section lists descriptions of all of the WTK scene graph functions.

Constructing Node Types

Each of the node types listed in table 4-1 and table 4-2 has a corresponding constructor
function. For example, to create a new group node, yoWdatoupnode_new; to create

a new transform node, you c&éTxformnode_new. The new node is attached to the graph
below the specified parent, after the last child already attached to this same parent. This
section lists the WTK functions that you use to create node types.

WTrootnode_new

WTnode *WTrootnode_new(
void);

This function creates a new root node (and therefore a new scene graph). This root node
constructor function is different from other node constructor functions in that it does not
have an argument for specifying a parent node. This is because the root node, as the top
node in the scene graph, has no parent node. The root node is the only node without a
parent.

Each scene graph has only one root node. When you create a new root node, you are
creating a new scene graph.

If your application requires only a single scene graph, then it is not necessary to call this
function in your application. This is becaug@universe_new, which is called at the
beginning of every WTK application, automatically creates an initial root node. A pointer
to this root node can be obtained by calliti@universe getrootnodes.

For a scene graph to be rendered into a WTK window (se#&/itidowschapter, starting

on page 17-1), the root node of the scene graph must be associated with the window using
the functionWTwindow_setrootnode. Note thatWTuniverse_new automatically associates

the initial root node created W Tuniverse_new to each of the windows created by
WTuniverse_new.

WorldToolKit Reference Manual 4-39

Chapter 4: Scene Graphs

See alsawWTwindow_setrootnode on page 17-8. Note that root nodes cannot be deleted via
calls toWTnode_delete.

WTanchornode_new

WTnode *WTanchornode_new(
WTnode *parent);

This function creates an anchor node and adds it to the scene graph after the last child of
the specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph byweatoug addchild

or WTnode_insertchild.

An anchor node is a group node which contains a string property (URL) used to retrieve a
file. However, an anchor node does not retrieve the file automatically. In order to retrieve

the file, some sort of user action (e.g., a mouse click) is required to trigger the user-defined
action function that causes the file to be read. The default URL of an anchor node is NULL.
SeeWTanchornode_setlocation on page 4-63 to set an anchor node’s URL.

WTgroupnode_new

WTnode *WTgroupnode_new(
WTnode *parent);

This function creates a group node and adds it to the scene graph after the last child of the
specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph byweatoug addchild

or WTnode_insertchild.

A group node is a node which can have children but has no other special properties. This

would be useful if your application involved a set of geometries which needed to be treated
as a single entity.

WTinlinenode_new

WTnode *WTinlinenode_new(
WTnode *parent);

4-40

WorldToolKit Reference Manual

Constructing Node Types

This function creates an inline node and adds it to the scene graph after the last child of the
specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph bywahodg addchild

or WTnode_insertchild.

An inline node is a group node which contains a string property (URL) representing the
name of a file from which the inline node’s children are reifldout user interactionNote

that an inline node’s children are only read into WTK when inline nodes are created by
reading VRML (.wrl) files. If you manually create an inline node by calling
WTinlinenode_new, and then calWTinlinenode_setlocation to set the node’s string

property, WTK will not read in the inline node’s children into the scene graph. Therefore
you would have to manually create the nodes representing the inline node’s children. When
a scene graph is written out to a VRML file usit@node _save, WTK will output the

inline node along with the string property but does not write out the inline node’s sub-tree.
The default URL of an inline node is NULL. S@€&inlinenode_setlocation on page 4-63

to set an inline node’s URL.

WTlodnode_new

WTnode *WTlodnode_new(
WTnode *parent);

This function creates an LOD (Level of Detail) node and adds it to the scene graph after the
last child of the specified parent. If NULL is specified for the parent argument, then the
node is created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild.

An LOD node is used to dynamically select between different representations, each of
which is a different level of detail, as a function of viewpoint distanceLS&8Nodeon
page 4-26 for more information.

WTsepnode_new

WTnode *WTsepnode_new(
WTnode *parent);

This function creates a separator node and adds it to the scene graph after the last child of
the specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph byweatoug addchild

or WTnode_insertchild.

WorldToolKit Reference Manual 4-41

Chapter 4: Scene Graphs

A separator node prevents the state information from propagating from its descendent
nodes to its sibling nodes.

Separator nodes also allow for a quick-reject test to be performed on the extents box of the
separator node’s sub-tree. When the simulation is run, if an extents box lies outside the area
that is being viewed, then the sub-tree is not visible and is therefore not traversed (or
rendered). Using separator nodes and their quick-reject test capability can drastically
improve the performance of your simulation. For more information on the quick reject test,
seeSeparator Node Functioren page 4-56.

WTswitchnode_new

WTnode *WTswitchnode_new(
WTnode *parent);

This function creates a switch node and adds it to the scene graph after the last child of the
specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph bywahiodg addchild

or WTnode_insertchild.

A switch node controls which of its several children is to be processed. By default, none of
the children of a switch node is processed. \B&ewitchnode_setwhichchild on page 4-57
to select which child of a switch node gets processed.

WTxformnode_new

WTnode *WTxformnode_new(
WTnode *parent);

This function creates a transform node and adds it to the scene graph after the last child of
the specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. Such nodes can be added to the scene graph byweatoug addchild

or WTnode_insertchild.

A transform node provides position and orientation information which can affect
subsequent geometry and light nodes.

4-42

WorldToolKit Reference Manual

Constructing Light Nodes

By default, a transform node’s matrix is set to the identity matrix. An identity matrix (for
the purpose of matrix multiplication) is identical to the number 1 (one) for numeric
multiplication. An identity matrix is shown below.

[1.00.00.00.0
0.01.00.00.0
0.00.01.00.0
0.00.00.01.0]

Note that by default, WTK ignores scaling factors (if any) within a Transform (and
Movable) node’s transformation. If you want WTK to use the scaling factors of
transformations within transform and movable nodes, you can do so by setting the
WTOPTION_XFORMSCALE option inWTuniverse_setoption. However, by doing so, it is
likely that intersection tests and math functions pertaining to matrices will operate
incorrectly.

WTxformsepnode_new

WTnode *WTxformsepnode_new(
WTnode *parent);

This function creates a transform separator node and adds it to the scene graph after the last
child of the specified parent. If NULL is specified for the parent argument, then the node

is created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild.

A transform separator node prevents just the transformation state information from

propagating from its descendent nodes to its sibling nodes. All other state is allowed to
propagate.

Constructing Light Nodes

This section lists the functions you use to create light nodes.

WTlightnode_newdirected

SeeWTlightnode_newdirected on page 12-6.

WorldToolKit Reference Manual 4-43

Chapter 4: Scene Graphs

WTlightnode_newspot

SeeWTlightnode_newspot on page 12-8.

WTlightnode_newpoint

SeeWTlightnode_newpoint on page 12-7.

WTlightnode_newambient

SeeWTlightnode _newambient on page 12-5.

Constructing Geometry Nodes

This section gives descriptions of the functions you use to create geometry nodes.

WTgeometrynode _new

WTnode *WTgeometrynode_new(
WTnode *parent,
WTgeometry *geom);

This function creates a geometry node with the specified geometry and adds it to the scene
graph after the last child of the specified parent. If NULL is specified for the parent
argument, then the node is created without a parent. You can add such nodes to the scene
graph by calling¥Tnode_addchild or WTnode_insertchild.

Note that you can only create one geometry node for a particular geometry, i.e., WTK does
not allow multiple geometry nodes to be created from the same geometry. Of course, you
can instance (see page 4-37) the geometry node multiple times in the scene graph and you
can also create movable instances of a geometry node. For more information refer to the
Geometrieshapter and/or thelovable Nodeshapter.

4-44

WorldToolKit Reference Manual

Constructing Movable Nodes

WTnode_getgeometry

WTgeometry *\WTnode_getgeometry(
WTnode *node);

This function returns a pointer to thérgeometry referenced by the specified geometry
node.

Constructing Movable Nodes

This topic is discussed in tihdovable Nodeshapter (starting on page 5-1).

Constructing Fog Nodes

WTfognode_new

WTnode *WTfognode_new(
WTnode *parent);

This function creates a fog node and adds it to the scene graph after the last child of the
specified parent. If NULL is specified for the parent argument, then the node is created
without a parent. These nodes can be added to the scene graph by\cEdlalg addchild

or WTnode _insertchild. Also see=og Node Functionsn page 4-64.

Loading a File into a Scene Graph

In addition to providing low-level functions to create individual nodes and manually
assembling a scene graph, WTK also provides high-level automatic methods to load in
hierarchical data from a file directly into WTK'’s scene graph structure.

WorldToolKit Reference Manual 4-45

Chapter 4: Scene Graphs

WTnode_load

WTnode *WTnode_load(
WTnode *parent,
char *filename,
float scale);

This function creates one or more nodes from data read in from a file, and adds these nodes
to the scene graph after the last child of the specified parent. The data read in from the file
may contain geometry data or data which corresponds to any of the supported node types.

If the specified data file is organized in a hierarchical fashion, then this function creates a
node that corresponds to each data construct in the file, and adds the top-most node of the
hierarchy to the WTK scene graph after the last child of the specified parent and returns the
top-most node created. If the data is in a “flat” (non-hierarchical) file, each node that is
created to correspond to each data construct is added to the scene graph after the last child
of the specified parent. In this case, the function returns the first node that was created.

The scale parameter is used to scale the coordinates of geometries contained in the specified
file. If you do not wish to scale the file’s geometries, pass in 1.0 as the scale value.

A geometry node is created for each geometry contained in the file; the node name assigned
to each geometry node is taken from the name of the corresponding geometry in the file.

Note: The argument filename is a string that specifies the name of the file from which the

data is read. This file could be on your local system (in which case you specify the path
to it), or it could be a URL. If you are using a URL to read in data, the file name should
contain the full http address (e.g., http://www.sense8.com/models/oplan.wrl).

WTK supports http URLs to VRML files only. T&node_load function does not
support any other file type by way of a URL. Make sure your system has an http server
if you intend on using URLSs in the filename argument.

WTgeometrynode_load

WTnode *WTgeometrynode_load(
WTnode *parent,
char *filename,
float scale);

4-46

WorldToolKit Reference Manual

Loading a File into a Scene Graph

This function creates a single geometry node from data read in from a file, and adds the
newly created node to the scene graph after the last child of the specified parent.

The data read in from the file must contain only geometry data; the only file formats which
can be processed by this function are the following:

« 3DS (3D Studio)

 BFF (SENSES)

+ DXF (AutoCAD)

* GEO (VideoScape)

 NFF (SENSES8)

e OBJ (Wavefront)

e SLP (ProEngineer “RENDER")

These formats may contain one or more geometric objects which are incorporated into a
single geometry node. The scale parameter is used to scale the coordinates of geometries
contained in the specified file. If you do not wish to scale the file’s geometries, pass in 1.0
as the scale value. You cannot WgEgeometrynode_load to read file formats such as FLT
(MultiGen) or WRL (VRML) because those file formats are hierarchically organized and
contain non-geometric information. UgéTnode load to read FLT and WRL files.

WTurl_download

char *WTurl_download(
char *url,
char *localfile);

This function copies a file from an http server to a file on the local machineuThe
argument takes the form “http://...", or “file://...". Thealfile argument is the full path and
file name of the file to be copied onto the local machine. If this function is successful in
copying the file to the local machine, the return value of this function will be the full path
and file name of the copied file. If this function fails to successfully copy the file, NULL is
returned.

WorldToolKit Reference Manual 4-47

Chapter 4: Scene Graphs

Saving a Scene Graph

WTnode_save

FLAG WTnode_save(
WTnode *node,
char *filename,
WTviewpoint *view,
int filetype,
int options);

This function saves the specified node to a file. If you save it to the VRML format (.wrl
files) the node and its sub-tree are saved. The filename and filetype are specified by the
parametergilename andfiletype. Valid filetypes are:

. WTFILETYPE_NFF

. WTFILETYPE_BFF

. WTFILETYPE_DXF

. WTFILETYPE_WRL

The options parameter must be set to 0 (zero) for all filetypes. You can also specify a
viewpoint (with the view parameter) to be saved with the node.

Note: Only geometry nodes can be saved to NFF, BFF, and DXF files. To save a sub-tree,

use the WRL filetype.

This function returns FALSE if the filetype is n{TFILETYPE_WRL and the node is not
a geometry node.

Node Property Functions

Certain node properties are generic — they can pertain to all node types. These properties
include the name of the node, the node type, and any tasks assigned to nodes. Other node
properties are specific to the type of node being considered. For example, Level of Detail
switching information is stored only in LOD nodes, while position and orientation
information is stored only in transform nodes. This section gives descriptions for the node
property functions.

4-48

WorldToolKit Reference Manual

Node Property Functions

WTnode_setname

FLAG WTnode_setname(
WTnode *node,
char *name);

This function sets the name of the specified node. All nodes have a name; by default, a
node’s name is *“’ (i.e., a NULL string). More than one node can have the same name.

WTnode_getname

char *WTnode_getname(
WTnode *node);

This function returns the name of the specified node.

WTuniverse_findnodebyname

WTnode *WTuniverse_findnodebyname(
char *name,
int num);

This function finds the numbered occurrence of a specified node. If no nodes have the
specified name, or if there are fewer nodes with the specified name than the number passed
in asnum, then NULL is returned. If more than one node has the same nameym®igl,

then a pointer is returned to the most recently created node with that narkievsBe |

Get A Pointer To A Node Using Its Nanwefpage A-20 for an example of when to use this
function.

WTnode_enable

FLAG WTnode_enable(
WTnode *node,
FLAG flag);

This function enables or disables the specified node during rendering or traversal of the
scene graph. Valid node types are geometry, separator, transform separator, light, fog, and
ambient.

WorldToolKit Reference Manual 4-49

Chapter 4: Scene Graphs

The default value of the enable flag for all nodes is enabled (TRUE). If a node’s enable flag
has been set to FALSE, the node is disabled, meaning that it will be ignored during a
rendering or picking traversal. The node enable flag does not affect intersection testing nor
the values returned by any of the following functiongnode_getradius,

WTnode_getmidpoint, or WTnode_getextents. Active tasks associated with a disabled node
are still active.

WTnode_isenabled

FLAG WTnode_isenabled(
WTnode *node);

This function indicates whether a specified node is enabled (or disabled) for rendering and
picking traversals.

WTnode_ismovable

FLAG WTnode_ismovable(
WTnode *node);

This function returns TRUE if the specified node is a movable node, otherwise it returns
FALSE. See thdovable Nodeshapter (starting on page 5-1) for more information about
movable nodes.

WTnode_gettype

int WTnode_gettype(
WTnode *node);

This function returns the type of the specified node. The node types supported are described
in table 4-1 on page 4-11 and table 4-2 on page 4-13. The functions used to construct these
nodes are described und&onstructing Node Typem page 4-39.

Possible return values are the following defined constawitslODE_ANCHOR,
WTNODE_FOG, WTNODE_GEOMETRY, WTNODE_GROUP, WTNODE_INLINE,
WTNODE_ILLEGAL, WTNODE_LOD, WTNODE_LIGHT, WTNODE_MGEOMETRY,
WTNODE_MLOD, WTNODE_MSEP, WTNODE_MSWT, WTNODE_ROOT,
WTNODE_SEP, WTNODE_SWT, WTNODE_WTK, WTNODE_XFORM,
WTNODE_XFORMSEP, WTNODE_GLNODE andWTNODE_WTOBJECT.

4-50

WorldToolKit Reference Manual

Geometrical Property Functions

If the node is illegal, it return&/ TNODE_ILLEGAL.

WTnode_setdata

void WTnode_setdata(
WTnode *node,
void *data);

This function sets the user-defined data field in a node. Private application data can be
stored in any structure. To store a pointer to a structure within a node, pass in a pointer to
the structure as theata argument, cast toaid*.

WTnode_getdata

void *WTnode_getdata(
WTnode *node);

This function retrieves private data stored within a node. You should cast the value returned
by this function to the data type of the data stored with the node WSingde_setdata.

WTnode_canaddchild

FLAG WTnode_canaddchild(
WTnode *parent,
WTnode *child);

This function tests to see if the specified node can be added to the scene graph as the child
of the specified parent node without creating a cycle in the scene graph. It returns TRUE if
the specified child node can be added. If a cycle would be created or if the parent node is
not one of the group nodes (meaning that it cannot have children) then this function returns
FALSE.

Geometrical Property Functions

WorldToolKit functions provide access to three useful parameters that describe the space
occupied by the geometries in a scene graph. Figure 4-20 illustrates these parameters: the
extents box, the midpoint, and its radius.

WorldToolKit Reference Manual 4-51

Chapter 4: Scene Graphs

The extents box is the smallest box that fits around the geometries. The extents box of a
node in a scene graph is relative to its position in the coordinate system (the X, Y, and Z
axes), which are defined by the transformations accumulated by traversing the scene graph
up until that node. A node’s extents box encloses the geontmgaming at that nodand
including its sub-tree (the sub-tree is its children and grandchildren, etc.)

The midpoint is the midpoint of the extents box. The radius is the distance from the
midpoint of the extents box to one of its corners.

Since there is only one root node for each scene graph, the extents box of the root node
encloses all of the geometry in the scene graph.

Y axis 7 axis
radius
extents[1][Z] _
extents[O] [Y] _ mldpomt """"""""""""""""""""""""""""""""""
extents[1][Y]
extents[0][Z]
X axis
! |
Y extents[0][X] extents[1][X]

Figure 4-20: Node geometrical parameters: extents, radius and midpoint

Note: Although these parameters can be retrieved with WTK calls, they cannot be directly
set. Their values are determined by the locations and extents of the geometries in the
simulation.

In the remainder of this section, all of the functions described return FALSE if the node
cannot have children (or if the node is not a geometry node).

4-52 WorldToolKit Reference Manual

Geometrical Property Functions

WTnode_getextents

FLAG WTnode_getextents(
WTnode *node,
WTp3 extents);

This function obtains the extents of a specified node (including the node’s sub-tree). The
coordinates of the vector returned via #xeents parameter represents the X, Y, and Z
distance between the midpoint of the node’s extents box and any corner of the extents box.

One use for this function is to restrict viewpoint motion. Your node action function might
look to see whether the viewpoint is within the node’s extents, and if not, call
WTviewpoint_moveto to ensure that the viewpoint stays within the spatial extents of the
geometries contained in the node’s sub-tree.

To obtain the minimum and maximum world coordinate values of all graphical entities
contained in the node and its sub-tree (i.e., the node's extents box, as illustrated in figure
4-20), you can use the following code segment:

WTnode *node;
WTp3 midpoint;
WTp3 extents;

float extentsbox[2][3];

WTnode_getmidpoint(node, midpoint);
WTnode_getextents(node, extents);

extentsbox[0][X] = midpoint[0] - (extents[0]);
extentsbox[1][X] = midpoint[0] + (extents[0]);
extentsbox[0][Y] = midpoint[1] - (extents[1]);
extentsbox[1][Y] = midpoint[1] + (extents[1]);
extentsbox[0][Z] = midpoint[2] - (extents[2]);
extentsbox[1][Z] = midpoint[2] + (extents[2]);

WorldToolKit Reference Manual 4-53

Chapter 4: Scene Graphs

WTnode_getradius

float WTnode_getradius(
WTnode *node);

This function obtains the distance from the midpoint of the specified node’s extents box to
a corner of the box. This is the same as the length of the extents vector. See
WTnode_getextents page 4-53.

The node’s radius is the distance from the midpoint of the node’s “extents box” to one of
its corners (see figure 4-20 on page 4-52).

It is often useful to scale distances in an application (for example, the velocities of moving
objects or the parallax of a viewpoint) according to the dimensions of a node and its
sub-tree. The node’s radius is convenient for this purpose.

WTsensor *sensor;
WTnode *node;

/* scale sensor sensitivity with the size of the geometries
contained in the node’s sub-tree */
WTsensor_setsensitivity(sensor, 0.01 * WTnode_getradius(node));

WTnode_getmidpoint

FLAG WTnode_getmidpoint(
WTnode *node,
WTp3 p);

This function obtains the midpoint of the specified node’s extents box.

The node’s midpoint is the midpoint of the node’s extents box (see figure 4-20 on page
4-52). WTnode_getmidpoint places this three-dimensional pointoin

4-54

WorldToolKit Reference Manual

LOD Node Functions

LOD Node Functions

This section gives descriptions for LOD node functions.

WTlodnode_setrange

FLAG WTlodnode_setrange(
WTnode *node,
float *range,
int num);

This function sets an array of floats that specify the switch-out distances for the children of
the specified LOD node. The array of floats must be in increasing order, as each float
represents a distance where WTK switches to a lower level of detail. An LOD node’s first
child node represents the highest level of detail, while subsequent children of an LOD node
represent decreasing levels of details. When an LOD node is processed, the distance
between the viewpoint and the LOD center is computed. If it is less than or equal to the first
range value, then WTK selects the first level of detail (i.e., the LOD node'’s first child
node). If the computed distance is greater than the first range value, but less than or equal
to the second range value, then WTK selects the second level of detail (i.e., the LOD node’s
second child node). By default, an LOD node has no range values.

WTlodnode_getrange

FLAG WTlodnode_getrange(
WTnode *node,
float *range,
int num);

This function returns an array of floats specifying the switch-out distances for the children
of the specified LOD node.

The parametetum indicates the size of the arrays of floats, and must be at least as large as
the number of range entries in the LOD node. W3&dnode_numranges to obtain the
number of range values contained in an LOD node.

WorldToolKit Reference Manual 4-55

Chapter 4: Scene Graphs

WTlodnode_numranges

int WTlodnode_numranges(
WTnode *node);

This function returns the number of range entries in the LOD node.

WTlodnode_setcenter

FLAG WTlodnode_setcenter(
WTnode *node,
WTp3 center);

This function sets the center used by an LOD node to compute distance from the viewpoint.
This distance is then used to determine which child node (of the LOD node) to traverse.

The default center of an LOD node is (0.0, 0.0, 0.0) in world coordinates.

WTlodnode_getcenter

FLAG WTlodnode_getcenter(
WTnode *node,
WTp3 center);

This function returns the center position of an LOD node.

Separator Node Functions

Separator nodes, in addition to preventing state information from propagating from its
descendent nodes to its sibling nodes, allow for a quick-reject test to be performed on the
extents box of a separator node’s sub-tree. When the simulation is run, if a separator node’s
extents box lies outside the area that is being viewed, then the sub-tree is not visible and is
therefore not traversed (or rendered). Using separator nodes and their quick-reject test
capability can drastically improve the performance of your simulation. Use the
WTsepnode_setcullmode function to perform a quick-reject test.

This section gives descriptions for separator node functions.

4-56

WorldToolKit Reference Manual

Switch Node Functions

WTsepnode_setcullmode

FLAG WTsepnode_setcullmode(
WTnode *node,
int mode);

This function sets the specified separator node’s culling mode. Valid modes are
WTNODE_CULLON andWTNODE_CULLOFF. The default is on.

WTNODE_CULLON means that a quick-reject test will be performed on the extents box of
the separator node’s sub-tree. If the extents box lies outside the viewing area, then the sub-
tree is not visible and is therefore not traversed. If the cull mode is set to

WTNODE_CULLOFF, the quick-reject test is not applied, and the node’s sub-tree will be
traversed.

WTsepnode_getcullmode

int WTsepnode_getcullmode(
WTnode *node);

This function returns the specified separator node’s culling mode.

Switch Node Functions

This section gives descriptions for switch node functions.

WTswitchnode_setwhichchild

FLAG WTswitchnode_setwhichchild(
WTnode *node,
int which);

This function allows you to specify which child of a switch node is processed (the default
is none). Valid values favhich are: 0, 1, 2, etc. You can also W&@node_numchildren-1,
WTSWITCH_ALL, andWTSWITCH_NONE.

WorldToolKit Reference Manual 4-57

Chapter 4: Scene Graphs

By default, the value isvTSWITCH_NONE, which means that none of the children of the
switch node will be processed.

WTswitchnode_getwhichchild

int WTswitchnode_getwhichchild(
WTnode *node);

This function returns the index of the current child being processed. Note that
WTSWITCH_ALL andWTSWITCH_NONE are defined as negative numbers so that actual
child numbers will not conflict with these two settings.

Transform Node Functions

This section gives descriptions for transform node functions. Note that by default, WTK
ignores scaling factors (if any) within a Transform (and Movable) node’s transformation.
If you want WTK to use the scaling factors of transformations within transform and
movable nodes, you can do so by settingWfT@PTION_XFORMSCALE option in
WTuniverse_setoption. However, by doing so, it is likely that intersection tests and math
functions pertaining to matrices will operate incorrectly.

WTnode_settransform

FLAG WTnode_settransform(
WTnode *node,
WTm4 m);

This function replaces the transformation matrix of the specified node.

WTnode_gettransform

FLAG WTnode_gettransform(
WTnode *node,
WTm4 m);

This function returns the transformation matrix of the specified node.

4-58

WorldToolKit Reference Manual

Transform Node Functions

WTnode_settranslation

FLAG WTnode_settranslation(
WTnode *node,
WTp3 p);

This function replaces the translation component of the specified node’s transformation
matrix.

WTnode_gettranslation

FLAG WTnode_gettranslation(
WTnode *node,
WTp3 p);

This function returns the translation component of the specified node’s transformation
matrix.

WTnode_translate

FLAG WTnode_translate(
WTnode *node,
WTp3 pos,
int frame);

This function creates an incremental translation to the existing transform either in the local
frame or in the parent frame — as opposed/fmode_settranslation, which replaces the
translation value.

Valid frames ar&VTFRAME _LOCAL andWTFRAME_PARENT.

WorldToolKit Reference Manual 4-59

Chapter 4: Scene Graphs

WTnode_setrotation

FLAG WTnode_setrotation(
WTnode *node,
WTm3 m);

This function replaces the rotational component of the specified node’s transformation
matrix.

WTnode_getrotation

FLAG WTnode_getrotation(
WTnode *node,
WTm3 m);

This function returns the rotational component of the specified node’s transformation
matrix.

WTnode_setorientation

FLAG WTnode_setorientation(
WTnode *node,
WTq q);

This function replaces the rotational component of the specified node’s transformation
matrix using a quaternion as an output parameter, unlikeode _setrotation, which uses
a 3x3 matrix as an output parameter.

WTnode_getorientation

FLAG WTnode_getorientation(
WTnode *node,
WTq q);

This function returns the rotational component of the specified node's transformation
matrix using a quaternion as an input parameter, utiiReode_getrotation, which uses a
3x3 matrix as an input parameter.

4-60

WorldToolKit Reference Manual

Transform Node Functions

WTnode_rotation

FLAG WTnode_rotation(
WTnode *node,
float y,
float x,
float z,
int frame);

This function creates an incremental rotation to the existing transform either in the local
frame or in the parent frame — as opposed/Tmode_setrotation, which replaces the

rotation value. The incremental transformation matrix is the product of the 4x4 matrices
formed by the rotational angles (in radians) specified in the y, X, and z parameter (in that
order). Note that the order of rotation is also reflected in the order of the parameter list of
this function.

Valid frames arsWTFRAME_LOCAL andWTFRAME_PARENT.

WTnode_rotateq

FLAG WTnode_rotateq(
WTnode *node,
WTq q,
int frame);

This function creates an incremental rotation to the existing transform either in the local
frame or in the parent frame by the amount specified by the quaternion. Valid frames are
WTFRAME_LOCAL andWTFRAME_PARENT.

WTnode_rotatem3

FLAG WTnode_rotatem3(
WTnode *node,
WTm3 m3,
int frame);

This function creates an incremental rotation to the existing transform either in the local
frame or in the parent frame by the amount specified by the 3x3 matrix. Valid frames are
WTFRAME_LOCAL andWTFRAME_PARENT.

WorldToolKit Reference Manual 4-61

Chapter 4: Scene Graphs

WTnode_rotatem4

FLAG WTnode_rotatem4(
WTnode *node,
WTm4 m4,
int frame);

This function creates an incremental rotation to the existing transform either in the local
frame or in the parent frame by the amount specified by the 4x4 matrix.Valid frames are
WTFRAME_LOCAL andWTFRAME_PARENT.

WTnode_axisrotation

FLAG WTnode_axisrotation(
WTnode *node,
int axis,
float angle,
int frame)

This function creates an incremental rotation to the existing transform either in the local
frame or in the parent frame around the specified axis.Valid fram&gTHRAME_LOCAL
and WTFRAME_PARENT. The axis can by X, Y, or Z. The angle is specified in radians.

URL for Anchor and Inline Nodes

WTvrml_seturl

void WTvrml_seturl(
char *basepath);

This function sets the URL base path, so that relative pathnames can be specified using
WTanchornode_setlocation andWTinlinenode _setlocation.

Since it may be desirable to use relative pathnames in anchor and inline nodes, this function
allows you to set the base path (location), so that files with relative pathnames can be
located. Note that iVTvrml_seturl is used to set the base path, it is still acceptable to use
full pathnames in th&/Tanchornode_setlocation andWTinlinenode_setlocation functions.

4-62

WorldToolKit Reference Manual

Anchor Node Functions

Anchor Node Functions

This section gives descriptions for anchor node functions.

WTanchornode_setlocation

FLAG WTanchornode_setlocation(
WTnode *node,
char *url);

This function replaces the anchor string (URL) reference of the specified anchor node with
the new character string (thgar string given inurl).

WTanchornode_getlocation

char *\WTanchornode_getlocation(
WTnode *node);

This function returns the anchor string (URL) reference of the specified anchor node.

Inline Node Functions

This section gives descriptions for inline node functions.

WTinlinenode_setlocation

FLAG WTinlinenode_setlocation(
WTnode *node,
char *url);

This function replaces the inline string (URL) reference of the specified inline node with
the new character string (tlegar string given inurf).

WorldToolKit Reference Manual 4-63

Chapter 4: Scene Graphs

WTinlinenode_getlocation

char *WTinlinenode_getlocation(
WTnode *node);

This function returns the inline string (URL) reference of the specified inline node.

Fog Node Functions

You can control fog effects by setting the following attributes of a fog node:

fogcolor The color to which objects in the scene are blended to.
Default fog color is black (0.0, 0.0, 0.0). For best results,
the color of the fog should match the background color of
the simulation. A light grey fog color works well.

range The distance upon which all objects will blend
(completely) into the fogcolor. Default is 0.0 which means
that the range will be set to the window yon plane distance.

mode The fog blending ramp (linear, exponential, exponential-
squared). The default WTFOG_LINEAR.

linearstart The distance at which objects are affected by the fog color.
(Only applicable if the fog mode is linear.) The default is
0.0.

Note: If you have two or more fog nodes in the same state (that is, not “state-separated”

using a separator), only the most recently traversed one will be used. The fog effect is
not cumulative.

This section gives descriptions for fog node functions.

4-64

WorldToolKit Reference Manual

Fog Node Functions

WTfognode_setcolor

FLAG WTfognode_setcolor(
WTnode *node,
float red,
float green,
float blue,
float alpha);

This function sets the fog color of a fog node. The default fog color is black. Objects in the
scene will be blended to this color as a function of the distance between it and the
viewpoint.

WTfognode_getcolor

FLAG WTfognode_getcolor(
WTnode *node,
float *red,
float *green,
float *blue,
float *alpha);

This function retrieves the fog color of a fog node.

WTfognode_setrange

FLAG WTfognode_setrange(
WTnode *node,
float range);

This function specifies the distance at which all objects are completely blended into the fog.
For example, if you wish to model a scene where visibility is limited to 500 feet due to
heavy fog, you would call this function with a range value of 500.0f. The specified node
must be a fog node. If a range value of 0.0 is specified, then the range will be set to the
window yon plane distance. The default range value is 0.0 so it is recommended that you
useWTfognode_setrange to set the range to an appropriate value.

WorldToolKit Reference Manual 4-65

Chapter 4: Scene Graphs

WTfognode_getrange

float WTfognode_getrange(
WTnode *node);

This function returns the range (distance) of the specified fog node.

WTfognode_setmode

FLAG WTfognode_setmode(
WTnode *node,
int mode);

This function sets the mode of the specified fog node. Valid values forideargument
are:WTFOG_LINEAR, WTFOG_EXP, WTFOG_EXPSQUARED, and WTFOG_NONE. The
mode of a fog node specifies the fog blending ramp to be used. The default mode is
WTFOG_LINEAR.

WTfognode_getmode

int WTfognode_getmode(
WTnode *node);

This function returns the mode of the specified fog node.

WTfognode_setlinearstart

FLAG WTfognode_setlinearstart(
WTnode *node,
float start);

This function specifies the starting distance where the fog color will affect the appearance
of objects. The default value is 0.0. This start distance is only applicable if the fog node's
mode iSWTFOG_LINEAR.

4-66

WorldToolKit Reference Manual

Open GL Callback Node Functions

WTfognode_getlinearstart

float WTfognode_getlinearstart(
WTnode *node);

This function returns the linear start distance of the specified fog node.

Open GL Callback Node Functions

OpenGL callback nodes (WTglnode) are nodes intended for use by advanced users. This
node type allows a developer the flexibility to make custom Open GL calls during the scene
graph's traversal. This functionality supplants that offered via the use of the WorldToolKit
3D drawing function WTwindow_setdrawfn (this was previously the only way to
accomplish custom GL calls without fear of interfering with WorldToolKit's normal
operation.)

The glnode functions are all prefixed with WTglnode_ and exist only to allow the insertion/
creation of a callback function and to get/set the culling/boundingbox of the node. Normal
node manipulation can be accomplished via the standard WTnode_ functions.

How to use glnodes

OpenGL callback nodes in WorldToolKit are used in a similar fashion as are geometry
nodes; however, instead of containing a pointer to a WTgeometry, your ginode will contain
a pointer to your own custom function that makes OpenGL calls. This requires not simply
calling WTglnode_new, but also having defined a separate function that contains the
OpenGL calls you wish to make. As WorldToolKit traverses the scene graph to draw all
of the objects contained therein, it will call your custom function at the appropriate time.
The benefit of doing your custom OpenGL code in this manner is that you can accumulate
the transformation state of the scene graph and apply it to your custom function if you so
wish (you may also choose to ignore this by simply loading the identity matrix in your
callback function.)

Shown below is a simple example of how to implement an OpenGL callback node in
WorldToolKit:

(Note: Sample files may be found in the directory \wtkinstal\demo\glnode)

WorldToolKit Reference Manual 4-67

Chapter 4: Scene Graphs

#ifdef WIN32
#include <windows.h>
#endif

#include <gl\gl.h>
#include "wt.h"

static void actionfn(void);
void MyGLCallback(void);

void main(int argc, char *argv[])

{
WTnode *rootnode;
WTnode *node;
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
rootnode = WTuniverse_getrootnodes();
WTlightnode_load(rootnode, "lights");
/* Create OpenGL callback node */
node = WTglnode_new(rootnode, MyGLCallback, 0);
WTnode_setname(node, "MyOpenGLNode");
WTuniverse_setactions((void *) actionfn);
WTkeyboard_open();
WTuniverse_ready();
WTuniverse_go();
WTuniverse_delete();
}
static void actionfn()
{
short key;
key = WTkeyboard_getlastkey();
if (‘g ==key)
WTuniverse_stop();
}

4-68 WorldToolKit Reference Manual

Open GL Callback Node Functions

void MyGLCallback(void)
{

/*
It is critical that we save the current GL attributes,
You only need to save attributes/states that you will
be changing; but, if you use glaux or glu functions,
attributes and/or states may be changed that you are
not aware of so if you are unsure, simply use the
GL_ALL _ATTRIB_BITS flag to save everything ; however,
this can an unnecessary computational expense if you only
actually need to save very few states.

*/

/* Save state(s) */

glPushMatrix();

glPushAttrib(GL_ALL_ATTRIB_BITS);

/* WTK uses these states, so you may wish to disable them to have a clean state */

glDisable(GL_CULL_FACE);

glDisable(GL_LIGHTING);

glDisable(GL_TEXTURE_2D);

glDisable(GL_ALPHA TEST);

glDisable(GL_COLOR_MATERIAL);

glDisable(GL_BLEND);

glDisable(GL_LINE_SMOOTH);

/* We now have a clean state, your OpenGL code goes here */

/* Done with our custom code, restore WTK state(s) */
glPopAttrib();

glPopMatrix();

glFlush();

It is very important that you manage the state of OpenGL properly when using this node
type. Indications of improper state/attribute management can be diverse and subtle: i.e.
textures are not lit properly, line widths are incorrect, anti-aliasing is incorrect, lighting is
wrong, colors and/or material are incorrect, et cetera. The simplest way to accomplish this
management properly is to use the call glPushAttrib(GL_ALL_ATTRIB_BITS) because
this simply pushes the entire current state on the GL attributes stack. This is far better for

WorldToolKit Reference Manual 4-69

Chapter 4: Scene Graphs

performance reasons than calling glQuery or Set/Get repeatedly as (1) you are incurring
excessive function call overhead and more significantly (2) you may be taking network
delay penalties if you are remotely rendering because the state information must be pushed
and pulled across the network each time by the client. glPushAttrib avoids this by saving
the current attributes on the server's attribute stack, therefore restricting delays to the actual
client's calls of glPushAttrib and glPopAttrib. Note: The use of the method
WTtexture_cache can cause unusual problems with texturing in your OpenGL callback
function. We highly recommend caching all textures prior to calling WTuniverse_go if
possible. This problem rarely surfaces; however, it has been noted to occur when
incorporating 3rd party OpenGL calls such as those found in the DiGuy API from Boston
Dynamics Inc.

WTglnodes are not allowed to make any WorldToolKit calls since your function is being
processed in the middle of what WorldToolKit considers a 'known state'. It is highly
recommended that you limit your callback function to OpenGL usage. Examples of how
to implement OpenGL callback nodes can be found in the wtkinstall\demo\ginode
directory. An example on how to implement 3rd party OpenGL based products such as
DiGuy has been included in the wtkinstall\demo\DiGuy directory.

WTglnode_new

WTnode *WTglnode_new(
WTnode *parent,
void *GLCallbackFunction,
int flags);

This function is used to create a new OpenGL callback node. GLCallbackFunction should
be a void pointer to a function that takes an argument list of type void. flags determines the
behavioral state of the OpenGL callback node in the scene graph. There are currently 3
flags you can pass:

WTGLNODE_ENABLED Allows WorldToolKit to process this node
during scene graph traversal.

WTGLNODE_BBOXENABLED Allows WorldToolKit to process a user-
defined bounding box for this node.

WTGLNODE_DEFAULTS Bitwise OR of the previous two flags.

4-70

WorldToolKit Reference Manual

Open GL Callback Node Functions

WTglnode_replacecallback

FLAG WTglnode_replacecallback(
WTnode *node,
void *GLCallbackFunction);

This function simply replaces the currently assigned callback function with a new one.

WTglnode_setcullingbox

FLAG WTglnode_setcullingbox(
WTnode *node,
WTp3 midpoint,
WTp3 extents);

In order for a culling and bounding box to be processed by WorldToolKit you must supply
the midpoint and dimensions of the 'box' you wish to use for this purpose. If the node was
created with the flag WTGLNODE_BBOXENABLED or WTGLNODE_DEFAULTS,

you should use this method immediately following creation of the OpenGL callback node.
If the flag(s) were not set prior to this call, WorldToolKit will not use the node's
boundingbox for culling purposes.

WTglnode_setflags

FLAG WTglnode_setflags(
WTnode *node,
int flags);

This function replaces the currently set flags with flags. It does not perform any bitwise
operations on the current flag settings.

WorldToolKit Reference Manual 4-71

Chapter 4: Scene Graphs

WTglnode_getflags

int WTglnode_getflags(
WTnode *node);

This function returns the status of a particular node's flags.

Possible uses of the OpenGL callback node

The OpenGL callback node has many uses. Most notably it allows a developer the
freedom to introduce custom OpenGL calls into their WTK simulations without the
expensive, laborious and 'hacky' method of tracking and maintaining state in a window's
3D drawing function.

For example, if a user developed a flight simulator for helicopters he/she may want to
include smoke trails and shadows for their missiles as well as a special effect during the
launch. As a helicopter launched a missile, the application would add 3 glnodes just after
or before the geometry in the scene graph (so that all of these effects occur in the same local
frame as the missile moves.) The node for the shadows could construct a basic cube that
was roughly the same dimensions as the missile. The function would then determine where
the 'sun'is in relation to the missile's position and the surface and then change the viewing
transform to 'collapse' the cube's geometry onto a plane, and use that information to
construct the shadow which would then need to be placed on the surface. The node for the
launch affect could construct a simple alpha blended and textured cone whose textures
could be modified via the 2D image functions in OpenGL and then applied. The node for
the missile trails could construct of cylinders described by curves whose control points
were described by the missile's frame by frame 3D position. Each segment of the cylinder's
geometry could be filled with a volumetric fog at an intensity determined over time.

Now, none of these examples are simple; however, they are now more easily accomplished
by the new OpenGL callback node's functionality, and they are possible.

Bounding Boxes

A bounding box represents the maximum spatial extent of an object, in its current position
and orientation. You can use bounding boxes for collision detection. This section gives
descriptions of bounding box functions.

4-72

WorldToolKit Reference Manual

Bounding Boxes

You can also make bounding boxes visible in your simulation; this is a way of highlighting
some of the scene’s geometric entities. Any geometry node or any node which can have
children (see table 4-1 on page 4-11 and table 4-2 on page 4-13) can have a bounding box.
No other nodes can have bounding boxes.

When a node’s bounding box is enabled, a white wireframe box is drawn at the node extents
when the scene graph is rendered. These extents are the same as those obtained by
WTnode_getextents, i.e., the extents of the node and its entire sub-tree. If you want the
wire-frame box to be drawn in a color other than white,Weniverse _setbboxrgb.

WTnode_boundingbox

FLAG WTnode_boundingbox(
WTnode *node,
FLAG onoff);

This function enables a bounding box for the specified node. Use TRUE to enable the
bounding box (which makes it visible) and FALSE to disable it. By default, the bounding
box of a node is disabled.

Note that a bounding box can be enabled only for geometry nodes or nodes that can have
children. If any other type of node is passed in to this function, then FALSE is returned.

WTnode_hasboundingbox

FLAG WTnode_hasboundingbox(
WTnode *node);

This function allows you to see if the specified node’s bounding box is enabled. If a node’s
bounding box has been enabled by calliithode boundingbox with a value of TRUE,
thenWTnode _hasboundingbox returns TRUE. [fWTnode_boundingbox has not been

called for the particular node, or if it has been called with a value of FALSE, then FALSE
is returned.

WorldToolKit Reference Manual 4-73

Chapter 4: Scene Graphs

Scene Graph Assembly

Note that you can add a node to the same parent node more than once. For this reason, you
must refer to child nodes by number (0,1,2, etc.,) rather than by pointer. This section gives
descriptions for functions you use in assembling the scene graph.

WTnode_addchild

FLAG WTnode_addchild(
WTnode *parentnode,
WTnode *child);

This function adds the specified child to the scene graph after the last child of the specified
parent. Note that the node may already be in the scene graph when this function is called.
This function does not replace any existing child nodes, it merely adds another child node
to the parent node.

WTnode_insertchild

FLAG WTnode_insertchild(
WTnode *parentnode,
WTnode *child,
int childnum);

This function adds the child node as the numbered node of the specified parent. Note that
the node may already be in the scene graph when this function is called.

WTnode_removechild

FLAG WTnode_removechild(
WTnode *parentnode,
int childnum);

This function removes the numbered child and its sub-tree from the specified parent node,
possibly leaving the node with no parents (an “orphan”). If any task has been associated
with the node by a call ta/Ttask_new and the node is removed from the scene graph (i.e.,
the node no longer has any parents), the task is no longer performed.

4-74

WorldToolKit Reference Manual

Scene Graph Assembly

WTnode_remove

FLAG WTnode_remove(
WTnode *node);

This function removes the specified node from all of its parent nodes, disconnecting it from
the scene graph. If the specified node &Tyeometry node, then it is no longer rendered
because it is not encountered in any scene graph traversal during rendering. If the specified
node is one of the container-type nodes, it is still possible for the children of this node to be
rendered, if they have other parents that are still connected to the scene graph.

If any task has been associated with this node by a cailtask_new and the node is
removed from the scene graph, the task is no longer performed.

WTnode_deletechild

FLAG WTnode_deletechild(
WTnode *parent,
int childnum);

This function detaches the numbered occurrence of the specified node from its parent node.
All nodes in the sub-tree beginning with the this node are deleted (if they have no other
children in the scene graph).

Tasks associated with deleted nodes will no longer be performed.

WTnode_delete

FLAG WTnode_delete(
WTnode *node);

This function detaches all occurrences of the specified node from all of their parent nodes.
All nodes in the sub-tree beginning with this node will have the specified child nodes
deleted (if they have no other parent in the scene graph).

Tasks associated with deleted nodes are no longer performed. Note that root nodes cannot
be deleted; if a root node is specified as the parameter, this function does nothing and
returns FALSE.

WorldToolKit Reference Manual 4-75

Chapter 4: Scene Graphs

WTnode_vacuum

void WTnode_vacuum(
void);

This function deletes all non-root nodes from all the scene graphs in the universe.

Utility Functions

This section gives a description for the function used to obtain a formatted printout of a
hierarchical scene graph.

WTnode_print

void WTnode_ print(
WTnode *node);

This function generates a formatted printout of a scene graph, starting at the specified node.
If you specify the root node, the whole scene graph is printed; if you specify any other node,
only the specified node and its sub-tree are printed. Information printed is depth (with depth
0 assigned to the node passed in to the function), node type, and node name. Traversal of
the tree is depth first. Each node of the printout is on a separate line, and each line is
indented according to depth. For example, to print the first scene graph in the universe, use:

WTnode_print(WTuniverse_getrootnodes());
InternallyWTnode_printis implemented using/Tmessage so that you can redirect the text
output of WTnode_print to a file if you wish. This is especially useful for non-console

Windows applications. Se&Tmessage_sendto for more information on how text output
can be redirected to a file or elsewhere.

Scene Graph Structure Inquiry

This section gives descriptions for functions you use to query the scene graph.

4-76

WorldToolKit Reference Manual

Scene Graph Structure Inquiry

WTuniverse_getrootnodes

SeeWTuniverse_getrootnodes on page 2-17 for a description.

WTrootnode_next

WTnode *WTrootnode_next(
WTnode *rootnode);

This function returns the next root node in the universe’s list of root nodes. A pointer to the
first root node is obtained with a call W6Tuniverse_getrootnodes. You can then iterate
through the list of existing root nodes usiMrootnode_next.

WTnode_numchildren

int WTnode_numchildren(
WTnode *node);

This function returns the number of children of the specified node.

WTnode_getchild

WTnode *WTnode_getchild(
WTnode *parentnode,
int childnum);

Returns the numbered child of the specified parent node. Valid valugsifioum are 0,
1, 2, etc. up to the value returnedW¥node_numchildren minus 1.

WTnode_numparents

int WTnode_numparents(
WTnode *node);

This function returns the number of parents of the specified node. If the return value is 0
(i.e., the node has no parents), the node is inactive in the simulation.

WorldToolKit Reference Manual 4-77

Chapter 4: Scene Graphs

WTnode_getparent

WTnode *WTnode_getparent(
WTnode *node,
int num);

This function returns the numbered parent of the specified node. Valid valuegifare
0, 1, 2, etc. up through the value returnedii§hode_numparents minus 1.

WTnode_numpolys

int WTnode_numpolys(
WTnode *node);

This function returns the number of polygons contained in the specified node’s sub-tree.

Scene Graph Traversal

Occasionally, you may need to find and perhaps modify certain types of nodes within a
scene graph. In order to perform such a task, you are required to traverse the scene graph
and then process each node as it is encountered. The following code segment is provided
as a template so that you are able to easily write a scene graph traversal function which
caters to your specific needs.

4-78

WorldToolKit Reference Manual

Additional Topics Related to the Scene Graph

The following example prints out the name of all light nodes within the specified scene
graph:

void traverse_node(WTnode *node)
{
int nChildren, nAttachments;
/* Put your node manipulation code here */
if WTNODE_LIGHT == WTnode_gettype(node)) {
WTmessage("Light Name is %s\n", WTnode_getname(node));
}
nChildren = WTnode_numchildren(node);
if (nChildren > 0) {
for(i=0; i<nChildren; i++) {
traverse_node(WTnode_getchild(node,i));
}
}

nAttachments = WTmovnode_numattachments(node);
if(nAttachments > 0) {
for(i=0; i<nAttachments; i++) {
traverse_node(WTmovnode_getattachment(node,i));

}

Additional Topics Related to the Scene Graph

This section contains some additional topics related to the scene graph, such as node paths,
intersection testing, picking polygons, and sensor attachment.

Node Paths

One of the advantages of a scene graph is the abilitgtincea node (see page 4-3&n
instance is a reference to the original node. Instancing means that you can have only one
object loaded into memory, but you can make as many references to it as you need. The

WorldToolKit Reference Manual 4-79

Chapter 4: Scene Graphs

ability to have multiple instances of a node requires that WTK have a mechanism to
uniquely identify a specific instance of a node. The mechanism that WTK uses to uniquely
identify a node or node instance is calletbade path

A node path is actually a mathematical entity that allows you to distinguish between
multiple instances of a node. A specific instance can be uniquely defined by the “node path”
through the scene graph from the root node to the node instance, and hence the term node
path is used.

For example, say you have one car model that is instanced several places in the simulation,
which gives you several cars on the road at the same time, all of which look the same. In
this simulation, you would use a node path to refer to a specific instance of the car model.

There are two things you can do with node paths:

« Perform intersection tests between a specific node path and other nodes in the
scene graph — this allows intersection testing between an instance of an object
and another object in the universe.

» Pick graphical entities rendered into WTK windows. The WTK picking functions
generate the node path of the picked geometry node.

Note that you must create each node path that your simulation needs and you must delete
it when you no longer need it (to free up the memory that it uses). If you change your scene
graph after creating a node path, the node path may no longer be valid.

LOCATING NODES IN THE SCENE GRAPH

If you create a geometry node and attach it to the scene graph’s root node, the geometry is
drawn at the universe origin. If you then create a transform node and attach it to the scene
graph’s root, then attach the same geometry to the root node after the transform node, the
geometry is drawn a second time, wherever the transform dictates. The location of that
instanceof the geometry (remember, there is only one actual geometry) depends on the
path (node path) you take through the scene graph tree to reach it.

4-80

WorldToolKit Reference Manual

Node Paths

--

Transform Node
Geometry Geometry
G G

Figure 4-21: Node path to an instance of a geometry

- . Node Path

Group Node

Group Node

For example, if you want a node path to the second instance of the geometry (as shown in
figure 4-21), you can create it by callilgrnodepath_new and specifying the following

three parameters: the geometry node, the ancestor node (the scene graph’s root node), and
the instance number 1 (since O refers to the first instance, and you are interested in the
second instance). This newly created node path can then be used to uniquely specify the
second instance of the geometry.

WTnodepath_new

WTnodepath *WTnodepath_new(
WTnode *node,
WTnode *ancestor,
int which);

This function creates a new node path. A node path must be fully specified by giving three
arguments to this function:

» the node that the instance references

» theancestor of that node (in figure 4-21, the ancestor is the root node)

» and the occurrence numhehich. Thewhich parameter is the number of that
instance of the node

WorldToolKit Reference Manual 4-81

Chapter 4: Scene Graphs

The which parameter must be an integer between 0 and the total number of ways (minus 1)
of traversing the scene graph to go from the ancestor to the specified node. Otherwise,
NULL is returned.

WTnodepath_delete

FLAG WTnodepath_delete(
WTnodepath *nodepath);

This function deletes a node path.

WTnodepath_numnodes

int WTnodepath_numnodes(
WTnodepath *nodepath);

This function obtains the number of nodes in the specified node path. This is the number of
nodes in the path from (but not including) the ancestor node to the bottom-most node of the
node path. In the example in figure 4-21 on page 4-81, the number of nodes is two.

WTnodepath_getnode

WTnode *WTnodepath_getnode(
WTnodepath *nodepath,
int num);

This function obtains the specified node in the specified hode path. Think of the node path
as a specific path through the scene graph. Pass im0rfido obtain a pointer to the first

node in the node path. The first node in the node patbtithe ancestor node that was
specified when the node path was created. The first node in the node path is actually a child
node of that ancestor node. In figure 4-21 on page 4-81, the first node in the node path is
the (second) group node.

Pass in:

WTnodepath_numnodes(nodepath) - 1

for num to obtain a pointer to the bottom-most node in the node path. The bottom-most
node in figure 4-21 on page 4-81 is the instance of the geometry.

4-82

WorldToolKit Reference Manual

Node Paths

Pass in a value farum between these two extremes to obtain a pointer to the nodes of the
node path between the child of the ancestor and the bottom-most nodes.

WTnodepath_gettraversal

int WTnodepath_gettraversal(
WTnodepath *nodepath,
int *numarray,
int maxsize);

This function obtains a description of the specified node path in terms of the scene graph
traversal order. This function will return a number for each node in the node path, where
the number indicates which child number the node represents.

Your application must declare the integer array cailedarray, and pass it in to this
function. The size ofiumarray must be at least as big as the value returned by
WTnodepath_numnodes for this node path. You must also specify the size of the array
passed in.

The meaning of the values returnechimarray are as follows.

numarray[0] the number of the first child of the ancestor
node along this node path.

numarray[1] the number of the grandchild (the child of the
first child) of the ancestor node along the
node path. And so on, up to:

numarray] WTnodepath_numnodes()-1] which is the number of the bottom-most node
along the node path.

Note: The numbers returned by this function are relative to each parent node. The numbers
tell you which child of each parent node is along the specified node path.

WTnodepath_getextents

FLAG WTnodepath_getextents(
WTnodepath *nodepath,
float ext[2][3]);

WorldToolKit Reference Manual 4-83

Chapter 4: Scene Graphs

This function places the center and extents of the node path in the specified floating point
array (given byext). The extents box of a node path is the smallest rectangular box that
encloses all the geometries of the node path and which is aligned with the world coordinate
axes. Use this function to test for collisions anywhere on the node path.

OBTAINING AN ACCUMULATED TRANSFORMATION

The functions in this section enable you to obtain the accumulated transformation (both
position and orientation) of the node path. This takes into account all transformations
accumulated by traversing down and then to the right (“depth first”) between the ancestor
and bottom-most node of the node path.

If the node path passed in to any of the functions in this section have become invalid since
the node path was created, then FALSE is returned. The node path can become invalid if
parts of the scene graph associated with the node path have been modified after the node
path was created.

WTnodepath_gettransform

FLAG WTnodepath_gettransform(
WTnodepath *nodepath,
WTm4 m4);

This function returns the transformation matrix that would be applied to the leaf node of the
node path.

WTnodepath_gettranslation

FLAG WTnodepath_gettranslation(
WTnodepath *nodepath,
WTp3 p);

This function returns the translational component of the transformation matrix that would
be applied to the leaf node of the node path.

4-84

WorldToolKit Reference Manual

Intersection Testing

WTnodepath_getorientation

FLAG WTnodepath_getorientation(
WTnodepath *nodepath,
WTq q);

This function returns the rotational component of the transformation matrix that would be
applied to the leaf node of the node path. The rotational component is returned in
guaternion form.

Intersection Testing

Node paths can be used to test for intersections between specific instances of geometries.
Because a node may be referenced more than once in a scene graph, it is not enough to
simply ask whether two nodes in your scene graph intersect. You must specify the specific
node paths you are interested in. For example, suppose your application is a simulation of
a sailboat race, with several sailboats navigating a course defined by several buoys. To find
out whether a sailboat has collided with a buoy, you must specify exactly which sailboat
and which buoy. To do so, node paths are used.

The intersection functions provided in this section are meaningful only if the two node

paths passed in as arguments have the same ancestor node. This is the case, for example, if
both node paths are created by callti@nodepath_new with the same second argument.

By having a common ancestor node, there is a common frame of reference in which the
proximity of the node paths can be determined. Note that this common ancestor node can
be the root node. Therefore it is always possible to test for intersections of node paths which
are in the same scene graph. However it is not possible to test for intersections of node paths
which are in completely disjoint scene graphs.

WTpoly_intersectpolygon

FLAG WTpoly_intersectpolygon(
WTpoly *poly1,
WTnodepath *nodepathl,
WTpoly *poly2,
WTnodepath *nodepath2);

WorldToolKit Reference Manual 4-85

Chapter 4: Scene Graphs

This function tests whether two polygons intersect and returns TRUE if they intersect and
FALSE if they do not intersect. Since polygons are contained within geometry nodes and
nodes may be referenced more than once in a scene graph, it is not enough to simply specify
the two polygons. In addition to the two polygons, you must specify the node path of the
specific polygon instance for each polygon.

WTpoly_intersectnode

FLAG WTpoly_intersectnode(
WTpoly *poly1l,
WTnodepath *nodepathl,
WTnodepath *nodepath2);

This function tests whether a polygon instane®iépathl) intersects any polygons in the
scene graph’s sub-tree whose start node is the bottom-most node of the node path
(nodepath2). It returns TRUE if there is an intersection and FALSE otherwise. Since the
polygon may be referenced more than once in the scene graph, you must specify the node
path of the specific polygon instanecefepathi).

WTpoly_intersectbbox

FLAG WTpoly_intersectbbox(
WTpoly *poly1l,
WTnodepath *nodepathl,
WTnodepath *nodepath?2);

This function tests whether a polygon instane#iépath1) intersects any part of the

bounding box of the scene graph sub-tree whose start node is the bottom-most node of the
node pathrfodepath2) and returns TRUE if there is an intersection and FALSE otherwise.
Since the polygon may be referenced more than once in the scene graph, you must specify
the node path of the specific polygon instanae/épathl).

WTnodepath_intersectpoly

FLAG WTnodepath_intersectpoly(
WTnodepath *nodepolyl,
WTnodepath *nodepath2);

4-86

WorldToolKit Reference Manual

Intersection Testing

This function tests for the intersection of any polygons in two node paths (nodepathl and
nodepath2) and their sub-trees. It returns TRUE if there is an intersection, FALSE
otherwise.

WTnodepath_intersectbbox

FLAG WTnodepath_intersectbbox(
WTnodepath *n1,
WTnodepath *n2);

This function tests for the intersection of two node paths, n1 and n2, based on their
bounding boxes. Remember that these bounding boxes are the bounding boxes of the entire
sub-tree of the scene graph beginning at the bottom-most node of the node path.

This function returns TRUE if an intersection is found and FALSE otherwise. If n1 and n2
weren't constructed with a common ancestor, then FALSE is returned. If the node paths are
equivalent, i.e., represent the same exact path through the scene graph, or if one of the node
paths represents a subset of the path through the scene graph represented by the other, then
FALSE is returned.

WTnodepath_intersectnode

WTnodepath *WTnodepath_intersectnode(
WTnodepath *nodepath,
WTnode *node,
int which);

This function performs a bounding box intersection test between the specified node path
and the numbered occurrence of the specified node (and its sub-tree). If they do not
intersect, it returns NULL. If they do intersect, then this function traverses down the
specified node’s sub-tree in search of the node whose bounding box has the smallest extents
and yet still intersects the bounding box of the specified node path. Then a node path to that
node is created and a pointer to it is returned.

For example, suppose your simulation contains multiple conveyor belts, each with several
links, onto which a box is dropped. You want to know which link of a specific belt the box
intersects as it lands. To do this, pass in the node path corresponding to the specific box as
the first argument, pass in a pointer to the group or separator node representing the belt, and
as the last argument pass in the number to specify the specific belt to test.

WorldToolKit Reference Manual 4-87

Chapter 4: Scene Graphs

WTnode_rayintersect

WTpoly *WTnode_rayintersect(
WTnode *node,
WTp3 dir,
WTp3 origin,
float *distance,
WTnodepath **nodepath);

This function obtains the frontmost intersected polygon along a specified ray contained in
any geometry node in the specified nodes sub-tree. The ray is defineddinatidorigin
arguments (specifying the direction and the origin respectively) in the same coordinate
system as the specified node. This function only tests visible (i.e., front-facing) polygons
that are beyond the hither clipping plane. Back-facing polygons and polygons between the
viewpoint and the hither clipping plane are not tested for intersection.

If the distance argument is non-NULL, then this memory location is set to the distance
along the ray from the origin to the intersection point.

If you supply a non-NULLnodepath argument, then a node path is created which defines
the path to the geometry containing the polygon that was intersected. This node path begins
at the specified node. You are responsible for deleting the node path created by this
function. CallwTnodepath_delete to do so, once you are through using the node path.

SeeWhat Is Terrain Following®n page A-31.

WTpoly_rayintersect

FLAG WTpoly_rayintersect(
WTpoly *poly,
WTnodepath *npath,
WTp3 direction,

WTp3 origin,
float *dist);

This function tests whether a ray specified by an origin and a direction vector intersects a
given polygonpoly. The origin and the direction should be specified in world coordinates.

4-88 WorldToolKit Reference Manual

Intersection Testing

If the ray intersects the polygon, TRUE is returned. In this case, the distance along the ray
from its origin to the intersection point is returnedlist. If the ray does not intersect the
polygon, FALSE is returned antist is not updated.

This function takes a pointer to a node path as one of its arguments. You should create a
node path from the root node to the geometry node that contains the pahjgdiote that

it is possible that your scene graph has multiple instances of the geometry node that
referencegoly. The node path indicates the instance of the geometry node with which to
perform the intersection test. If the node path does not start at the root node or does not end
at the geometry node that contapgy, FALSE is returned.

WTpoly_rayintersect takes into account the accumulated transform along the node path
from the root node to the geometry node. That is why you need to specify the ray origin and
direction in world coordinates.

This function is similar t&WTnode_rayintersect, though in certain cases, it is more efficient
than the latter. For example, if you need to determine whether a ray intersects any polygon
of a particular geometry, you could loop through the geometry's polygons calling
WTpoly_rayintersect for each one.

Now consider implementing this usitgTnode_rayintersect. You would simply test

whether the polygon returned bWTnode_rayintersect belongs to the relevant geometry.

This is less efficient, however, becaws&node_rayintersect tests for an intersection with

every polygon in every geometry that is below the specified node, before it returns the
closest polygon. Remember that si¢enode_rayintersect takes the origin and ray in the
node's local coordinates, the node has to be sufficiently high up in the scene graph such that
all relevant transform nodes are considered. This might prove to be expensive if you have
your scene graph organized such thainode_rayintersect is forced to check for

intersections with irrelevant geometries. There are circumstances of course, where
WTnode_rayintersect is the better suited function.

SeeWhat Is Terrain Following®n page A-31.

WTviewpoint_intersectpoly

FLAG WTviewpoint_intersectpoly(
WTviewpoint *vpoint,
WTpoly *poly,
WTnodepath *npath,
float distance);

WorldToolKit Reference Manual 4-89

Chapter 4: Scene Graphs

This function tests whether the viewpowbint intersected the polyggroly as a result of
the viewpoint's motion in the current frame.

npath should be a node path from the root node to the geometry node that contains the
polygonpoly. It is possible that your scene graph has multiple instances of the geometry
node that contains the polygpaly. The node pathpath indicates exactly which instance

you want the intersection test to be performed with. If the node path specified does not start
at the root node and end at the geometry node, FALSE is returned.

Use the argument distance to specify how close you want the viewpoint to get to the
polygon before it is detected as an intersection. The value usually specified for distance is
0.0. In some cases, however, you might want to detect whether the viewpoint is as close as
the hither clipping distance to the polygon, even if it has not intersected the polygon. You
should then pass in the hither clipping value as distanceW(Be@dow_gethithervalue on

page 17-18). Negative values for distance are invalid and will result in this function
returning FALSE.

WTviewpoint_intersectpoly returns TRUE if the motion of the viewpoint during the current
frame resulted in an intersection with the polygon, or if the distance between the new
position of the viewpoint and the polygon is less than the distance parameter passed into
this function.

Since you would usually want to test to see whether the viewpoint has intersected the
polygon each and every frame, you should call this function from within the universe
actions function. Also, theniverse event ordes critical to the functioning of
WTviewpoint_intersectpoly. If the viewpoint is being controlled by a sensor, sensor updates
have to be done before this function is called. If the sensor updates have not been done,
WTviewpoint_intersectpoly will find no difference between the position of the viewpoint in
the last frame and that in the current frame. That is why you have to call
WTuniverse_seteventorder (see page 2-9) such that the sensors are updated before the
actions function is called. Then, with a callt@viewpoint_intersectpoly in your actions
function, you can determine whether the sensor updates in the current frame resulted in the
viewpoint intersecting a given polygon.

One application foWTviewpoint_intersectpoly is portals. Your code can call this function
every frame to check whether the viewpoint intersected a portal polygon. If
WTviewpoint_intersectpoly returns TRUE, you should have code that appropriately loads in
a new world or switches to a different root node.

4-90

WorldToolKit Reference Manual

Picking Polygons

Refer to theportal.c demonstration (located in tllemosdirectory on your WTK
distribution) for a detailed example of how to use this function. AlsbiseeDo | Handle
Portals In This Releasedh page A-22.

Picking Polygons

The functions described in this section enable you to pick the top-most rendered polygon
in the specified window. These functions provide you with not just the intersected polygon,
but also with the coordinate of the point at which the polygon is intersected, as well as the
WTnodepath indicating to which node occurrence in the scene graph the intersected
polygon belongs.

WTscreen_pickpoly

WTpoly *WTscreen_pickpoly(
int screennum,
WTp2 pt,
WTnodepath **nodepath,
WTp3 p);

This function obtains a pointer to the frontmost polygon rendered at the specified 2D screen
point on the specified screen. Screen coordinates are specified as 2D floating point values,
with (0.0, 0.0) representing the top-left corner of the screen, and the bottom-right corner of
the screen represented by (screen width, screen height). If ther@/Baiadow at the

specified screen coordinate of the specified screen, or if there is no polygon at that
coordinate, then NULL is returned.

The WTp3 obtained is the 3D point in world coordinates at which the selected polygon was
intersected.

This function also fills in the value of th¢Tnodepath pointer, indicating the node path to
which the selected polygon belongs. If the polygon selected i&/ifyaometry node which

is referenced more than once in the scene graph, it may be useful to know for which
occurrence of th&/Tgeometry node the polygon was selected. You are allowed to pass in
NULL for the nodepath argument. If you do pass in NULL, then the function does not
provide theWTnodepath pointer information to you and does not creat&Taodepath for

you.

WorldToolKit Reference Manual 4-91

Chapter 4: Scene Graphs

If you do pass in a non-NULL value fabdepath, then a node path is created. You are
responsible for deleting thig’Tnodepath, when you no longer need it. To do so, call
WTnodepath_delete.

WTwindow_pickpoly

SeeWTwindow_pickpoly on page 17-20 for a description.

Sensor Attachment

Sensors can be attached to transform nodes or to node paths, as long as the bottom-most
node of the node path is a transform node. Motion links, which are described/iotibe
Linkschapter, are a more powerful and general-purpose mechanism for attaching sensors
to various objects than using transform nodes.

WTnode_addsensor

WTmotionlink *WTnode_addsensor(
WTnode *node,
WTsensor *sensor);

This function attaches a sensor to a transform node. You can only pass a transform node
into this function.

Transform nodes have a property — a list of attached sensors — that automatically updates
position and orientation stored in the node, in the local frame.

Some sensors, like the FASTRAK, ISOTRAK, InsideTRAK, and Flock of Birds, return
absolute records. To get the expected results with these sensors, you have to set their
reference frame to their parent node’s reference frame usiryThetionlink_new

function.

WTnode_removesensor

void WTnode_removesensor(
WTnode *node,
WTsensor *sensor);

4-92

WorldToolKit Reference Manual

Sensor Attachment

This function detaches the specified sensor from the specified node.

WTnodepath_addsensor

WTmotionlink *WTnodepath_addsensor(
WTnodepath *nodepath,
WTsensor *sensor,
int frame);

This function allows you to attach a sensor to a node path (if the bottom-most node of the
node path is a transform node).

The sensor input is applied relative to the top-most node of the node path (this is the
ancestor node argumentidrnodepath_new).

WTnodepath_removesensor

void WTnodepath_removesensor(
WTnodepath *nodepath,
WTsensor *sensor);

This function detaches the specified sensor from the specified node paths’s leaf node.

WorldToolKit Reference Manual 4-93

Chapter 4: Scene Graphs

4-94 WorldToolKit Reference Manual

5

Movable Nodes

Introduction

Movable nodes are self-contained entities that save you time and effort when constructing
a scene graph. Because movable nodes contain position and orientation information,
movable nodes make it easier to position the object corresponding to the movable node. In
this manual, movable nodes are also referred to as “movables.”

What Makes Up a Movable Node?

As shown in figure 5-1, the three basic components of a movable node are a separator, a
transform, and a content.

(to parent)

Separator

Figure 5-1: The basic structure of a movable node

Chapter 5: Movable Nodes

Table 5-1 describes each component in a movable and what it accomplishes.

Table 5-1: The three basic components in a movable node

Node What it controls Remarks
Separator Keeps the transformation Movable light nodes have a transform
within this movable from separator instead of a separator.

affecting sibling nodes.

Transform How the content is Each movable node has a
positioned. transformation component which
allows you to control the position and
orientation of a movable node. See
Movable Node Position and
Orientation on page 5-7.

Content What the movable displays | The five types of content components
or accomplishes. are the following:

Geometry (a series of vertex
positions and surface definitions).

Light (a defined source of
illumination).

Separator (prevents state
information from propagating from its
descendant nodes to its sibling
nodes).

Switch (a group that allows the user
to control which of its children is in the
simulation at any given time).

Level of Detail (LOD) (a switch that
chooses the active child
automatically, based on the range to
the viewpoint). Use LOD to improve
rendering speed by displaying simpler
objects at a distance and switching to
more complex objects as you
approach them in the simulation.

The last three types of content components — Separator, Switch, and LOD — are “group”
types. Group movable nodes can have children under them in the scene grdptoupee
Movable Node Creatioon page 5-4.

5-2 WorldToolKit Reference Manual

Movable Node Creation Functions

Movable Node Creation Functions

This section lists the functions you use to create movable nodes.

Geometry and Light Movable Node Creation

These movable nodes (like geometry and light nodes) cannot have children.

WTmovgeometrynode_new

WTnode *WTmovgeometrynode_new(
WTnode *parent,
WTgeometry *geom);

This function creates a movable geometry node from the existing geometry and adds it to
the scene graph after the last child of the specified parent. If the parent is NULL, the
movable geometry node is created without a parent. If there is an error, NULL is returned.
Any of the WTnode functions that are applicable to geometry nodes are also applicable to
movable geometry nodes.

WTmovlightnode_newpoint

WTnode *WTmovlightnode_newpoint(
WTnode *parent);

This function creates a movable point light node and adds it to the scene graph after the last
child of the specified parent. If the parent is NULL, the movable light node is created
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable point light’s attributes. Sedgtits

chapter (starting on page 12-1).

WorldToolKit Reference Manual 5-3

Chapter 5: Movable Nodes

WTmovlightnode_newdirected

WTnode *WTmovlightnode_newdirected(
WTnode *parent);

This function creates a movable directed light node and adds it to the scene graph after the
last child of the specified parent. If the parent is NULL, the movable light node is created
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable directed light's attributes. See the
Lightschapter (starting on page 12-1).

WTmovlightnode_newspot

WTnode *WTmovlightnode_newspot(
WTnode *parent);

This function creates a movable spot light node and adds it to the scene graph after the last
child of the specified parent. If the parent is NULL, the movable light node is created
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable spot light's attributes. Se@tie

chapter (starting on page 12-1).

Group Movable Node Creation

Group movable nodes can have children.

WTmovsepnode_new

WTnode *WTmovsepnode_new(
WTnode *parent);

This function creates a movable separator node and adds it to the scene graph after the last
child of the specified parent. If the parent is NULL, the movable separator node is created
without a parent. If there is an error, NULL is returned. A separator prevents state
information from propagating from its descendant nodes to its sibling nodes.

You can use the regul&Tsepnode functions with movable separator nodes. See
Separator Node Functioran page 4-56.

5-4 WorldToolKit Reference Manual

Group Movable Node Creation

WTmovswitchnode_new

WTnode *WTmovswitchnode_new(
WTnode *parent);

This function creates a movable switch node and adds it to the scene graph after the last
child of the specified parent. If the parent is NULL, the movable switch node is created
without a parent. If there is an error, NULL is returned. A switch is a group that allows the
user to control which of its children should be in the simulation at any given time.

You can use the regul&vTswitchnode functions with movable switch nodes. Sgitch
Node Functiongn page 4-57.

WTmovlodnode _new

WTnode *WTmovlodnode_new(
WTnode *parent);

This function creates a movable Level of Detail (LOD) node and adds it to the scene graph
after the last child of the specified parent. An LOD is a switch that chooses the active child
automatically, based on the range to the viewpoint. The children of an LOD are typically
the same object with differing numbers of polygons. High-detail models are selected when
the viewer is close for better realism. Low-detail models are selected when the viewer is
farther away, which increases the frame rate by rendering fewer polygons. If the parent is
NULL, the movable LOD node is created without a parent. If there is an error, NULL is
returned.

You can use the regul&vTlodnode functions with movable LOD nodes. Se®D Node
Functionson page 4-55.

WTmovnode_load

WTnode *WTmovnode_load(
WTnode *parent,
char *filename,
float scale);

This function creates a movable node (or node hierarchy) from data read in from a file, and
adds the movable node to the scene graph after the last child of the specified parent. The

WorldToolKit Reference Manual 5-5

Chapter 5: Movable Nodes

data read in from the file may contain geometry data or data which corresponds to any of
the supported node types. If the file contains a single geometry then the name assigned to
the movable node will be the name of the geometry. If the file contains multiple geometries
then the movable node’s name will be set to NULL.

This function can read data from light files (seelthyhts chapter, starting on page 12-1)

to create a movable (point, directed, or spot) light. If the light file contains multiple lights,
then a single movable containing all of the lights is created. So, if you need to create
individual movables for each light in a light file, you should break the file down into
“single-light” files.

SeeWhat Is The Difference Between WTmovnode_load and WTnode oloadge A-4.

Note: The argument filename is a string that specifies the name of the file from which the

data is read. This file could be on your local system (in which case you specify the path
toit), or it could be a URL. If you are using a URL to read in data, the file name should
contain the full http address (e.qg., http://www.sense8.com/models/oplan.wrl).

WTK supports http URLs to VRML files only. TMEmovnode_load function does not
support any other file type by way of a URL. Make sure your system has an http server
if you intend on using URLSs in the filename argument.

Movable Nodes Compared to ‘Regular’ Nodes

Aside from the fact that the transformation functions sudlvasode_setrotation can be
used with the class of movable nodes, each type of movable node is identical to the
corresponding regular (non-movable) node.

Each of the movable nodes created by the functions in the left column below are identical
to the corresponding regular (non-movable) nodes created by the functions in the right
column. Their functionality is identical and the functions that are applicable to the regular
(non-movable) nodes are also applicable to the movable version.

WTmovgeometrynode_new WTgeometrynode_new
WTmovlightnode_newpoint WTlightnode_newpoint
WTmovlightnode_newdirected WTlightnode_newdirected
WTmovlightnode_newspot WTlightnode_newspot
WTmovsepnode_new WTsepnode_new

5-6

WorldToolKit Reference Manual

Movable Node Position and Orientation

WTmovswitchnode_new WTswitchnode_new

WTmovlodnode_new WTlodnode_new

Movable Node Position and Orientation

As illustrated in figure 5-1 on page 5-1, each movable node has a built-in transformation
component that allows you to control its position and orientation. Thus, you do not have to
create a transformation node for the movable node.

To set the position and/or orientation of a movable node, you can use any of the position
and orientatiotWTnode functions that are applicable to transform nodes, such as
WTnode_settransform, WTnode_setrotation, etc. (sedransform Node Functioren page

4-58). It is important to remember that a movable node’s position and orientation may also
be affected by transformation nodes or movable nodes that are its ancestors in the scene
graph.

When positioning an object, WTK functions use the geometmnjggn when moving a
geometry to the specified position. For example, whi@node_settranslation is called, the
geometry is translated so that its origin is placed at the 3D world coordinate passed in to
that function.

The following example shows how you can create and position a movable geometry node
at the world coordinates 100.0, 0.0, 0.0 (given that the correspondigepmetry has
already been created):

WTgeometry *geo;

WTnode *root;

WTnode *movgeo;

WTp3 position;

root = WTuniverse_getrootnodes();

movgeo = WTmovgeometrynode_new(root, geo);
position[0] = 100.0;

position[1] = 0.0;

position[2] = 0.0;
WTnode_settranslation(movgeo, position);

WorldToolKit Reference Manual 5-7

Chapter 5: Movable Nodes

WTmovnode_axisrotation

FLAG WTmovnode_axisrotation(
WTnode *movnode,
int axis,
float angle);

This function rotates a movable node in its local frame (i.e., it rotates around its own axis).
The specified movable is rotated by the number of radians amtjieparameter about the
specified (X, Y, or Z) axis. Note that the rotation angle specified here has an incremental
effect, i.e., itis combined with the existing transformation component of the movable node;
it does not “replace” the transformation component.

If the specified nodenovnode is NULL, or if it's not a movable node, then this function
returns FALSE.

WTmovnode_alignaxis

FLAG WTmovnode_alignaxis(
WTnode *movnode,
int axis,
WTp3 dir);

This function rotates the movable node about its midpoint in such a way that the specified
axis of the movable aligns with (i.e., points in the same direction) as the direction vector
dir. This function “replaces” the WTK V2.1 functiatTobject_alignaxis.

The argumentnovnode should point to a movable nodeis should be one of the defined
constants X, Y or Z, and it identifies the axis of the movable node that needs to be aligned
with the direction vectodir. This function is not available for regular transform nodes or
geometry nodes.

The following example aligns a graphical object (flashlight) with a light. It is assumed that
“flashlight” is a movable created with'Tmovnode_load, and “lightnode” is a directional
light node.

5-8

WorldToolKit Reference Manual

Movable Node Hierarchies

{
WTp3 dir;
WTlightnode_getdirection(lightnode, dir);
/* X axis assumed to point along flashlight length */
WTmovnode_alignaxis(flashlight, X, dir);
}

WTmovnode_alignaxis returns TRUE if it succeeds in aligning the movable as required. It
returns FALSE ifmovnodds not a movable, or #xis is not one of the constants X, Y, or
Z, or if diris a zero vector (a vector whose magnitude is 0).

Movable Node Hierarchies

A movable hierarchy is a group of nodes that move together as a whole but whose parts

can move independently. For example, consider the hierarchically assembled robot arm
illustrated in figure 5-2.

effector

middle arm

lower arm

base

Figure 5-2: Hierarchically assembled robot arm

WorldToolKit Reference Manual 5-9

Chapter 5: Movable Nodes

Each part of the robot arm — the base, the lower segment, the middle segment, and the
effector — must be created as a separate node, using, for example, the function
WTmovnode_load. The pointers to these four movable nodes are chdies] lower, middle,
andeffector. To assemble the robot arm as shown in figure 5-2, you would make the
following calls toWwTmovnode_attach (see page 5-11)

WTmovnode_attach(base, lower, 0);
WTmovnode_attach(lower, middle, 0);
WTmovnode_attach(middle, effector, 0);

These calls result in a geometry hierarchy in wihiade is the root, and moving down
through the hierarchy iswer, thenmiddle, theneffector. (Don’t be confused by the fact
that “down” in the hierarchy corresponds to “up” in figure 5-2.)

When a geometry in the hierarchy moves, it moves all of the geometries that are below it,
as if the geometries were rigidly attached. Geometries that are above the moved geometries
are not affected by the geometry’s motion. For example, when the lower arm moves, this
causes the middle arm and effector to move with it, while the base is unaffected. When the
effector moves, none of the other geometries are affected because the effector is at the
bottom of the hierarchy. Since sub-geometries move automatically with their parent
geometries, if you wish to move an entire geometry hierarchy, you need only move the
topmost geometry in the hierarchy. In the robot arm example, to move the entire arm you
would simply move the base.

Keyboard input, mouse button presses, or other sensor device input could be used to control
the robot arm. For example, to rotate the effector using the left mouse button, you could use
the following effector task function (assigned witfTtask_new). Note that the following
code fragment assumes the existence of a global WTK sensor object pointemoatied

void effector_task(WTnode *mnode)

{

float w; /* amount of rotation (radians) */

[* return if the left mouse button isn’t pressed. */
if (! (WTsensor_getmiscdata(mouse) & WTMOUSE_LEFTBUTTON))
return;

/* Rotate the movable.
Rotation about the effector's Y or Z axis will cause the
arm to pitch or yaw, rather than to twist about its length. */

5-10

WorldToolKit Reference Manual

Movable Node Hierarchies

w = WTsensor_getangularrate(mouse);
WTnode_rotate(mnode, Y, w, WTFRAME_LOCAL);

}

WTmovnode_attach

FLAG WTmovnode_attach(
WTnode *parent,
WTnode *child,
int attachmentnum);

This function attaches the child node to the parent node agablementnum’th
attachment. The parent node must be a movable node (a node created by
WTmovgeometrynode_new, WTmovlodnode_new, etc.), while the child node can be a
movable or a regular (hon-movable) node.

The parameteattachmentnum must be an integer between the range of 0 (zero) and the
total number of attachments. (You can find the total number of attachments by using the
WTmovnode_numattachments (see page 5-13) function. For example, if the movable node
specified by the parent has two attachments, then céltifigovnode_attach with an
attachmentnum value of 2, will attach the child node as the third attachment of the parent
node. You can also settachmentnum to the constant WTNODE_APPEND, which

attaches the child node to the end of all the attachments.

Note that if the specified child node is already contained in the scene graph or has been
previously attached to another movable node, then this function will not detach existing
connections but instead will create an additional connection. Attaching a node to a movable
node is similar to adding a child node to a parent; the child node may already be placed
somewhere in the scene grapgbmovnode_attach, like WTnode_addchild, will not alter

the child node’s existing connections within the scene graph.

Note: This function creates a new instance of the child node in the specified location in the
hierarchy. It doesiot move an existing node from one location to another.

Use this function when the child you are attaching is different from the other children of
the parent node. For example, if you have a movable Level of Detail (LOD) node with
several children (representing the different levels of detail of a single object), and you want
to add a node that is unrelated to LOD (i.e., it does not represent one of the level of detail
objects of the LOD), you would attach it with this function rather than adding it with
WTnode_addchild.

WorldToolKit Reference Manual 5-11

Chapter 5: Movable Nodes

If the specified parent node is not a movable node, or if parent is NULL, or if child is
NULL, or if attachmentnum is outside the valid range, then this function returns FALSE,
otherwise it returns TRUE.

WTmovnode_detach

FLAG WTmovnode_detach(
WTnode *parent,
int attachmentnum);

This function detaches the child node, whose attachment number is specified by
attachmentnum, from the parent node, possibly leaving the detached node with no parents
(i.e., the node becomes an orphan). The parent node must be a movable node (a node
created by Tmovgeometrynode _new, WTmoviodnode_new, etc.).

Attachmentnum must be an integer between the range of 0 (zero) and the total number of
attachments minus one (the number returned by the function
WTmovnode_numattachments (see page 5-13) minus one).

If the specified parent node is not a movable node astaifhmentnum is outside the valid
range, then this function returns FALSE, otherwise it returns TRUE.

WTmovnode_deleteattachment

FLAG WTmovnode_deleteattachment(
WTnode *parent,
int attachmentnum);

This function detaches the child node, whose attachment number is specified by
attachmentnum, from the parent node, and deletes all nodes of the sub-tree beginning with
that attachment node (if they have no parents in other branches of any scene graph).

The parent node must be a movable node (a node crea®@rimyvgeometrynode _new,
WTmovlodnode_new, etc.).Attachmentnum must be an integer between the range of 0 and
the total number of attachments minus one (the number returned by the function
WTmovnode_numattachments (see below) minus one).

If the specified parent node is not a movable node,asaidhmentnum is outside the valid
range, then this function returns FALSE, otherwise it returns TRUE.

5-12

WorldToolKit Reference Manual

Movable Node Instancing

WTmovnode_numattachments

int WTmovnode_numattachments(
WTnode *node);

This function returns the movable node's number of attachments. For example, if the
specified parent node has a single attachment,Wemovnode _numattachments returns

1 (one). If the specified parent node is not a movable node, then the parent node cannot have
any attachments and this function returns 0 (zero).

WTmovnode_getattachment

WTnode *WTmovnode_getattachment(
WTnode *node,
int attachmentnum);

This function returns a pointer to the node whose attachment number is specified by
attachmentnum. Attachmentnum must be an integer between the range of 0 and the total
number of attachments minus one (the number returned by the function
WTmovnode_numattachments (see above) minus one).

If the specified parent node is not a movable nodeaitathmentnum is outside the valid
range then this function returns NULL.

Movable Node Instancing

WTmovnode_instance

WTnode *WTmovnode_instance(
WTnode *parent,
WTnode *movable);

This function creates a separate instance of a movable node. When multiple instances of a
movable node are desired, this function allows you to create them as efficiently as possible
because all of the information stored in the movable node (except transformation
information) is shared by every instance of that particular movable node.

WorldToolKit Reference Manual 5-13

Chapter 5: Movable Nodes

Use this function when you want multiple instances of a particular movable node in a scene
graph. Since every movable node has a built-in transformation component, it would not be
possible to have instances of a movable node where each instance has its own position and
orientation, unless a function suchl&movnode_instance were available to create

separate instances of the movable node.

The specified source node must be a movable node. If the specified source node is a regular
(non-movable) node, then this function does nothing and returns NUphrdht is not

NULL, then the newly created movable node is added to the scene graph after the last child
of the specified parent, and a pointer to the newly created movable node is returned.

SeeHow Do | Display Multiple Instances Of An Object? page A-5.

Note: When you create an instance of a movable node, the instanced node does not inherit

the name from the movable node, instead, the instanced node’s name is NULL. So if
you want the instanced node to have the same name as the movable node, you need to
explicitly set its name usingTnode_setname (see page 4-49).

5-14

WorldToolKit Reference Manual

6

Geometries

Introduction

Geometries are the three-dimensional (3D) objects that form the building blocks for any
real-time simulation; they are what you see on your screen. Examples of these graphical
objects might include balls, platforms, vehicles, houses, landscapes, but are by no means
limited to any particular shape or form. Because geometries are a composition of 3D points
(vertices) and the surfaces (polygons) formed from these points, along with material
properties (such as color) and texture, you have great freedom in creating just about any
shape or form you can imagine as a geometry.

As WTK traverses the scene graph and encounters geometry nodes, it renders these three-
dimensional graphical objects to the screen. Geometry nodes contain a pointer to the actual
geometry (oMW Tgeometry structure). Geometry nodes are the content in the scene graph

that you see drawn to the screen. Light and fog nodes affect the way geometries are drawn
(the way they look), but are not visible themselves. Likewise, procedural nodes (such as
switches, LOD's) have no visual representation; rather, they choose an appropriate
geometry node to draw at the given time.

You can use the following resources to create WTK geometries:
* A CAD or modeling program such as AutoCAD or the World Up Modeler, with
the 3D geometry written out in one of the formats supported by WTK.
* WTK’s neutral file format (NFF) import facility.

* Importing a geometry defined in one of the file formats supported by WTK (see
page 6-2).

e WTK’s functions for dynamically constructing predefined geometry types such as
cylinders, blocks, and cones.

WTK’s polygon and vertex constructor functions for dynamically constructing
custom graphical objects.

e« WTK's functions for creating 3D text objects.

Chapter 6: Geometries

e Copying an existing geometry with'Tgeometry copy (see page 6-26), with the
option of modifying this copy by using WTK's polygon and vertex editing
functions.

This chapter discusses some important factors you should consider when constructing
geometries for your simulations. It also includes WTK functions for creating, importing,
modifying, and optimizing geometries.

Modeling Considerations

The way in which you model geometrical entities affects the appearance as well as the run-
time performance of a simulation. This section describes considerations that are important
when you are modeling geometries for use in a WTK application. It discusses the file
formats that WTK supports, and some techniques for constructing a virtual world
consisting of multiple geometrical entities using a CAD or other 3D modeling program.

File Formats Supported by WTK

WTK supports the following 3D geometry and attribute file formats. Geometrical entities
are constructed when you c#frgeometrynode_load, which is described on page 4-46 in
the Scene Graphshapter.

1. Autodesk DXF format. Many 3D modeling programs generate this common
format. WTK can also output files in DXF format (3&&geometry_save on page
6-26).

2. Wavefront OBJ format . The Wavefront modeling tool generates this format.
WTK imports the 3D polygonal geometry and curved surfaces that have been
polygonalized. Vertex normals and texture vertices are supported for Gouraud
shading and texture draping. WTK reads map files and material files, but the only
supported properties are diffuse color (Kd) and diffuse texture (map_Kd). An OBJ
file describes a single geometry.

3. Autodesk 3D Studio mesh format. WTK reads polygonal information from a
3DS file including color and texture information. WTK uses the “ambient” color
material value as the color for each polygon, and supports 3DS texture uv values

6-2

WorldToolKit Reference Manual

File Formats Supported by WTK

to allow correct reproduction of the 3D Studio texture application methods.
Smoothing groups are supported for Gouraud shading. A 3DS file can contain
multiple geometries. Sé¢otes on the Autodesk 3DStudio Mesh reaaepage

6-5 for more information on 3DS files.

4. Pro/Engineer RENDER SLP format. WTK reads the facets in an SLP file as
colored polygons with vertex normals for smooth shading. A SLP file contains
only one geometry.

5. MultiGen/ModelGen Flight format. WTK supports textures, subfaces, external
references, transforms, LODs, instances and replicas. A FLT file can contain
multiple objects. Sedotes on the MultiGen OpenFlight File Readerpage 6-5
for more information on MultiGen/ModelGen files.

6. VideoScape GEO format. This is a simple 16-color format in which all polygons
are back face rejected. A GEO file describes a single geometry.

7. WorldToolKit Neutral File Format (NFF) and Binary NFF format ~ (see Appendix
F). The NFF format is an efficient and readable representation of 3D geometry. It
is also useful as an intermediary format between WTK and formats not otherwise
supported. NFF files can be written directly by WTK functions (see
WTnode_save on page 4-48). An NFF or binary NFF file can contain multiple
geometries.

8. Virtual Reality Modeling Language (VRML) format. ~ WTK can read and write
VRML 1.0 (.wrl) files. If you are using a URL to read in data, you should specify
an http link in your call to th&/Tnode_load function (see page 4-46). Note that
WTK supports http URLs to VRML files only.

WTK supports the VRML files output by CATIA version 4.1.7.

You can load in many other file formats into WTK using third-party geometry conversion
programs capable of writing formats that WTK can read. A program such as KANDU
software’s CADMOVER reads and writes most popular 3D file formats.

WorldToolKit Reference Manual 6-3

Chapter 6: Geometries

WTK VRML 1.0 Limitations

WTK supports most of the VRML 1.0 specification. The VRML 1.0 limitations of WTK

include:

No support for AsciiText, FontStyle, IndexedLineSet, and PointSet nodes.
The crease angle field within ShapeHints nodes is ignored.

By default, WTK ignores scaling factors (if any) within a Transform node’s
transformation. If you want WTK to use the scaling factors of transformations
within transform nodes, you can do so by settingMi®@PTION_XFORMSCALE
option in WTuniverse_setoption. However, by doing so, it is likely that
intersection tests and math functions pertaining to matrices will operate
incorrectly.

WTK can read and process geometric primitives (such as cone, cube, cylinder, and
sphere), but they are internally decomposed into polygons (i.e., they are not
internally retained as cone, cube, cylinder and sphere primitives).

WTK uses its own convention to apply textures to faces without texture
coordinates (sedow WTK Applies a Texture to a Polygom page 10-5).

WTK'’s support for instancing (USE/DEF scheme) does not include all node

types. The Coordinate3, Material, and Normal node types cannot be instanced
unless they are in the same scope (ie., there is no separator that differentiates the
state of one instance from that of the other).

Exporting a File in the VRML Format

If you are planning to export your scene graph in the VRML format, you will need to ensure
that all of your textures are stored as JPEG files. This is because web browsers do not
support *.rgb or *.tga files. They require JPEG or GIF image files (GIF images are
currently unsupported by WTK.).

When WTK exports a scene graph in the VRML format, the color of textured polygons will
be white if texture blending is off. Textured polygons retain their color (i.e., the color is
saved in the output file) only if the blending attribute is on. WTK works this way in order
to conform with the VRML specifications. (S&&Tpoly_settexturestyle on page 10-23 for
information about texture blending).

6-4 WorldToolKit Reference Manual

Notes on the Autodesk 3DStudio Mesh reader

Notes on the Autodesk 3DStudio Mesh reader

WorldToolKit supports the Autodesk 3DStudio format for Releases 3 and 4. WorldToolKit
does not currently support the 3DStudioMAX file format; however, 3DStudioMAX
supplies an exporting tool that allows you to save your files in the *.3ds file format that
WorldToolKit can utilize. It is important to note that in the original release of
3DStudioMAX there were numerous bugs in the *.3ds exporter that made these files
unreadable. A patch for this shortcoming is available on the Kinetex website
(www.ktx.comand has been implemented in the later releases of 3DStudioMAX.

WTK supports the 3DStudio R3/R4 specification except for the following: Points, Lines,
Splines, Curves, Face mapping of textures, Box Mapping of textures, and Masks. Multiple
geometries in a *.3ds file will be treated by WTK as a single geometry when loaded. If you
need to maintain hierarchy in respect to your geometries, you should export your file from
3DStudio/3DStudioMAX as VRML1.0 or VRML2.0 because WTK retains the hierarchical
information from these file formats.

Notes on the MultiGen OpenFlight File Reader

In an effort to read newer versions of OpenFlight (.flt) files with greater fidelity, WTK R9
introduces a new OpenFlight reader based upon MultiGen's OpenFlight Read/Write API.
The new reader supports MultiGen files greater than V14.2. To gain access to the new
reader WTuniverse_setoption now has a new option: WTOPTION_NEWMGENREAD.
This option must be set to TRUE in order to utilize the new reader. See
WTuniverse_setoption on page 2-24 for a description. The following are notes pertaining
to the use of the new reader.

* At the time of this writing, due to limitations in MultiGen’s OpenFlight Read/
Write API library on UNIX platforms, this reader currently only works with the
Microsoft Windows NT/98/95 operating systems.

e WTK supports MultiGen OpenFlight files from (but not including) 14.2 through
15.5. By replacing the reader DLLs distributed by MultiGen, the reader can be
updated to take advantage of new versions as they become available.

e The new reader reads the following MultiGen nodes: material palette, texture
palette, object, group, group with animation 1, light source records (infinite, point,
spot), level of detail, subfaces, switch 2, and external reference. Note 1: A
MultiGen animation record is translated to a WTK switch node. Each frame of the
animation sequence is a child object of the switch. The first frame is the default

WorldToolKit Reference Manual 6-5

Chapter 6: Geometries

active child. The WTK user must explicitly activate successive frames to produce
an animation effect. Note 2: Translated MultiGen switch nodes do not maintain a
list of masks. The default active node under the resulting WTK switch node will
be the first child of the switch node.

The reader does not support the following MultiGen nodes: header, eye point,
light point, binary space partition, curve, DOF, sound, text, road, and path.

Using the new reader requires the distribution of API libraries along with the
WTK executable. See the “Installation and Hardware Guide” for details.

Primary colors are applied to polygons only if there is no material applied to the
polygon. Secondary colors are unsupported.

Material properties are always blended with textures.

If a texture specified in the MultiGen file is missing, a texture representing a red
X" on a white field will be applied in its place. The user can change this texture by
replacing the existing "notex.tga" image in the WTK images directory with one of

their own creation.

A separate material table is created for the MultiGen file and each external
reference.

The name of the table is the name of the file with an "MT" appended to the front
and missing the "flt" suffix. For example, the externally referenced file: "test.flt"
will have a corresponding material table called: "MTtest".

Material table indices in WTK will be one greater than the same entry in the
MultiGen material palette. This is to allow the addition of a default material for
those polygons without a material or color.

The following are some notes on the old MultiGen OpenFlight file reader. This is the
default reader unless you've set the WTOPTION_NEWMGENREAD option to TRUE
using WTuniverse_setoption:.

The old reader supports MultiGen OpenFlight files V14.2.

The old reader reads the following MultiGen nodes: group, object, polygon,
subface polygon, LOD, instance, and transformation.

The old reader does not support the following MultiGen nodes: switch, animation
sequences, paths, roads, sounds, and other specialty nodes.

The old reader supports any hardware platform that WTK runs on.

The old reader supports the scene graph hierarchy information and color, material
and texture information.

6-6

WorldToolKit Reference Manual

Subfaces in MultiGen/ModelGen

Subfaces in MultiGen/ModelGen

Another issue that commonly arises in the OpenFlight file format is that ModelGen and
MultiGen permit “subfaces,” polygons that generally are oriented in the same plane as
another polygon, but that are intended to appear as if they are on top of the other polygon.
When polygons with subfaces are translated literally into the WTK viewing format,
Z-buffer roundoff becomes pronounced, resulting in flickering between the coplanar faces
as the object is rendered.

Therefore, when WTK encounters subfaces in an OpenFlight file, it translates them by a
constant amount in the direction of the parent polygon’s normal vector. When there are
multiple levels of subfaces, WTK multiplies the translation magnitude by the number of
levels of subfacing. (For example, the subface of a subface is translated twice as far as its
parent is.) This moves the polygons so that they no longer lie in the plane of their parent

polygon.

Depending on the details of the application, different models may require a different
magnitude translation. The following WTK functions are available for accessing and
changing this value:

WTuniverse_setsubfaceoffset

SeeWTuniverse_setsubfaceoffset on page 2-22 for a description.

WTuniverse_getsubfaceoffset

SeeWTuniverse_getsubfaceoffset on page 2-22 for a description.

Constructing a World with Multiple Objects

Using a CAD program, you can create a graphical environment for your WTK application
in which the various graphical entities have the desired spatial relationships. One technique
for accomplishing this is to initially build all of the geometries into one CAD file,

positioning the various entities as desired, and then to save out each graphical entity into a
separate file. Alternatively, you can save them out as separate objects in a single multi-
object file.File Formats Supported by WTdt page 6-2 indicates which file formats

support multiple objects.

WorldToolKit Reference Manual 6-7

Chapter 6: Geometries

For example, suppose you want to create an office model that consists of office walls, a
desk, a chair, and a book on the desk, and that only the chair and the book are movable
(dynamic) objects. You might use the following approach:

1. Construct the model containing all of these components and save the file.

2. To create the file that contains the stationary universe geometry (which will be
passed tdWTnode_load), start from the original file, erase the book and the chair,
and save the resulting model, which contains just the walls and the desk, to a file.

3. Similarly, to create the file for the chair (which will be passed in to
WTnode_save), load in the original file, erase the walls, desk, and book, and save
the result to a separate file.

4. Similarly, you can create the file from which the book object will be constructed.
If you are using AutoCAD, another approach is to create each graphical object that you
wish to load in separately to WTK on a separate layer. Once you construct your model, you

can successively, for each object, turn off all layers except the one that the object is on and
save the model to a file.

Vertex Normals and Gouraud Shading

A significant improvement can be made in the shading of continuous surfaces if lighting is
calculated at each vertex, instead of at the center of each polygon. This is called Gouraud
shading, and results in smooth surfaces when used correctly.

A few points about this type of shading:

» ltisintended for curved, continuous surfaces, not structures like boxes.
* Itrequires you to define a normal vector at each vertex.

* ltincurs a (usually small) speed penalty since it requires more computation.

WTK automatically uses Gouraud shading to render universes and shaded objects for
which vertex normals are present.

6-8

WorldToolKit Reference Manual

Vertex Colors and Radiosity

You can generate vertex normals in a variety of ways:

Create them with a modeling program. WTK reads in vertex normals from
Wavefront .obj files, 3D Studio .3ds files (using shading groups), MultiGen/
ModelGen .flt files, Pro/Engineer RENDER .slp files, and VRML .wrl files.

Enter them yourself in an NFF file (this is difficult).

Use the NFF automatic-normal-generation feature to make them for you (see
Appendix F.

Call a geometry constructor suchW3geometry_newsphere (see page 6-16) or
WTgeometry_newcylinder (See page 6-15) with thuraud argument TRUE.

Create your own geometries in your application code and set vertex normals with
WTgeometry setvertexnormal (see page 6-45).

Create your geometries and use the fundtidigeometry _computevertexnormal
(see page 6-46). This is the simpliest way of generating vertex normals.

The vertex normals generated by WTK, when either the auto-normal feature of the NFF file
is used or in the geometry constructor functions, have a unit magnitude equal to 1 (one).
However, if you specify your own vertex normals (either by using

WTgeometry _setvertexnormal or by specifying them in an NFF file), the normal you

specify is not required to have unit magnitude.

When using vertex normals, you should keep the following in mind:

WTK does not normalize vertex normals for you.

The magnitude of vertex normals should be no greater than 1 (one). Typically,
vertex normals have unit magnitude. However, for special applications it can be
useful to vary the lighting effect by varying the magnitudes of the normal vectors.

Vertex Colors and Radiosity

As with Gouraud shading (described in the preceding section), you can use vertex colors to
increase the visual realism of your virtual scene.

For example, vertex color support enables you to render models that have been radiosity
preprocessed. A radiosity-preprocessed model stores lighting information such as shadows
and reflections as vertex colors—this lighting doesn't then have to be computed at run-time.
The result is complex lighting with real-time performance.

WorldToolKit Reference Manual 6-9

Chapter 6: Geometries

A radiosity preprocessor is a program that takes a model and a light source specification as
input and generates a new model with lighting information (such as for shadows or
reflections) built into it. This involves meshing the original model to contain more detailed
color information. This color information is stored at the vertices of the mesh, and WTK
(or the hardware that WTK is running on) interpolates between these vertex color values to
produce a smooth effect.

The price of better rendering quality is greater polygon complexity, as illustrated by two
models in thenodels directory of the WTK distribution. Theplan.nff office model has

only 157 polygons. By contrasiplanrad.nff— generated fronaplan.nff by the National
Computer Board of Singapore using their radiosity preprocessing program — has 1372
polygons.

A number of radiosity-preprocessed models are provided with this release of WTK. Please
see the README file in therodels subdirectory on your WTK distribution.

In addition to storing lighting information, vertex colors can also represent other values
such as the temperature or pressure throughout an object. As with radiosity, you would need
to have a program that computes the appropriate vertex colors, and then pass them to WTK.

You can set vertex colors for geometries in the following ways:

e In an NFF file (seéppendix F.

* Using a radiosity preprocessing program. ATMA's program called Real Light is a
radiosity preprocessor that reads and writes NFF files.

* With the functionWTgeometry setvertexmatid, described iVertex-level
Geometry Editingpn page 6-42.

Back Face Rejection

Using back face rejection is another important technique you should consider when
modeling. By eliminating the rendering of polygons that face away from the viewer, you
can significantly increase frame rates.

In WTK, the front face of a polygon is the side of the polygon for which the vertices are
ordered counter-clockwise. It is also the side from which the polygon normal points. The
order of vertices in a polygon is the order in which they are returned using

WTpoly getvertex (see page 7-8). For geometries constructed from an NFF file, a

6-10

WorldToolKit Reference Manual

Back Face Rejection

polygon’s vertex order is the order specified in the line of the file where the polygon is
defined.

WTK'’s NFF format is very flexible for specifying the back face and front face of polygons,
and whether the back faces should be rejected. To switch the back face and front face of a
polygon in this format, simply reverse the vertex order in the line of the file where you
define the polygon. In addition, you can use the keywboth" in the polygon definition

if both sides of the polygon are to be visible, or omitted if the polygon’s back face is to be
rejected. (SeAppendix For a complete specification of the NFF file format.)

Most geometrical entities in the AutoCAD DXF standard are 2 1/2D entities—planar
curves with extrusions. When these curves are “closed,” it is possible for WTK to
unambiguously interpret them in 3D as solids, and know which polygons are seen from
their “inside” and which from their “outside.” In such cases, in the interest of rendering
efficiency, the inside surfaces—the back faces—are rejected at an early stage of the
rendering pipeline. The result is that when you go inside these closed solid objects, they
disappear, because you are looking at the back faces.

If you wish to have the inside of AutoCAD-modeled geometry appear, you have two
choices. You can construct the models so back faces are not rejected. To guarantee this, you
should construct a geometry of individual 3D polygons, and extrude open polylines, or
polyface meshes, which are not closed in both directions. Alternatively, you can use the
WTpoly_setbothsides function to change the back face rejection status of polygons.

When using 3D studio, set the two-sided property of the material to TRUE if you want both
sides of the polygons with this material to be rendered.

Because of the convenience of the NFF format, it can be advantageous to convert models
in other formats (such as DXF) to NFF for greater control over back face rejection. For
example, to reverse the front face and back face of an AutoCAD polyline entity would
require defining the polyline in the reverse order. It may be more convenient to convert the
file to NFF and reverse the order there.

For geometries constructed with WTK’s geometry-constructor functions such as
WTgeometry _newsphere (see page 6-16polygon back faces are on the inside of the
object. Their visibility is specified with the argumemithsides passed to these functions.
Similarly, WTK'’s functions for constructing individual polygons take an argument
specifying the visibility of back faces.

The functionWTpoly_setbothsides (see page 7-4) enables you to specify whether both
sides of a polygon are visible. The polygons that are passed to this function can be obtained

WorldToolKit Reference Manual 6-11

Chapter 6: Geometries

interactively, usingV/Twindow_pickpoly (see page 17-20) or, programmatically with the
functionsWTgeometry getpolys (see page 6-32), WTgeometry id2poly (see page 6-33), Or
WTgeometry beginpoly (see page 6-23).

Overlapping Polygons

When building models it is best to avoid the use of coplanar polygons or surfaces — that
is, surfaces that overlap and lie in the same plane. An example of coplanar polygons is a
building facade with a door in it. If this model is loaded into WTK, WTK would not know
which surface is to appear in front, which can produce unexpected results. On Z-buffered
systems, Z-buffer roundoff results in image flashing between coplanar surfaces where they
overlap. On non-Z-buffered systems, it is possible for the order in which the coplanar
polygons are drawn to change as the simulation runs, for example, if you were to
interactively texture or change the color of these surfaces.

To avoid this problem, you should construct your model either:

1. So that the surfaces are not in the same plane, or

2. So that they do not overlap.

In the first approach, you would construct the wall and door surfaces so that the door is in
a plane in front of the plane of the wall. On Z-buffered systems, how far the planes must be
separated to avoid flashing depends on the resolution of the Z-buffer and on the locations
of the window’s hither and yon clipping planes ($#Bwvindow_sethithervalue on page

17-18 and/V/Twindow_setyonvalue on page 17-19). On non Z-buffered systems, the planes
must be separated by at least the valu&/t¥UZZ (a defined constant equal to 0.004). If

you are using MultiGen or ModelGen as your modeler, see also the discussion of subface
offsets undeNotes on the MultiGen OpenFlight File Readerpage 6-5.

In the second approach (constructing the model so that the surfaces do not overlap) you
would create a hole in the wall and fit the door rectangle into the hole. This approach has
the advantage that the surfaces would appear exactly coplanar when viewed from an angle.
A disadvantage of this approach is that creating the hole in the wall generates extra
polygons, either in the modeling program, or when the surface is loaded into WTK and
rendered there.

Because models are stored with finite precision, coplanarity problems may sometimes also
arise when reading in a DXF or NFF file that was previously written out with

6-12

WorldToolKit Reference Manual

Roundoff and Scaling

WTgeometry save. This problem is particularly severe when scaling models up by factors
of 10 or more. The solution is to load the model into a CAD program, scale it up there, and
then load it into WTK.

Roundoff and Scaling

On a digital computer, floating-point quantities are usually represented imprecisely. In
traditional hardware Z-buffered rendering, this finite resolution frequently results in
undesirable “flashing,” as distant surfaces that are parallel and close to one another
alternately obstruct one another.

For performance and memory efficiency reasons, WTK stores all coordinates as single-
precision, floating-point values. Since roundoff can occur in a number of places in the
rendering pipeline, it is important that the geometry that is read in be scaled appropriately
to avoid mistaking vertices that are close to one another for identical vertices.

For this purpose, a scale factor is supplied as one of the parametergioithie_load
(see page 4-46) function. This factor should be specified so that distinct vertices, once
scaled, are separated by a distance of at least the defined covisfaz (equal to
0.004), a value used in many WTK comparisons.

When passing in a scale factort@node_load, the factor should be no smaller than
necessary. If you load in tiny models, or if you scale down models by supplying an
extremely small scale factor, vertices in the model may not cleanly connect and polygons
in the model may disappear. This is because WTK merges vertices in a polygon that are
separated by less than the floating-point fuzz value in all dimensions. When vertices are
merged, a small polygon can end up with fewer than three vertices and is discarded. These
discarded polygons do not reappear evéviligeometry scale is later called for the object.

An example of a model that might exhibit these problems is one that is very small (less than
one unit) and contains many polygons. To fix this, simply load the model with a larger scale
value. This should make rendering problems disappear.

It is also important not to use a scale factor thiatrger than necessary. As the scale factor
increases, the number of distances within the model that are larger than the fuzz value also
increases. When scaled up, polygons that abut also tend to overlap. On non Z-buffered
systems, this results in an increase in the number of polygons that are used to draw the
scene, so that as the scale factor increases, the frame rate decreases.

WorldToolKit Reference Manual 6-13

Chapter 6: Geometries

Scaling your model up or down too much is not desirable. As a rule of thumb, you should
not scale by more than 2 orders of magnitude, i.e., by more than 100.0 or less than 0.01. If
you need to scale by more than this, it is best to perform the scaling in your modeling
program prior to saving out the geometry file. Then load the file into WTK. In general,
model your objects so that you can use a scale factor of 1@Tiarde_load.

In addition, WTK expects the vertices in each polygon to lie approximately in the same
plane. If they do not, then calculations involving polygon normals will be inaccurate to
whatever degree the surface is non-planar. If this is the case, WTK automatically
subdivides each non-planar polygon into two or more planar polygons. WTK also expects
all polygons to be convex. If a non-convex polygon is detected, WTK automatically
subdivides it into a number of convex polygons.

Creating Predefined Geometries

WTK provides functions for dynamically creating a variety of basic geometry types:
cylinders, blocks (boxes), cones, spheres, hemispheres, rectangles, truncated cones,
extrusions, and 3D text objects. These functions provide an alternative to constructing
graphical objects by loading them in from a geometry file, as is doneaditbde load or

by creating custom geometries usitgeometry_begin.

Each of the functions in this section takes an argunbetitsides, which specifies whether

both sides of each polygon in the geometry are to be visible. If FALSE, then back-facing
polygons are rejected (not rendered). Polygon back faces for these geometrical entities are
their inside surfaces. S8ack Face Rejectioan page 6-10 for more information on this
subject.

All the geometries constructed with the functions in this section are colored white by
default.

6-14

WorldToolKit Reference Manual

Creating Predefined Geometries

WTgeometry _newcylinder

WTgeometry * WTgeometry_ newcylinder(
float height,
float radius,
int tess,
FLAG bothsides,
FLAG gouraud);

This function creates and returns a pointer to a new cylinder geometry centered at the world
coordinate frame origin and oriented vertically. The cylinder’s height and radius are given
by theheight andradius arguments. Theess (tessellation) argument gives the number of
polygons to use in approximating the cylinder. For examplessavalue of 4 creates a
rectangular block-shaped cylinderss=3 creates a triangular prism-shaped cylinder, and
tess=20 creates a cylinder with 20-sides along its curved surface.

If the gouraud flag is TRUE, then on systems that support Gouraud shading, outward-
pointing vertex normals parallel to the cylinder base are defined.

The parametebothsides indicates whether polygon back faces are visible. This function
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

The default name of a new geometry created with this function is “cylinder.”

WTgeometry _newblock

WTgeometry * WTgeometry _newblock(
float Ix,
float ly,
float Iz,
FLAG bothsides);

This function creates and returns a pointer to a new block (box) geometry. The block is
created with X, Y, and Z dimensions given by thdy, and/z arguments, and is centered
at the world origin.

The parametebothsides indicates whether polygon back faces are visible. This function
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

WorldToolKit Reference Manual 6-15

Chapter 6: Geometries

For example, to construct a white cube that is 10.0 units on a side and visible only from the
exterior, you would call:

WTgeometry *cube;
cube = WTgeometry newblock(10.0, 10.0, 10.0, FALSE);

The default name of a new geometry created with this function is “block.”

WTgeometry_newcone

WTgeometry * WTgeometry _newcone(
float height,
float radius,
int tess,
FLAG bothsides);

This function creates and returns a pointer to a new cone-shaped geometry. The cone is
centered at the world coordinate frame origin and oriented vertically. The cone’s height and
radius are given by thieeight andradius arguments. Theess argument gives the number

of polygons to use in approximating the cone. For exampéssasalue of 4 creates a 4-

sided pyramidtess=3 creates a tetrahedron, ames=20 creates a cone with 20-sides along

its curved surface.

The parametebothsides indicates whether polygon back faces are visible. This function
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

The default name of a new geometry created with this function is “cone.”

WTgeometry newsphere

WTgeometry * WTgeometry_newsphere(
float radius,
int nlat,
int nlong,
FLAG bothsides,
FLAG gouraud);

6-16

WorldToolKit Reference Manual

Creating Predefined Geometries

This function creates and returns a pointer to a new sphere geometry. The sphere is centered
at the world coordinate frame origin. The sphere’s radius is given bygdive parameter.

Thenlat andnlong parameters give the number of latitude and longitude subdivisions to use

in approximating the sphere. For exampilai=2 andnlong=4 creates an octahedron, and

nlat=8 with nlong=16 creates a sphere with 128 polygons.

The parametebothsides indicates whether polygon back faces are visible. This function
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

If the gouraud flag is TRUE, then on systems that support Gouraud shading, outward-
pointing vertex normals are defined.

The default name of a new geometry created with this function is “sphere.”

WTgeometry_newhemisphere

WTgeometry * WTgeometry_newhemisphere(
float radius,
int nlat,
int nlong,
FLAG bothsides,
FLAG gouraud);

This function creates and returns a pointer to a new hemisphere. It is exactly like
WTgeometry _newsphere except that only the top half of the sphere is created.

The default name of a new geometry created with this function is “hemisphere.”

WTgeometry_newrectangle

WTgeometry *\WTgeometry _newrectangle(
float height,
float width,
FLAG bothsides);

This function constructs a new geometry composed of a single rectapighg is the Y
dimensionwidth is the X dimension). The rectangle is created in an upright position with
its center at the world coordinate frame origin.

WorldToolKit Reference Manual 6-17

Chapter 6: Geometries

When viewed from Z = -infinity its vertices run counterclockwise, so that the rectangle
normal points in the -Z direction. In other words, a viewpoint facing in the +Z direction
would see the front face of the rectangle.

The parametebothsides indicates whether polygon back faces are visible. This function
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

NULL is also returned if there is insufficient memory, or if tizéght or width parameter is
less than or equal to zero.

The default name of a new geometry created with this function is “rectangle.”

WTgeometry_newtruncone

WTgeometry *\WTgeometry newtruncone(
float height,
float toprad,
float baserad,
int tess,
FLAG bothsides,
FLAG gouraud);

This function constructs a new geometry consisting of a single truncated cone. The
truncated cone is in an upright position and centered at the world coordinate frame origin.

The cone's height is given by theight parameter, its top radius Imyprad and bottom

radius bybaserad. Thebaserad can be larger or smaller thamrad, i.e., the cone can point

up or down. The tessellation argumessts gives the number of polygons to use to
approximate the cone. The parametathsides indicates whether polygon back faces are
visible. If thegouraud flag is TRUE, outward-pointing normals for the side polygons are
defined on systems that support Gouraud shading. The normals are perpendicular to the
edges along the sides of the geometry.

This function returns a pointer to the constructed geometry if successful. If unsuccessful,
NULL is returned. NULL is also returned if the height, top radius or base radius is smaller
than the WTK tolerance factor (WTFUZZ) or if the tessellation value is smaller than three.

The default name of a new geometry created with this function is “trunc_cone.”

6-18

WorldToolKit Reference Manual

Creating Predefined Geometries

WTgeometry_newextrusion

WTgeometry *WTgeometry newextrusion(
WTp2 pointsl],
int numpts,
float height,
FLAG bothsides,
FLAG gouraud);

This function makes a new geometry by extruding a given contour the distance specified
(in the parametefieight). The parameteothsides indicates whether polygon back faces

are visible. This function returns a pointer to the constructed geometry if successful. If
unsuccessful, NULL is returned.

If the gouraud flag is TRUE, outward-pointing normals for the side polygons are defined
on systems that support Gouraud shading. The normals are perpendicular to the edges along
the sides of the geometry.

The extruded geometry will be created in an upright position and centered at the world
coordinate frame origin. The contour is extruded a distan¢eigh{/2.0) above and below
the x-z plane.

The number of points must be between 3 and 256. Note that the input data array is of type
WTp2, not WTp3. The point array is assumed to be a non-self-intersecting (does not
intersect with itself) contour in the X-Z plane. The contour can include concavities.

The input data array is scanned and points closer than WTFUZZ to another point are
discarded. For this reason and others, the contents of the data array may be changed by the
function. Therefore, a copy should be retained elsewhere if the data is needed after the
function call.

If successful, the function returns a pointer to the new geometry, otherwise NULL is
returned. NULL is also returnedfikight is smaller than the WTK tolerance factor
(WTFUZZ) or if numpts is less than 3.

The default name of a new geometry created with this function is “extrusion.”

WorldToolKit Reference Manual 6-19

Chapter 6: Geometries

WTgeometry newtext3d

WTgeometry *\WTgeometry newtext3d(
WTfont3d *font,
char *string);

This function takes a character string (such as “Hello”) and creates a WTK getroratry

that string, using the specified 3D font. The geometry is created with the first character’s
base point placed at the world coordinate frame origin (0, 0, 0). The characters are placed
sequentially along the +X axis using the current font spacing. This is shown below in figure
6-1.

CC

g

X Spacing

World and font coordinate origin

v Y

Figure 6-1: 3D text geometry creation

Once the geometry is constructed, you must use the funetigrometrynode_new to
place the text in a geometry node in your scene graph.

You may also wish to us&/Tgeometry_scale or WTgeometry_stretch to scale the size or
stretch the height, width and/or depth of the text geometry. The color and/or texture of
characters in a text geometry are specified in the NFF font file. Once the text geometry is
constructed, you can change the texture and color attributesigpgy_settexture or the
material functions such a®Tgeometry getmtable and WTmtable_setvalue.

Geometries constructed witMiTgeometry _newtext3d are assigned the name “text.” This is
what is returned if you calv'Tgeometry getname, to query the name of the geometry. If

the character string passedtgeometry_newtext3d has characters that are not

represented in the font, blank spaces are created in the text geometry in place of those
characters. If none of the characters in the character string are represented in the font, or if

6-20

WorldToolKit Reference Manual

Creating Custom Geometries

the character string passed in is made up entirely of spaces$ytigenmetry newtext3d
returns NULL. The functiomVTfont3d_charexists can be used to determine whether a
particular character is in a WTK 3D font {&rfont3d).

This example uses WTK 3D text functions to add a virtual “Hello world” to a scene graph.

WTnode *root

WTfont3d *font;

WTgeometry *geo;

WTnode *child;

font = WTfont3d_load(“alphabet.nff");

if ('font)
WTwarning(“Couldn't load 3D font.\n");

else {
[* create the text geometry from a character string */
geo = WTgeometry_newtext3d(font, “Hello world”);
child=WTgeometrynode_new(root,geo);

Creating Custom Geometries

In addition to loading geometries from files and creating them with the high-level object
constructor functions, you can also define a geometry polygon-by-polygon with lower-
level calls.

To create a geometry with WTK’s geometry constructor functions, follow these steps:

Initialize the geometry by calling/Tgeometry begin.

Add vertices to the geometry usingrgeometry_newvertex.

1

2

3. Add polygons to the geometry.

4. For each polygon, cal’Tgeometry_beginpoly.
5

Add vertices (that have already been added to the geometry with
WTgeometry _newvertex) to the polygons usin@/Tpoly addvertex or
WTpoly_addvertexptr (see page 7-10).

WorldToolKit Reference Manual 6-21

Chapter 6: Geometries

6. CallwTpoly_close for each polygon.

7. When you are done adding polygons, eéllgeometry close.

Note that only one geometry can be constructed at a time. You must complete the definition
of one geometry before beginning the definition of a new one. The default color assigned
to polygons contained in custom geometries is white and each back facing polygon is
rejected by default.

WTgeometry begin

WTgeometry * WTgeometry begin(
void);

This function begins the construction of a new geometry and obtains a pointer to a new,
empty geometry. As described above, the geometry is then defined by adding vertices and
polygons to it and then finishing the geometry with a calWtyeometry close. The

completed geometry is not part of the simulation until the geometry is added to a scene
graph with a call taWTgeometrynode_new.

Note that only one geometry can be constructed at a time. Before calling this function to
begin the definition of a new geometry, you must Batheometry_close for any geometry
currently under construction.

An example of using this function is provided undérgeometry_close.

WTgeometry _newvertex

WTvertex *WTgeometry_newvertex(
WTgeometry *geom,
WTp3 p);

This functionadds a vertex with coordinates (X, Y, Z) in th@&p3 structure to a geometry.
The return value is TRUE if successful, otherwise FALSE is returned. For example, if a

NULL geometry pointer is passed in, then FALSE is returned.

An example of using this function is provided undérgeometry_close.

6-22

WorldToolKit Reference Manual

Creating Custom Geometries

WTgeometry_beginpoly

WTpoly *WTgeometry_beginpoly(
WTgeometry *geom;

This function returns a new, empty polygon assigned to the specified geometry (the
geometry pointed to by thgeom argument). The polygon should be subsequently defined
with WTpoly addvertexptr (or WTpoly_addvertex) and finally completed with

WTpoly _close. See the example provided und&Tgeometry close (page 6-23) for the
usage of this function.

By default, the color of the polygon is white with its back face rejected. The function
WTpoly_setrgb can be used to change the polygon’s coloriémgoly_setbothsides can be
used to change its back face rejection statusB&ek Face Rejectioon page 6-1€or
more information about back face rejection.

NULL is returned if this function is unsuccessful; for example, if a NULL geometry pointer
is passed in.

WTgeometry_close

FLAG WTgeometry close(
WTgeometry *geom);

This functionfinishes the definition of a geometry (no more vertices or polygons can be
added), and internally prepares the geometry for use in the simulation. WTK will
automatically subdivide each non-planar polygon as well as each non-convex polygon into
two or more convex/planar polygons. The geometry is not, however, part of a scene graph
(and therefore is not rendered) until you ¢é@lfgeometrynode _new on page 4-44.

If you later decide to edit the geometry, use the fundtiGigeometry_beginedit (see page
6-42).

The default name of a new geometry created with this function is “untitled.”

This function returns FALSE if geom is not a valid pointer, or if the geometry consists of
less than three vertices. Note that vertices which are too close together (a distance of less
than WTFUZZ units apart), will be merged into one veri@fgeometry close or

WTgeometry closesmooth should be used in conjunction witiTgeometry begin.

WTgeometry begin creates a new 'open’ geometry, which can then be contructed by adding

WorldToolKit Reference Manual 6-23

Chapter 6: Geometries

vertices and polygons. Us&Tgeometry close or WTgeometry closesmooth to end the
construction of an open geometryWrgeometry close is called on a geometry that is not
currently open, FALSE is returned.

The following example illustrates the use of the geometry constructor functions to create a
geometry consisting of a single rectangular polygon.

/* Construct a geometry consisting of a single rectangle in the
X-Y plane using the WTK geometry constructor functions. */
WTgeometry *make_rect(float Ix, float ly, FLAG bothsides)
{

WTgeometry *geom;

WTpoly *poly;

WTp3 p;

int j, k;

[* initialize a new, empty geometry*/
geom = WTgeometry_begin();

/* add vertices to the geometry */
p[Z] = 0.0;
for(j=0;j<2;j++)
for(k=0;k<2;k++){
pIX] =j?-Ix/2 : Ix/2;
plY] =k ? -ly/2 : ly/2;
WTgeometry_newvertex(geom, p);

/* add an empty polygon to the geometry */
poly = WTgeometry_beginpoly (geom);

/* add the vertices to the polygon */
for (k=0; k<4 ;k++) WTpoly_addvertex(poly, k);

/* mark the end of the polygon’s construction */
WTpoly_close(poly);

6-24 WorldToolKit Reference Manual

Creating Custom Geometries

/* make both sides of the polygon visible
(polygons are by default back face rejected) */
if (bothsides) WTpoly_setbothsides(poly, TRUE);

/* finish the geometry definition */
WTgeometry_close(geom);
return geom;

WTgeometry closesmooth

FLAG WTgeometry closesmooth(
WTgeometry *geom);

This function is identical t&VTgeometry close except that it also computes the vertex
normals for each of the geometry’s vertices. LikEgeometry close this functionfinishes

the definition of a geometry (no more vertices or polygons can be added), and internally
prepares the geometry for use in the simulation. WTK will automatically subdivide each
non-planar polygon as well as each non-convex polygon into two or more convex/planar
polygons. The geometry is not, however, part of a scene graph (and therefore is not
rendered) until you callvTgeometrynode_new on page 4-44.

If you later decide to edit the geometry, use the fundtiigeometry_beginedit (see page
6-42).

The default name of a new geometry created with this function is “untitled.”

This function returns FALSE if geom is not a valid pointer, or if the geometry consists of
less than three vertices. Note that vertices which are too close together (a distance of less
than WTFUZZ units apart), will be merged into one verw#wXgeometry_closesmooth or
WTgeometry _close should be used in conjunction withirgeometry_begin.

WTgeometry_begin creates a new 'open' geometry, which can then be contructed by adding
vertices and polygons. U$&Tgeometry closesmooth or WTgeometry _close to end the
construction of an open geometry W rgeometry_closesmooth is called on a geometry

that is not currently open, FALSE is returned.

WorldToolKit Reference Manual 6-25

Chapter 6: Geometries

Other Geometry Functions

See the description 0f/Tnode_load on page 4-46 and/Tgeometrynode_load on page
4-46 in theScene Graphshapter for information about loading a new geometry.

WTgeometry_copy

WTgeometry *WTgeometry_copy(
WTgeometry *geom);

This function creates and returns a new geometry by copying an existing geometry. The
name of the geometry is also copied.

WTgeometry_delete

int WTgeometry_delete(
WTgeometry *geom);

This function deletes a geometry and frees its memory. If there is a geometry node that uses
this geometry, the geometry node is also deleted.

WTgeometry_save

FLAG *WTgeometry_save(
WTgeometry *geom,
char *filename,

WTpa *pa,
int filetype);

This function saves a geometry to file using the specified filename. If you pass in a non-
NULL pg argument, then this position and orientation are also saved to the file.

If the geometry you are saving is textured &MOF/ILETYPE_DXF is specified, it is

important to keep in mind that any texture rotations, scale factors, translations, mirroring
operations, and texture uv values ao¢saved out. When the object is read back in,
textures must be reapplied wittiTpoly_settexture.

6-26

WorldToolKit Reference Manual

Other Geometry Functions

If WTFILETYPE_NFF or WTFILETYPE_BFF is specified, then information about these
texturing operations saved out. Refer to the NFF format specification described in
Appendix F

Refer to thélextureschapter (starting onpage 10-1) for geometry-texturing functions. Note
that this function saves only individual geometries. If you want to save a group of
geometries, you have to first merge them together into a single one using

WTgeometry _merge described below.

WTgeometry_merge

WTpoly *WTgeometry_merge(
WTgeometry *geometry1,
WTgeometry *geometry2);

This function mergegeometry2 into geometry1 and returns a pointer to the merged
geometry’s first polygon. In the process of merging the geometries, a new material table,
composed of geometryl and geometry2’s materials, is created and assigned as geometryl’s
new material table. Please note that this function does not take into account the geometries’
relative positions in the scene when merging the geometries together. To properly align the
geometries, you must position and orient them using geometry transform functions such as
WTgeometry scale, WTgeometry translate, and/orWTgeometry_transform.

The following is an example of how to merge two geometries maintaining the relative
positions of each (i.e., as they appear in a vitual world).

{
WTgeometry *gl, *g1_copy, *g2, *g2_copy;
WTnodepath *np1, *np2;
WTm4 m4;
WTpq pq;

gl = WTnode_getgeometry(nodel);

g2 = WTnode_getgeometry(node2);

/* copy the geometries so that we don't alter the ones being rendered
on the scene */

WTgeometry_copy(g1, gl_copy);

WTgeometry_copy(g2, g2_copy);

WorldToolKit Reference Manual 6-27

Chapter 6: Geometries

/* get the nodepath to each node and the transform matrix along that
nodepath. The geometry must be transformed by this matrix */

npl = WTnodepath_new(nodel, rootnode, 0);
WTnodepath_gettransform(npl, m4);

WTm4_2pq(m4, &pa);

WTgeometry_transform(g1_copy, &pq);

np2 = WTnodepath_new(node2, rootnode, 0);
WTnodepath_gettransform(np2, m4);

WTm4_2pq(m4, &pa);

WTgeometry_transform(g2_copy, &pq);

WTgeometry_merge(g1_copy, g2_copy);

/* we now have the merged geometry in g1_copy */

/* Note that to merge other geometries into g1_copy now,

we do not need to consider the transform along the nodepath
to g1 any more. The geometry g1_copy has the world positions
of gl and g2 */

Geometry Properties

WTgeometry_getmidpoint

void WTgeometry_getmidpoint(
WTgeometry *geom,
WTp3 p);

This function obtains the midpoint of a geometry’s extents box in local coordinates. The
midpoint is returned ip.

6-28 WorldToolKit Reference Manual

Geometry Properties

WTgeometry_getradius

float WTgeometry getradius(
WTgeometry *geom);

This function returns the radius of the specified geometry. A geometry’s radius is defined
as the distance from the midpoint of the geometry to a corner of the geometry’s bounding
box.

WTgeometry_getextents

void WTgeometry_getextents(
WTgeometry *geom,
WTp3 extents);

This function retrieves the extents of the geometry’s axis-aligned bounding box and stores
them inextents. Theextents argument is &/Tp3 containing the X, Y, and Z dimensions of
the geometry’s bounding box.

WTgeometry_setname

void WTgeometry_setname(
WTgeometry *geom,
char *name);

This function assigns a name to a geometry. The default name of a pre-defined geometry is
described in the corresponditigrgeometry _new* function description. The default name

for a custom geometry is “untitled”, and geometries read in from file are assigned the name
of the corresponding geometry. Geometries read in from a file ugiingpvnode load

assign the geometry’s name to the movable node’s name, while the name of the underlying
WTgeometry is NULL. Note that this is done only if the file contains a single geometry. If
the file has multiple geometries, the movable that is created is not given a name, and the
individual geometries maintain their names.

WorldToolKit Reference Manual 6-29

Chapter 6: Geometries

WTgeometry_getname

char *\WTgeometry_getname(
WTgeometry *geom);

This function returns the name of the specified geometry. A geometry may have obtained
its name by a call teVTgeometry setname or from a name read in from the file (if the
geometry was loaded from a file).

If no name has been assigned to a geometry, then the default name of the geometry is
“untitled” unless the geometry is one of the predefined types, in which case the name
corresponds to the type, i.@VTgeometry _newcone has the default name “cone.”

Materials used with Geometries

As described in thMaterials chapter (starting on page 8-1), you can define a geometry’s
material in its own material table. Each geometry references a single material table, from
which the geometry’s material properties are obtained.

WTgeometry setmtable

void WTgeometry_setmtable(
WTgeometry *geometry,
WTmtable *mtable);

This function causes the indicated geometry to reference the specified material table. It
overrides any previous setting; a geometry may only refer to one material table at any one
time. By default, every geometry is associated with its own material table, i.e., a material
table is created for every newly constructed geometry. You can use
WTgeometry_getmtable to retrieve the material table associated with any geometry.

Use the material table functions described inMlagerials chapter (starting on page 8-1)
to add new entries to the material table, or to alter existing ones.

Note: If a material table is not referenced by any geometry in the scene graph, it is
automatically deleted. For example, suppose you load a material table using
WTmtable_load (see page 8-11) and associate it with a geometry using

6-30 WorldToolKit Reference Manual

Materials used with Geometries

WTgeometry setmtable. Now, if you delete this geometry, the material table also gets
deleted (if it is not referenced by any other geometry). Hence, you could not associate
another geometry to this material table later usitf@geometry_setmtable.

See also the function&Tpoly setmatid on page 7-&nd WTgeometry_setvertexmatid on
page 6-48.

WTgeometry_getmtable

WTmtable *WTgeometry _getmtable(
WTgeometry *geom);

This function returns a pointer to the material table referenced by the geometry.

WTgeometry setmatid

FLAG WTgeometry setmatid(
WTgeometry *geom,
int id);

This function changes the material table index of all the polygons in the specified geometry
to the index value specified by tiitargument. The indices remain static (do not change)

if the material table is changed or deleted. A modulus operation will occur at render time if
id is greater than the number of materials in the material table referenced by the geometry.

A negative material index is not allowed, and therefore this function returns FALSE if you
pass in a negative value for

WTgeometry_setrgb

void WTgeometry_setrgb(
WTgeometry *geom,
unsigned char red,
unsigned char green,
unsigned char blue);

This function specifies the 24-bit color value of a geometry (red, green, and blue). The valid
range for each of red, green, and blue is from 0 to 255. Note that even though WTK allows
the user to specify color using red, green, and blue color components, WTK’s internal

WorldToolKit Reference Manual 6-31

Chapter 6: Geometries

representation makes use of the geometry’s material table by either finding a material table
entry whose color (red, green, and blue) matches the color specified by the user, or by
creating a new entry in the material table.

In the following example, a geometry's color is set to yellow.

WTgeometry *geom;
WTgeometry setrgb(geom,255,255,0);

Geometry Polygons and Vertices

The first two functions in this section can be used to omé&ipoly pointers which can then
be passed to other WTK functions. Other WTK functions that return polygon pointers are
WTwindow_pickpoly, WTgeometry beginpoly, WTpoly _next andWTgeometry _id2poly.

WTgeometry_getpolys

WTpoly *WTgeometry_getpolys(
WTgeometry *geom);

This function returns a pointer to the first polygon contained in the specified geometry. Use
the functionWTpoly_next to iterate through the list of polygons contained in the geometry.

WTgeometry _numpolys

int WTgeometry_numpolys(
WTgeometry *geom);

This function returns the total number of polygons in the specified geometry.

6-32

WorldToolKit Reference Manual

Geometry Polygons and Vertices

WTgeometry_getvertices

WTvertex *WTgeometry getvertices(
WTgeometry *geom);

This function returns a pointer to the first vertex in the geometry. Use the function
WTvertex_next to iterate through the list of vertices in the geometry.

WTvertex_next

WTvertex *WTvertex_next (
WTvertex *vertex);

This function returns the next vertex in a geometry’s list of vertices.

WTgeometry_id2poly

WTpoly * WTgeometry_id2poly(
WTgeometry *geom,
short id);

This function returns a pointer to the specified polygon in the specified geometry,javhere
is the polygon’sd number. Se&/Tpoly setid on page 7-6. A polygon can also be given an
id by editing the line in an NFF file that defines the polygon. See Appendif K,Neutral

File Format

WTgeometry setrenderingstyle

FLAG WTgeometry_setrenderingstyle(
WTgeometry *geom,
int modes,
int style);

This function sets the rendering style for a geometry.niddes argument is a bitmask of
the rendering flags to change and $hee argument is the value to which the rendering
flags are set. Valid values for thgyle argument ar@RUE, FALSE, and
WTRENDER_DEFAULT. These are explained further in the discussion that follows.

WorldToolKit Reference Manual 6-33

Chapter 6: Geometries

The modes argument can be a combination of the following bits:

WTRENDER_ANTIALIAS enables anti-aliasing

WTRENDER_BEST enables all of these modes

WTRENDER_GOURAUD enables Gouraud shading and lighting (this is
an outdated WTK 2.1 mode, see note below)

WTRENDER_LIGHTING turns on lighting

WTRENDER_PERSPECTIVE enables perspective texture

WTRENDER_SMOOTH enables smooth shading (Gouraud shading)

WTRENDER_TEXTURED enables texturing

Mode can also be set WTRENDER_WIREFRAME or WTRENDER_NOSHADE. The

actual rendering used to render the geometry will be a combination of the universe's
rendering style (se®/Tuniverse_setrendering on page 2-18) and the geometry's rendering
style. You can combine different modes by using the bitwise OR operator (|), as shown in
the examples in this section.

The return value is TRUE or FALSE, depending on whether the function succeeds. For
example WTgeometry_setrenderingstyle returns FALSE if called on a prebuilt geometry,
since you cannot change the rendering style of prebuilt geometry.

Note: WTRENDER_GOURAUD is an outdated WTK 2.1 style that has been replaced with
WTRENDER_LIGHTING and WTRENDER_SMOOTH.

WTgeometry setrenderingstyle lets you modify some or all of the rendering modes on a per
geometry basis. By default, a geometry takes its rendering style from the universe (i.e.,
WTuniverse_setrendering. The difference between the syntax of the two functions is that
WTuniverse_setrendering takes an absolute group of bitfields while

WTgeometry setrenderingstyle takes a list of bitfields to change and the value to which to
change them).

The value oktyle can be TRUE (turn on), FALSE (turn off), or WTRENDER_DEFAULT
(sets the mode to its default).

For example:

WTgeometry_setrenderingstyle(mygeom,WTRENDER_PERSPECTIVE|
WTRENDER_TEXTURED,TRUE);

6-34 WorldToolKit Reference Manual

Geometry Polygons and Vertices

tells WTK to turn on perspective correction and texturing for this geometry. The other
rendering modes (i.e., WTRENDER_LIGHTING, WTRENDER_SMOOQOTH, etc.) will
continue to be taken from the universe rendering mode.

Once you've modified a geometry rendering mode (setting it to TRUE or FALSE), you may
want to tell WTK to revert to using universe rendering mode again. This can be done by
passing the WTRENDER_DEFAULT value into thrgle argument.

For example:

/* this forces wtk to turn off lighting for this geometry despite the universe rendering
mode for lighting */
WTgeometry setrenderingstyle(mygeom, WTRENDER_LIGHTING, FALSE);
/* this tells wtk to go back to using the universe rendering mode for
lighting for this geometry */
WTgeometry_setrenderingstyle(mygeom, WTRENDER_LIGHTING,
WTRENDER_DEFAULT);

To revert all the rendering modes of a geometry back to the universe rendering modes, you
can use WTRENDER_ALLMODES in theodes argument. You must use it with
WTRENDER_DEFAULT.

For example:

WTgeometry setrenderingstyle(mygeom, WTRENDER_ALLMODES,
WTRENDER_DEFAULT).

This renders the geometry using the universe rendering modes.

WTgeometry getrenderingstyle

int WTgeometry_getrenderingstyle(
WTgeometry *geom);

This function returns the current rendering style of the specified geometry. See
WTgeometry setrenderingstyle, above. This style is the composite effect of both the
universe’s rendering style and the geometry's rendering style.

By default, a geometry’s rendering style is the same as the universe’s rendering style. With
WTgeometry setrenderingstyle you can “customize” the geometry’s rendering style by

WorldToolKit Reference Manual 6-35

Chapter 6: Geometries

overriding some or all of the universe style with different values. The composite between
the universe style and the customizing you have doneiideometry_setrenderingstyle

is whatWTgeometry getrenderingstyle returns. For example, if you set the universe
rendering:

WTuniverse_setrendering(WTRENDER_SMOOTH|WTRENDER_LIGHTING]|
WTRENDER_TEXTURED);

thenWTgeometry getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_LIGHTING|WTRENDER_TEXTURED

If you then turn off the geometry’s lighting with this command:

WTgeometry_setrenderingstyle(mygeom, WTRENDER_LIGHTING, FALSE);

WTgeometry_getrenderingstyle(mygeom) will now return:

WTRENDER_SMOOTH|WTRENDER_TEXTURED

Note that the universe style is still SMOOTH|LIGHTING|TEXTURED. If you then turn on
perspective texturing and anti-aliasing for the geometry with this command:

WTgeometry_setrenderingstyle(mygeom,
WTRENDER_PERSPECTIVE]|
WTRENDER_ANTIALIAS, TRUE);

thenWTgeometry getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_TEXTURED|WTRENDER_PERSPECTIVE|
WTRENDER_ANTIALIAS

If you then set the lighting and perspective correction for the geometry to the universe
default values with this command:

WTgeometry_setrenderingstyle(mygeom,
WTRENDER_LIGHTING]|
WTRENDER_PERSPECTIVE,
WTRENDER_DEFAULT);

6-36 WorldToolKit Reference Manual

Geometry Modification

thenWTgeometry_getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_LIGHTING|WTRENDER_TEXTURED|
WTRENDER_ANTIALIAS

Although you previously turned lighting off and perspective correction on for this
geometry, you are now telling WTK to use the default (the universe values) for these two
rendering style components. Thus, the geometry’s rendering style adopts the universe style
for these two components again, (i.e., lighting is on, perspective correction is off).

Geometry Modification

The following WTK functions are available for modifying geometries. For information on
modifying geometries by editing vertices, S&mtex-level Geometry Editirap page 6-42.

WTgeometry_stretch

void WTgeometry_stretch(
WTgeometry *geom,
WTp3 factors,
WTp3 center);

This function stretches a geometry in its local coordinate frame by applying a different
scale factor in each of the three coordinate dimensionsfattoes argument contains the
three scale factors (for X, Y and Z) by which the geometry is to be stretchederifve
argument is the world coordinate point about which the object is stretched.

This function can be compared to the functidigeometry_scale (shown below), which

scales the geometry uniformly by applying the same scale factor in each dimension. Keep
in mind that stretching an object changes its shape, while scaling does not (it simply makes
the geometry larger or smaller).

This example shows how to stretch a geometry by a factor of two along its X axis (about
its midpoint):

WTgeometry *geometry;
WTp3 p, factors;

WorldToolKit Reference Manual 6-37

Chapter 6: Geometries

/* set factors for stretch */
factors[X] = 2.0;
factors[Y] = factors[Z] = 1.0;

[* stretch geometry along its X axis by factor of 2 about its midpoint */
WTgeometry_getmidpoint(geometry, p);
WTgeometry_stretch(geometry, factors, p);

WTgeometry_scale

void WTgeometry_scale(
WTgeometry *geom,
float factor,
WTp3 center);

This function scales a geometry by a specified factor about a specified point in its local
coordinate frame. If the scale factor equals 1.0, thenfunction has no effect.

In the following example, a geometry is scaled by a factor of two about its midpoint.

WTgeometry *geometry;
WTp3 p;

[* scale geometry by factor of 2 about its midpoint. */
WTgeometry_getmidpoint(geometry, p);
WTgeometry_scale(geometry, 2.0, p);

WTgeometry_translate

void WTgeometry_translate(
WTgeometry *geom,
WTp3 offset);

This function translates a geometry in its local coordinate frame by adding the specified
offset to each of the geometry’s vertices.

Note: Remember théWTgeometry_translate alters the vertex positions in the geometry. The
geometry does not retain the original positions.

6-38 WorldToolKit Reference Manual

Geometry Optimization

WTgeometry_transform

void WTgeometry_transform(
WTgeometry *geom,
WTpq *pq);

This function transforms a geometry in its local coordinate frame by the position and
orientation specified by theg argument. The offset contained in héeld of thewTpg
structure is added to each of the geometry's vertices. Also, each vertex is rotated by an
amount specified by thefield of theWTpg structure.

Note: Remember théttTgeometry transform alters the vertex positions in the geometry. The
geometry does not retain the original positions.

Geometry Optimization

The WTgeometry prebuild function optimizes a specific geometry for rendering speed.

This optimization (or prebuilding) takes place before rendering and converts the polygons
in a geometry into triangle strips, which can then be rendered more efficiently. In order to
make use oV Tgeometry prebuild, it's important to understand what this function can and
cannot do.

The following must be true of two adjacent polygons in order to take advantage of this
optimization function:

* The polygons must share an edge.

» If the polygons are textured, they must have the same texture, and the uv
coordinates at their common vertices must be the same.

e Iftexturing is off and vertices have material properties, material properties at their
common vertices must be the same. If vertices do not have material properties, the
polygons’ material IDs must match.

e Vertices must have a vertex normal. Vertices without a vertex normal will not be
converted into triangle strips. If you first turn off smooth-shaded rendering using
theWTuniverse_setrendering function, then even vertices without a vertex normal
will be optimized by being converted into triangle strips. Remember however that
those vertices that do not have vertex normals will be rendered as flat-shaded even
if you turn smooth-shading back on.

WorldToolKit Reference Manual 6-39

Chapter 6: Geometries

Also note that there is an upper limit to the number of polygons that an individual geometry
can have for optimization to be effective. This depends on your hardware platform, but in
general, geometries composed of more than 32000 vertices will make excessive demands
on memory. You are better off organizing your geometries into logical, localized units
(such as pieces of furniture in a room), rather than creating massive geometries (such as an
entire roomful of furniture), which are difficult to optimize.

Once you have optimized a particular geometry, you can’t edit it. Specifically, you can’t
scale or stretch the geometry, change the colors or textures of its surfaces, or call
WTpoly_delete or any of the functions describedviertex-level Geometry Editiran page
6-42. If you want to edit an optimized object, you must undo the optimization with
WTgeometry deleteprebuild before you can call any of the editing functions. Once you
have edited the object, you can optimize it again Witlyeometry prebuild.

Note: You can, however, move and rotate the geometry.

WTgeometry_prebuild

FLAG WTgeometry_prebuild(
WTgeometry *geom);

This function optimizes geometry data structures so they render faster.
Once it is optimized, the geometry can be moved and rotated, but it cannot be edited. To
edit it, undo the optimization wittwTgeometry deleteprebuild, call any of the editing

functions, and then optimize it again. Refer to the detailed description on page 6-39. Also
seeHow Do | Measure Performance On My Machiref?page A-38.

WTgeometry_deleteprebuild

FLAG WTgeometry_deleteprebuild(
WTgeometry *geom);

This function deletes the optimized data structures createdwnggometry prebuild was
called. Use this function to remove the optimization, so that the geometry can be edited.

6-40 WorldToolKit Reference Manual

Creating Reflection Mapped Optimized Geometries

Creating Reflection Mapped Optimized Geometries

WTgeometry prebuildreflectmap allows you to optimize the geometry (like

WTgeometry prebuild) and to also simulate highly reflective surfaces such as polished
metal or mirror finished surfaces. By applying a spherically mapped image to the surface
of a geometry, the UV's of which change in relation to the viewer's position, an effect very
similar in appearance to true environmental reflection is achieved. Note, however, that this
is not a true reflection of the 3D environment in which the geometry exists. Reflections of
other objects will not appear in the reflection map. In fact, since you provide the image for
the map, it can represent an environment that is completely different from the scene that the
geometry exists in. Material properties are always blended with the reflection map. Note
that the reflection map is a texture map. Consequently, you may not apply a texture map
and a reflection map to the same geometry.

There are several ways to build an image that will provide an acceptable environment map:

» Using a 3D-rendering application such as 3D Studio Max or POVray, you can
render the map image. The scene can be modeled and arranged as necessary to
represent the reflected environment. A sphere that is small relative to the
environment should then be place in the center of the scene. The sphere should
have a highly reflective, ray-traceable material applied to it. The viewpoint should
then be set up to simulate a camera with an infinite or very great focal length
centered on the sphere. A close up image, where the sphere fills the frame, will
provide you with a good reflection map for use with this function.

* You can use a configuration similar to the setup above to create a scannable
photograph for use as a reflection map. You need to take a photo of a large
silvered sphere using a camera with a lens that has an infinite focal length. Simply
take a photograph of the sphere from as far away as possible.

» Another way to create a usable photograph is to use an extremely wide-angle (or
fisheye) lens to photograph the scene.

WTgeometry_prebuildreflectmap

FLAG WTgeometry_prebuildreflectmap(
WTgeometry *geom,
char* texmap);

WorldToolKit Reference Manual 6-41

Chapter 6: Geometries

This function optimizes geometry data structures so they render faster (similar to
WTgeometry prebuild) and it also applies a reflection map to the specified geometry
using the image specified by texmap as the reflection map.

Vertex-level Geometry Editing

The functions in this section let you edit geometry at the vertex level. To access the vertices
in a geometry, us&/Tgeometry_getvertices on page 6-33 and/Tvertex_nexton page 6-33.
Additional information about vertex normals and colors is providéddddeling
Considerationson page 6-2.

You must callwTgeometry beginedit before you can edit a geometry with any of the
following functions:

« WTgeometry_setvertexposition
e WTgeometry_setvertexrgb

* WTgeometry_setvertexnormal (if your geometry is already Gouraud-shaded, calls
to WTgeometry_setvertexnormal can be made at any time and do not need to be
sandwiched betwea'Tgeometry begineditandWTgeometry endedit calls. See
WTgeometry_setvertexnormal on page 6-46 for more information.)

* WTgeometry_setvertexmatid (if your geometry is already vertex-colored, then
calls toWTgeometry setvertexmatid can be made at any time, and do not need to
be sandwiched betweétiTgeometry beginedit and WTgeometry endedit calls.
SeeWTgeometry_setvertexmatid on page 6-48 for more information.)

When you have finished editing, you must ¢#lfgeometry_endedit. This ensures that
WTK properly updates the internal state of the geometry and all of the polygons contained
in the geometry.

WTgeometry beginedit

FLAG WTgeometry beginedit(
WTgeometry *geom);

This function lets WTK know that you are going to edit a geometry. You must call this
function before you can edit a geometry with any of the following functions:

6-42

WorldToolKit Reference Manual

Vertex-level Geometry Editing

« WTgeometry_setvertexposition
* WTgeometry setvertexnormal
* WTgeometry setvertexmatid

e WTgeometry setvertexrgb

You must also calWTgeometry_endeditimmediately after you have finished editing so
that WTK can properly update the internal state of the geometry.

In the following example, the first vertex in a geometry is moved 100.0 units along the X
axis:

WTgeometry *geom;
WTvertex *vertex;
WTp3 pos;

WTgeometry_beginedit(geom);

vertex= WTgeometry_getvertices(geom);
WTgeometry_getvertexposition(geom, vertex, pos);

pos[X] +=100.0; /* Move the vertex to the right in world coordinates */
WTgeometry_setvertexposition(geom, vertex, pos);
WTgeometry_endedit(geom);

WTgeometry_endedit

FLAG WTgeometry_endedit(
WTgeometry *geom);

You must call this function when you have finished editing the specified geometry. Calling
this function allows WTK to properly update the internal state of the geometry and all of
the polygons contained in the geometry. The internal state modified by WTK can include
the polygon normals, geometric extents, etc. If geometry editing has caused one or more
polygons to become non-convex or non-planar, WTK automatically detects and splits such
polygons because they may render in a confusing or unintended manner. It is therefore
possible for a geometry to contain more polygons than originally expected.

WorldToolKit Reference Manual 6-43

Chapter 6: Geometries

WTgeometry_recomputestats

FLAG WTgeometry_recomputestats(
WTgeometry *geom
FLAG clearverts);

This function recomputes the specified geometry’s statistics based on the locations of the
geometry’s vertices. The statistics computed are the geometry’s extents, midpoint, radius,
and bounding box. If thelearverts flag is TRUE, this function will also remove unused
vertices (i.e., vertices that aren’t referenced by any of the geometry’s polygons) from the
geometry. This function should be called whenever one or more polygons have been
deleted from a geometry via callswdrpoly_delete.

WTgeometry setvertexposition

FLAG WTgeometry_setvertexposition(
WTgeometry *geom,
WTvertex *vertex,
WTp3 pos);

This function sets a vertex position specified in world coordinates. Before calling this
function, you must calWTgeometry_beginedit to put the geometry into geometry editing
mode. Once the geometry is in edit mode, you can call this function (and the other editing
functions) multiple times.

WTgeometry getvertexposition

void WTgeometry_getvertexposition(
WTgeometry *geom,
WTvertex *vertex,
WTp3 pos);

This function obtains the specified vertex’s position in the local coordinate system of the
geometry and places it in tives argument.

6-44

WorldToolKit Reference Manual

Vertex-level Geometry Editing

WTgeometry_setvertexnormal

FLAG WTgeometry_setvertexnormal(
WTgeometry *geom,
WTvertex *vertex,
WTp3 normal);

This function sets a vertex normal for a geometry. The vertex normal is used for Gouraud

shading of polygons when all of the vertices in the polygon have normals associated with
them.

Gouraud shading of polygons is enabled in three ways:

1. Either the polygon has vertex normals specified for each of its vertices at the time
the polygon is first constructed (either with a WTK file reader, or with direct calls
to the WTK geometry constructor functions), or

2. Calls towTgeometry setvertexnormal are sandwiched between
WTgeometry_beginedit and WTgeometry endedit, so that by the time
WTgeometry_endedit is called, all of the vertices for the polygon have had
normals set for them, or

3. You callWTgeometry_computevertexnormal and WTK automatically calculates
normals for all vertices in the geometry.

Therefore, to enable Gouraud shading of polygons that weren't previously Gouraud
shaded, you must cali’Tgeometry beginedit to put the geometry into geometry editing
mode before callingvTgeometry setvertexnormal.

Once the geometry is in edit mode, you can call this funétind the other editing
functions) multiple times. When you are done editinfgeometry_endedit must be
called.

Performance Tip

If you are simply changing the value of a vertex normal for a vertex that already has a
normal, and no change to the polygon’s Gouraud-shading status is required, then you
can call WTgeometry_setvertexnormal without calling WTgeometry beginedit and
WTgeometry endedit. This will give you increased performance. You can determine

WorldToolKit Reference Manual 6-45

Chapter 6: Geometries

whether a vertex already has a normal by checking whether
WTgeometry getvertexnormal (see below) returns TRUE.

For additional information about Gouraud shading,Medeling Considerationsn page
6-2. Also seeVTgeometry computevertexnormal on page 6-46

WTgeometry getvertexnormal

FLAG WTgeometry getvertexnormal(
WTgeometry *geom,
WTvertex *vertex,
WTp3 normal);

This function tests the specified vertex to see if a normal has been set for it. If a normal has
been set for the specified vertex, then its value, in the geometry’s local coordinate frame,
is copied into the argumenbrmal, and TRUE is returned. If a normal has not been set for
this vertex, then the argumemirmal is zeroed and FALSE is returned.

A normal can be set for a vertex either by using the function call

WTgeometry setvertexnormal, or WTgeometry computevertexnormal, or through one of

the file formats supported by WTK which support vertex normals (such as NFF, 3D Studio,
Wavefront, and MultiGen/ModelGen). The NFF format also supports automatic normal
generation, as describedAnitomatic Normal Generatioon page F-8.

WTgeometry_computevertexnormal

FLAG WTgeometry_computevertexnormal(
WTgeometry *geom,
WTvertex *v);

This function automatically computes the normal of the vertex “v” in geometry “geom.”
The vertex's normal is computed as the average of the surrounding polygon normals. This
function returns TRUE if the vertex normal could be computed, and FALSE if it could not.

Note: You must callvTgeometry beginedit prior to using this function and
WTgeometry endedit afterwards.

The following example computes all of the vertex normals in the geometry:

6-46 WorldToolKit Reference Manual

Vertex-level Geometry Editing

WTvertex *norm_vertex;

WTgeometry beginedit(geom);

norm_vertex = WTgeometry getvertices(geom);
while (norm_vertex)

{
WTgeometry_computevertexnormal(
geom, norm_vertex);
norm_vertex = WTvertex_next(norm_vertex);
}

WTgeometry_endedit(geom);

WTgeometry_setvertexrgb

FLAG WTgeometry_setvertexrgb(
WTgeometry *geom,
WTvertex *vertex,
unsigned character red,
unsigned character green,
unsigned character blue);

This function sets the vertex’s color to the specified red, green, and blue color components.
Note that even though WTK allows the user to specify color using red, green, and blue color
components, WTK's internal representation makes use of the geometry’s material table by
either finding a material table entry whose color (red, green, and blue) matches the color
specified by the user, or by creating a new entry in the material table.

You must callwTgeometry _beginedit before you callWTgeometry setvertexrgb, and you
must callWwTgeomtery_endedit after callingWTgeometry setvertexrgb.

WTgeometry_getvertexrgb

FLAG WTgeometry_getvertexrgh(
WTgeometry *geom,
WTvertex *vertex,
unsigned character *red
unsigned character *green,
unsigned character *blue);

WorldToolKit Reference Manual 6-47

Chapter 6: Geometries

This function retrieves the specified vertex’s color. The individual red, green, and blue
components of the 24-bit color are storededh green, andblue respectively.

WTgeometry_setvertexmatid

FLAG WTgeometry_setvertexmatid(
WTgeometry *geom,
WTvertex *vertex
int id);

This function changes the material table index of the specified vertex of the geometry. The
indices remain static if the material table is changed or deleted. Note that a modulus
operation occurs at render timedfis greater than the number of materials in the material
table referenced by this geometry.

A negative material index is not allowed, and therefore this function returns FALSE if you
pass in a negative value for

In order for vertex colors to take effect, the first time a given polygon is to be vertex
colored, callwTgeometry beginedit, then change the vertex material ids, and then call
WTgeometry_endedit. At the time of theendedit call, those polygons whose member

vertices all have color/id information specified are rendered with the vertex colors the next
time they are rendered. If this has happened once during the simulation, or if the geometry
file was loaded with vertex color/id specified, the polygon is rendered using the vertex
colors for the remainder of the running time of the application. Subsequent changes of
vertex color/id do not require you to make another set of callgreometry _beginedit
andWTgeometry endedit. These calls were only necessary in order to trigger the change in
the rendering style (to vertex-coloring) of the polygon.

WTgeometry_getvertexmatid

int WTgeometry_getvertexmatid(
WTgeometry *geom,
WTvertex *vertex);

This function returns the material table index of the specified vertex of the geometry.

It returns -1 if thewTgeometry_setvertexmatid function was never called, or if the vertex
does not have a color associated with it.

6-48

WorldToolKit Reference Manual

v

Polygons

Introduction

Polygons provide the three-dimensional shapes of the objects in your scene. A polygon is
a planar surface defined by a set of three or more vertices. For example, a triangle is a
polygon with 3 vertices, and a rectangle is a polygon with 4 vertices. Geometries in WTK
are made up of polygons (polygonal surfaces) that you can color, shade, and texture.

You can create polygons in several different ways. WTK automatically creates polygons
when you construct geometries with functions suctwageometry _newcone and

WTgeometry newtext3d. You can also construct polygons vertex by vertex, with functions
described in this chapter.

WTK provides polygon functions that let you do the following:

» Set, get, and change polygon attributes, such as color, normals, and the material
table index. (Polygon texturing is described in Chapteil@Rtures)

» Define and assign polygon ID numbers.

* Access geometrical properties and vertices of a polygon.

» lterate through a list of polygons.

e Dynamically construct geometries from vertices and polygons.

e Delete polygons.

» Test for intersections of polygons with other polygons.

Most of the functions in this chapter take a pointer to a WTK polygon structure. You can
obtain polygon pointers in a variety of ways. You can get them interactively, using
WTwindow_pickpoly, through polygon ID values usingTuniverse_id2poly or
WTgeometry_id2poly; using the polygon access functianggeometry_getpolys, and
WTpoly_next, or with the dynamic constructor functiovirgeometry _beginpoly.

Chapter 7: Polygons

Polygon Attributes

WTpoly_setrgb

void WTpoly_setrgh(
WTpoly *poly,
unsigned charr,
unsigned char g,
unsigned char b);

This function specifies the 24-bit color value of a polygon. The argumentandb are
the red, green, and blue color components, each with a valid range of 0 to 255. The default
color of a polygon is white (255, 255, 255).

In the following example, a polygon’s color is set to bright purple:

WTpoly *poly;
WTpoly_setrgb (poly, 255, 0, 255);

Another example of usage is provided undéipoly getrgb.

WTpoly_getrgb

void WTpoly_getrgb(
WTpoly *poly,
unsigned char *r,
unsigned char *g,
unsigned char *b);

This function retrieves the values of thg, andb (red, green, and blue) components of the
polygon’s color.

7-2

WorldToolKit Reference Manual

Polygon Attributes

In the following example, the blue component of a polygon’s color is increased:

WTpoly *poly;
unsigned char r, g, b;

[* get current polygon color components */
WTpoly_getrgb (poly, &r, &g, &b);
/* increase blue component by 1 if it is not already maximum value */
if (b<255) {
b++;

WTpoly_setrgb (poly, r, g, b);

WTpoly_setmatid

FLAG WTpoly_setmatid(
WTpoly *poly,
int id);

This function changes the polygon’s material table index. You use this index to access the
material properties contained in the material table associated with the geometry which
contains the specified polygon. The polygon’s material index remains static even if you
change or delete the material table associated with the geometry containing the polygon.
Note that a modulus operation will occur at render tinitisf greater than the number of
materials in the material table referenced by this polygon’s geometry.

A negative material index is not allowed, therefore this function will return FALSE if the
user passes in a negative valueidor

WTpoly_getmatid

int WTpoly_getmatid(
WTpoly *poly);

This function retrieves the specified polygon's index into the material table.

WorldToolKit Reference Manual 7-3

Chapter 7: Polygons

WTpoly_setbothsides

void WTpoly_setbothsides(
WTpoly *poly,
FLAG flag);

This function specifies whether both sides of a polygon are visible.

If the flag argument is TRUE, then both sides of the polygon are visible. #ith@gument
is FALSE, then polygon back faces are not drawn. By default, polygon back faces are
rejected, i.e., they are not drawn.

In WTK, a polygon face whose vertices appear in counter-clockwise order on the screen is
considered to be the front face, while a polygon face whose vertices appear in clockwise

order is the back face. The front face is also the side of the polygon from which the polygon
normal points. When the viewpoint is on the other side of the polygon (that is, its back face,
and the flag argument iWTpoly_setbothsides is FALSE), then the polygon is not drawn,

and hence invisible to the user.

You can also set polygon back face rejection in NFF files using the keyword “both” (see
Appendix F. For more information about back face rejection,Baek Face Rejectioon
page 6-10 of th&eometriexhapter.

WTpoly_getbothsides

FLAG WTpoly_getbhothsides(
WTpoly *poly);

This function returns the polygon’s back face rejection status. If TRUE is returned, then the
polygon can be viewed from both sides. If FALSE is returned, then only the front face of
the polygon is visible and its back face is not drawn.

WTpoly_getnormal

void WTpoly_getnormal(
WTpoly *poly,
WTp3 normal);

7-4 WorldToolKit Reference Manual

Polygon Attributes

This function retrieves the normal vector of the specified polygon and places it in the
normal argumentThe polygon normal is a unit vector (a vector with length equal to 1.0)
perpendicular to the plane of the polygon pointing from the polygon’s front face. Note that
WTK computes the polygon normal; you cannot directly set it. The polygon normal
together with the polygon’s center of gravity define the plane of the polygon. An example
of how this is used is provided undéfTpoly_getcg. See alsdWTnormal_2slope on page

25-33.

WTpoly_getcg

void WTpoly_getcg(
WTpoly *poly,
WTp3 cq);

This function retrieves the center of gravity for the specified polygon and places itin the
argument. The center of gravity of a polygon is defined as the average position of the
polygon’s vertices. (See the example on page 7-9 followimgoly numvertices.)

The following example shows the use of the functii®oly_getnormal and

WTpoly_getcg to determine the distance of a 3D point from the plane of a polygon, and to
determine which side of the polygon the point is on. The example uses the fact that the
polygon normal points from its front face.

WTp3 pos; [* position set elsewhere in application */
WTp3 cg, normal, vector;

WTpoly *poly;

float distance;

/* compute the vector from the polygon to pos. */

WTpoly_getcg (poly, cg);
WTp3_subtract (pos, cg, vector);

/* If the vector from the polygon to pos points in the same direction

as the polygon’s normal, pos is on the side of the polygon’s front face.
The value of the dot product is the distance from pos to the plane

of the polygon. */

WTpoly_getnormal (poly, normal);

distance = WTp3_dot(vector, normal);

WTmessage(“pos is distance %f from plane of polygon “, ABS(distance));

WorldToolKit Reference Manual 7-5

Chapter 7: Polygons

if (distance > 0.0)

WTmessage(“on front-facing side\n”);
else

WTmessage(“on back-facing side\n”);

Polygon ID’s

You can assign individual identifying numbers (IDs) to polygons. Polygon IDs are read
from and written to NFF files, and are set with the functdfpoly_setid. Polygon IDs

provide a handy way of obtaining pointers to polygons, which can then be passed in to other
functions.

You can use the functionwTgeometry_id2poly to obtain a pointer to a polygon with a
specified ID value. This function returns the first polygon in the geometry with that ID. To
obtain a pointer to a specific polygon, the polygon must have an ID that is unique for the
geometry to which it belongs.

For example, consider an application that requires access to the normal vector of a polygon
in a rotating object. Suppose further that it isn’t convenient within this application to
interactively select the polygon, and thus a pointer to the polygon must be accessed entirely
under application control. Here’s how to do this:

1. Denote the polygon with a unique ID in the NFF file.

2. CallwTgeometry id2poly to obtain a pointer to the polygon.

3. CallwTpoly_getnormal for the polygon, as required by the application.

WTpoly_setid

void WTpoly_setid(
WTpoly *poly,
short id);

This function sets the value of a polygonisThe default polygord value is 0 (zero). This
function is useful if you have a pointer to a polygon that you would like to reference again
by id rather than pointer. For example, your application might assign certain meaiaing to
values or group polygons iy, which is not as readily done using pointer values. Setting a

7-6

WorldToolKit Reference Manual

Geometry that Contains a Polygon

polygonid is also useful for identifying a polygon in an NFF file, if the geometry to which
the polygon belongs is written out.

For a very large database, you may want to distinguish between a larger number of
polygons than is possible with a single shgxtalue. To get around this issue, you can
create multiple geometries, using distinct polygon IDs within individual geometries, and
then differentiate the polygons in the database using the unique combination of geometry
name and polygon ID (seé&Tgeometry_setname on page 6-29). Additionally, to optimize
performance when you have a large database, it is advantageous to have multiple
geometries in the simulation rather than a single monolithic geometry.

WTpoly_getid

short WTpoly_getid (
WTpoly *poly);

This function returns the value of the specified polygon’s ID. By default, a polygon’s ID
value is 0. Polygon IDs are set either WitTpoly _setid or in an NFF file.

Geometry that Contains a Polygon

WTpoly_getgeometry

WTgeometry *WTpoly_getgeometry(
WTpoly *poly)

This function returns the geometry that contains the specified polygon.

WorldToolKit Reference Manual 7-7

Chapter 7: Polygons

Polygon Access

WTpoly_next

WTpoly *WTpoly_next(
WTpoly *poly);

This function returns the next polygon in the linked list of polygons associated with
geometries. These lists are returnedigkgeometry getpolys. If the poly argument is
NULL, or if poly is the last polygon in the list, NULL is returned.

The following is an example of usingTpoly next

/* print out the number of vertices in each polygon of a geometry*/
WTpoly *poly;
for (poly = WTgeometry_getpolys(geometry); poly;
poly = WTpoly_next(poly)) {
WTmessage(“poly %p has %d vertices\n”, poly, WTpoly_numvertices(poly));

Vertex Access

WTpoly_getvertex

WTvertex *WTpoly_getvertex(
WTpoly *poly,
short index);

This function returns the specified vertex pointer (indicated byrtleer argument) for the
specified polygon. For instance, pas#ifex=0to obtain the polygon'’s first vertex pointer,
index=1 to retrieve the second, and so on. Use this function in conjunction with
WTpoly_numvertices to find all vertices referenced by a polygon. An example is given
below undeWTpoly _numvertices.

A NULL pointer is returned if this function fails (for examplejriflex is greater than the
actual number of vertices in the polygon minus one).

7-8 WorldToolKit Reference Manual

Vertex Access

WTpoly_numvertices

short WTpoly_numvertices(
WTpoly *poly);

This function returns the number of vertices in a polygon. You can use this function with
WTpoly_getvertex to access a polygon’s vertex list. For exampleyTpoly_numvertices
returns 3, then 0, 1, or 2 can be passétfipoly_getvertexto access the polygon’s vertices.

The following example shows the use of the functis#ffpoly_numvertices and
WTpoly_getvertex to compute the center of gravity of a polygon. Note that this example is
just for illustration, since the polygon center of gravity can also be obtained by simply
calling WTpoly_getcg.

WTgeometry *geom;
WTpoly *poly;
WTvertex *v;

WTp3 cg, p;

short i, n;

float inverse;

[* initialize center-of-gravity */
WTp3_init(cg);

/* go through polygon vertices, accumulating vertex positions in cg */
n = WTpoly_numvertices(poly);
for (i=0;i<n;i++){
v = WTpoly_getvertex(poly, i);
WTgeometry_getvertexposition(geom, v, p);
WTp3_add(cg, p, cg);

/* finish calculation of average vertex position */
inverse = 1.0/n;
WTp3_mults(cg, inverse);

[* print out result */
WTp3_print(cg, “Center of gravity: “);

WorldToolKit Reference Manual 7-9

Chapter 7: Polygons

Dynamic Polygon Creation

WTK enables you to construct geometries dynamically from vertices and polygons that are
defined with WTK function calls. This section describes the functions used to define
polygons and create new graphical objects.

WTgeometry beginpoly

SeeWTgeometry_beginpoly on page 6-23 for a description.

WTgeometry_newvertex

SeeWTgeometry_newvertex on page 6-22 for a description.

WTpoly_addvertex

FLAG WTpoly_addvertex(
WTpoly *poly,
int vindex);

This function adds a vertex to a polygon under construction by referencing a vertex in the
geometry to which the polygon belongs. The return value indicates success or failure. The
vindex argument is the index of the vertex in the geometry’s list of vertices, which is
determined by the order in which the vertices were added to the geometry. For example,
vindex=3 refers to the fourth vertex added to the geomeéttpoly addvertex can only be

called aftemvTgeometry_beginpoly has been called for this polygon and before

WTpoly close has been called for this polygon.

WTpoly_addvertexptr

FLAG WTpoly_addvertexptr(
WTpoly *p,
WTvertex *v);

This function enables you to add vertices to a polygon under construction by passing in a
pointer to a vertex. In some situations, this is more convenient than specifying a vertex
index as is required by the functionTpoly_addvertex. WTpoly_addvertexptr can only be

7-10

WorldToolKit Reference Manual

Dynamic Polygon Creation

called aftemvTgeometry_beginpoly has been called for this polygon and before
WTpoly close has been called for this polygon. It returns FALSE if either the polygon or
vertex pointer is NULL, otherwise it returns TRUE.

Please note that, when usingpoly addvertexptr, it is your responsibility to ensure that
the vertex belongs to the same geometry to which the polygon belongs. See the functions
WTgeometry _newvertex on page 6-22 and/Tpoly getgeometry on page 7-7.

The following code sample illustrates the use of this function:

/~k

* This function adds a triangular polygon to a geometry that is

* under construction, i.e., a geometry for which WTgeometry close has
* not yet been called.

*/

void makepoly(WTgeometry *geom)

{
WTpoly *poly;
WTp3 pos;
/* Get pointer to a new polygon structure */
poly = WTgeometry_beginpoly(geom);
/* Add vertices to geometry and polygon */
pos[X] = 0.0; pos[Y] = 1.0; pos[Z] = 0.0;
addnewvertex(geom, poly, pos);
pos[X] = 1.0; pos[Y] = 0.5; pos[Z] = 0.0;
addnewvertex(geom, poly, pos);
pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 0.0;
addnewvertex(geom, poly, pos);
WTpoly_close(poly);

}

void addnewvertex(WTgeometry *geom, WTpoly *poly, WTp3 pos)

{
WTvertex *vertex;
vertex = WTgeometry_newvertex(geom, pos);
WTpoly_addvertexptr(poly, vertex);

}

WorldToolKit Reference Manual 7-11

Chapter 7: Polygons

WTpoly_close

FLAG WTpoly_close(
WTpoly *poly);

This functionfinishes the definition of a polygon. Once you have called this function, you
cannot add any more vertices to the polygon.

Deleting Polygons

WTpoly_delete

FLAG WTpoly_delete(
WTpoly *poly);

This functiondeletes the specified polygon. If successful, TRUE is returned.

You can delete polygons from existing geometries and also while the polygon is being
dynamically created (sé&ynamic Polygon Creationn page 7-10).

If the polygon is in a geometry that has been optimized, then the polygon cannot be deleted
and FALSE is returned. S&eometry Optimizationn page 6-39.

WTpoly_delete does not delete the polygon's vertices from the geometry when it deletes the
polygon. The polygon's vertices are left in the geometry. Unused vertices can be removed
from the object by callingVTgeometry recomputestats, although this is not necessary.

Also, WTpoly_delete does not recompute the overall geometrical parameters of the
geometry (such as, position, bounding box). The fundti@geometry recomputestats

can be used to recompute these parameters. You may want to perform several geometry
editing functions before recomputing the geometry's geometrical properties, or you may
want to recompute them each time.

Also see the functiow/Tgeometry_beginedit on page 6-42 which is required for certain
geometry editing functions. You do not have to @éllgeometry begineditin order to call
WTpoly _delete.

7-12

WorldToolKit Reference Manual

Polygon Intersection Testing

While constructing a polygogpu can call thevTpoly delete function to free the memory
used by the polygon before it has been completely defined. Specifically, you can call the
WTpoly_delete function for a polygon created with thérgeometry_beginpoly function, as

long as you have not called therpoly_close function yet for that polygon. The ability to
delete a partially-defined polygon is useful, for example, if you are writing a custom 3D file
reader and encounter an error in parsing the file.

Polygon Intersection Testing

Keep in mind that polygon-level intersection testing, while more precise than bounding-
box intersection tests, is also more computationally intensive. You should use these
functions only as often as needed and only when bounding box tests are insufficient. See
Intersection Testingn page 4-85 for more detalils.

WTpoly_rayintersect

See WTpoly_rayintersect on page 4-88 of the Scene Graphs chapter.

WorldToolKit Reference Manual 7-13

Chapter 7: Polygons

7-14 WorldToolKit Reference Manual

8

Materials

Introduction

A material is a combination of light and color attributes that you use to define the
appearance of a geometry or collection of geometries. WTK functions let you create, edit,
and save material information.

This chapter includes information on the properties of materials, color determination using
material tables, material table functions, and some advanced topics on materials.

Material Properties

Geometries either emit light, reflect light, or both. This light is manifested as color. When
designing a geometry (such as, a car), there are two kinds of color to consider:

* The colors used in the car itself.

« The colors of the light playing on the car

A realistic image of a geometry includes many colors, and potentially many ways, of
reflecting light. You use a separataterialto specify each of these differences in
appearance. THaghtschapter (starting on page 12-1) describes the kinds of lights
available for WTK simulations. This chapter describes how you can design different
materials to reflect that light differently.

Chapter 8: Materials

Each material has the following properties:

Ambient

Diffuse

Specular

Shininess

Emissive

Opacity

The color reflected from the material in ambient white light
without regard to light direction. Specified in red, green,
and blue floats in a range from 0.0 — 1.0.

The color reflected from the material in diffuse white light,
as a function of light direction. Specified in red, green, and
blue floats in a range from 0.0 — 1.0.

The color reflected from the material in specular white
light. The specular material property is what makes a
geometry appear to be “shiny” with highlights appearing
on its surface. Usually, the specular highlight is white,
which means that it reflects the color of the specular light
(which is also usually white). Specified in red, green, and
blue floats in a range from 0.0 — 1.0.

The narrowness of focus of the specular highlights. This
has no meaning if the specular color is black (lighting of
geometry rendered with material properties is an “additive”
process; a black specular highlight will not darken the
geometry; it simply won't contribute to a light highlight on
the geometry). Its mathematical meaning is “specular
exponent” in the lighting equations. The lower the
shininess value, the more “spread out” the highlight; the
higher the shininess value, the sharper the highlight. A high
value for shininess makes an object look shiny. Specified
as a floating point value in a range from 0.0 — 128.0.

The color of lightproduced(not reflected) by the material
even when there is no light. A geometry with this property
can be seen even when there are no lights in the scene,
however, the emissive light does not illuminate other
geometry in the area. This material property is used less
often than the others. Specified in red, green, and blue
floats in a range from 0.0 — 1.0.

The extent to which the color value of a pixel is combined
with the color value behind it. Specified as a floating point
value in a range from 0.0 — 1.0, where 0 is completely
invisible and 1 is completely opaque.

8-2

WorldToolKit Reference Manual

Calculations Made to Determine Color

There’s also aambient-diffusg@roperty (a combination of the ambient and diffuse
properties) that defines the color of the geometry in ambiediffuse white light,

specified in red, green, and blue floats in a range from 0.0 — 1.0. This is equivalent to setting
the RGB color in version 2.1 (and previous versions) of WTK. You can continue to specify
a geometry’s color with this property, while using the new properties of WTK to improve
the realism of individual geometries as needed.

You can obtain materials by reading in files from a modeler which specifies material
properties in its export file format. WTK supports Wavefront’s .obj, 3D Studio’s .3ds, and
VRML'’s .wrl file formats, which all have material information in them. When WTK reads
in the file, it automatically renders the geometry using the modeler-specified material
properties. For example, it will look shiny in WTK if it looked that way in the modeler.

Note that some modelers (including 3D Studio) have advanced material properties that
WTK does not support; for example, properties specifying refractive properties of a
transparent substance are not supported by WTK.

Note: Texture is not a property of WTK materials; it is a bitmap which may actually obscure
some elements of a material, as described in the Textures chapter (starting on page
10-1).

Calculations Made to Determine Color

Figure 8-1 illustrates how WTK resolves your instructions into RGB values at each vertex
in a geometry. After Gouraud shading (if enabled), the final value for each pixel is sent to
the Z-buffer, if one is being used.

WorldToolKit Reference Manual 8-3

Chapter 8: Materials

Color of pixel behind‘
»

Ambient property
v Determine Ambient color
Ambient light ambient color >
Diffuse property o
L
Diffuse light -) .
» Determine Diffuse color
In” vector > diffuse color
Surf. normal vector
L
Specular property g::ﬁgilr?éz
pixel color
Specular light . .
» Determine
Shininess property specular color | specular colo
L
“In” vector ~
L
“Out” vector o
L
Emissive property Determine Emissive coloi
” emissive color
Pixel color
>
Opagque property Determine Gouraud
» opacity —> shading —p> Z-buffer

Figure 8-1: How WTK determines the color of each pixel it displays

8-4 WorldToolKit Reference Manual

About “In” and “Out” Vectors

About “In” and “Out” Vectors

The “in” vector mentioned in figure 8-1 is the vector between the light source and the vertex
being lit. The “out” vector is the vector between the vertex being lit and the viewpoint.
Pixels between vertices have their color and opacity values determined by Gouraud
shading, if enabled.

Using Material Tables

The values for all of the materials used with a geometry are containechiatésal table.

A material table is a collection of “robust” colors. These colors are termed robust because
they include more reflectance information than the “ambientdiffuse” color reflectance
available in previous versions of WTK.

Material tables are indexed from 0 (zero) to the number of materials in the table. Each
polygon or vertex contains an index into the material table. This means that each polygon
or vertex has a number — not a color — attached to it. This number references an entry in
the material table.

More than one geometry may point to the same material table, and a geometry may point
to different tables depending on the effect you need WA@ometry setmtable on page
8-18.

Once a geometry file has been loaded into a scene, you can use the functions described later
in this chapter to modify the settings in this table. For example, you can use
WTmtable_setvalue to change an existing material table entry. Since the same material may
be applied to several polygons, more than one polygon in your scene could be affected
when you modify a material.

To create a new material and then modify the copyWiBetable_copyentry and then
WTmtable_setvalue.

WorldToolKit Reference Manual 8-5

Chapter 8: Materials

Here’s a sample WTK material file describing a material table:

mat
version 3.00
valid ambient diffuse specular shininess

matdef //id O

ambient 0.345098 0.325490 0.254902
diffuse 0.376471 0.345098 0.227451
specular 0.597882 0.538353 0.225176
shininess 58.879997

matdef // id 1

ambient 0.650980 0.000000 0.000000
diffuse 0.650980 0.000000 0.000000
specular 0.890000 0.890000 0.890000
shininess 89.599998

matdef // id 2

ambient 0.200000 0.200000 0.200000
diffuse 0.600000 0.600000 0.600000
specular 0.000000 0.000000 0.000000
shininess 10.000000

An object does not need to have all of its material properties specified. For example, in the
material file listing shown above, neither the emissive nor the opacity material properties
are specified. Using fewer properties can generate a moderate improvement in
performance. Properties not specified in a geometry’s material table behave as though set
to O (zero).

To alter the number of fields that are defined in a given material table, use the function
WTmtable_setproperties, as described on page 8-9. To find out what properties are
currently defined for a given material table, Wgemtable getproperties as described on
page 8-11.

SeeHow Do | Use Material Tables for Colorssh page A-11.

8-6

WorldToolKit Reference Manual

Material Table Functions

Material Table Functions

WTmtable _new

WTmtable *WTmtable_new(
int definedprops,
int estimatedentries
char *name);

This function creates a new material table, which must have a uniqueTtaragument
definedprops is a bitwise combination of the material property constants corresponding to
the material properties you want to define for this material table. These are:

WTMAT_AMBIENT
WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION
WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

It is not permitted foWWTMAT_AMBIENTDIFFUSE to be a defined entry of the material
table at the same time HSTMAT_AMBIENT or WTMAT_DIFFUSE. If you attempt to do
this, only theWTMAT_AMBIENTDIFFUSE field will be defined, but the
WTMAT_AMBIENT and WTMAT_DIFFUSE fields will not be defined. Attempts to set the
values of undefined fields ofl&Tmtable will have no effect. (Se®/Tmtable_setvalue on
page 8-15.)

Providing an accurate value festimatedentries can be valuable for making sure material
creation is quick and memory-efficient; in most cases, however, you will incur no penalty
for passing in zero.

Material tables must have unique names. If you assign a name which has already been used
for a material table, table creation fails and NULL is returned. However, you may pass
NULL in as thename argument; in this case a unique material table whose name begins
with mt and ends with a number will be created.

WorldToolKit Reference Manual 8-7

Chapter 8: Materials

WTmtable_delete

FLAG WTmtable_delete(
WTmtable *mtable)

This function deletes the specified material table. All geometry which refers to this material
table will be updated to reflect its NULL status, and will appear black. If any geometry that
refers to this table has been optimized usifiyeometry_prebuild, these geometries will

not be updated, table deletion will fail, and the function will return FALSE. Otherwise
TRUE is returned.

WTmtable_merge

WTmtable *WTmtable_merge(
WTmtable *tablel,
WTmtable *table2)

This function merges two material tables and returns a new material table that contains the
materials from both tables. It's the equivalent of copyag1 into a new table and then
appendingable2 onto the end of it.

The materials imable1 are indexed in the new material table just as they were in the original
material table. The materialstiuble2 have the number of entries in tables added to each of
their indices. No action is taken to invalidate the origiaak1 andtable2; it is up to you

to delete them. When the result is returned from this function, no geometry will refer to the
new material table.

WTmtable getnumentries

int WTmtable_getnumentries(
WTmtable *mtable)

This function returns the number of table entries in the material table specified by the
mtable argument.

8-8

WorldToolKit Reference Manual

Material Table Functions

WTmtable_ setproperties

WTmtable *WTmtable_setproperties(
WTmtable *mtable,
int definedprops)

This function adds or removes properties defined in a material tablelefiedprops
argument is a bitwise combination of the material property constants corresponding to the
material properties you want to define for this material table. These are:

WTMAT_AMBIENT
WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION
WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

Note: When you use this function, the old table is invalidated and a new table is created. Any
attempt to execute operations on the invalidated (freed) table can produce undefined
results, including termination of your application

WTK returns a pointer to this new table you have created; geometries which used the old

table are updated to refer to the new one. Table 8-1, describes how material properties are
affected by the creation of a new material table.

Table 8-1: Results of creating a new material table

Condition Result

A property in the old material table is also | The value for the property is copied from

defined in the table that replaces it. the old table to the new one.
A property not defined in the old table is A value of opaque black is set for
defined in the table that replaces it. materials in the new table that use that

property. The settings used to create this
value are listed on page 8-14.

WorldToolKit Reference Manual 8-9

Chapter 8: Materials

Table 8-1: Results of creating a new material table (continued)

Condition Result
The old table had The values for this property
WTMAT_AMBIENTDIFFUSE (for each material) are copied from the
defined and the new table has WTMAT_AMBIENTDIFFUSE
WTMAT_AMBIENT field in the old table to the
and/or WTMAT_DIFFUSE WTMAT_AMBIENT
present. and/or WTMATL_DIFFUSE

fields in the new table.

A property defined in the old table is not The property no longer has any effect on
defined in the table that replaces it. the geometry.

If a material property for a geometry is not defined in its material table, the geometry uses
the default value for that property.

Example: Adding Shininess to a Multi-colored Geometry

Imagine that you load an old NFF file of a multi-colored geometry that was created with
WTK V2.1 and you want to make it look shiny. When you load the file using
WTgeometrynode_load, a material table is created for the geometry whose only defined
field is ambientdiffuse. It will initially look just like it did under WTK V2.1.

Suppose you want to make this object uniformly shiny, and that you are starting with a
material table with onlWTMAT_AMBIENTDIFFUSE property defined.

You would use the following function call:

WTmtable_setproperties(table,
WTMAT_AMBIENTDIFFUSE | WTMAT_SPECULAR | WTMAT_SHININESS);

This permits each material to specify its own specular color and shininess. You then step
through the material table, usiMgrmtable_setvalue to set its specular color and shininess.
Note that the second argument to this function is a bitwise “OR” of the properties that you
want defined for this material table.

8-10

WorldToolKit Reference Manual

Example: Adding Shininess to a Multi-colored Geometry

For example:

WTgeometry *geom;
WTnode *root, *node;
WTmtable *tableold, *tablenew;

node = WTgeometrynode_load(root, “car.nff”,1.0);
geom = WTnode_getgeometry(node);
tableold = WTgeometry_getmtable(geom);
tablenew = WTmtable_setproperties(tableold,
WTMAT_AMBIENTDIFFUSE | WTMAT_SPECULAR | WTMAT_SHININESS);

WTmtable_getproperties

int WTmtable_getproperties(
WTmtable *mtable)

This function returns a bitwise combination of defined properties for the material table
specified by thentable argument. These are:

WTMAT_AMBIENT
WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION
WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

WTmtable_load

WTmtable *WTmtable_load(
char *filename)

This function reads a material table from the specified filename. If a file with the specified
filename is not found in the current directory, the extensiatis added to the filename

and the current directory is searched again. If the specified file is not found, NULL is
returned.

WorldToolKit Reference Manual 8-11

Chapter 8: Materials

Note: If a material table is not referenced by any geometry in the scene graph, it is

automatically deleted. For example, suppose you load a material table using
WTmtable_load and associate it with a geometry usingGgeometry setmtable (see

page 6-30. Now, if you delete this geometry, the material table also gets deleted (if it
is not referenced by any other geometry). Hence, you could not associate another
geometry to this material table later.

WTmtable _save

FLAG WTmtable_save(
WTmtable *mtable)

This function writes a material table to a file in the current directory. The name of the file
will be the material table name withraatextension added\ny existing file with the same
name will be overwritten.

If you have not set the name usiwgmtable_new or WTmtable_setname, the name will
be an automatically generated name; automatically generated material table names start at
mt1 (“m-t-one”) and increment numerically for each new material table created.

If you plan to save out material tables, it's a good idea to give them unique names.
Otherwise, material tables with automatically generated names written in the current
session could overwrite similarly generated files from an earlier session. Since model files
refer to the material tables by name, this means that when you load a model written from
the earlier session, the old model would end up using the new material table and thus end
up with unexpected colors.

WTmtable_setname

FLAG WTmtable_setname(
WTmtable *mtable,
char *name)

This function sets the name of the material table specifiedtilyle to name. Material
tables must have unique names. If you assign a name which has already been used for a
material table, this function returns FALSE.

8-12

WorldToolKit Reference Manual

Example: Adding Shininess to a Multi-colored Geometry

WTmtable getname

char *\WTmtable_getname(
WTmtable *mtable)

This function returns the name of the material table specified byttitde argument.

WTmtable_getbyname

WTmtable "WTmtable_getbyname(
char *name)

This function returns a pointer to the material table having the name specifiediaynthe
argument. It returns NULL if the material table with the given name does not exist.

WTmtable_setdata

void WTmtable_setdata(
WTmtable *mtable
void *data)

This function sets a user-defined data field in a material table. Private application data can
be stored in any structure. To store a pointer to the structure within a material table, pass in
a pointer to the structure, cast tecid*, as thedata argument.

WTmtable_getdata

void *WTmtable_getdata(
WTmtable *mtable)

This function retrieves user-defined data stored within a material table. You should cast the
value returned by this function to the same type used to store the data with the
WTmtable_setdata function.

WorldToolKit Reference Manual 8-13

Chapter 8: Materials

Material Table Entry Functions

WTmtable newentry

int WTmtable_newentry(
WTmtable *mtable);

This function creates a new entry in the material table given bgtilreargument. The new
material-table entry will have all defined fields set to these default values:

Ambient 0.0, 0.0, 0.0
Diffuse 0.0, 0.0,0.0
Emissive 0.0, 0.0, 0.0
Specular 0.0,0.0,0.0
Shininess 0.0

Opacity 1.0

Name NULL

The value returned is the index into the material table which corresponds to the new
material.

WTmtable_copyentry

int WTmtable_copyentry (
WTmtable *from,
int matid,
WTmtable *to)

This function copies an entry whose index is specified byt argument from one
material table to another. This results in the creation of a new material table efbry. If
andto are the same table, the material is duplicated so that there’s a second copy of the
material in the same table. Fields defined for the destination which weren’t defined in the
source table are filled in with the default values listed abov&/fontable _newentry. The

value returned is the index into the destination material table that corresponds to the new
copy of the material.

8-14

WorldToolKit Reference Manual

Material Table Entry Functions

WTmtable_setvalue

FLAG WTmtable_setvalue(
WTmtable *mtable,
int matid,
float *value,
int propertybit);

This function alters the characteristics of an entry whose index is specified lgtitie
argument in the material table specified byrheble argument. Th@ropertybit argument
is one of the following:

WTMAT_AMBIENT
WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION
WTMAT_OPACITY
WTMAT_SHININESS
WTMAT_SPECULAR

The value argumenis anarray of three floatsvhen setting the ambientdiffuse, ambient,
diffuse, specular, or emission properties, caany of one floatvhen setting the shininess

or opacity properties. Passing an array of three floats when setting shininess or opacity is
permitted, but only thealue [0] argument is read from.

FALSE is returned if the specifiggtopertybit is not defined for the given material table.
Note that a single call to this command can cause changes in multiple polygons in multiple
geometries, because more than one polygon may refer to the same material table entry.

WTmtable getvalue

FLAG WTmtable_getvalue(
WTmtable *mtable,
int matid,
float *value,
int propertybit);

WorldToolKit Reference Manual 8-15

Chapter 8: Materials

This function queries the characteristics of an entry whose index is specifiedrbgtidhe
argument in the material table specified byrheble argument. Th@ropertybit argument
is one of the following:

WTMAT_AMBIENT
WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION
WTMAT_OPACITY
WTMAT_SHININESS
WTMAT_SPECULAR

The value argumenmust be amrray of three floatsvhen querying the ambientdiffuse,
ambient, diffuse, specular, or emission properties, @ray of one floatvhen querying

the shininess or opacity properties. Passing an array of three floats when querying shininess
or opacity is permitted, but only thelue[0] argumenis written into.

FALSE is returned if the specifiggtopertybit is not defined for the given material table.

WTmtable setentryname

FLAG WTmtable_setentryname(
WTmtable *mtable,
int matid
char *name)

This function assigns a name specified byrilv@e argument to an entry whose index is
specified by thenatid argument in the material table specified byrthsble argument. The
default name of a material table entry is NULL.

WTmtable_getentryname

char* WTmtable_getentryname(
WTmtable *mtable,
int matid)

This function returns the name of an entry whose index is specified matlde@argument
in the material table specified by theable agrument.

8-16

WorldToolKit Reference Manual

Advanced Topics

WTmtable getentrybyname

int WTmtable_getentrybyname(
WTmtable *mtable,
char *name)

This function returns the index of an entry whose name is specified byrtleeargument
in the material table specified by theable argument.

-1 is returned if no entry in the material table matclzse.

Advanced Topics

How WTK Deals With Out-Of-Range Indices

When rendering, WTK assigns color to the polygon (or vertex) by using the material table
index specified by the polygon (or vertex) to a material in the material table.

If the polygons and vertices in a geometry have material table indices higher than the
number of materials in the material table, a modulus operation is executed on that index

the time the polygon is renderdebr example, if a material table has two colors in it (black

and white), and the geometry consists of four polygons, with material index references
0,1,2,3, the polygons would be rendered as black, white, black, white. The material indices
remain as they were: 0,1,2,3, but are rendered as if they were 0,1,0,1, because there are only
two entries in the material table. If a new entry, red, is added to the material table at this
point, in the next frame the geometry will be rendered as black, white, red, black. The actual
indices 0,1,2,3 are rendered as if they were 0,1,2,0 because there are three entries in the
material table.

A negative material index is not allowed.

WorldToolKit Reference Manual 8-17

Chapter 8: Materials

Using Material Index Table Entries

WTpoly_setmatid

SeeWTpoly_setmatid on page 7-3 of thBolygonschapter.

WTpoly_getmatid

SeeWTpoly_getmatid on page 7-3 of thBolygonschapter.

WTgeometry_setmatid

SeeWTgeometry_setmatid on page 6-31 of th@eometrychapter.

WTgeometry_setvertexmatid

SeeWTgeometry_setvertexmatid on page 6-48 of th&@eometrychapter.

WTgeometry_getvertexmatid

SeeWTgeometry getvertexmatid on page 6-48 of theeometrychapter.

Using Materials Tables With Geometries

As described in this chapter, you can define a geometry’s material in its own material table.
Each geometry references a single material table, from which the geometry’s material
properties are obtained.

WTgeometry setmtable

SeeWTgeometry_setmtable on page 6-30 of thEeometrychapter.

WTgeometry getmtable

SeeWTgeometry_getmtable on page 6-31 of th&eometrychapter.

8-18

WorldToolKit Reference Manual

Notes on Specific File Formats

Notes on Specific File Formats

WTK now has an expanded NFF file format which records material ID’s for each polygon
or vertex, instead of RGB color, as was done in WTK V2.1 and earlieC{sagges in
Reading/Writing NFF File®n page G-24 for more information).

When an NFF 2.1 (an NFF file saved with version 2.1 of WTK) or earlier object file is
loaded, a material table is created that has one material for each unique color in the object.
The material table in this case has only the AMBIENTDIFFUSE field defined, so the NFF
2.1 geometry will look the same in this release as it did in WTK V2.1. The created material
table has an automatically generated name. In each NFF file, there is also a reference to a
material file. The new NFF file format is describeddippendix F

The same is true for files read from MultiGenfifts, ProEngineer RENDER format,
AutoCad DXF, and Videoscape 3D .geo file formats.

Wavefront .obj files have material properties defined in externally referemtidides; for

these files all of the following material properties are read in and defined: ambient, diffuse,
specular, specular exponent (shininess), and transparency (alpha). The .mtl format does not
have an “emissive” material property. When a Wavefront file is loaded, any referenced .mtl
file is parsed, and a new material table is created; the new material table is defined for those
fields that are specified in the Wavefront .fild. If for example, “ambient” color is not

defined for any of the materials in the .file, then the new material table will be created
without the “ambient” field defined. Each Wavefront material has a name as specified in
the .mtl file; eactWTmaterial defined has its name set to match the one specified in the .mtl
file.

3D Studio .3ds files have material properties defined within the file. Like the Wavefront
files, a material table is created and material properties are read in and defined for ambient,
diffuse, specular, specular exponent (shininess), and transparency (opacity).

NFF 3.0 (the new format for WTK Release 6 and this release) files have external references
to the new WTK .mat material file format. This is an easy-to-edit ASCII format.

OpenGL Compatibility

The OpenGL specification is a powerful, cross-platform definition of how lighting models
are to be implemented. By providing material properties that conform to this standard,
WTK preserves all of the control that users of previous versions of WTK had for

WorldToolKit Reference Manual 8-19

Chapter 8: Materials

determining the coloring of geometries and polygons, but adds additional features —
notably specular highlights. WTK takes full advantage of the features available with
OpenGL.

8-20 WorldToolKit Reference Manual

3D Text

Creating Three-dimensional Text in WTK

WTK allows you to create 3D text for your virtual world. These 3D text strings are simply
WTK geometries, which can be used as described iG#unetriechapter. 3D text
geometries are assembled from individual characters that can either be polygonally based
or represented using bit-mapped pictures of the characters applied to polygonal surfaces.
The size, shape, and style of each individual character depends on the 3D font that you are
using. A 3D font is specified by an NFF file that contains one NFF object for each character
in the font. You can use several different 3D fonts simultaneously to create text string
geometries at any time.

Creating 3D text in WTK is a two-step process. First you load in a 3D font by calling
WTfont3d _load. This loads a font from an NFF file (i.e., creates an NFF object for each
character in the font and stores it in memory). Then the fun@titgeometry newtext3d

is used to construct geometries from character strings. Figure 9-1 illustrates the parameters
associated with a WTK 3D font. For purposes of clarity, these parameters are shown using
a projection of the font onto a 2D plane. The extents of the font in 3D are illustrated in
figure 9-2 on page 9-4.

Chapter 9: 3D Text

Extents box

Baseline \ /

Origin

\/

X axis

Spacing ‘ < >

Figure 9-1: Basic font properties

WTfont3d_load

WTfont3d *WTfont3d_load(
char *filename);

This function loads a 3D font file into memory and returns a pointewtofant3d structure
used to refer to the font. Thigkename argument should be the name of an NFF 3D font file
such as the sample font file provided with WTK. Like the functiomgeometrynode_load
andWTnode_load, the WTMODELS path is searched for tfiename, if it is not found in

the current directory.

WTK comes with at least one sample 3D font file. With this release, the sample font file is
rcfont3d.nff located in the modeler directory in the WTK product distribution. A
description of the format of the 3D font file is provided at the end of this chapter as a
reference in case you want to define your own 3D fonts.

9-2

WorldToolKit Reference Manual

Creating Three-dimensional Text in WTK

WTfont3d_delete

void WTfont3d_delete(
WTfont3d *font);

This function frees the memory used bywafont3d structure. Once you have constructed
all of the text strings required for your application which use this font (using
WTgeometry _newtext3d), you can calWTfont3d_delete at any time.

WTgeometry newtext3d

SeeWTgeometry _newtext3d on page 6-20 for a description.

WTfont3d_setspacing

void WTfont3d_setspacing(
WTfont3d *font,
float spacing);

This function sets the spacing for a font by setting the horizontal spacing between the base-
points of the characters in a 3D text string (see figure 9-1 on page 9-2). By default, this
spacing is 10% greater than the width of the widest character. Using this function affects
the spacing of all subsequently created geometries.

In the following example, the font spacing is increased by 20 percent:

WTfont3d_setspacing(font, 1.2 * WTfont3d_getspacing(font));

See alsaWTfont3d_getextents, on page 9-4.

WTfont3d_getspacing

float WTfont3d_getspacing(
WTfont3d *font);

This function returns the current spacing value for the specified 3D font. Figure 9-1 and
figure 6-1 illustrate “spacing” of a font.

Figure 9-2 illustrates the extents of a WTK 3D font.

WorldToolKit Reference Manual 9-3

Chapter 9: 3D Text

Font y axis
Font z axis
extents[O][Y]
extentg[1](Z]
extents[0][Z] Font x axis

extents[1][Y]

extents[0][X] extents[1][X]

Figure 9-2: The 3D font's extents box

WTfont3d_getextents

void WTfont3d_getextents(
WTfont3d *font,
WTp3 extents[2]);

This functions gets the 3D extents box for the specified 3D Wnfont3d_getextents
places the minimum and maximum spatial extents of the characters of the specified font
into theextents[0] andextents[1] vectors respectively.

For example, for characters oriented to be read in the X-Y plane, the largest X coordinate
value of any character in the font is placeejtents/1][X], and the smallest value is placed

in extents[0][X]. Therefore, the maximum width of any character in the fomttisits[1]/X]

- extents[O][X].

9-4 WorldToolKit Reference Manual

NFF 3D Font Files

Correspondingly, for the Y value, the maximum vertical extent (height) of any character in
the font isextents[1][Y] - extents[0][Y] and for the Z value, the maximum depth extent of
any character in the font éxtents[1][Z] - extents[0][Z].

The default spacing between characters in the font is ten percent greater than the maximum
character width (i.e., ten percent greater thewefts[1][X] - extents[0][X])). You can
determine the spacing by callingTfont3d_getspacing after WTfont3d_load is called.

WTfont3d_charexists

FLAG WTfont3d_charexists(
WTfont3d *font,
char character);

This function determines whether a particular character is defined in the specified 3D font.
If the specified character is in the font, TRUE is returned, otherwise FALSE is returned.

For example, to find out whether the font includes an exclamation mark, you could use:

WTfont3d *font;
if (WTfont3D_charexists(font, '!"))
WTmessage(“Font %p contains '’ \n”, font);
else
WTwarning(“Font %p does not contain ' \n”, font);

NFF 3D Font Files

This section describes the structure of the NFF file from which a WTK 3D font can be
constructed. Also see Appendix F for a complete description of the WTK NFF format.

A 3D font file is a multi-geometry NFF file that contains one geometry for each character.
The names of the character geometries are the string “char” followed immediately by the
ASCII value of the character. For example, the name of the geometry representing a capital
“A” would be “char65” since the ASCII code for “A” is 65. A 3D font file containing all

of the capital letters would have geometries named “char65”, “char66”, “char67” and so on
up to “char90” (capital “Z"). Lower-case letters are “char97” through “char122.” Table 9-1
lists ASCII character values.

WorldToolKit Reference Manual 9-5

Chapter 9: 3D Text

The functionwTgeometry newtext3d constructs text geometries by assembling characters
along the +X direction. Therefore, characters in your font file should read so that “left to
right” corresponds to increasing X coordinate values. With this convention, depending on
the way in which the characters in the font file are mod@&le@deometry newtext3d might

return text geometries that are readable in the X-Y plane or in the X-Z plane (or with any
angle in between). Of course, the text geometries once created can be placed at any location
using the geometry move functions.

When a text string is assembled witlTgeometry newtext3d, the characters are lined up
based on the location of their base points. The point (0, 0, 0) is the base point for each
character. You should define characters in the NFF 3D font file relative to this point.

Table 9-1: The ASCII character set

char64 @ char96 °
char33! charé5 A char97 a
char34 * char66 B char98 b
char35 # char67 C char99 c
char36 $ char68 D char100d
char37 % char69 E charl0l e
char36 & char70 F charl02 f
char39' char71 G charl03 g
char40 (char72 H charl04 h
char4l) char73 1 charl05 i
char42 * char74 J charl06 j
char43 + char75 K charl07 k
char44 , char76 L char108 |
char45s - char77 M charl09 m
char46 . char78 N charl1l0n
char4d7/ char79 O charlll o
char48 0 char80 P charll2 p

9-6 WorldToolKit Reference Manual

NFF 3D Font Files

Table 9-1: The ASCII character set (continued)

char49 1 char81 Q charl13 q
char50 2 char82 R charll4 r

char51 3 char83 S charll5s
char52 4 char84 T charll6 t

char53 5 char85 U charll7 u
char54 6 char86 V charll8 v
char55 7 char87 W charl19 w
char56 8 char88 X char120 x
char57 9 char89 Y charl2ly
char58 : char90 Z charl22 z
char59 ; char91 [charl23 {

char60 < char92 \ charl24 |

char6l = char93] charl25}
char62 > char94 » charl26 ~
char63 ? char95 _

WorldToolKit Reference Manual 9-7

Chapter 9: 3D Text

9-8 WorldToolKit Reference Manual

10

Textures

This chapter describes the textures that can be applied to the surfaces of graphical objects,
and the functions to apply, manipulate, and animate them. The main sections of this chapter
are as follows:

Introduction— provides a general discussion on the use of textures in WTK and
lists the texture file formats supported by WTK. (see page 10-2)

Applying Textures describes how to apply textures to geometric surfaces in
WTK. (see page 10-4)

Changing Texture Propertiesdescribes how to access the shading, transparency,
and blending values of a polygon'’s texture. (see page 10-23)

FilteringTextures- describes how to specify and retrieve the filter values for a
texture already applied to a polygon. (see page 10-24)

Manipulating Textures describes how to change the orientation, scale, and offset
of applied texture. (see page 10-27)

Screen Loading describes how to load an image to and get an image from a WTK
window. (see page 10-33)

Chapter 10: Textures

Introduction

Surfaces of objects in the real world are not smooth and featureless — they have pattern,
grain, and detail. To emulate this, you can give WTK polygons a surface texture. This
texture is a bit-mapped image, which is applied to the surface of the polygon and
transformed with it. For example, you can create a table top from a uniform brown-shaded
polygon with an actual wood-grain image mapped onto it.

You can create textures with a bitmap image editor or derive them from video images.
Basically, anything that can find its way onto a computer screen can be converted to a
texture format. Figure 10-1 shows a WTK virtual world with textures applied to it.

Figure 10-1: WTK virtual world with textures applied

Judicious use of textures can increase the complexity and realism of your environments,
allowing you to avoid both the initial work of modeling surface details and the run-time
overhead of transforming them. For example, instead of modeling as 3D details all of the
windows of a distant building, you can apply a digital image of a real building to a single
polygon, which then serves as an entire side of the building. Your modeling labor is
conserved and rendering speed increases dramatically compared to what would have been

10-2

WorldToolKit Reference Manual

Supported Texture File Formats

necessary to model all of these details in 3D. However, the frame rate of the simulation is
still affected by texturing — although it is better to use textures than to model all the details,
textures do slow performance compared to just rendering polygons that have neither texture
nor modeling details.

Textures are automatically transformed with the polygons to which they are applied,
displaying perspective shift and scaling appropriate for the viewing parameters (see
Applying Texturesn page 10-4). WTK has functions for changing the orientation, scale,
and offset of applied textures (danipulating Texturesn page 10-27).

You can dynamically replace a texture on a polygon, which gives the impression of
animation. For example, you can Ws@texture replace to sequentially load images from
a video file to a polygon in the shape of a TV screen. Or you can map images from a
viewpoint to a polygon to create a rear-view mirror in your simulationA8eeating
Textureson page 10-18.

You can also make part of a texture transparent, which allows whatever is behind it in the
simulation to show through. S€manging Texture Properties page 10-23. Also refer to

your Hardware Guide for information about system-specific texture-mapping capabilities
and limitations.

Supported Texture File Formats

WorldToolKit supports the following texture file formats.

Targa .tga extension
RGB format .rgb and .rgba extensions

JPEG - JFIF compliant .jpg extension

These formats are supported on all platforms. Note that 8 bit TGA format files are not
supported.

WorldToolKit Reference Manual 10-3

Chapter 10: Textures

Applying Textures

Use the functions in this section to apply textures to geometric surfaces. Several of the
demos provided with WorldToolKit illustrate the use of these functions. See the README
files in thedemos andimages subdirectories that were installed with WTK.

Table 10-1 below, lists the methods provided in WTK for applying textures to the surfaces
of geometries.

Table 10-1: Methods for applying textures to geometry surfaces

Method Functions used Remarks
Automatic WTpoly_settexture The texture is applied to each polygon so
WTgeometry_settexture that it is oriented upright on the polygon

and reads from left to right when looking
at the polygon's front face.
WTgeometry_settexture calls
WTpoly_settexture to apply a texture in
this manner to each polygon in the
geometry. The precise method of texture
application is described under How WTK
Applies a Texture to a Polygon on
page 10-5.

Explicit uv WTpoly_settextureuv The texture is applied using the specified
specification | WTgeometry_settextureuv | uv texture coordinates. The function
WTgeometry_settextureuv calls
WTpoly_settextureuv to apply a texture to
each polygon in the geometry so that the
texture appears draped or wrapped over
the geometry.

Use 3D n/a The file itself contains texturing
model information.
file format

10-4 WorldToolKit Reference Manual

How WTK Applies a Texture to a Polygon

How WTK Applies a Texture to a Polygon
Here’s how WTK applies a texture to a polygon:

1. The edge of the polygon with the largest upward (i.e., negative) y-axis component
is found.

2. Texture is applied so that (a) the vertical edge of the texture is parallel to this
polygon edge, and (b) from a viewpoint looking at the polygon’s front face, the
texture reads from left-to-right (the texture example in figure 10-2 below, contains
text to illustrate this).

3. Given two solutions to (a) and (b), the texture is applied so it appears right-side-
up rather than upside-down (with respect to a viewpoint that is right-side-up, of
course).

Prior to application =~ ——» Projected ——» Scaled

World space Polygon
X
a
z d
b Front face a d
y c a d
Edge with largest upward b c
y-axis component b c
Texture space
A
v Note: Texture “E” placed on rectangular

polygons is stretched to fit the polygon.

v

Texture space

Figure 10-2: Texture application on rectangular polygons.

WorldToolKit Reference Manual 10-5

Chapter 10: Textures

In the case of the rectangular polygon shown in figure 10-2, the edge with the largest
upward (i.e., negative y-axis) component is c-d. (Even though edge d-a is also oriented
upward and is longer than c-d, the y-axis component of d-a is less.)

Assuming the polygon vertices are stored in the polygon in the order a-b-c-d, figure 10-2
shows the front face of the polygon. The texture is applied so that if we tilt our heads (or
equivalently rotate the polygon) so that the edge c-d is vertical, then the texture reads
correctly from left-to-right, that is, th€ looks like anE — not backwards and not upside-
down.

Furthermore, on a rectangular polygon, the texture corners (in u,v space) are mapped
exactly to the corners of the rectangle. In other words, the texture is stretched to fit exactly
onto the rectangle. None of the texture image is cropped when applied.

Prior to application —pProjected ——»Scaled

world space polygon
X Cc

€ Front ¢ b
y a face b N
edge with largest upward
y-axis component T d a d
. \e\\B a

Note: portions of the texture
will be clipped.

v

texture space

Figure 10-3: Texture application on non-rectangular polygons.

When a texture is applied to a non-rectangular polygon, the same basic technique is used
as with rectangular polygons.

In figure 10-3, we start with a five-sided polygon. Since the vertices a-b-c-d-e go around
counter-clockwise, we are again looking at the front face of the polygon. In this case, the

10-6 WorldToolKit Reference Manual

Texture Size

polygon is simply rotated so that the edge a-b (the edge with the largest upward y-axis
component) is correctly aligned with the texture.

Then, the texture is applied so that the minimum and maximum u and v texture values map
to the minimum and maximum horizontal and vertical extents of this rotated polygon. Note
that portions of the texture are cropped or clipped. You camigely scaletexture or
WTpoly_stretchtexture if cropping is not desired.

The important thing to remember is that textures are aligned to polygonal surfaces based
on the surface’s orientation in the world reference frame and on the order in which the
polygon vertices are specified. These two factors determine which polygon edge has the
largest upward y-axis component. If you tried applying a texture to a moving object once
per frame (as you do when using texture animation), you would see that the texture edge is
sometimes aligned to different polygonal edges based on the polygon’s current orientation
with respect to the world. In some cases, this causes problems that must be fixed using the
texture rotation feature (sdanipulating Texturesn page 10-27).

For a polygon that is oriented horizontally, the edge to which the texture is aligned is the
first polygon edge. Specifically, for a horizontal polygon, the right edge of the texture
bitmap is made to lie along the first polygon edge, where moving from the first polygon
vertex to the second moves you in the direction from the bottom right corner of the bitmap
toward the top right corner of the bitmap. In addition, the texture may be stretched in the
same way as shown in figure 10-3 for the polygon with a vertical component.

After application through this default mapping, textures may be modified using any of the
texture manipulation functions described beginning on page 10-27.

Texture Size

You can also set the maximum texture size that will be loaded by your application. To do
this, use theW TMAXTEXSIZE environment variable (see the Environment Variables
Appendix for details on setting this environment variable). When you set the maximum
texture size, the texture images will be shrunk, if necessary, so that the image width and
height in pixels will not exceed this value. This is very valuable, as it ensures that your
application does not exceed your hardware texture memory limits. The default value is
1024 (this is also the maximum), but you can, for example, set it to 512 or 256.

Texture dimensions must be a power of two (e.g. 16, 32, 64, etc.). If a texture whose width
and height is not a power of two, WTK will automatically size the texture image to the

WorldToolKit Reference Manual 10-7

Chapter 10: Textures

nearest power of two. For example, a 65 x 190 resolution image will be resized to 64 x 256.
If the environment variabl&/ TKSQRTEX is enabled (set to 1), WTK will automatically
shrink texture images, if necessary, so that the texture’s width and height are equal. By
default, WTKSQRTEX is disabled (set to 0), and so texture images are not shrunk into
square images.

Texture Naming Conventions

When using functiong/Tgeometry settexture, WTgeometry settextureuv,

WTpoly_settexture, andWTpoly_settextureuv, one of the parameters you must supply is the
filename of the texture being applied. If you don't specify the filename’s extension, WTK
will look for a file whose extension is recognized as a texture file (.tga, .rgb, .rgba, .jpg).
By leaving off the extension, you can port your WTK application to a different hardware
platform without having to change all the extension names in your source code.

Texture files specified in a WTK function call are searched for in the current directory, and
along the path given by th&TIMAGES environment variable. If multiple files with the

same filename but different extensions exist in the same directory and your file
specification doesn't include the file extension, the precedence of texture file formats is
dependent upon the platform you are running on. On Windows platforms, the precedence
order is .tga, .rgb, .rgba, and .jpg while on UNIX platforms the precedence order is .rgb,
.rgba, .tga, and .jpg.

Texture filenames are case sensitive within WTK. For example, if you were to load a
‘flag.tga’ texture into WTK viaWTgeometry settexture and then wanted to modify the
texture’s filtering via a call tovTtexture_setfilter, the filename you would need to specify
in WTtexture_seffilteris ‘flag.tga’. If you tried to refer to the texture as ‘FLAG.TGA', WTK
would not recognize it as the ‘flag.tga’ texture.

Transparent Textures

WTK textures can be transparent. A texture consists of a rectangular array of texels
composed of a color component and possibly an alpha component as well. The alpha
component of each texel can range from 0 to 255 and indicates the texel’s degree of opacity.
An alpha value of 0 means that the texel is completely transparent while an alpha value of
255 means that the texel is completely opaque. When a texture file does not contain alpha
values, WTK automatically computes the alpha value for each texel using the following

10-8

WorldToolKit Reference Manual

Transparent Textures

schema. Texels whose color component is black, i.e. whose R = G =B = 0, will be assigned
an alpha value of 0. Texels whose color component is non-black, i.e. either R, G, or B is
non-zero, will be assigned an alpha value of 255. If you do not wish to have WTK
automatically compute the alpha values for textures in this manner, you must use the
WTOPTION_NOAUTOALPHA option of theWwTuniverse_setoption function. If the
universe’'swTOPTION_NOAUTOALPHA option is set, then WTK will assign an alpha

value of 255 (opaque) to the texels of all textures which do not contain alpha values

From the above discussion, it follows that there are two ways in which you can obtain
transparencies in textures.

e Using a texture file that has an alpha component

» Using a texture file that does not have an alpha component and letting WTK
automatically add the alpha values to the texels, following the process described
above.

USING A TEXTURE FILE THAT HAS AN ALPHA COMPONENT

Not many texture file formats support a built in alpha component. The texture file must be
in the ‘rgba’ format, where the ‘rgb’ is the color component and the ‘a’ is the alpha
component. When the texture is applied to a polygon (using say, WTpoly_settexture), you
can specify whether the texture should be transparent or not via the "transparent” flag. If
this flag is set to TRUE, the texels whose alpha values fall below a certain threshold are not
drawn on the screen. This threshold is called the alpha-threshold (range 0-255) and can be
controlled using the environment variable WTKALPHATEST. By default, this value is 0

on Windows platforms and 78 on UNIX platforms. So for example, on Windows platforms,
the texels which have alpha values 0 will be transparent since they won't be drawn on the
screen. An alpha value greater than 0 will not be transparent. If however, when the texture
is applied, the "transparent” flag is set to FALSE, the alpha-threshold test will not be done
and all texels will be drawn on the screen.

USING A TEXTURE FILE THAT DOES NOT HAVE AN ALPHA COMPONENT

Most common texture files do not have an in built alpha component. The texture file has an
‘rgb’ format, i.e., only the color component is present. When the texture file is loaded into
WTK, WTK automatically inserts alpha values for each texel. If the texel’s color
component is black, (r=g=b=0), the alpha value inserted is 0. If the texel's color component
is non-black, the alpha value inserted is 255. You can now use the newly added alpha
component to obtain transparency. (This is called the "cookie-cutter" method). When the

WorldToolKit Reference Manual 10-9

Chapter 10: Textures

texture is applied to a polygon (using say, WTpoly_settexture), you can specify whether the
texture should be transparent or not via the "transparent” flag. If this flag is set to TRUE,
the texels whose alpha values are 0, will be transparent. (They will not be drawn on the
screen.) The texels whose alpha values are 255 will appear on the screen. This behavior is
the result of the alpha-threshold test that is performed on all texels.

The "cookie-cutter" method is a simple way to obtain transparencies in textures that do not
have alpha values. First, the areas of the texture that you want transparent must be colored
black. Second, the texture must be tagged ‘transparent’ using the "transparent" flag when
you use WTpoly_settexture (or marking the polygon with ‘_t ' when you read textured
polygons from an NFF file. See Appendix F, for the NFF file format). This method
sometimes leaves a "black halo" around the cut out part when texture filtering other than
linear is used. This effect can be avoided by using point texture filtering
(WTFILTER_NEAREST). (See Texture Filtering for more information). When using

texture filtering methods other than point, it is possible to improve the quality of the picture
by raising the value of the alpha threshold.

If you do not wish to have WTK automatically calculate the alpha values for you, you may
set the universe option WTOPTION_NOAUTOALPHA to TRUE. (Use the function
WTuniverse_setoption to do this.) If this option is set, all the alpha values (for an ‘rgb’
texture file) will default to 255.

TRANSPARENCY AFFECTED BY THE POLYGON’S MATERIAL PROPERTIES

In actuality, there is a third way to achieve transparencies. This method makes use of the
object’s material properties - in specific, the value of the "opacity" property (range 0-1). If

a polygon’s opacity value is less than 0.996, it is treated as one having translucency. Any
value greater than 0.996 causes WTK to treat the polygon as opaque for all practical
purposes. If a polygon is translucent, it's opacity value is multiplied with the texel’s alpha
value before that pixel is rendered. The resultant alpha affects the final color of that pixel.
The color of the pixel will be a mixture of the texel’s color component and the color of the
background at that pixel. (This is the color that already exists in the color buffer). If the
resultant alpha is closer to 1, more of the texel’s color is used. If the resultant alpha is closer
to 0, more of the background color is used.

This procedure can be used to enhance (or even, create) transparencies in textures. By
controlling the product of the texel’s alpha and the polygon’s opacity, you can set areas of

a texture to use more of the background color, and hence create/enhance transparency. For
example, if a texel's alpha value is 10, and the polygon’s opacity is 0.95, the product is

10-10

WorldToolKit Reference Manual

Transparent Textures

closer to 0 on a scale of 0-255. This causes that texel to be nearly transparent, since a very
small fraction of the texel’s color contributes to the final color.

WTpoly_settexture

FLAG WTpoly_settexture(
WTpoly *poly,
char * bitmap,
FLAG shaded,
FLAG transparent);

This function applies a texture bitmap stored in the file to the specified polygon. The
argumentitmap refers to the bitmap file; the argumesty refers to the polygon. If the
polygon already had a texture applied, the new texture replaces the old texture. The FLAG
arguments indicate whether the texture is to be shaded and/or transparent.

If a texture is shadedffaded=TRUE), the intensity of the texture elements (texels) are
affected by lighting. If colored lights are used, the color of texture elements is also affected.
If the texture is not shadedhaded=FALSE), the texture appears as in the source bitmap
file.

Thetransparent parameter is used to indicate whether the texture should be treated as a
transparent texture. S@eansparent Texturesn page 10-8 for more information about
transparent textures.

If the specified file is not found in the current working directory, WeMAGES path is
searched. See the Environment Variables Appendix for information about setting the
WTIMAGES environment variable and s&éexture Naming Conventions page 10-8
about texture filename extensions.

The functionWTpoly_settexture returns TRUE if the texture could be applied. If the texture
could not be found, it returns FALSE.

See alsdWTpoly_deletetexture on page 10-23.

WorldToolKit Reference Manual 10-11

Chapter 10: Textures

WTgeometry_settexture

FLAG WTgeometry_settexture(
WTgeometry *geom,
char * bitmap,
FLAG shaded,
FLAG transparent);

This function applies a texture bitmap to each polygon surface of a geometry (using the
WTpoly_settexture function). It returns TRUE if successful and FALSE otherwise.

If any of the geometry’s polygons already have a texture applied, the old texture is replaced
by the new texture. Thiitmap argument refers to the filename of the texture bitmap. The
FLAG arguments indicate whether the texture is to be shaded and/or transparent.

If a texture is shadedffaded=TRUE), the intensity of the texture elements (texels) are
affected by lighting. If colored lights are used, the color of texture elements is also affected.
If the texture is not shadedhaded=FALSE), the texture appears as in the source bitmap
file.

Thetransparent parameter is used to indicate whether the texture should be treated as a
transparent texture. S@eansparent Texturesn page 10-8 for more information about
transparent textures.

If the specified file is not found in the current working directory, WWeMAGES path is
searched. See the Environment Variables Appendix for information about setting the
WTIMAGES environment variable and s&exture Naming Conventions page 10-8
about texture filename extensions.

In the following example, a shaded texture in aited is applied to every polygonal
surface of a sphere geometry.

WTgeometry *geometry;
geometry = WTgeometry _newsphere(5.0, 10, 10, FALSE, TRUE);
if (WTgeometry_settexture(geometry, “wood”, TRUE, FALSE))
WTmessage(“Applied shaded wood texture.\n");
else
WTwarning(“Unable to apply shaded wood texture.\n");

See alsdWVTgeometry deletetexture on page 10-23.

10-12

WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

Applying Textures with Explicit uv Values

WTK supports several methods of applying textures with explicit uv information: calling
WTpoly_settextureuv, WTgeometry_settextureuv, and through file readers that support
texture uv specification. These file readers include the Neutral File Format (NFF), 3D
Studio, Wavefront, and MultiGen/ModelGen.

If you wish to preserve the precise texture application information when writing a geometry
out to NFF (or binary NFF) when textures have been applied in any of the above-mentioned
ways, then you must first instruct WTK to write out the NFF file using uv values. To do so,
before saving out the file, you must call this function:

WTuniverse_setoption(WTOPTION_NFFWRITEUV, TRUE);

or set the resource valugiteuv to TRUE. See Appendix F for information about how uv
values are stored in the NFF format.

Note: When writing out NFF files with uv values: If two polygons share a vertex, but different
uv values are used for the polygons at that vertex, then a new vertex is created and
appended to the geometry's vertex list. In this way, each vertex written out in the NFF
file has a unique uv value. This will not occur if the geometry was textured using either
of the texture draping function®Tgeometry settextureuv or WTgeometry setuv,
because these functions ensure that shared vertices have the same texture uv
coordinates.

WTpoly_settextureuv

FLAG WTpoly_settextureuv(
WTpoly *poly,
char *bitmap,
float *uarray,
float *varray,
FLAG shaded,
FLAG transparent);

This function applies a texture bitmap stored in the specified file to the specified polygon
and allows you to choose the way the texture is mapped onto the polygon.

WorldToolKit Reference Manual 10-13

Chapter 10: Textures

Like the functionWTpoly_settexture, this function allows you to apply a bitmap texture to
a polygon, passing in a pointer to the polygoly, the name of the bitmap file, and the
valuesshaded andtransparent. (See the functiomVTpoly settexture on page 10-1for
more information about the parametsitgap, shaded, andtransparent.)

The functionWTpoly_settextureuv enables you to specify the way in which the texture is
mapped onto the polygon, by passing in to this function the areaws andvarray. These

two arrays must be allocated by the applicationransthave at least as many elements as
there are vertices in the polygon (which can be obtained using the function
WTpoly_numvertices). The elements afarray andvarray specify, respectively, the texture

u and v coordinates to use when mapping the texture to the vertices of the polygon. The
polygon’s vertices (and corresponding elementsotiy andvarray) are taken in the order

in which the vertices are stored with the polygon. The vertex order can be obtained using
WTpoly_getvertex.

The valueu=0.0 corresponds to the left edge of the source bitmapyand corresponds
to the right edge. The valwe0.0 corresponds to the bottom edge of the source bitmap, and
v=1.0 corresponds to the top edge.

In the following code fragment, the bottom half of a texture cdiéeds applied
transparently to a polygon:

WTpoly *poly;
float u[4],v[4];
u[0] = 0.0; v[0] = 0.0;
u[1] = 1.0; v[1] = 0.0;
uf2] = 1.0; v[2] = 0.5;
u[3] =0.0; v[3] = 0.5;
WTpoly_settextureuv(poly, “fish”, u, v, FALSE, TRUE);

10-14 WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

WTgeometry_settextureuv

FLAG WTgeometry settextureuv(
WTgeometry *geom,
char *bitmap,
float (*fu)(WTp3),
float (*fv)(WTp3),
FLAG shaded,
FLAG transparent);

This function drapes or wraps a texture around a geometry. It applies the specified bitmap
texture to every polygon of the geometry, using the specified fundtiarlfv to

determine exactly how the texture is mapped onto the geometry. The two furicBois

fv take a 3D point (&/Tp3) as an argument and return a floating point value. These
functions must be specified in your application. They define the mapping from vertex
positions to texture u and v coordinates, respectively. (See the function
WTgeometry_settexture on page 10-12 for more information about the parameterap,

shaded, andtransparent.)

For example, to specify the functiofasandfv, you might use the following:

/* fu computes the texture “u” coordinate from a vertex position */
float fu(WTp3 v) {

return 0.01 * (V[X] + v[Y] + v[Z]);
}
/* fu computes the texture “v” coordinate from a vertex position */
float fv(WTp3 v) {

return 0.01 * (v[X] + v[Y] - v[Z]);
}

Then, in your WTK application, you might céiTgeometry_settextureuv as shown below
(where it is assumed thais aWTgeometry* declared in your application):

/* apply shaded texture using specified fu and fv functions */
WTgeometry_settextureuv(g, “myimage”, fu, fv, TRUE, FALSE);

WorldToolKit Reference Manual 10-15

Chapter 10: Textures

WTgeometry_changetexture

FLAG WTgeometry changetexture(
WTgeometry *geom,
char *bitmap,
FLAG shaded,
FLAG transparent);

This function changes all textured polygons of the specified geometry to use the new
texture bitmap instead of their current texture. The new bitmap is specified binthe
argument. The shading and transparent flags are applied in a fashion similar to
WTgeometry_settexture.

If this function fails, FALSE is returned and no changes are made (for example, if the
texture bitmap specified byitmap is not found or if you specified an invalid geometry).

WTtexture_replace

FLAG WTtexture_replace(
char *bitmap,
int format,
int width,
int height,
unsigned char *image);

This function dynamically replaces the image associated with a texture bitmap used for
texturing polygons. This function works even if the bitmap hasn't already been loaded.

All polygons that reference the texture bitmap will display the new texture image, using the
polygon's settings for shaded or transparent display. This allows special effects like playing
real-time video on a polygon or performing interactive pixel-level edits to a texture. Any
subsequent reference to the texture bitmap name will use the texture image defined by this
function, even if a texture bitmap exists with the same filename. If you remove all polygon
references to the bitmap's name, the bitmap will be deleted.

The first parameter is the name of the texture bitmap. This must be the same name used by
WTpoly_settexture or referenced in the appropriate geometry file. It should be the filename

of the texture you want to replace. It must follow the same naming restrictions as
WTpoly_settexture.

10-16

WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

The second parameter defines the format of the information in the array of color or Alpha
values. It must be set WWTIMAGE_RGBA.

The width andheight parameters define the size of the new texture bitmap. These do not
need to be the same as the original texture bitmap, and they can change every frame. These
parameters are restricted to certain values. The bitmap’s size must be a power of two and
can be no larger than the graphics hardware allows (for example, on the Integraph it's
512x512; on UNIX it's 1024x1024).

The image parameter points to an unsigned character array of RGB and Alpha values. This
array is defined in row order with the first value being the lower-left corner of the bitmap
image and the final value being the upper-right corner of the bitmap image. Alpha values
can only be 0 or 255. The function returns TRUE if it successfully replaces the texture
image within the specified texture and no parameter values were violated.

Note: The image array must not be modified after callirgexture_replace and before
rendering the current frame. You must ensure that all array modifications occur prior
to making this call.

See alsWTtexture load andWTtexture cache, below.

WTtexture_load

unsigned char *WTtexture_load(
char *bitmap,
int *width,
int *height);

This function reads in a texture bitmap named bitmap and returns a pointer to the image file
and the width and height of the texture. The return values of this function can then be used
as parameters to theTtexture replace function.

WTtexture_cache

FLAG WTtexture_cache(
char *bitmap,
FLAG enable);

This function controls the caching of a texture. When the enable flag is TRUE, the specified
texture bitmap#itmap) is loaded (if not already loaded), then marked as cached. When the

WorldToolKit Reference Manual 10-17

Chapter 10: Textures

enable flag is FALSE the texture is marked as not cached and is deleted if no polygons
reference this texture. This function is useful for texture animations so that the texture does
not have to be reloaded from disk during every pass of the animation.

WTtexture_iscached

FLAG WTtexture_iscached(
char *bitmap);

This function returns the caching state of a texture. If the texture bitmap referenced by the
bitmap argument is not cached, then the function returns FALSE.

WTtexture_getmemory

int WTtexture_getmemory(
void);

This function returns the amount of texture memory used by the application. The value
returned is in bytes and takes into account whether a texture is filtered (mipmapped). Once
the texture is downloaded onto the hardware texture memory, WTK frees the space
occupied by the texture in the system memory (RAM). However, when running on certain
graphics boards, WTK maintains a copy of the textures in system memory. (Refer to your
hardware guide for more information about this). This may also happen if the graphics
board is not capable of storing sufficient texture information on the hardware. Note that
WTtexture_getmemory does not take into account any additional copies that WTK might
store in the system memory.

Animating Textures

There are two primary ways of animating textures on a polygon or geometry. Since
performance is usually a key factor in texture animation, you want to choose the best
method for your particular situation.

The first method of texture animation involves usitiitexture_cache to load and cache a
finite number of textures, and usimgrgeometry_changetexture to switch between them.
For example:

WTtexture_cache(texturel, TRUE)

10-18

WorldToolKit Reference Manual

Animating Textures

causes WTK to load this texture to memory and transfer it to hardware texture memory (if
you are running WTK on a machine capable of doing hardware texturing). If you have a
sequence of textures that you wish to play back on a geometry, you can load them all into
WTK (and the hardware) by calling/Ttexture_cache for each texture. To play back the
textures onto a geometry you need to apply the first texture of the sequence to the geometry
usingWTgeometry settexture.

Then, to play the remaining sequence of textures, you can use:

WTgeometry changetexture(geometry,next_texture,...)

to optimally put the next texture onto the geometry. The advantage to using this method is
purely performance. Since all of the textures are loaded into the optimal location (hardware
texture memory if available) beforehand Wtexture_cache, there is almost no work for
WTgeometry_changetexture to do when changing the active texture on the geometry. This
results in the fastest possible animation.

The disadvantage of this method is that it can really only be applied in cases where you have
a small number of textures that are going to be played back. With hardware caching, all
these textures must be loaded into texture memory, so the number of textures must be kept
small enough to fit into texture memory along with all of the other textures in your scene.

This method is a good solution for special effects animations like an explosion sequence or
any short repeating texture sequence. This method does not work well in situations where
procedural texturing is needed or where the next texture animation is unknown as in the
case of streamed video or a whiteboard application.

The second method of texture animation involves udifigexture_replace to replace a
currently active texture with an image that is in memory. Once a texture is loaded into
WTK, it can be replaced with the image data passed#Ttexture_replace. All polygons

that had the original texture image applied to them will now have the new image applied to
them. This allows the application to animate a texture by continually calling
WTtexture_replace on the same texture with different image data.

The advantage of this method is that it allows the application to specify the contents of a
texture image from application memory, rather than a file. This allows the application to
modify or create a texture image in place, or pass image data that is coming into the
application in real time.

This method is a good solution for procedural texturing needs. The application can modify
the image data in place and pass it off to WTK when ready. This is also a good method to

WorldToolKit Reference Manual 10-19

Chapter 10: Textures

use when applying streamed video to a geometry or if scene image feedback is being used
(like simulating a mirror). See the next sectidrkRear-view Mirror example using
WTtexture_replace

The disadvantage of this method is that it can result in some performance degradatation
versus the first method. Every tinméTtexture_replace is called (each new frame), WTK
must pass this texture data to the rendering engine on which it sits.

Although this does not require a memory copy on the WTK side, it may require one in the
rendering pipeline, and will require a bus transfer of texture data into texture memory if
WTK is running with hardware acceleration. This performance penalty can be minimized
by making the texture passeditGtexture_replace as small as possible. In some cases the
call to WTtexture_replace can be very expensive, for example, with WTK Direct, where the
incoming image data must be quantized down to an 8-bit color space, something which
can't be done in real-time in software.

In summary, this method is not the best solution in cases where optimal performance is
needed for animating a small, fixed number of known image frames.

A REAR-VIEW MIRROR EXAMPLE USING WTTEXTURE_REPLACE

One common need in simulations is to create a rear-view mirror for a car or truck
simulation. You can use a second viewpoint facing to the rear of your primary viewpoint
to get a view of the scene behind you. Attaching this second viewpoint to a second WTK
window essentially gives you a rear-view mirror, which is displayed in the second window.

You can incorporate this rear-view image back into your forward looking scene. Grab the
image from the second window witMiTwindow_getimage and texture it back into the

forward looking scene using th&Ttexture _replace function. A very simple code fragment

is given below.

/* Initialize the "mirror" object in forward looking scene */
mirrorobj = WTgeometrynode_load(mirrorparentnode, "mirror.nff", 1.0f);

/* place a dummy texture onto the mirror object, this will be

replaced with the rear view image once we obtain it,

we'll assume there is just a single front facing poly in the geometry */
mirrorpoly = WTgeometry_getpolys(mirrorobj);
WTpoly_settexture(mirrorpoly,"mirrortex",FALSE,FALSE);

10-20 WorldToolKit Reference Manual

Animating Textures

/* Initialize the window from which the rearview image will be taken */
mirrorwin = WTwindow_new(0,0, mwidth, mheight, WTWINDOW_DEFAULT);

/* allocate space for the image */
mirrorimage = (unsigned char *) malloc(mwidth*mheight*4);

/* create backward facing viewpoint from forward looking viewpoint*/
viewbackward = WTviewpoint_copy(viewforward);

/* obviously a true rear view would originate from the mirror object's
location in the scene and the rear looking viewpoint's direction would
be coming from the angle of reflection based on the forward looking viewpoint */

/* rotate rear viewpoint 180 degrees backwards from forward view */
WTviewpoint_rotate(viewbackward,Y,PI, WTFRAME_VPOINT);

/* if there are sensors attached to the forward looking viewpoint,
you should attach them to the rear looking viewpoint here */

/* draw the scene from the rear view viewport */
WTwindow_setviewpoint(mirrorwin, viewbackward);

/* grab the image of the rear view scene */
WTwindow_getimage(mirrorwin,0,0,mwidth,mheight,mirrorimage)

[* put the rear view image back into the forward looking scene */
WTtexture_replace("mirrortex”,0,mwidth,mheight,mirrorimage);

Itis also possible to have a rear-view mirror effect by using multiple viewports in a window
instead of using multiple windows. Se&wportson page 17-30 for more information

about viewports and refer to the Rv_mirror.c example program in the examples sub-
directory of the WTK distribution for an example of how viewports can be used to achieve
a rear-view mirror effect.

WorldToolKit Reference Manual 10-21

Chapter 10: Textures

Assigning Textures in 3D File Formats

You can implicitly assign a texture to a polygon by applying it in the 3D model file prior
to loading the file into WTK. The conventions for such annotation differ for the different
file formats read by WTK.

For AutoCAD DXF files, the layer name is overloaded with texture information. Any layer
name beginning with the underscore character “_" is taken to be the name of the texture file
to be applied to all polygons in that layer. The next character following a leading “_" in the
texture namenustbe “V”, “S”, or “T” to signify a plain vanilla, shaded, or transparent

texture.

Note: “Shading” does not involve the addition of shadow effects to textures. The term merely
refers to the total effect of all of the lights that illuminate a texture.

The third character in the layer name must be another “_", and the remainder of the string
is the name of the file containing the bitmap for the texture. For instance, all polygons on a
layer “ T_TREE23" will have the transparent texture found in the file “TREE23” applied

when the DXF file containing the layer is loaded into WTK.

For the WTK NFF format, polygons to be textured are specified by the addition of a text
string with similar connotation to the AutoCAD layer name just described. Texture names
indicate the file containing the bitmap to be used as a texture, and specify whether the
texture is to be shaded and/or transparent.

In addition, texture placement with either keywords or uv coordinate values is supported.
See Appendix F for complete information about texture specification in the NFF format.

WTK also reads texture information from file formats including 3D Studio, Wavefront, and
MultiGen/ModelGen.

SeeTexture Naming Conventions page 10-8 for usage of texture filename extensions
and the Environment Variables Appendix for usage oMff®MAGES environment
variable.

10-22 WorldToolKit Reference Manual

Deleting Textures

Deleting Textures

The following functions delete a texture from a polygon or geometry, regardless of the way
in which the texture was applied.

WTpoly_deletetexture

void WTpoly_deletetexture(
WTpoly *poly);

This function removes a texture from a polygon that has previously been textured. If the
polygon is not currently textured, this function has no effect. This function also does not
have any effect if the corresponding geometry has been optimized using

WTgeometry _prebuild (see page 6-40),

WTgeometry deletetexture

void WTgeometry_deletetexture(
WTgeometry *geom);

This function removes all textures from a geometry’s surfaces, regardless of the way in
which the textures were applied.This function also does not have any effect if the
corresponding geometry has been optimized ugiiigeometry prebuild (see page 6-40),

Changing Texture Properties

The functions in this section access the shading, transparency, and blending values of a
polygon’s texture.

WTpoly_settexturestyle

FLAG WTpoly_settexturestyle(
WTpoly *poly,
FLAG shaded,
FLAG transparent,

WorldToolKit Reference Manual 10-23

Chapter 10: Textures

FLAG blended);

This function changes the shading, transparency, and blending values of a texture that has
already been applied to a polygon.

The shaded flag indicates whether the texture will be shaded, i.e., whether lighting should
affect the texture. Theeansparent flag indicates whether black pixels in the texture should
be rendered,; if black pixels are not rendered, then they are effectively transparent. The
blended flag indicates whether the polygon’s material color should be blended with the
texture.

If this function is called for a polygon that does not have a texture applied to it, it returns
FALSE and has no effect.

SeeTransparent Texturesn page 10-8 for more information about texture transparency.

WTpoly_gettexturestyle

FLAG WTpoly_gettexturestyle(
WTpoly *poly,
FLAG *shaded,
FLAG *transparent,
FLAG *blended);

This function retrieves the shading, transparency, and blending settings of a texture that has
been applied to a polygon.

If this function is called for a polygon that does not have a texture applied to it, it returns
FALSE and has no effect.

FilteringTextures

Polygons in your simulation appear at different sizes depending on their distance from the
viewpoint. Each texture, on the other hand, comes in at a specific size to take advantage of
hardware capabilities. Since a large texture carelessly applied to a small polygon can
produce unwanted results, WTK automatically processes each texture to match the varying
size of the polygon to which it has been applied.

10-24 WorldToolKit Reference Manual

Setting the Default Texture Filter

During this processing, calldidtering or mipmappingthe texture is scaled to a size that is
appropriate for the polygon's display size.

The two functions listed below let you specify and retrieve the filter values for the texture
already applied to a polygon. Use the functigitexture_setfilter to specify the quality of

the filtering desired. (Note that higher quality requires more computation and rendering
time.)

Setting the Default Texture Filter

The default texture filtering mode for all Unix versions of WTK (and on Integraph
computers) is bilineaWyTFILTER_LINEAR). For all other Windows 32-bit systems, the
default texture filtering mode is pointTFILTER_NEAREST).

Although you can change the texture filtering on a per polygon basis, it is often easier to
set the default texture filtering mode at the beginning of your WTK application and never
change it.

Passing NULL intowTtexture_seftfilter() as the first argument will set the default texture
filter mode. For example:

WTtexture_setfilter(NULL, WTFILTER_LINEAR, WTFILTER_LINEAR)

sets the default magfilter and minfilter to bilinear. The minfilter and magfilter are discussed
in the description oWTtexture_setfilter below.

WTtexture_setffilter

FLAG WTtexture_setfilter(
char *bitmap,
int madfilter,
int minfilter);

This function sets the magnification and minification filters of the texture bitmap, which is
specified by thévitmap argument. If the specified bitmap is NULL, then this function will

set the default magnification and minification filters to the values specified inddyéter

and minfilter arguments, so that all subsequently loaded texture bitmaps will take on these
filter values automatically.

WorldToolKit Reference Manual 10-25

Chapter 10: Textures

The texture magnification filter affects the appearance of textured polygons when the
polygon occupies a portion of the screen that is larger than the texture bitmap, while the
texture minification filter affects the appearance of textured polygons when the polygon
occupies a portion of the screen that is smaller than the texture bitmap.

In your simulation, as a textured polygon moves closer or further away from the viewpoint,
the texture filters affect the image quality of the textured polygon. In essence, the texture
filters are quality/performance knobs, i.e., you can obtain the best performance if you are
unconcerned about the appearance of textured polygons as the polygon moves closer or
farther away from the viewpoint. At the other end of the spectrum, you can obtain the
highest image quality — at the risk of incurring a significant performance penalty.

Here are the possible choices for the magfilter and minfilter arguments to this function. The
choices are listed in order of increasing image quality (and decreasing performance).

Choices for the Madfilter Argument

WTFILTER_NEAREST
WTFILTER_LINEAR

Choices for the Minfilter Argument

WTFILTER_NEAREST
WTFILTER_LINEAR
WTFILTER_NEARESTMIPMAPNEAREST
WTFILTER_LINEARMIPMAPNEAREST
WTFILTER_NEARESTMIPMAPLINEAR
WTFILTER_LINEARMIPMAPLINEAR

The default value for minfilter and magfilterWgTFILTER _LINEAR, except on low end NT
and WIN95 systems where the default minfilter and magfiltevi5§/L TER_NEAREST.
This function will cause the specified texture to be loaded if it is not already loaded.

10-26

WorldToolKit Reference Manual

Manipulating Textures

WTtexture_getfilter

FLAG WTtexture_getfilter(
char *bitmap,
int *madfilter,
int *minfilter);

This function returns the magnification and minification filter values of the specified
texture bitmap. If the specified bitmap is NULL, then this function returns the default
magnification and minification filter values. S@&texture_setfilter above, for more
information.

Manipulating Textures

Once you apply a texture, you can modify it using the functions in this section.

The first group of functiong;exture Rotation, Scaling, and Other Operaticabws you

to modify the texture that is applied to a polygon by using calls to translate, rotate, scale,
etc. WTK internally modifies the polygon's texture uv values when these functions are
called.

The second group of functioridanipulating Texture uv Values Directigllows you to
modify the texture application by accessing the texture uv information directly.

Texture Rotation, Scaling, and Other Operations

WTpoly_rotatetexture

void WTpoly_rotatetexture(
WTpoly *poly,
float angle);

This function rotates the texture on a polygon in 2D (in texture space) on the surface of the
polygon to which the texture is applied. Tdigyle parameter specifies the amount of
relative texture rotation in radians, around the “center of gravity” (arithmetic mean) of the

WorldToolKit Reference Manual 10-27

Chapter 10: Textures

vertices of the polygon. Positive angles are counterclockwise rotations of the texture when
the front face of the polygon is viewed.

WTpoly_scaletexture

void WTpoly_scaletexture(
WTpoly *poly,
float factor);

This function scales textures that are applied to a polygonfa¢tee argument specifies

the scale factor applied homogeneously to the u and v texture coordinates associated with
the polygon vertices. factor>1.0, the u,v coordinates are scaled up, and the texture bitmap

is reduced on the surface of the polygon. Wiaetor <1.0, texture coordinates are scaled
down, and the texture bitmap becomes larger on the surface of the polygon. Figure 10-4
shows a scaled texture.

Figure 10-4: A texture after scaling

10-28

WorldToolKit Reference Manual

Texture Rotation, Scaling, and Other Operations

WTpoly_translatetexture

void WTpoly_translatetexture(
WTpoly *poly,
WTp2 displacement);

This function shifts the origin of the texture bitmap on the polygon surface, to “slide” the
texture around. Theisplacement argument is a vector indicating how the applied texture
is to be translated in u,v space. Figure 10-5 shows a translated texture.

Figure 10-5: A texture after translation.

WTpoly_mirrortexture

void WTpoly_mirrortexture(
WTpoly *poly);

This function “flips” an applied texture in 3D about the v axis of texture space. If you wish
to mirror a texture about the u axis, W8@poly_mirrortexture to mirror it about the v axis,

and then rotate the texture througtusingWTpoly_rotatetexture. Figure 10-6 shows a
“mirrored” texture.

WorldToolKit Reference Manual 10-29

Chapter 10: Textures

Figure 10-6: A “mirrored” texture.

WTpoly_stretchtexture

void WTpoly_stretchtexture(
WTpoly *poly,
float u,
float v);

This function stretches a polygon’s texture, with separate scale facodsy applied to

the u and v (horizontal and vertical) texture coordinates associated with the polygon
vertices. Ifu>1.0, then the texture u coordinates (horizontal coordinates in texture space)
are scaled up, and the texture bitmap is reduced in the horizontal dimension on the surface
of the polygon. Whew<1.0, horizontal texture coordinates are scaled down, and the
texture bitmap becomes larger in the horizontal dimension on the surface of the polygon.
Similarly, values ofv>1.0 andv<1.0 scale the texture vertically in texture space so that it
appears reduced or enlarged respectively.

If you wish to save out to NFF the precise texture application obtained using
WTpoly_stretchtexture, you must write out the file using uv texture coordinates. (See the
sectionApplying Textures with Explicit uv Values page 10-13.) There is no NFF
parameter analogous tat, scale, trans, andmirror for texture stretching.

10-30

WorldToolKit Reference Manual

Texture Rotation, Scaling, and Other Operations

WTpoly_gettextureinfo

FLAG WTpoly_gettextureinfo(
WTpoly *poly,
WTtextureinfo *info);

This function retrieves texture information for a specified polygon and places it in the
specifiedWTtextureinfo structure. Specifically, it obtains the texture’s name (e.g., the
filename passed tW/Tpoly settexture), and whether it is shaded and/or transparent, the
cumulative amounts of rotation, scaling, and translation applied to the texture, and whether
the texture is mirrored. If a texture has been mirrored an even number of times (by calls to
WTpoly_mirrortexture), it is considered to be not mirrored.

Theinfo argument must be a pointer to a declaté&dextureinfo structure. The return value
TRUE indicates success. If the specified polygon has no texture, then FALSE is returned.
The following example demonstrates how to use this function:

WTtextureinfo info;
WTpoly *poly;
FLAG success;

WTmessage(“poly %p “, poly);
success = WTpoly_gettextureinfo(poly, &info);
if (success) {
WTmessage(“has texture %s, rotation %f scale %f mirrored %d\n”,
info.name, info.rotation, info.scale, info.mirrored);
WTmessage(“translation %f %f\n”, info.translation[X], info.translation[Y]);
WTmessage(“shaded %d transparent %d\n”, info.shaded, info.transparent);

}
else {

WTwarning(“has no texture.\n");
}

WorldToolKit Reference Manual 10-31

Chapter 10: Textures

Manipulating Texture uv Values Directly

WTpoly_setuv

FLAG WTpoly_setuv(
WTpoly *poly,
float *uarray,
float *varray);

This function changes the way a texture is mapped to a polygon’s vertices (on polygons that
already have a texture applied). The arnaygay andvarray are described under
WTpoly_settextureuv on page 10-13.

WTpoly_getuv

FLAG WTpoly_getuv(
WTpoly *poly,
float *uarray,
float *varray);

This function places the uv coordinates of a polygon's texture into the specified arrays. The
arraysuarray andvarray must be allocated by the application, and must have at least as
many elements as there are vertices in the polygon (which can be obtained using
WTpoly_numvertices).

This function returns FALSE goly is NULL or if the polygon does not have a texture, and
otherwise returns TRUE.

WTgeometry_setuv

FLAG WTgeometry setuv(
WTgeometry *geom,
float(*fu)(WTp3),
float(*fv)(WTp3));

This function changes the way textures are mapped to the polygons of a geometry. It does
not apply a new texture to the geometry's polygons. Rather, it simply changes the uv values

10-32

WorldToolKit Reference Manual

Screen Loading

for the polygons to which textures have already been applied. The argumamdé, are
described undewTgeometry_settextureuv on page 10-15.

Screen Loading

WTscreen_load

FLAG WTscreen_load(
char *filename);

This function loads an image file to each WTK window. The display occurs immediately
(i.e., doesn’t wait for the rendering loop). This function returns zero if successful, or a non-
zero value if it's not successful.

WTwindow_getimage

FLAG WTwindow_getimage(
WTwindow *window,
int X,
inty,
int width,
int height,
unsigned char *image);

This function gets an image from the specified window. iifege parameter returns a
pointer to the window image. Th&age data is in a format that can be used by the
WTtexture_replace function. Thex andy values specify where to start retrieving the image
in the window. The (0,0) coordinates specify the lower left corner of the window.

The width argument specifies how many pixels per scan line to retrieve amditthe
argument specifies how many scan lines to retrieve. If the x, y coordinate is outside the
window, the function returns FALSE. If either € width) or (y + height) are outside the
window, then the function returns FALSE. The&ge argument must be allocated before
this function is called and must have a size greater than or edaat tonesthe width

value times the height value. For an example of how to use this functich Rese-view
Mirror example using WTtexture_replaoa page 10-20.

WorldToolKit Reference Manual 10-33

Chapter 10: Textures

10-34 WorldToolKit Reference Manual

11

Tasks

Introduction

Usually, you use the user-defined universe action function to describe the overall activity
of your WTK application. However, you can also tesksto assign behaviors to individual
objects. You can specify the behavior of any WTK data structure (or, in fact, any C
structure) by assigning tasks to it.

Here are a few examples of the kinds of behavior you can specify:

* Movement
* Change in appearance
» Testing for intersections
e Triggering other behavior
e Attaching a sensor
A WTK “task object” (awTtask) contains a user-defined task function, a pointer to the

structure or WTK object with which the task is associated, and a priority value that specifies
the order in which the task is executed relative to other tasks as the simulation runs.

You can add, remove, and delete tasks from a simulation. This chapter lists the WTK task
functions.

Chapter 11: Tasks

Creation and Deletion Functions

WTtask new

WTtask *WTtask_new(
void *objptr,
WTtask_function fptr,
float priority);

This function creates a newTtask and activates it, so that it is automatically executed as
the simulation runs. Tasks created by this function are executed in the simulation loop as
shown in figure 11-1.

WTuniverse_go()
to enter simulation loop

A

Sensors are read.

A

The universe’s action function is called.
The order in L
which these
items are _ Objects are updated with sensor input.
executed is user-
definable. ¢

I Objects perform tasks.

v

Paths in record or playback mode are stepped.

v

The universe is rendered.

\4

WTuniverse_stop()
to exit simulation loop

Figure 11-1: The default simulation loop

11-2 WorldToolKit Reference Manual

Creation and Deletion Functions

The argumenbbjptr is a pointer to the WTK object or C structure with which the task is
associated. The same object can perform more than one task. This can be achieved by
calling WTtask_new for each task that you wish to associate wijptr.

The argumenfptr is the task functionWTtask_function) that is executed as the WTK
simulation runs. AWTtask_function is typedefined as a function taking a void* argument
and returning a void. You must define the functimnwithin the WTK application. As the
WTK simulation runs, WTK passes in the specified void* pointgwtr to the specified
WTtask_function fptr.

The priority argument specifies the order in which tasks are executed within the tasks slot
in the simulation loop shown in figure 11-1. Lower-numbered tasks are executed before
higher-numbered ones.

If you call the “delete” function for any of these WTK object typ#Snode, WTpath,
WTsensor, WTviewpoint, or WTwindow, the task for this WTK object is automatically
deleted.

For example, to add a task to a light, your application would include code similar to the
following:

WTnode *light;
WTtask _new(light, light_task,2.5f);

wherelight _task is defined as follows:

void light_task(WTnode *light) {
/* code that changes the light */

}
In the following example, a C structure is assigned a task that operates on itself;

typedef struct mydata {
/* data declarations */
} mydata;

void mytask(mydata *myptr) {
/* do something to myptr */

WorldToolKit Reference Manual 11-3

Chapter 11: Tasks

/*in your main program: */
mydata *myptr;
WTtask_new(myptr, mytask,1.0f);

SeeHow Do | Associate A Task With a Particular Objeat?page A-21 for an example of
how to associate a task with a particular object.

WTtask remove

FLAG WTtask_remove(
WTtask *task);

This function removes a task from the simulation (deactivates it) without deleting the
WTtask. A task which has been deactivated is no long executed as the simulation runs. A
task that has been deactivated can be reactivated by daflitagk add (see below).

If this function is called from a task function, it affects the current frame, provided the task
for which the function is called has not already been executed that frame.

WTtask_add

FLAG WTtask_add(
WTtask *task);

This function adds a task back to the simulation (activates it).

If this function is called from a task function, it affects the current frame, provided the task
for which the function is called has not already been executed that frame.

WTtask delete

FLAG WTtask delete(
WTtask *task);

This function deletes a task (destroys it). Deleting a task both removes it from the
simulation so that it is no longer executed as the simulation runs, and also frees the memory
associated with the/Ttask object passed in. The task pointer passed in is invalid after this
function is called.

11-4 WorldToolKit Reference Manual

Other WTtask Functions

If this function is called from a task function, it affects the current frame, provided the task
for which the function is called has not already been executed that frame.

Other WTtask Functions

WTtask_setpriority

FLAG WTtask_setpriority(
WTtask *task,
float priority);

This function sets the priority of a task. Tasks with lower-number priority values are
executed before tasks with higher values.

If this function is called from a task function, so that the priority of a task (possibly
including itself) is changed during execution, the global effect will not take place until the
next frame. However, calling/Ttask_add, WTtask_remove, or WTtask_delete does affect

the current frame, (if the task for which the function is called has not already been executed
that frame).

WTtask_getpriority

float WTtask_getpriority(
WTtask *task);

This function returns the priority of a task. The task priority is the value set either when
WTtask_new is called, or by a call te/Ttask_setpriority.

WTtask_getfunction

WTtask_function WTtask_getfunction(
WTtask *task);

This function returns a task’s function.

WorldToolKit Reference Manual 11-5

Chapter 11: Tasks

WTuniverse_gettaskbypointer

WTtask *WTuniverse_gettaskbypointer(
void *pointer,
int numtask);

This function obtains th&/Ttask associated with an object pointer. The argumemttask
is the number of the task associated with this particular object pointer.

For example, to get the first task assigned to the specified object pointevTtitsk new,

pass in 0 (zero) fatumtask. Pass in 1 (one) forumtask to get the second task assigned to
the specified object pointer, etc. If three tasks were originally assigned to an object pointer,
but the second task was deleted witiitask_delete, then to get the third task assigned to
this object pointer, pass in 1 fosmtask, because the original third task is now the object’s
second task.

11-6 WorldToolKit Reference Manual

12
Lights

Introduction

Lights include the lights that may be part of a file you load into WTK and the lights you
dynamically create in WTK. You can use lights to illuminate some or all of the geometries
in a scene. WTK supports several types of lighting: ambient, directed, point, and spot. Each
type of light illuminates geometries in a different way. This chapter describes the WTK
light nodes and lists their functions.

Light Nodes

A light node is a scene graph node that you use to specify a WTK light (ambient, point,
directional, or spot). WTK supports the following four types light nodes:

Ambient light node A scene graph node that you use to store ambient light.
Ambient light is background light that illuminates all
surfaces equally regardless of their position or orientation.

Directed light node A scene graph node that you use to store directed light.
Directed light is a light source that has direction but no
(finite) position. You can use directed light to emulate the
effects of sunlight. Directed light provides illumination as
a function of the angle between the light direction and the
polygon normal, or, in the case of Gouraud shading,
between the light direction and the vertex normals.

Chapter 12: Lights

Point light node

Spot light node

A scene graph node that you use to store point light. Point
light is an omni-directional source of lighting that you can
position. It emanates radially from the light position, and
may attenuate (drop-off) with distance. Point light provides
illumination as a function of the angle between the vector
from the light position and the polygon normal, or, in the
case of Gouraud shading, between the light direction and
the vertex normals.

A scene graph node that you use to store spot light. Spot
light is light that illuminates a small area, within a cone of
specified angle (e.g., an automobile headlight). Spot light
intensity may fall off toward the edge of the light cone
(controlled by the exponent value), and attenuate with
distance. Spot light provides illumination as a function of
the angle between the vector from the light position and the
polygon normal, or, in the case of Gouraud shading,
between the light direction and the vertex normals.

Light Node Attributes

Other than ambient light nodes, all other light nodes exhibit three types of color: ambient,
diffuse, and specular. After you have created a light node, you can set these color attributes
for it or accept the defaults. The easiest way of setting the light’s color is to specify a diffuse
color value, leaving the other color attributes (the ambient and specular components) in the

light set to 0 (zero).

There are different attributes available for different types of lights. However, all of these
attributes aren’t applicable to all light nodes.

This is the full set of attributes available for modifying light nodes:

Position

Direction

Intensity

The location of the light in 3D space, as affected by any
existing transformation.

The direction of the light rays, as affected by any existing
transformation.

The brightness of the light, with a maximum value of 1.0.
See page 12-3 for more information.

12-2

WorldToolKit Reference Manual

Calculating Color

Ambient color The color of the portion of the light that illuminates all
surfaces equally regardless of their position or orientation.

Diffuse color The color of the portion of the light which illuminates
polygons as a function of the angle between the light
direction and the polygon (or vertex) normal.

Specular color The color of the portion of light that affects highlights that
are reflected off a shiny surface.

Attenuation The degree to which a point or spot light’s intensity
decreases with increasing distance from the position of the
light.

Angle The half-angle of the spot light cone. This attribute is used

only with spot lights.

Exponent Specifies how the intensity of a spot light falls off from the
center to the edge of the spot light cone. This attribute is
used only with spot lights.

Calculating Color

Both a light and the material it illuminates have ambient, diffuse, and specular color values.
The precise method of calculating the final perceived material color is explained in the
Open GL Specification. Briefly, however, the ambient values for both the light and the
material are multiplied together to producear similar calculations are also performed

to produce terms for diffuse and specular colors. These terms are then added together to
achieve the perceived color.

Determining Intensity

The intensity of the color of a polygon is determined by adding the contributions from each
of the light sources in the universe. If the result is 0.0, then the polygon will be black, and
if the result is 1.0, then the polygon will be of maximum brightness. At maximum
brightness, an untextured polygon is rendered with the color assigned to it. At less than
maximum brightness, the polygon is rendered with a darker shade of that color. Anything
greater than 1.0 is also considered to be maximum brightness. Geometries are dynamically
lit, so that shading on a geometry’s surfaces is automatically recomputed each frame.

WorldToolKit Reference Manual 12-3

Chapter 12: Lights

Creating Shadows

Polygons do not cast shadows. Therefore, lighting on a polygon is not affected by polygons
which might happen to be between it and a light source. However, the effects of shadowing
for a model can be precomputed with what is known as “radiosity preprocessing.” This
turns the model surfaces into a mesh and stores shadowing and other lighting information
as vertex colors in the new model. See the sevtotex Colors and Radiosion page 6-9

in theGeometriechapter.

Using Light Files

WTK supports a keyword-driven light file format. Sample light files containing directed,
spot, and point lights are provided in the WTK distribution in the directory déjlefies.

You can save your simulation’s current lighting to a file usirilightnode_save. Lights

are read in from file usinw/Tlightnode_load.

Performance

The maximum number of (non-ambient) lights that can exist in the simulation is eight.
However, the greater the number of lights, the greater the performance impact of lighting
computations. The time to compute the total effect of all of the lights playing on a
geometry’s surfaces is proportional to the number of lights in the simulation. For this
reason, if at any time you wish to turn a light off (that is, disable it), it's better to do so with
a call towTnode_enable (with the enable flag set to FALSE), than to set the light's
intensity to 0.0 usingV/Tlightnode_setintensity. With WTnode_enable, the light is disabled
from the simulation and no longer enters into shading computations. With
WTlightnode_setintensity, however, the light remains part of the simulation and therefore
impacts the performance of the simulation. You can also remove a light node from a
simulation by detaching the node from the scene graph.

In general, spot lights have the greatest impact on performance, followed by point lights,
then directed lights. In addition, attenuated lights have a greater impact on performance
than non-attenuated lights (se&lightnode_setattenuation on page 12-17).

Your simulation may contain an unlimited number of ambient light nodes. Unlike spot,
point, and directed lights, ambient lights do not significantly increase lighting
computations, and hence do not have a significant impact on performance. By default, a

12-4 WorldToolKit Reference Manual

Constructing Light Nodes

simulation always contains a white ambient light whose intensity is 0.4. Although this
default ambient light is inaccessible to you, its effect can be neutralized by adding an
ambient light whose intensity is 0.0, so that your simulation effectively has no ambient
light.

See alsd/ertex Colors and Radiosign page 6- theGeometrieshapter, and the
functionsWTpoly_settexture on page 10-13 and/Tpoly_settexturestyle on page 10-11 for
information about applying shaded textures.

Constructing Light Nodes

WTlightnode_newambient

WTnode *WTlightnode_newambient (
WTnode *parent);

This function creates an ambient light node, and adds it to the scene graph after the last
child of the specified parent node. If NULL is specified for the parent argument, then the
node is created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild. The default ambient light color is white.

Ambient light illuminates the surfaces of graphical objects regardless of their position or
orientation. The intensity and color of the ambient light can be set and retrieved with these
functions:WTlightnode_setintensity, WTlightnode_getintensity, WTlightnode_setambient,

and WTlightnode_getambient.

You can also set ambient light intensity and color using the WTK resource facility — see
Resource Filesn page 2-28. The intensity and color of the ambient light can also be
specified in a light file (se&/Tlightnode load on page 12-9).

The light node you create will have the default values listed below for the red, green, and
blue components of its color. This chapter lists several functions that you can use to change
an ambient light's properties.

Default values:

Ambient color 1.0, 1.0, 1.0 (white)

WorldToolKit Reference Manual 12-5

Chapter 12: Lights

Intensity 0.4

When there are multiple ambient light nodes in a scene graph, successive ambient light
nodes in the scene graph traversal replace the previous ambient light node, i.e. the effects
of ambient light nodes are not cumulative. By default, a simulation always contains a white
ambient light whose intensity is 0.4. Although this default ambient light is inaccessible to
you, its effect can be cancelled by adding an ambient light node to the scene graph. By
adding an ambient light node whose intensity is 0.0, you can force your scene to have
absolutely no ambient light.

WTlightnode_newdirected

WTnode*WTlightnode_newdirected (
WTnode *parent);

This function creates a directed light node, and adds it to the scene graph after the last child
of the specified parent node. If NULL is specified for the parent argument, then the node is
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild. Directed lighting can be thought of as parallel

rays emanating from a light source at infinity. Once created, a directed light’s properties
can be modified using the functions describedigit Propertieson page 12-12.

One of the properties of a light node is color; ambient, diffuse and specular colors combine
to create the light produced by a light node. Each of these colors has the default red, green,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient color 0.0, 0.0, 0.0
Diffuse color 1.0,1.0,1.0
Specular color 1.0,1.0,1.0

These are the defaults for the other properties of a directed light node:

Intensity 1.0
Direction 0.0,0.0,1.0

12-6

WorldToolKit Reference Manual

Constructing Light Nodes

WTlightnode_newpoint

WTnode *WTlightnode_newpoint (
WTnode *parent);

This function creates a point light node, and adds it to the scene graph after the last child of
the specified parent node. If NULL is specified for the parent argument, then the node is
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild. In contrast to a directed light node, whose rays

all point in a single direction, the rays of light from a point light are directed radially
outward from the light point source.

By default, a point light is a white light which does not attenuate with distance from the
light position. Once created, a point light's properties can be modified using the functions
described irLight Propertieson page 12-12.

SeeWTlightnode_load on page 12-9 for information about creating point lights from a file.
One of the properties of a light node is color; ambient, diffuse and specular colors combine

to create the light produced by a light node. Each of these colors has the default red, green,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient 0.0, 0.0, 0.0
Diffuse 1.0,1.0,1.0
Specular 1.0,1.0,1.0

These are the defaults for the other properties of a point light node:

Intensity 1.0
Position 0.0,0.0,0.0
Attenuation 1.0, 0.0, 0.0

WorldToolKit Reference Manual 12-7

Chapter 12: Lights

WTlightnode_newspot

WTnode *WTlightnode_newspot (
WTnode *parent);

This function creates a spot light node, and adds it to the scene graph after the last child of
the specified parent node. If NULL is specified for the parent argument, then the node is
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild.

A spot light node allows you to provide spot light that emanates radially from the spot light
source, within a cone of specified angle centered about the spot light direction. Spot lights
have arexponent value, which specifies how the intensity of the spot light falls off toward

the edge of the spot light cone. This value must be between 1.0 and 128.0, or it may be equal
to 0.0. The default exponent value is 0.@&xbonent is equal to 0.0, then the light does not

fall off at all from the center to the edge of the spotlight cone. Increasing vakergmoént
represent sharper fall off toward the edge of the light cone.

A lights’s exponent value should not be confused with its attenuation, which determines
how light intensity falls off away from thagositionof the light. See figure 12-1.

Exponent

?

-

Attenuation —

Figure 12-1: A spot light's exponent and attenuation values

By default, a spot light node is a white light tdats notattenuate with distance from the
light position. Once created, a spot light's properties can be modified using the functions
in Light Propertieson page 12-12. Also se&Tlightnode_setattenuation on page 12-17.

12-8 WorldToolKit Reference Manual

Constructing Light Nodes

Spot lights have aangle value which is the half-angle of the spotlight cone, specified in
radians, ranging between 0.0 and PI/2 (90 degrees).

One of the properties of a light node is color; ambient, diffuse and specular colors combine
to create the light produced by a light node. Each of these colors has the default red, green,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient 0.0,0.0,0.0
Diffuse 1.0,1.0,1.0
Specular 1.0,1.0,1.0

These are the defaults for the other properties of a spot light node:

Intensity 1.0

Direction 0.0, 0.0, 1.0

Position 0.0, 0.0, 0.0

Exponent 0.0

Angle pi/8.0 radians = 22.5 degrees
Attenuation 1.0, 0.0, 0.0

WTlightnode_load

FLAG WTlightnode_load(
WTnode *parent,
char *filename);

This function reads a WTK light format file and creates spot, point, directed or ambient
light nodes as indicated in the file. It attaches them as children to the specified parent node.

This function can read existing light files from this release of WTK, Release 6, and WTK
V2.1. The light format has also been extended to be keyword driven, tolerant of white
space, and to support comments and multi-line light specifications.

Directed light parameters are specified as follows:

dlirected] [dir <X> <Y> <Z>] [int <V>]
[amb <R> <G>] [diff <R> <G>] [spec <R> <G>]

WorldToolKit Reference Manual 12-9

Chapter 12: Lights

Point light parameters are specified as follows:

ploint] [pos <X> <Y> <Z>] [int <V>] [att <X> <Y> <Z>]
[amb <R> <G>] [diff <R> <G>] [spec <R> <G>]

Spot light parameters are specified as follows:

s[pot] [pos <X> <Y> <Z>] [dir <X> <Y> <Z>] [int <V>] [angle[rad] <V>] [exp <V>]
[att <a0> <al> <a2>] [amb <R> <G>] [diff <R> <G>] [spec <R> <G>]

Ambient light parameters are specified as follows:

a[mbient] [int <V>] [amb <R> <G>]

The square brackets [] represent optional parameters or text. If you leave off any optional
parameters, default values are used. Extra white space is ignored. To allow for comments,
any text on a line following “//” characters is ignored. Each light does not have to have all
its options on the same line. All parameters except the first, which specifies the light type,
can be given in any order.

The values in angle brackets <> can be any floating point value, within the following
ranges:

* Theint parameter is the light intensity; it may range from 0.0 to 1.0. This
parameter is part of the light specification for all light node types.

* Theangle parameter is used only for spot light nodes. It is an angular radius in
degrees, so it may range from 0.0 to 90.0. If the keyword “anglerad” is used rather
than “angle”, the value is taken to be in radians, and so should be between 0.0 and
Pl/2, or 1.57.

» Theexp parameter is an exponential factor which must be between 1.0 and 128.0,
or be equal to 0.0. This parameter is used only for spot light nodes. See the
function WTlightnode_setexponent on page 12-19.

e Theattparameter defines attenuation values. See the functions
WTlightnode _newspot on page 12-8 and/Tlightnode_newpoint on page 12-7 for
definitions of appropriate values. The default attenuation values are 1.0 0.0 0.0
(representing no attenuation). The attenuation parameters can only be specified
for point and spot light nodes; directed and ambient light nodes may not be
attenuated.

12-10

WorldToolKit Reference Manual

Constructing Light Nodes

» Thedir parameter defines the direction of the light node.dihdirection vectors
are normalized if they are of non-zero magnitude. This parameter is used only for
directed and spot light nodes, not for point and ambient light nodes.

» Thepos parameter defines the position of the light node. This parameter is used
only for point and spot light nodes, not for direct and ambient light nodes.

e Color can be specified by the parameters, diff, andspec, which represent
ambient, diffuse, and specular colors. Directed, point, and spot light nodes support
all the three colors, whereas ambient light nodes support only ambient light color.
The<R>, <G>, and for each of the colors represents the red, green, and blue
colors. Their values vary from 0.0 to 1.0.

Here’s an example file:

ddir010int 1.0 amb 0.0 0.0 0.0 diff 1.0 1.0 0.0 spec 1.0 1.0 1.0 // Light 1
p pos -30 0 0 int 0.3 amb 0.0 0.0 0.0 diff 0.0 0.0 1.0 spec 1.0 1.0 1.0 // Light 2
p pos 30 0 0 int 0.3 amb 0.0 0.0 0.0 diff 0.0 1.0 0.0 spec 1.0 1.0 1.0 // Light 3
s pos-2020-20dir111int0.8 angle 20 exp 1.0

amb 0.0 0.0 0.0 diff 1.0 1.0 1.0 spec 1.0 1.0 1.0 // Light 4
aint0.4amb 1.0 1.0 1.0 // Light 5

This file contains five lights. Note that the fourth light has some of its options on a second
line. Light one is a yellow directional light pointing straight down with full intensity. Light
two and three are dim blue and green point lights to the left and right of the origin. Light
four is a spotlight pointing diagonally down toward the origin, with a cone radius of 20
degrees. Light five is a dim white ambient light.

WTlightnode_save

FLAG WTlightnode_save(
WTnode *light,
char *filename);

This function saves out an ambient, directed, point or spot light node to a file with the
specified name. The file created has the format described aboveWdndgitnode load.

WorldToolKit Reference Manual 12-11

Chapter 12: Lights

Light Properties

You can access and change the properties (e.g., position, direction, color, and intensity) of
WTK ambient, directed, point, and spot lights with the functions in this section. When you
make changes to lights, the shading on graphical entities is automatically updated.

If you're not concerned about the ambient and specular color components of a particular
light, the easiest way of setting the light's color is to specify a diffuse color value, leaving
the other color components of the light set to their default values.

Note that a light illuminates a surface only if the light and surface have color components
in common. For example, while a white light (which contains all color components)
illuminates a surface of any color, and a red light illuminates any surface containing red in
it, a red light does not add to the illumination of a surface which is purely blue or green.

WTlightnode_setposition

FLAG WTlightnode_setposition(
WTnode *light,
WTp3 p);

This function sets the 3D position of a light to the point passed in (point and spot lights
only). The default light position is (0,0,0).

Point and spot lights are affected by light position, as they emanate radially from their
source. Directed and ambient lights are unaffected by light position.

WTlightnode_getposition

FLAG WTlightnode_getposition(
WTnode *light,
WTp3 p);

This function gets the position of the light node and stores it ip ffaameter. Use
WTlightnode_setposition to change a light’s position.

12-12

WorldToolKit Reference Manual

Light Properties

WTlightnode_setdirection

void WTlightnode_setdirection(
WTnode *light.
WTp3 dir);

This function sets the direction of a light to the vector passed in (spot and directed lights
only). Spot and directed lights are affected by light direction as these light types emanate
light in a particular direction. Point and ambient lights are unaffected by light direction.

The directionvector passed irdfy) does not have to be normalized, that is, it is not required
to have a length equal to one. (This function automatically normalizes the direction vector
for you.) However, if the three components of the direction vector are all O (zero), the
function returns without setting the light’s direction.

In the following example, a light's direction is set to lie in the X-Z plane, with a specified
angletheta from the X axis.

void orient_light(WTnode *light, double theta)

{
WTp3 dir;
dir[Y] = 0.0;
dir[X] = cos(theta);
dir[Z] = sin(theta);
WTlightnode_setdirection(light, dir);
}

WTlightnode_getdirection

void WTlightnode_getdirection(
WTnode *light,
WTp3 dir);

This function gets the direction of a light and stores it irothparameter. This direction
vector is normalized to have length equal to 1.0.

WorldToolKit Reference Manual 12-13

Chapter 12: Lights

WTlightnode_setintensity

void WTlightnode_ setintensity(
WTnode *light,
float x);

This function sets the intensity of a lighttowhich should be between 0.0 and 1.0. Since

the computer can display colors only between a minimum and maximum intensity (which
correspond to 0.0 and 1.0), any intensity values that are requested below or above this range
are set to 0.0 and 1.0 respectively.

Examples of usingVTlightnode_setintensity are given below, under
WTlightnode_getintensity.

WTlightnode_getintensity

float WTlightnode_getintensity(
WTnode *light);

This function returns a light’s intensity value.

The following example uses the functionglightnode_getintensity and
WTlightnode_setintensity to increase the intensity of a light by five percent.

WTnode *light;
WTlightnode_setintensity(light, 1.05 * WTlight_getintensity(light));

WTlightnode_setambient

void WTlightnode_setambient(
WTnode *light,
floatr,
float g,
float b);

This function sets the ambient component of a light’s color./;Bhevalues must be
between 0.0 and 1.0. By defaultg, andb are each equal to 1.0 for ambient lights, while
r, g, andb are each equal to 0.0 for directed, point, and spot lights.

12-14 WorldToolKit Reference Manual

Light Properties

WTlightnode_setdiffuse

void WTlightnode_setdiffuse(
WTnode *light,
floatr,
float g,
float b);

This function sets the diffuse component of a light's color (directed, point, and spot lights
only). Ther,g,b values must be between 0.0 and 1.0. By defaglb,are each equal to 1.0,
giving white light.

WTlightnode_setspecular

void WTlightnode_setspecular(
WTnode *light,
float r,
float g,
float b);

This function sets the specular component of a light’s color (directed, point, and spot lights
only). Ther,g,b values must be between 0.0 and 1.0. By defaglb,are each equal to 1.0,
giving white light.

WTlightnode_getambient

void WTlightnode_getambient(
WTnode *light,
float *r,
float *g,
float *b);

This function gets the ambient red, green, and blue components of a light’s color. Each
component is in the range 0.0 and 1.0. When all three components equal 1.0, the light is

white.

Example of usage:

WorldToolKit Reference Manual 12-15

Chapter 12: Lights

WTnode *light;

floatr, g, b;

WTlightnode_getambient(light, &r, &g, &b);

WTmessage(“light ambient color components are: red: %f green: %f blue: %f\n",r,g,b);

WTlightnode_getdiffuse

void WTlightnode_getdiffuse(
WTnode *light,
float *r,
float *g,
float *b);

This function gets the diffuse red, green, and blue components of a light’s color. Each
component is in the range 0.0 and 1.0. When all three components equal 1.0, the light is
white.

Example of usage:

WTnode *light;

floatr, g, b;

WTlightnode_getdiffuse(light, &r, &g, &b);

WTmessage(“light diffuse color components are: red: %f green: %f blue: %f\n”,r,g,b);

WTlightnode_getspecular

void WTlightnode_getspecular(
WTnode *light,
float *r,
float *g,
float *b);

This function obtains the specular red, green, and blue components of a light's color. Each
component is in the range 0.0 and 1.0. When all three components equal 1.0, the light is
white.

12-16

WorldToolKit Reference Manual

Light Properties

WTlightnode_setattenuation

void WTlightnode_setattenuation(
WTnode *light,
float attenO,
float atten1,
float atten2);

This function sets the attenuation value for point and spot lights (the rate at which the light
falls off as the distance from the light increases). By default, point and spot lights are not
attenuated: the default attenuation coefficientsaae®0=1.0, atten1=0.0, atten2=0.0.

The light passed in to this function must be either a point light or a spot light. Ambient lights
and directed lights (which are located at infinity) can not be attenuated.

This function sets the coefficients of the light attenuation factor, which is computed at each
vertex as:

1.0/(atten0 + attenl*dist + atten2*dist*dist)

wheredist is the distance between a light source and the vertex it is illuminating. The value
of the floating point numbeatten0 must be greater thamTFUZZ, while bothatten1 and
atten2 must be greater than or equal to 0.0.

The value ofatten0 must be greater thamTFUZZ. If it is not, then this function returns

with no effect. Passing in non-zero valuesditgn1 or atten2 (especiallyatten2) can cause

a very rapid decrease of light intensity with increasing distance from the light. This
decrease in intensity may be much greater than you might expect. If you call this function,
and it seems that your light is no longer illuminating the scene, try decreasing the values of
atten1 andatten2.

Also note that using attenuated lights (that is, having non-zero valuagetar or atten?)
may impact performance, with a non-zero valueafan2 having a greater impact than a
non-zero value foatten1.

WorldToolKit Reference Manual 12-17

Chapter 12: Lights

In the following example, light attenuation is set to fall offia®(1.0 + dist):

WTnode *light;
WTlight_setattenuation(light, 1.0, 1.0, 0.0);

See alsdWVTlightnode _newpoint on page 12-7WTlightnode_newspot on page 12-8, and
WTlightnode_gettype on page 12-18.

WTlightnode_getattenuation

void WTlightnode_getattenuation(
WTnode *light,
float *attenO,
float *atten1,
float *atten2);

This function obtains a point or spot light's attenuation coefficients. For example:

WTnode *light;
float attenO, attenl, atten2;
WTlightnode_getattenuation(light, &atten0, &attenl, &atten2);

WTlightnode_gettype

int WTlightnode_gettype(
WTnode *light);

This function determines which light constructor function was used to create the light (i.e.,
tells you what type of light it is).

A light's type is determined by which light constructor function was used to construct the
light: WTlightnode_newdirected, WTlightnode_newspot, WTlightnode_newpoint, or
WTlightnode_newambient), or by the type specified in the light file if the light was
constructed by a call ta/Tlightnode_load.

12-18 WorldToolKit Reference Manual

Light Properties

This function returns one of these values

WTLIGHTTYPE_AMBIENT
WTLIGHTTYPE_DIRECTED
WTLIGHTTYPE_POINT
WTLIGHTTYPE_SPOT

WTlightnode_setangle

void WTlightnode_setangle(
WTnode *light,
float angle);

This function controls the size of the spot light's cone. The angle passed in to this function
is specified in radians and must be between 0.0 and PI/2. This radians value represents the
half-angle of the spot light cone. The default value of the half-angle of a spot light is P1/8
radians (22.5 degrees).

This function is used only for spot lights, and returns with no effect if another type of light
is passed in.

WTlightnode_getangle

float WTlightnode_getangle(
WTnode *light);

This function returns the half-angle of a spot light's cone. If a light that is not a spot light is
passed in (se®/Tlightnode_gettype on page 12-18), then -1.0 is returned.

WTlightnode_setexponent

void WTlightnode_setexponent(
WTnode *light,
float val);

This function specifies how the intensity of a spot light falls off within the spot light cone.
Spot lights have aaxponent value, which specifies how the intensity of the spot light falls
off toward the edge of the spot light cone. This value must be between 1.0 and 128.0, or it

WorldToolKit Reference Manual 12-19

Chapter 12: Lights

may be equal to 0.0. The default exponent value is Ce@ptinent is equal to 0.0, then the
light does not fall off at all from the center to the edge of the spotlight cone. Increasing
values ofexponent represent sharper fall off toward the edge of the light cone.

A lights’s exponent value should not be confused with its attenuation, which determines
how light intensity falls off away from th@ositionof the light. See figure 12-1 on page
12-8.

By default, a spot light node is a white light tdats noattenuate with distance from the
light position. SeeVTlightnode_setattenuation on page 12-17.

WTlightnode_setexponent is used only for spot lights, and returns with no effect if another
type of light is passed in.

WTlightnode_getexponent

float WTlightnode_getexponent(
WTnode *light);

This function returns the exponent of a spot light. If a light that is not a spot light is passed
in, then -1.0 is returned.

12-20 WorldToolKit Reference Manual

13

Sensors

This chapter explains how most sensors work with WTK and shows which sensors are
supported (not all sensors work on every platform). Use this chapter to configure sensors
with your application.

The sections at the beginning of this chapter apply to all sensors:

Introduction to the Sensor Classrovides a general introduction to sensors and
lists the sensors that are currently supported by WTK. (see page 13-2)

Sensor Lag and Frame-ratedescribes concepts related to sensors that have a
direct impact on the effectiveness of your application’s interactivity. (see page
13-5)

Sensor Construction and Destructierlescribes how to create and remove a
sensor object. (see page 13-5)

Accessing Sensor Stat@lescribes how to access a sensor’s information directly,
so you can, for example, set the sensitivity for a sensor or retrieve its rotation
information. (see page 13-11)

Rotating Sensor Inputdescribes how to change the reference frame for a sensor.
(see page 13-16)

Using Different Baud Ratesdescribes how to set a specific baud rate for a sensor.
(see page 13-22)

Sensor Name describes how to set and retrieve the name of a sensor. (see page
13-23)

User-specifiable Sensor Datadescribes how to store or retrieve data in a sensor
object. (see page 13-23)

Custom Sensor Driversdescribes how to create your own sensor driver, should
you wish to use a sensor that is not currently supported by WTK. (see page 13-24)
See also Appendix BYriting a Sensor Driver

The remaining sections provide information on specific WTK-supported drivers. The table
on page 13-3 lists the WTK-supported sensors, on which platorms they are supported, and
where the relevant information is located in this chapter.

Chapter 13: Sensors

Introduction to the Sensor Class

Sensor objects in WTK generate position, orientation, and other kinds of data by reading
inputs that originate in the real world. These inputs can be used to control motion and other
behavioral aspects of objects in the simulation. Sensors permit the user of a WTK
application to be directly coupled to the viewpoints, graphical objects, and lights in the
universe.

Many of the 3D and 6D (position/orientation) sensors that are available are supported by
WTK. There are two principal classes of such sensors: desk-based sensors and sensors that
are worn on the body. While most desk-based sensors generate relative inputs, that is,
changesdn position and orientation, devices worn on the body typically generate absolute
records, that is, values that correspond to their specific spatial location.

Desk-based sensors are conventional devices, like the Mouse, Serial Joystick and isometric
balls. CIS Geometry Ball, Jr. and Spacetec IMC'’s Spaceball are isometric balls that respond
to forces and torques applied by the user. Using such devices, a 3D object can be directly
manipulated, displaced or rotated — the object acts like it is directly connected to the
sensor. Ball sensors are also useful for moving the viewpoint; the applied displacements
and rotational forces move and rotate the viewpoint. In this mode of operation, with a ball
sensor attached to the viewpoint, the ball operates like a “fly-by-wire” helicopter.

Sensors worn on the body (sensors that generate absolute records)dlezdtrdenagnetic

6D trackerssuch as the Polhemus FASTRAK and Ascension Bird. This type of sensor can
be used for viewpoint tracking when it is attached to a head-mounted display. In addition
to electromagnetic devices, a varietyutifasonic ranging/triangulatiordevices and

optical devices exist for absolute position and orientation tracking. One example is the
ultrasonic Logitech 3D Mouse and Head Tracker.

Regardless of their underlying hardware technology, WTK'’s sensor objects are treated
similarly and can be used interchangeably in an application. Once a sensor object is created,
it is automatically maintained by the simulation manager, so you do not have to deal
directly with considerations such as whether the sensor is returning relative or absolute
records, or whether it is polled or streaming its data.

13-2

WorldToolKit Reference Manual

Introduction to the Sensor Class

WTK provides drivers for the devices listed below, making them easy to connect to your
computer and use in your applications.

WTK Supported Sensor Devices

Sensor Device Windows UNIX See

page...

Any Standard Mouse (two or three X X 13-26

buttons)

Ascension Bird/Motionstar/6DOF X X 13-39

Mouse/Flock of Birds

Ascension Extended Range Bird X X 13-51

CIS Graphics Geometry Ball, Jr. X X 13-53

Fakespace monochrome BOOM, two- X X 13-55

color BOOM2C, and full-color BOOM3C

(button models and joystick models)

Fakespace Pinch Glove System X X 13-59

Fifth Dimension Technologies’ 5DT X 13-63

Glove

Gameport Joystick X 13-67

Logitech 3D Mouse (Red Baron) X X 13-73

Logitech Head Tracker X X 13-77

Logitech Space Control Mouse X X 13-81

(Magellan)

Polhemus ISOTRAK X X 13-85

Polhemus ISOTRAK II X X 13-88

Polhemus InsideTRAK X 13-90

(only NT 3.51)

Polhemus FASTRAK X X 13-92

Polhemus Stylus X X 13-93

Precision Navigation Wayfinder-VR X 13-96

WorldToolKit Reference Manual 13-3

Chapter 13: Sensors

WTK Supported Sensor Devices (continued)

Sensor Device Windows UNIX See

page...

Spacetec IMC Spaceball — Model 2003 X X 13-100

and Model 3003 (using only the pick

button)

Spacetec IMC Spaceball X 13-104

SpaceController (only NT 3.51)

StereoGraphics CrystalEyes and X X 13-108

CrystalEyesVR LCD Shutter Glasses

ThrustMaster Formula T2 Steering X 13-111

Console (only NT 3.51)

ThrustMaster Serial Joystick (Mark Il X X 13-113

Flight Control/Weapons Control

Systems)

VictorMaxx Technologies’ CyberMaxx2 X 13-119

HMD

Virtual i-O i-glasses! — monoscopic and X X 13-121

stereo (Intergraph only) with head

tracking

Virtual Technologies Cyberglove X X 13-123

Consult your Hardware Guide for platform-specific information on supported sensor
devices.

Check the README.1ST file, that was installed with WTK, to see if additional device
support became available after this book was printed. You can also contact Technical
Support for information about currently supported devices. If you have access to the World
Wide Web, check the Technical Support web pages, which show what devices are
supported and how to set up the devices correctlyT8elenical Suppordon page L-1 for

more information.

In addition to the devices shown above, WTK provides functions for easily obtaining input
from the keyboard. The keyboard device, which is handled differently from the WTK
sensor objects, is describedReading the Keyboardin page 24-1.

13-4 WorldToolKit Reference Manual

Sensor Lag and Frame-rate

WTK also has functions for interfacing with devices that are not currently supported. For
information on creating your own sensor driver, Gastom Sensor Drivemn page 13-24
and the sensor driver specificatiorMifiiting a Sensor Driveon page E-1.

Sensor Lag and Frame-rate

WTK is designed so you can interact with computer-generated graphics flexibly and in
“real-time.” Sensor objects provide a means of accomplishing this by directly coupling the
user of an application to the geometry in the virtual world. The effectiveness of this
interaction depends on several factors:

Sensor lag The time from when the sensor’s state in the real world
changes to when the sensor generates a record
corresponding to that state; inversely proportional to sensor
speed.

Sensor accuracy The range of values that a sensor may return when in a
given state. This is usually specified as something like: “+
or - 0.1 inches within a range of 8 feet.”

Frame-rate The number of frames per second that the system displays.

Note: Even if your application runs with a high frame-rate, if the sensor lag is very large,
then the user’s impression of being able to interact in the virtual world may suffer. For
very precise manipulations within the virtual world, the shorter the lag time, the better
the user control.

Sensor Construction and Destruction

WTsensor objects can be created with either the generic sensor constructor function
WTsensor_new (see page 13-7) or with one of WTK’s device-specific constructor macros
(WTmouse_new, WTspaceball_new, WTpolhemus_new, WTbird_new, etc.).

WorldToolKit Reference Manual 13-5

Chapter 13: Sensors

For example, the device-specific constructor function for the Spacetec IMC Spaceball is a
macro defined as follows:

#define WTspaceball_new(port) \
WTsensor_new(WTspaceball_open, WTspaceball_close,\
WTspaceball_update, WTserial_new(...), 1, \
WTSENSOR_DEFAULT)

(The arguments t@/Tserial_new vary according to the operating system.) To use this
macro, you would make the call:

WTsensor *spaceball;
spaceball = WTspaceball_new(SERIAL1);

where the constaiERIAL1 is already defined for all systems (this allows for portability).

All of the device-specific constructors are simply macro call&/teensor_new. Its first

three arguments open, close, and update the particular device by using pointers to WTK
functions. See the table on page 13-7 for a listing of the open, close, and update function(s)
for a sensor object. As you see, a device has only one open and close function but could
have multiple update functions.

If the update function specified in the device-specific constructor function macro is
appropriate for your application, just use the macro call. If you want to use an update
function other than the default, or if you want to create the sensor object at a different baud
rate than the default (séksing Different Baud Ratemn page 13-22), uséTsensor_new.

For example, if you wanted to use your own update funetigspaceball_update for the
Spaceball (consult the sensor driver specification in Appendix E to find out what needs to
be in such a function), you would create the sensor object with the call:

WTsensor *ball;

ball = WTsensor_new(WTspaceball_open, WTspaceball_close,
myspaceball_update, WTserial_new(...), 1,
WTSENSOR_DEFAULT);

The next part of this chapter describes the functions that apply generally to WTK sensor
objects. Following that, information about the specific devices supported in WTK is
provided.

13-6

WorldToolKit Reference Manual

Sensor Construction and Destruction

WTsensor_new

WTsensor *WTsensor_new(
int (*openfn)(WTsensor*),
void (*closefn)(WTsensor*),
void (*updatefn)(WTsensor*),

WTserial *serial,

short unit,
short location);

This function creates a new sensor object and adds it to the universe. If it successfully opens
the device, it returns a pointer to the sensor object created. If it's unsuccessful, for example
if the device is incorrectly cabled and the device cannot be initialized, NULL is returned.

The first three arguments are pointers to functions to initialize, terminate, and update a
sensor. When a particular device is “supported in WorldToolKit", it means these functions
are already provided for that device. The names of the open, close, and update functions for
devices supported in WTK are as follows (more than one update function is provided for

some devices):

Device

Open, Close, and Update functions

Any Standard Mouse

WTmouse_open; WTmouse_close; WTmouse_drawcursor,
WTmouse_moveviewl, WTmouse_moveview2,
WTmouse_moveZ2D

Ascension Bird, Flock
of Birds, Motionstar,
and 6DOF Mouse

WTbird_open; WTbird_close; WTbird_update

Ascension Extended
Range Bird

WTercbird_open; WTercbird_close; WTercbird_update

CIS Graphics
Geometry Ball, Jr.

WTgeoball_open; WTgeoball_close; WTgeoball_update

Fakespace BOOM (all
display types)

WTboom_open; WTboom_close; WTboom_update (for
BOOMs with buttons), WTboom_joystickupdate (for BOOMs
with joysticks).

Fakespace Pinch
Glove System

WTpinch_open; WTpinch_close; WTpinch_update

WorldToolKit Reference Manual 13-7

Chapter 13: Sensors

Device

Open, Close, and Update functions

Fifth Dimension
Technologies’ 5DT
Glove

WTglove5dt_open; WTglove5dt close;
WTglove5dt_update, WTglove5dt_updatefingers

Gameport Joystick

WTjoystick_open; WTjoystick_close; WTjoystick_walk,
WTjoystick_walk2, WTjoystick_fly

Logitech 3D Mouse
(Red Baron)

WTbaron_open; WTbaron_close; WTbaron_update

Logitech Head Tracker

WTlogitech_open; WTlogitech_close; WTlogitech_update.

Logitech Space
Control Mouse
(Magellan)

WTspacecontrol_open;, WTspacecontrol_close,
WTspacecontrol_update.

Polhemus ISOTRAK

WTpolhemus_open; WTpolhemus_close;
WTpolhemus_update.

Polhemus ISOTRAK Il

WTisotrak2_open; WTisotrak2_close; WTisotrak2_update.

Polhemus InsideTRAK

WTinsidetraknt_open; WTinsidetraknt_close;
WTinsidetraknt_update.

Polhemus FASTRAK

WTfastrak_open; WTfastrak _close; WTfastrak_update

Precision Navigation
Wayfinder-VR

WTprecision_open; WTprecision_close;
WTprecision_update

Spacetec IMC
Spaceball

WTspaceball_open; WTspaceball_close;
WTspaceball_update, WTspaceball_dominant

Spacetec IMC
Spaceball
SpaceController

WTspaceballSC_open; WTspaceballSC_close;
WTspaceballSC_update, WTspaceballSC_dominant

StereoGraphics
CrystalEyes and
CrystalEyesVR LCD
Shutter Glasses

WTcrystaleyesVR_open; WTcrystaleyesVR_update;
(WTlogitech_close is used to close the device).

ThrustMaster Formula
T2 Steering Console

WTformula_open; WTformula_close; WTformula_drive.

13-8

WorldToolKit Reference Manual

Sensor Construction and Destruction

Device Open, Close, and Update functions

ThrustMaster Serial WTjoyserial _open; WTjoyserial_close; WTjoyserial_walk,
Joystick WTjoyserial_walk2, WTjoyserial_fly

VictorMaxx WTcybermaxx2_open, WTcybermaxx2_close;
Technologies’ WTcybermaxx2_update

CyberMaxx2 HMD

Virtual i-O i-glasses! WTiglasses _open; WTiglasses_close; WTiglasses _update
Virtual Technologies Not Applicable.
Cyberglove

To use a device that is not yet supported, you must provide the open, close, and update
functions (see Appendix E). Once you have specified these three functions by passing them
in as arguments ta/Tsensor_new, WTK takes care of calling these functions at the
appropriate times.

The openfnis called once when the sensor is created. All predefined WTK device drivers
return a NULL or zero value if they couldn’t open or initiate communications with the
device.

Theclosefn is called once when the sensor is deleted by a caliieensor_delete (which
in turn is called bywTuniverse delete for any sensors that still exist). Thedatefn is
called by the WTK simulation manager once at the beginning of each frame.

Theupdatefn is called each time through the simulation loop and determines how the sensor
state (e.g., translational information, relational information, button presses, etc.) is to be
updated.

The serial argument tdV/Tsensor_new is a pointer to an initialized serial port object.
Typically a serial port object can be constructed by following the examples provided in the
sensor macros in the fisensor.h. Also consult your Hardware Guide for information about
using serial port devices with WTK on your hardware platform (se&/\dls®rial_nevwon

page 23-1). If your device is not a serial port device, then serial should be NULL.

For multi-unit devices such as FASTRAK and Flock of Birds utiieargument specifies
which unit to open. For all other sensarsit should be 1 (one).

The location argument should be setWTSENSOR_DEFAULT.

WorldToolKit Reference Manual 13-9

Chapter 13: Sensors

WTsensor_delete

void WTsensor_delete(
WTsensor *sensor);

This function removes a sensor object from the universe’s list of sensors; detaches the
sensor from viewpoints, lights, or objects; calls the sensor’s close function; deletes the
sensor’s serial port object (if it has one); and frees the memory used by the sensor object.

WTsensor_next

WTsensor *WTsensor_next(
WTsensor *sensor);

This function returns the next sensor object in the list of sensors maintained by the universe.
UseWTuniverse_getsensors (see page 2-13) to obtain a pointer to the first sensor in the list.
An example of using this function is provided unééFfsensor_setsensitivity on page

13-11).

WTsensor_setupdatefn

void WTsensor_setupdatefn(
WTsensor *sensor,
void (*updatefn)(WTsensor*));

This function allows you to change a sensor’s update function. A sensor object’s update
function is initially set in the generic sensor constructor fundti@sensor_new (see page
13-7), or the device-specific constructor macro (A@mouse_new).

WTsensor_setupdatefn should be called if you want to change the update function. The
following example illustrates how to set a Mouse sensor’s update function to the WTK
function WTmouse_moveZ2D.

WTsensor *mouse;

[*Create a mouse sensor object using the device-specific macro. This uses the
WTmouse_moveview2 update function */

mouse = WTmouse_new()

/*Change the update function */

WTsensor_setupdatefn(mouse, WTmouse_move2D);

13-10

WorldToolKit Reference Manual

Accessing Sensor State

This example assumes the Mouse was originally created as a pointer to a sensor object as
described iMThe Mousen page 13-26.

Accessing Sensor State

WTsensor_setsensitivity

void WTsensor_setsensitivity(
WTsensor *sensor,
float sensitivity);

This function sets the sensitivity value for the sensor. The default sensitivity value for all
sensors is 1.0. Attempts to set a sensor’s sensitivity to a negative value are rejected, with
no change to the current sensitivity.

A sensor’s sensitivity value defines the maximum magnitude of the translational input from
the sensor along each axis (in the same distance units as the 3D geometry making up the
virtual world).

For example, suppose you have a Spaceball attached to a viewpoint. The Spaceball’s
sensitivity determines the maximum distance along each axis that your viewpoint moves
when you push on the ball. To move faster, walkensor_setsensitivity with a larger value

than is currently set for the device.

It is frequently desirable to have the sensor’s sensitivity scale with the size of the scene, or
with some other characteristic distance scale in the virtual world. The example below
shows how to accomplish this.

WTsensor *sensor;
float radius;

[* Iterate through all of the sensors in the universe,
scaling sensor sensitivity with the size of the scene */
radius = WTnode_getradius(WTuniverse_getrootnodes());
for (sensor=WTuniverse_getsensors() ; sensor ;
sensor=WTsensor_next(sensor)) {
WTsensor_setsensitivity(sensor, 0.01 * radius);

WorldToolKit Reference Manual 13-11

Chapter 13: Sensors

}

In this example, if the sensor is a Spaceball attached to your viewpoint, then each time
through the simulation loop your viewpoint moves a distance equal to at most one
hundredth of the scene’s radius along each of X, Y, and Z axes. If you do not push on the
Spaceball very hard, then you would move less than that.

Not all devices supported in WTK have their translational records scaled in this way. The
sensor translational records scaledM¥sensor_setsensitivity are described in the
corresponding sections of this chapter for each device.

WTsensor_getsensitivity

float WTsensor_getsensitivity(
WTsensor *sensor);

This function returns the sensor’s sensitivity value. This value is defined above under
WTsensor_setsensitivity. The following example uses the function
WTsensor_getsensitivity to increase a sensor’s sensitivity value by 10 percent.

WTsensor *sensor;
WTsensor_setsensitivity(sensor,
1.1 * WTsensor_getsensitivity(sensor));

WTsensor_setangularrate

void WTsensor_setangularrate(
WTsensor *sensor,
float s);

This function sets the scale factor for a sensor’s rotation records. The angular rate is the
maximum rotation (in radians) around any axis that a sensor returns in any pass through the
simulation loop. The default angular rate for all sensors is 0.087266 radians, or 5 degrees.
It may be convenient to specify the angular rate in terms of the defined caristsin

the example below.

Not all devices supported in WTK have their rotation records scaled in this way. You can
not set the rotational speed of absolute position and orientation sensing devices, such as the
FASTRAK or Bird devices. Some of the devices that are scaled in this way are the

13-12

WorldToolKit Reference Manual

Accessing Sensor State

Spaceball, Geometry Ball, Jr., and the Mouse. The sensor rotational records scaled by
WTsensor_setangularrate are described in the corresponding sections of this chapter for
each device.

WTsensor *spaceball;

/* create the spaceball sensor object */
spaceball = WTspaceball_new(SERIAL1);

/* set the maximum rotation from the spaceball around any axis
to 22.5 degrees per tick. */
WTsensor_setangularrate(spaceball, P1/8.0);

/* scale translational inputs with the size of the scene */
WTsensor_setsensitivity(spaceball, 0.01 * WTnode_getradius(
(WTuniverse_getrootnodes()));

WTsensor_getangularrate

float WTsensor_getangularrate(
WTsensor *sensor);

This function returns the maximum angular rate of change around each axis for a given
sensor. Not all devices have their rotation records scaled in this way. Angular rate is
specified in radians.

WTsensor_gettranslation

void WTsensor_gettranslation(
WTsensor *sensor,
WTp3 translation);

This function retrieves the current translation record from the sensor and stores it in the
translation argument. The translation record is affected by the sensor’s sensitivity scale
factor. (See the functiowTsensor_setsensitivity on page 13-11.)

If the device is an absolute sensor such as the Polhemus ISOTRAMKati®4tion is the
change in sensor position since the last time through the simulation loop.

WorldToolKit Reference Manual 13-13

Chapter 13: Sensors

The following is an example of using a desktop device such as the Spaceball or Geometry
Ball, Jr. to interactively stretch a geometry. In this example, the sensor’s translation record
is obtained and then transformed so that the resulting scale factor for each coordinate lies
between 0.0 and 2.0. Values less than 1.0 are used to make the object smaller, while values
greater than 1.0 are used to make it larger. The geometry is stretched in its local coordinate
frame.

WTgeometry *geom;

WTsensor *ball;

WTp3 scalefactor; [* for WTgeometry_stretch */
WTp3 mid; /* object geometry */

float sensitivity;

WTsensor_gettranslation(ball, scalefactor);
sensitivity = WTsensor_getsensitivity(ball);

[* transform translation values to be between 0.0 and 2.0.
(each scalefactor[i] is between -sensitivity and +sensitivity.) */
for (i=0;i<3;i++){

scalefactor(i] = 1.0 + scalefactor][iJ/sensitivity;

[* stretch the geometry */
WTgeometry_getmidpoint(geom, mid);
WTgeometry_stretch(geom, scalefactor, mid);

WTsensor_getrotation

void WTsensor_getrotation(
WTsensor *sensor,
WTq rotation);

This function retrieves the current rotation record from the sensor and stores it as a
guaternion in theotation argument. If the device is an absolute sensor such as the Polhemus
ISOTRAK, thenrotation is the change in orientation since the last time through the
simulation loop.

See Chapter 28/ath Library, for functions that can be used to convert the rotation record
into either a matrix or direction vector.

13-14 WorldToolKit Reference Manual

Accessing Sensor State

WTsensor_getmiscdata

int WTsensor_getmiscdata(
WTsensor *sensor);

This functionreturns an integer value in which miscellaneous data pertaining to the sensor,
like button press events, are stored. Defined constants are used to interpret the return value
of this function. For example, the following code fragment shows how to detect a left-
button press on the Mouse:

WTsensor *mouse;
if (WTsensor_getmiscdata(mouse) & WTMOUSE_LEFTBUTTON)
WTmessage(“Left button press\n”);

The WTK defined constants used willTsensor_getmiscdata are described in the
corresponding sections of this chapter for each device and are also listed in Appendix C.

WTsensor_getrawdata

void *WTsensor_getrawdata(
WTsensor *sensor);

This function returns the sensor-specific raw data structure. The return needs to be typecast
appropriately before the contents of the structure are accessed.

For example, WTK’s Mouse raw data structure stores the current Mouse cursor position in
screen coordinates inWTp2 (2D vector). This position might be passed in to a picking
function, as in the following example which selects a polygon located under the Mouse
cursor.

WTpoly *mouse_pickpoly(WTsensor *mouse)

{

WTmouse_rawdata *raw;

/* get the mouse raw data struct (note typecasting)*/
raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);

/* return the polygon under the mouse cursor */

WorldToolKit Reference Manual 13-15

Chapter 13: Sensors

return WTscreen_pickpoly(screen,raw->pos, &nodepath, p3);

}

The sensor raw data structures accessetltsensor_getrawdata are described in the
corresponding sections of this chapter for each deviceWlisereen_pickpoly function is
described on page 4-91.

WTsensor_getserial

WTserial *\WTsensor_getserial(
WTsensor *sensor);

This function returns the serial port object associated with a sensor. The serial port object
is the same as that supplied asdtyal/ argument to thévTsensor_new (see page 13-7)

call. This function is used primarily by developers writing their own sensor drivers for
devices not already supported in WTK. See Appendix E for examples of using this
function. Also consult your Hardware Guide for platform-specific information about using
serial ports.

WTsensor_getunit

short WTsensor_getunit(
WTsensor *sensor);

This function retrieves the unit number of the specified sensor. This is useful for multi-unit
sensors.

Rotating Sensor Input

Each 6D sensor supported in WTK has a reference frame (that is, a set of coordinate axes)
associated with it. This reference frame defines how input from the device generates X,Y,
and Z translation and rotation sensor records. The reference frame convention for devices
supported in WTK is described for each device in the corresponding sections of this
chapter. As shown in the example below, these conventions were chosen for their
convenience when controlling a viewpoint or object in the reference frame of the

13-16

WorldToolKit Reference Manual

Rotating Sensor Input

viewpoint. In some cases, however, it may be necessary to use coordinate axes other than
the default ones. For this reason WiEsensor_rotate function is provided.

Consider the Geometry Ball, Jr. The coordinate axis convention for this device is such that
if it is sitting on your desk with the cord running out the back of the device away from you,
then the Z axis points straight back (in the direction of the cord), the X axis points to the
right, and the Y axis points straight down (see Figure 13-1 on page 13-18). This coordinate
convention has been chosen for its convenience. Let’s say that you are using the Geometry
Ball, Jr. to control a viewpoint, as set up with the following calls:

WTsensor *geoball;
geoball = WTgeoball_new(SERIAL1);
WTviewpoint_addsensor(WTuniverse_getviewpoint(), geoball);

Then when you apply force or torque to the ball, the viewpoint translates or rotates in the
same direction. For example, if you push on the ball from the front (force applied in the
positive Z direction on the ball), the viewpoint moves straight ahead, which is the same as
the positive Z direction in the viewpoint frame.

Alternatively, the Geometry Ball, Jr. could be attached to a transform node associated with
a geometry to control its motion, using this call:

WTnode *xform; /* transform node associated with the geometry*/
WTsensor *geoball;
WTnode_addsensor(xform, geoball);

By default the geometry is specified to move in the local frame. Twisting or pushing on the
ball causes the geometry to move correspondingly in its local frame.

Now consider an application where coordinate axes other than the default sensor
coordinates are needed. We'll use the Geometry Ball, Jr. to control the motion of a
graphical car. When we push on the front of the ball (generating input in the positive Z
direction), we want the car to drive forward in its local reference frame, no matter which
way it is oriented. And twisting the ball about its vertical axis should generate right or left
turns of the car. This means that we want to attach the sensor to the graphical car with the
following call, wherexform is the transform node that manipulates the car (which could be

a group node):

WTnode_addsensor(xform, sensor);

WorldToolKit Reference Manual 13-17

Chapter 13: Sensors

This, however, causes the sensor to act on the car in its local frame. The problem we run

into is that the reference frame convention for the Geometry Ball, Jr. does not match up

with that of the car model. Figure 13-1 illustrates these coordinate frames. Figure 13-2 on

page 13-19 further illustrates the concepts involved.

Graphical car and X axis
its local reference /
frame
Y axis

Z axis

Geometry Ball, Jr.
reference frame

Z axis
/

X axis

Y axis

Figure 13-1: Reference frames for Geometry Ball, Jr. and graphical car.

Since the coordinate frames for the Geometry Ball, Jr. and the car do not line up, pushing
and twisting the ball would generate inappropriate motion of the car. Itis in a case like this
that the functiorWTsensor_rotate is useful. This function effectively rotates a sensor’s
reference frame so that the desired coordinate values are returned.

To understand how to rotate the reference frames, first read the next sgéetargtry
Motion Reference Framgethen read the description WTsensor_rotate on page 13-20,
where this example is continued.

13-18

WorldToolKit Reference Manual

Geometry Motion Reference Frames

Geometry Motion Reference Frames

Many of the functions that let you move geometries within the virtual world take as an
argument the reference frame in which the motion is to occur. These reference frames are
illustrated in figure 13-2 below.

* WTFRAME_WORLD is the world coordinate frame. It is independent of the
objects in the universe and is fixed in space.

* WTFRAME_LOCAL is the local coordinate frame of the geometry. This is either
determined from the location of the geometry’s vertices or taken to coincide with
the world coordinate frame when the geometry is constructed.

* WTFRAME_PARENT is the parent coordinate frame of the geometry. This is
similar to the local coordinate frame, except that transforms applied in the parent
frame are pre-concatenated instead of post-concatenated.

WTFRAME_VPOINT is the reference frame of a viewpoint (see
WTviewpoint_setposition on page 16-8). For example, to move a geometry in the
direction the viewpoint is looking, move it in the positive Z direction in
WTFRAME_VPOINT.

geometry WTFRAME_LOCAL
\ geometry x
world z geometry) viewing plane (screen)
world x view x
world y
Y WTFRAME_WORLD WTFRAME_VPOINT

Figure 13-2: Reference frames for geometry motion

WorldToolKit Reference Manual 13-19

Chapter 13: Sensors

WTsensor_rotate

void WTsensor_rotate(
WTsensor *sensor,
WTq rotation);

This function rotates a sensor’s coordinate frame.rétagion argument is a quaternion
containing the rotation through which the sensor’s coordinate axes are to be rotated to reach
the desired coordinate axis orientation. Note that the rotations are always with respect to
the world rather than to the local reference frame.

To continue with the example froRotating Sensor Inpuin page 13-16, we need to rotate

the coordinate frame of the Geometry Ball, Jr. so that it coincides with that of the car model.
To accomplish this, we first need to rotate the ball’s reference frame through minus 90
degrees about the world’s Y axis. This causes the ball's X axis to align with the car model’s
X axis. Then we rotate the ball's reference frame through minus 90 degrees about the
world’s Z axis (so that the X axes continue to stay aligned). The result is that the two
coordinate frames are now aligned. The following example shows how to implement this:

WTq ay, gz, gtotal;
WTsensor *geoball;

/* generate quaternion for -90 degree rotation about Y */
WTeuler_2q(0.0, -0.5*PI, 0.0, qy);

/* generate quaternion for -90 degree rotation about Z */
WTeuler_2q(0.0, 0.0, -0.5*PI, qz);

/* obtain combined rotation (note right-to-left multiplication) */
WTq_mult(ay, gz, gtotal);

/* rotate the Geometry Ball Jr. reference frame */
WTsensor_rotate(geoball, gtotal);

Also seeHow Do | Use Orientation-Tracking Sensors (On A Head-Mount-Display) That
Are Not Positioned Along The Central Axis Of The HMIDpage A-36.

13-20 WorldToolKit Reference Manual

Constraining Sensor Input

Constraining Sensor Input

WTsensor_setconstraints

void WTsensor_setconstraints(
WTsensor *sensor,
short ¢);

This function constrains the values returned by a sensor. This is accomplished by passing
in a combination of the following flags separated by the C language bit-wise OR operator

WTCONSTRAIN_X constrains X axis translations
WTCONSTRAIN_Y constrains Y axis translations
WTCONSTRAIN _Z constrains Z axis translations

WTCONSTRAIN_XROT constrains rotations about the X axis
WTCONSTRAIN_YROT constrains rotations about the Y axis
WTCONSTRAIN_ZROT constrains rotations about the Z axis

For example, to constrain all rotational input so that only translational input is returned:

WTsensor *sensor;
WTsensor_setconstraints(sensor, WTCONSTRAIN_XROT |
WTCONSTRAIN_YROT | WTCONSTRAIN_ZROT);

The constraints set withyTsensor_setconstraints pertain to the values read from the device

S0 objects attached to a sensor may exhibit unexpected behavior because the object's
coordinate frame is not aligned with the sensor's reference frame. If you need to constrain
an object's motion in a particular coordinate frame, use motion links to connect a sensor to
an object and then constrain the motion link. Refer to Chaptéidtn Linksfor more
information.

In the current version of WTK, rotational constraints applied using

WTsensor_setconstraints have no effect on the FASTRAK or Bird devices. However, it is
possible to simultaneously constrain all rotational input from these devices as described in
the section$caling ISOTRAK Recordsm page 13-86 arficaling Bird Recordsn page

13-41.

WorldToolKit Reference Manual 13-21

Chapter 13: Sensors

WTsensor_getconstraints

short WTsensor_getconstraints(
WTsensor *sensor);

This function returns a short describing the constraints currently imposed on the values
returned by the sensor. To determine whether a particular constraint has been set, you can
use the bit-wise AND operator '&’ for the particular constraint. For example:

WTsensor *sensor;
if (WTsensor_getconstraints(sensor) & WTCONSTRAIN_XROT) {
WTmessage(“X rotations are constrained\n”);

Using Different Baud Rates

As stated under the sectiBensor Construction and Destruction page 13-5//Tsensor
objects can be created with either the generic sensor constructor futzZisensor_new
(see page 13-7) or with one of WTK's device-specific coinstructor macros like
WTspaceball_new, WTbird_new, etc.

The device-specific constructor macros create the sensor object at a specific baud rate. You
can see the baud rate at which a sensor is created by looking in the includestis.h
(in theinclude directory).

To use other baud rates you need to do one of the following:

» Create the sensor object witfirsensor_new rather that the device-specific
macro, passing in a serial port object constructed for that baud rate.

« Use the device-specific macro, but first edit the includestitesors.h (in the
include directory) and change the baud rate setting in the macro definition.

For sensors with DIP switches (i.e., ISOTRAK, ISOTRAK II, FASTRAK, Bird, Flock of
Birds, Extended Range Bird, and Pinch Glove) you also need to change the DIP switch
settings.

13-22 WorldToolKit Reference Manual

Sensor Name

Sensor Name

WTsensor_setname

void WTsensor_setname(
WTsensor *sensor,
const char *name);

This function sets the name of the specified sensor. All sensors have a name; by default, a
sensor’'s name is “” (i.e., a NULL string).

WTsensor_getname

const char *WTsensor_getname(
WTsensor *sensor);

This function returns the name of the specified sensor.

User-specifiable Sensor Data

A void *pointer is included as part of the structure defining a sensor object, so that you can
store whatever data you wish with a sensor. The following functions can be used to set and
get this field within any sensor.

WTsensor_setdata

void WTsensor_setdata(
WTsensor *sensor,
void *data);

This function sets the user-defined data field in a sensor. Private application data can be
stored in any structure. To store a pointer to the structure within the sensor, pass a pointer
to it, cast to aoid*, as thedata argument.

WorldToolKit Reference Manual 13-23

Chapter 13: Sensors

WTsensor_getdata

void *WTsensor_getdata(
WTsensor *sensor);

This function retrieves user-defined data stored within a sensor. You should cast the value
returned by this function to the same type that was used to store the data with the
WTsensor_setdata function.

Custom Sensor Drivers

The following functions are only needed if you are writing your own sensor driver. Consult
Appendix E for more on this subject.

WTsensor_setrecord

void WTsensor_setrecord(
WTsensor *sensor,
WTp3 p,
WTq q);

This function stores the current relative position and orientation record with your sensor. If
your sensor returns absolute records, you must firsi¢edensor._relativizerecord (See

below). You may also wish to apply scale factors to the sensor record using
WTsensor_setsensitivity (see page 13-11) amiTsensor_getsensitivity (see page 13-12)
before callingWTsensor_setrecord, as described in Appendix E.

WTsensor_relativizerecord

void WTsensor_relativizerecord(
WTsensor *sensor,
WTp3 absolute_p,
WTq absolute_q,
WTp3 relative_p,
WTq relative_Qq);

13-24 WorldToolKit Reference Manual

Custom Sensor Drivers

If your sensor returns absolute records, use this function to generate the corresponding
relative record. This function is passed the absolute position/orientation record obtained
from your device this time through the simulation loop, and returnsaing) the change

in position and orientation since last time.

Note that you must set the sensor’s absolute record (Usiisgnsor_setlastrecord) prior
to calling WTsensor_relativizerecord.

WTsensor_setlastrecord

void WTsensor_setlastrecord(
WTsensor *sensor,
WTp3 absolute_p,
WTq absolute_q);

This function sets the absolute record for sensors with absolute position/orientation
records. In your sensor update function, after you have set the new sensor record with
WTsensor_setrecord, store the absolute record withTsensor_setlastrecord so that the

next record can be made relative to it the next time through the simulation loop.

WTsensor_getlastrecord

void WTsensor_getlastrecord(
WTsensor *sensor,
WTp3 absolute_p,
WTq absolute_Qq);

This function retrieves the position and orientation record most recently set with the
WTsensor_setlastrecord function and stores them ébsolute_p andabsolute_gq.

WTsensor_setmiscdata

void WTsensor_setmiscdata(
WTsensor *sensor,
int data);

This function stores miscellaneous sensor data, like button press events, with the sensor
object. Typically, you do not need to use this function unless you are writing your own
sensor driver.

WorldToolKit Reference Manual 13-25

Chapter 13: Sensors

WTsensor_setrawdata

void WTsensor_setrawdata(
WTsensor *sensor,
void *dataptr);

This function stores raw sensor data with the sensor object. The data can then be returned
with WTsensor_getrawdata. The raw data structure for a custom sensor driver is defined

by the developer. You do not need to use this function unless you are writing your own
sensor driver.

The Mouse

To create a WTK Mouse sensor object, you canwaliensor_new, passing in the driver
functionsWTmouse_open, WTmouse_close, and the desired update function — either one
of the update functions described on page 13-7 or one that you may have written.

For example, usin@/Tsensor_new you might have:

WTsensor *mouse;
mouse = WTsensor_new(WTmouse_open, WTmouse_close,
WTmouse_move2D, NULL, 1, WTSENSOR_DEFAULT);

Note that the serial port argument for the Mouse sensor is always NULL.

Alternatively, a platform-independent mad&rmouse_new is provided for creating a
Mouse sensor object.

To use this macro, simply call:

WTsensor *mouse;
mouse = WTmouse_new();

This macro makes use of the sensor driver functi@ngiouse _open, WTmouse_close,
and WTmouse_moveview?2 (currently the most popular of the Mouse update functions).

13-26 WorldToolKit Reference Manual

The Mouse

Note that to use thi&Tmouse_move2D update function rather thamTmouse moveview2,
you could call:

WTsensor *mouse;
WTsensor_setupdatefn(mouse, WTmouse_move2D);

Accessing Mouse Raw Data

The Mouse raw data structure stores the raw X,Y screen location of the Mouse. This
information is accessed using th&@sensor_getrawdata (see page 13-15) function, as in
the example below.

The raw data structure for the Mouse is type defined as follows:

typedef struct _WTmouse_rawdata {
WTp2 pos;
} WTmouse_rawdata;

and is accessed as follows:

WTmouse_rawdata *raw;

/* get raw x and y mouse values in screen coordinates */

raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);
WTmessage(“Mouse position: %f, %f\n”, raw->pos[X], raw->pos[Y]);

Scaling Mouse Records

Translational and rotational records for the Mouse can be scaled using the functions
WTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (see page 13-12)
respectively.

WorldToolKit Reference Manual 13-27

Chapter 13: Sensors

Mouse Update Functions

WTmouse_drawcursor

void WTmouse_drawcursor(
WTsensor *sensor);

This function is a Mouse update function that does not allow any movement (neither
translational nor rotational). It just updates the X,Y screen location and stores it in the
sensor's raw data structure. It is particularly useful when you want to pick a geometry/
polygon (corresponding to a button-click) in the scene instead of flying around.

The following function allows toggling between flying and not flying:

void FlipMouseMode(WTsensor *mouse)

{

int misc;
if (!lmouse) return;

/* global variable */
movemouse "=1;

if (movemouse)
/* enable flying */
WTsensor_setupdatefn(mouse, WTmouse_moveview?2);
else
/* disable flying (enable geometry/polygon picking) */
WTsensor_setupdatefn(mouse, WTmouse_drawcursor);

misc = WTsensor_getmiscdata(mouse);

/* left mouse button to pick geometrys */
if (!'movemouse && (misc & WTMOUSE_LEFTBUTTON))
/* code for picking geometries */

/* right mouse button to pick polygons */
if (!movemouse && (misc & WTMOUSE_RIGHTBUTTON))
/* code for picking polygons */

13-28 WorldToolKit Reference Manual

The Mouse

WTmouse_move2D

void WTmouse_move2D(
WTsensor *sensor);

This function is a Mouse update function that allows Z translation and Y rotation. It is a
simple update function useful for controlling vehicle motion on a two-dimensional surface.
This update function uses the Mouse position within the screen or window to generate
forward and backward motion (translation along Z) and left and right yaw (rotation around
Y). Button presses have no effect with this update function.

Translations forward and backward along Z are determined from the vertical displacement
(positive or negative) of the Mouse from a horizontal line through the screen or window
midpoint. The translation amount scales linearly with this displacement, and is also scaled
by the sensor’s sensitivity (S&&Tsensor_setsensitivity on page 13-11).

Left and right yaw (rotations about Y) are determined from the horizontal displacement
(positive or negative) of the Mouse from a vertical line through the screen or window
midpoint. The angular rotation scales linearly with this displacement, and is also scaled by
the sensor’s angular rate (S&8&sensor_setangularrate on page 13-12).

WTmouse_moveviewl

void WTmouse_moveviewl1(
WTsensor *sensor);

This function is a Mouse update function that operates in 3D without pitch or roll. It is
useful for moving a viewpoint through a 3D environment, but is a fairly simple update
function that does not pitch or roll the viewpoint. Wg&mouse_moveview?2 (see below)
for a Mouse update function providing control of all six degrees of freedom.

With the Mouse attached to the viewpoint usii@mouse_moveviewl (as in the example
below), manipulating the Mouse has the following effect:

* When the Mouse cursor is centered on the screen and no buttons are pressed, the
viewpoint is stationary.

WorldToolKit Reference Manual 13-29

Chapter 13: Sensors

* When the cursor is in the left half of the screen, the viewpoint shifts to the left; in
the right half of the screen, the viewpoint shifts to the right.

« When the cursor is in the top half of the screen, the viewpoint moves forward; in
the bottom half of the screen, the viewpoint moves backward.

« When the left Mouse button is pressed, the viewpoint yaws to the left; when the
right Mouse button is pressed, the viewpoint yaws to the right,

» Pressing both left and right Mouse buttons simultaneously with the cursor in the
top half of the screen translates the viewpoint upward; the viewpoint translates
downward if the cursor is in the bottom half of the screen.

Here’s an example of creating a Mouse sensor object with thedAsE_moveview1
update function and attaching it to the viewpoint:

main()

{

WTsensor *mouse;

/* initialize the universe */
WTuniverse_new(...);

/* Create the mouse sensor object.The last argument is NULL,

since the mouse, although it may be connected to the serial port,

is not treated by WorldToolKit as a serial port device */

mouse = WTsensor_new(WTmouse_open, WTmouse_close,
WTmouse_moveviewl, NULL, 1, WTSENSOR_DEFAULT);

if (!mouse)
WTwarning(“Warning, couldn’t open mouse driver\n”);

/* attach the mouse sensor to the viewpoint */
WTviewpoint_addsensor(WTuniverse_getviewpoint(), mouse);

WTuniverse_go();
WTuniverse_delete();

13-30

WorldToolKit Reference Manual

The Mouse

WTmouse_moveview?2

void WTmouse_moveview2(
Wtsensor *sensor);

This function is a Mouse update function that supports six degrees of freedom movement
of a viewpoint through a 3D environment. Unlik& mouse_moveview1, which translates

and yaws the viewpoint, withVTmouse _moveview?2 the viewpoint can also be pitched and
rolled. Also unlikeWTmouse_moveview1, which moves the viewpoint whenever the

Mouse cursor is away from the center of the scre@mouse_moveview2 only moves the
viewpoint while the cursor is away from the center of the saedmne or more Mouse
buttons are pressed. The farther away from the middle of the screen, the faster the
movement. Maximum rotations and translations are scaled as described under the functions
WTsensor_setangularrate (See page 13-12) amdTsensor_setsensitivity (see page 13-11).

When you are using/Tmouse_moveview?2, with the Mouse attached to the viewpoint,
manipulating the Mouse has the following effect.

Using the left Mouse button, you can “walk” about your model. When the left button is
pressed, and the cursor is in:

e the top half of screen — move forward

+ the bottom half of screen — move backward

e the left half of screen — yaw left

» the right half of screen — yaw right

When the right button is pressed, and the cursor is in:

» the top half of screen — move up

» the bottom half of screen — move down
e the left half of screen — pan left

e the right half of screen — pan right

When the lefandright buttons are pressed, and the cursor is in:

» the top half of screen — pitch up
» the bottom half of screen — pitch down
* the left half of screen — roll left

WorldToolKit Reference Manual 13-31

Chapter 13: Sensors

« the right half of screen — roll right
The viewpoint is stationary when neither the left nor the right Mouse button is pressed.

The macrowvTmouse_new creates a Mouse sensor object that uses the
WTmouse_moveview2 update function.

Writing Your Own Mouse Update Function

When creating a Mouse sensor object, you can use one of the update functions provided, or
you can write your own. This is not difficult. Your update function should first call
WTmouse_rawupdate (see below) to obtain the Mouse’s raw data. It should then specify
how the raw data is to be transformed into the 3D position and orientation record. Finally,
your update function must store this record with the sensor by calfisgnsor_setrecord

(see page 13-24). Segample 1: Update Function for the Mouse page E-8.

WTmouse_rawupdate

void WTmouse_rawupdate(
WTsensor *sensor);

This function obtains the X, Y screen location of the Mouse and stores it in the sensor’s raw
data structure. This information can be accessedWiitbensor_getrawdata (see page
13-15). See alsAccessing Mouse Raw Data page 13-27.

Mouse button presses are also read by this function and can be accessed with
WTsensor_getmiscdata (see page 13-15). See aMouse Defined Constanitelow.

13-32 WorldToolKit Reference Manual

The Mouse

Mouse Defined Constants

Mouse button presses can be detected in WTK using the funtisensor_getmiscdata
(see page 13-15), examining the result for the following defined constants (bits). The
constants for the Mouse middle button are used only on three-button mice.

» Button held down . This is generated each frame that the user holds a button
down. These events are defined W§MOUSE _LEFTDOWN,
WTMOUSE_MIDDLEDOWN, and WTMOUSE_RIGHTDOWN.

» Button transitioned down . This generates a single event each time the button
moves from up to down. These events are defined/astOUSE_LEFTBUTTON,
WTMOUSE_MIDDLEBUTTON, and WTMOUSE_RIGHTBUTTON.

e Button transitioned up . This generates a single event each time the button moves
from down to up. These events are definedVdBMOUSE_LEFTUP,
WTMOUSE_MIDDLEUP, andWTMOUSE_RIGHTUP. Note that button up events
may not be available on all systems.

e Button double-clicked . This generates a single event each time the Mouse is
double-clicked. These events are defined/@BVIOUSE LEFTDBLCLK,
WTMOUSE_MIDDLEDBLCLK, andWTMOUSE_RIGHTDBLCLK.

The following is an example of accessing Mouse button events.

void read_mouse_record(WTsensor *mouse)
{
int buttons;
FLAG leftbutton, rightbutton, bothbuttons;
FLAG leftdown, rightdown;

/* get button press data */
buttons = WTsensor_getmiscdata(mouse);

/* which buttons were just pressed? */

leftbutton = buttons & WTMOUSE_LEFTBUTTON;
rightbutton = buttons & WTMOUSE_RIGHTBUTTON;
bothbuttons = leftbutton && rightbutton;

/* which buttons are currently down */
leftdown = buttons & WTMOUSE_LEFTDOWN,;

WorldToolKit Reference Manual 13-33

Chapter 13: Sensors

rightdown = buttons & WTMOUSE_RIGHTDOWN;

Dragging Objects Using a Mouse

If you wanted to use a mouse to drag picked objects, you will need to write a mouse update
function that reports (as XY translation) the movement of the mouse when the button is
held down. Here's an example:

void mouse_drag(WTsensor *sensor)

{

}

static WTp2 last_position;

WTp2 diff;

WTmouse_rawdata *raw;

WTp3 p;

WTq g;

WTp3_init(p);

WTa_init(q);

WTmouse_rawupdate(sensor);

raw = (WTmouse_rawdata *)WTsensor_getrawdata(sensor);

if (WTsensor_getmiscdata(sensor) & WTMOUSE_LEFTDOWN) {
diff(X] = raw->pos[X] - last_position[X];
diff[Y] = raw->posl[Y] - last_position[Y];

}

WTp2_copy(raw->pos, last_position);

WTsensor_setrecord(sensor, p, Q);

By using the above mouse update function instead of the standard
"WTmouse_moveview?2" function, and writing object-picking code to attach the mouse to
picked objects, you can use the mouse to pick an object and drag it in the window.

13-34 WorldToolKit Reference Manual

The Mouse

Checking the Input Focus Window for the Mouse

WTmouse_inwindow

FLAG WTmouse_inwindow(
WTsensor *mouse, WTwindow *w)

This function determines whether the the mouse is within a WTK window. It returns TRUE
if the mouse is within the WTK window; otherwise, it returns FALSE.

WTmouse_whichwindow

WTwindow *WTmouse_whichwindow(
WTsensor *mouse)

This function determines which WTK window (if any) the mouse is in and returns a pointer
to that window. It returns NULL if the mouse is not in any WTK window.

The above functions are especially useful in applications having multiple windows. The
following example illustrates this concept. It returns TRUE if it picks a polygon in a
particular window.

FLAG Window_Pickpoly(WTwindow *w)

{
int X0, y0, width, height;
WTpoly *poly;
WTnode *node = NULL;
WTp3 p;
WTp2 point;

/* check if mouse is in the window */
if (WTmouse_inwindow(mouse, w) {
WTwindow *current;

/* get the current window */
current = WTmouse_whichwindow(mouse);

/* check if the current window is the window that was passed in */

WorldToolKit Reference Manual 13-35

Chapter 13: Sensors

if (w==current) {
WTwindow_getposition(current, &x0, &y0, &width, &height);
point[X] = width/2.f;
point[Y] = height/2.f;

/* pick the frontmost polygon in the center of current window */
poly = WTwindow_pickpolygon(current, point, NULL, p);

/* if we picked a polygon, return TRUE */

if (poly)
return TRUE
else
return FALSE;
}
else
return FALSE;
}
else

return FALSE;

Using the Mouse as a Trackball

WTK provides functions that enable the use of the Mouse sensor object as a trackball. The
WTK demofiipobj.c uses the Mouse as a trackball.

Following are the update functions for using the Mouse as a trackball:

WTmouse_trackball

void WTmouse_trackball(
WTsensor *sensor);

13-36 WorldToolKit Reference Manual

The Mouse

WTmouse_trackballvpoint

void WTmouse_trackballvpoint(
WTsensor *sensor);

Use the functiom/Tmouse_trackball if connecting the trackball to the object. If connecting
the trackball to the viewpoint, use the functidffmouse_trackballvpoint.

To create a Mouse sensor object as a trackball use either the generic sensor constructor
functon —WTsensor_new (see page 13-7) with one of the functions described above as the
update function or use the matt@mouse_new and set the update function to one of the
functions described above usiigsensor_setupdatefn (see page 13-10).

When using the Mouse as a trackball you can control the drift, snap angle, and snap. The
default trackball drift value is 1.0. This means that if you provide a rotation to the trackball,
it goes into continuous rotation and doesn't stop. A drift value of less than 1.0 means that
every frame the rotation speed decreases and finally becomes zero.

The following functions allow you to control the drift of the trackball:

WTmouse_settrackballdrift

void WTmouse_settrackballdrift(
WTsensor *sensor,
float drift);

This function is used to set the drift of the trackball. Valid values are between 0.0 and 1.0.

WTmouse_gettrackballdrift

float WTmouse_gettrackballdrift(
WTsensor *sensor);

This function returns the current drift value of the trackball.

The snap angle (specified in radians) allows you to set the increment value of rotations. The
default trackball snap angle value is 0.0. This allows for a smooth rotation.

WorldToolKit Reference Manual 13-37

Chapter 13: Sensors

The following functions allow you to control the snap angle of the trackball:

WTmouse_settrackballsnapangle

void WTmouse_settrackballsnapangle(
WTsensor *sensor,
float snapangle);

This function is used to set the snap angle of the trackball. When using this function, the
trackball drift value must be set to 0.0. If the snap angle is greater than 0.0, rotation is
allowed around one axis only at one time.

WTmouse_gettrackballsnapangle

float WTmouse_gettrackballsnapangle(
WTsensor *sensor);

This function returns the current snap angle of the trackball.

The snap allows you to set the increment value of translations. The default trackball snap
value is 0.0. This allows for smooth translation.

The following functions allow you to control the snap value of the trackball:

WTmouse_settrackballsnap

void WTmouse_settrackballsnap(
WTsensor *sensor,
float snap);

This function is used to set the snap value of the trackball. When using this function, the
trackball drift value must be set to 0.0.

13-38

WorldToolKit Reference Manual

Ascension Bird

WTmouse_gettrackballsnap

float WTmouse_gettrackballsnap(
WTsensor *sensor);

This function returns the current snap value of the trackball.

To reset the trackball use the following function:

WTmouse_trackballreset

void WTmouse_trackballreset (
WTsensor *sensor);

If an object is continuously rotating, you can use this function to stop the rotation.

Ascension Bird

The Bird from Ascension Technology Corporation is an electromagnetic-based six degree-
of-freedom sensor that measures absolute position and orientation.

To create a Bird sensor object on serial port 1, you can use the macro call:

WTsensor *bird;
bird = WThbird_new(SERIALL, 1);

This macro makes use of the sensor driver functitsngird_open, WTbird_close, and
WTbird_update. It creates the Bird sensor object running at 9600 baud.

WTbird_new takes a second argument specifying the unit number of the Bird to open. This
value is 1 for a single Bird. (Note that in the Ascension documentation a stand-alone unit
is number 0, but in WTK it is number 1.)

Following are the DIP switch settings for the Bird sensor objects running at 9600 baud.
Older Birds OFF ON OFF OFF OFF OFF OFF OFF
Newer Birds OFF ON ON OFF OFF OFF ON OFF

WorldToolKit Reference Manual 13-39

Chapter 13: Sensors

The three left-most DIP switch settings on each Bird are for the baud rate. For example,
9600 is OFF ON ON and 19200 is ON OFF OFF. The next four DIP switches on each Bird
indicate unit number: unit one is OFF OFF OFF ON, unit two is OFF OFF ON OFF, and
so on. The right-most DIP switch is normally OFF.

Consult your Bird reference manual if you are uncertain of how to set your Bird DIP
switches. A single Bird should be configured with a Bird address of 1, not 0.

When you callWTbird_newto construct a new Bird sensor object,dpenfn for the device

is automatically called. Part of the function of teenfn for this device is to calibrate the
sensor, which consists of obtaining an initial position and orientation record. This takes
several seconds, during which the device should not be moved. Records subsequently
generated by thepdatefn are with respect to this initial reference frame. It may be useful
in your application to let the user know that the device is about to be calibrated. For
example, you might want to have a print statement:

WTsensor *sensor;

WTmessage(“About to calibrate/initialize Bird...\n");
sensor = WTbird_new(SERIAL1,1);
WTmessage(“Initialization complete.\n");

The coordinate frame of this sensor is the same as for the ISOTRAK and is defined in the
WTK driver functions as follows. If the receiver cube is placed “flat-end down” in front of
you with the cable from the cube coming out the back of the cube toward you, then (as
illustrated in figure 13-5 on page 13-86 for the Polhemus ISOTRAK) the Z axis of the
device points straight ahead, the X axis points to the right, and the Y axis points down. If
this coordinate frame is not appropriate for your application, the funidtiensor_rotate

(see page 13-20) can be used to define another coordinate frame for the device.

If a receiver is plugged into the Bird system, and the receiver is in the fly mode, you must
initialize it. This has to be done even if your application does not use all of the receivers.
The Bird will not return data for any of the receivers unless you have a vatbial_new

for every connected receiver.

If your bird fails to initialize, you may need to use th&@B/RDDELAY environment
variable to force WTK to wait longer for the bird to respond before giving up. Refer to the
Environment Variables Appendix for more information.

The Ascension 6DOF mouse is used like the standard receiver. It plugs into the back panel
of the receiver box and is initialized by a call&Gbird_new. The buttons on the mouse are

13-40

WorldToolKit Reference Manual

Ascension Bird

identified byWTBIRD_LEFTBUTTON, WTBIRD_MIDDLEBUTTON, and
WTBIRD_RIGHTBUTTON.

Accessing Bird Raw Data

WTK does not provide a separate raw data structure for this device. The most recent sensor
record can be obtained usingrsensor_getlastrecord (see page 13-25). This function

retrieves the absolute record in WTK coordinates with no scale factors applied. This record
is called “absolute” because it describes a location in 3D space rather than a change in
location since the last frame. This absolute record is, however, relative to the position and
orientation of the device when the device was opened by WTK.

The following function WTbird_getabsoluterecord, retrieves the absolute sensor location
relative to the transmitter.

WThird_getabsoluterecord

int WThird_getabsoluterecord(
WTsensor *sensor,
WTp3 p,
WTq q);

This function obtains the most recent absolute position and orientation record for the
specified Bird sensor in relation to the Bird transmitter, and places theamithg. These
values are in WTK coordinates.

Scaling Bird Records

Translation records for the Bird can be scaled using the funatitsensor_setsensitivity
(see page 13-11). It is often useful, for example, to scale sensor inputs with the size of the
scene.

Unlike translation records, however, orientation records from the Bird cannot be scaled in
the WTK update functions for this device.

WorldToolKit Reference Manual 13-41

Chapter 13: Sensors

It is possible to turn off all rotational input from these devices by writing your own update
function which nullifies the orientation recoi@icaling ISOTRAK Records page 13-86
includes an example of how to do this.

Bird Update Function

WThird_update

void WThird_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after relativizing it and then applying any translational scale factor
that may have been set withrsensor_setsensitivity (see page 13-11).

The macra//Tbird_new creates a Bird sensor object that usesithbird_update function
and is recommended for most users.

Syncing the Bird to the Monitor

WThird_setsync

void WThird_setsync(
WTsensor *bird,
short synctype);

This function sets a Bird to synchronize its scanning frequency with that of a CRT, thereby
reducing the amount of interference. To activate this capability, set up your Bird with the
appropriate attachment and call this function. $retype argument is typically 2. If the

LED display on the Bird indicates an error message, it is probably not picking up the CRT
frequency clearly. Consult your Bird documentation for more information about CRT
synchronization and about interpreting error messages from the Bird.

13-42 WorldToolKit Reference Manual

Ascension Bird

Setting the Bird Hemisphere

The functions in this section apply to the Bird, Flock of Birds (see page 13-51), and Bird
with Extended Range Controller (see page 13-51).

WThird_sethemisphere

void WThbird_sethemisphere(
WTsensor *sensor,
int hemisphere);

This function tells a Bird sensor in which hemisphere the Bird’s receiver will be navigating.
The shape of the magnetic field emitted by the Bird transmitter is symmetrical about each
of the axes of the transmitter. For this reason, the Bird needs to know which hemisphere the
receiver is in to provide correct translation records.

The hemisphere argument should be one of the following defined constants:

WTBIRD_FORWARD side of Bird away from the transmitter cable

WTBIRD_AFT opposite side fromVTBIRD_FORWARD

WTBIRD_UPPER top side of Bird transmitter

WTBIRD_LOWER bottom side of Bird transmitter

WTBIRD _LEFT while facingWTBIRD _FORWARD, the left side of the
transmitter

WTBIRD_RIGHT while facingWTBIRD _FORWARD, the right side of the

transmitter

When you call this function, the Bird’s receiver must be in the indicated hemisphere.

WTbird_gethemisphere

int WThird_gethemisphere(
WTsensor *sensor);

This function returns the hemisphere currently set for the specified Bird sensor. The value
returned is one of the defined constants listed above utdlgrd sethemisphere.

WorldToolKit Reference Manual 13-43

Chapter 13: Sensors

WThbird_autohemisphere

void WThbird_autohemisphere(
WTsensor *sensor);

This function automatically sets the hemisphere for the Bird receiver based on its current
location. The Bird transmitter must be located in the forward hemisphere when this
function is called.

There are some extreme usage circumstances where WTK may set the hemisphere
incorrectly. Therefore, we recommend that you include the ability to reset the Bird
hemisphere interactively — for example, using keyboard input as a trigger for calling
WTbird_sethemisphere.

Streaming-Mode Flock of Birds Driver

WTK also includes a specialized, high performance, streaming-mode Flock of Birds driver
that is not intended for generalized usage across multiple platforms. The streaming-mode
FOB driver is implemented only for the IRIX 6.X operating system and is designed for the
Extended Range Transmitter FOB. This driver utilizes multi-threading and therefore allows
the FOB to be run in streaming-mode. This mode of operation eliminates the necessity for
frame by frame communication between WorldToolKit and the FOB hardware.
WorldToolKit simply retrieves the most current data available from the FOB thread’s

buffer. The benefits of this decrease in sensor latency usually far outweights the two
drawbacks associated with the streaming-mode FOB driver. The first drawback is that if
you are running on a single-processor machine the operating system must schedule the
execution of multiple threads across the same processor; however, this does not necessarily
cause a large impact upon your application’s performance. The second and largest
inconvenience resides in the driver’s inability to use automatic hemisphere tracking. Due
to the possibly large number of sensor records being sent from the FOB to the driver’s
buffer between retrievals by the main WorldToolKit application thread, the driver cannot
accurately predict when a hemisphere has been crossed. There are two possible solutions
for this quandary. (1) Simply restrict your movement to one hemisphere as you would by
default in a CAVE or similar Spatially Immersive Display system or, (2) use the
WTflock_sethemisphere function during your program’s execution to dynamically update
the FOB in accordance with your application’s possible range of movement.

13-44 WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

To create a new Flock sensor object you simply follow the guidelines of the previous bird
driver.

WTsensor *FOB;
FOB = WTflock_new(SERIAL1,1);
if (FOB==NULL){
WTerror("Could not open flock\n");
}

You may of course specify a valid specific serial port if you prefer, for example:

FOB = WTflock_new("/dev/ttyd3",1);

All of the streaming-mode FOB functions are prefixed with the class name WTflock. The
functions provided for use with the streaming-mode driver are described below.

Opening and closing the FOB

WTflock_open

int WTflock_open(
WTsensor *sensor);

Corresponds to th&/Third_operfunction.

WTflock_deviceopen

WTserial *WTflock_deviceopen(
char *device,
int baud,
char parity,
int databits,
int stopbits,
int buffersize);

WorldToolKit Reference Manual 13-45

Chapter 13: Sensors

You should only be making this function call when not using the WorldToolKit default
WTflock_newmacro. Example arguments for this function can be found in the definition
of theWTflock_newnacro found below and in wtk/include/flock.p.

WTflock_close

void WTflock_close(
WTsensor *sensor);

Corresponds to thé/Third_closefunction.

Calibrating/Initializing

WTflock_getdefaulthemisphere

int WTflock_getdefaulthemisphere(void);

Returns the FOB startup default hemisphere.

The returned value represents the currently set hemisphere for ALL FOB receivers upon
their initialization. The default setting internal to WTK is WTFLOCK_FORWARD. You
can change the initialization hemisphere for a receiverwithiock setdefaulthemisphere.

WTflock_setdefaulthemisphere

FLAG WTflock_setdefaulthemisphere(
int hemisphere);

Returns success in setting the default startup hemisphere (useful with multiple FOB
configurations.)

This function is useful in allowing you to initialize multiple receivers in differing
hemispheres. For example, if you were using the FOB Streaming Mode driver in a Spatially
Immersive Display (such as a CAVE) you would most probably be using two FOB
receivers. The first FOB receiver would be used to track the user’s head position/orientation
whereas the second would be used to track a navigational device. If the receiver being used
for head tracking was lying in a different FOB hemisphere in the CAVE than the receiver

13-46

WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

for tracking the navigational device, you would initialize them both in different
hemispheres. To do so, set the default hemisphere for the first receiver, initialize the
receiver, set the default hemisphere for the second receiver and then initialize it as well.

WTflock_gethemisphere

int WTflock_gethemisphere(
WTsensor *sensor);

Returns the current hemisphere setting for a sensol/Ibad_gethemisphere

WTflock_sethemisphere

FLAG WTflock_sethemisphere(
WTsensor *sensor,
int hemisphere);

Returns success in setting the current hemisphere for a sensofTBieg sethemisphere
It is important to note that the hemispheric constants for the FOB driver are prefixed with
WTFLOCK_ (not WTBIRD_), i.e. WTFLOCK_UPPER as opposed to WTBIRD_UPPER.

WTflock_getcrtsyncdata

FLAG WTflock_getcrtsyncdata(
WTsensor *sensor,
float *voltage,
float *rate);

Returns success in retrieving the current CRT synchronization settings.

This function aids you in finding the ‘sweet spot’ for your FOB amid the electro-magnetic
noise introduced into the device by operating a receiver or transmitter within a few feet of
a magnetically deflected Cathode Ray Tube (a typical monitor). The value returned in
voltage represents the voltage proportional to your CRT’s vertical scan signal. The value
returned irvate is the rate at which your monitor is vertically refreshing the screen. These
values are very useful in determining what mode of operation to use with the function
WTflock_setcrtsync.

WorldToolKit Reference Manual 13-47

Chapter 13: Sensors

Note: If the function returns successfully and contains a valid value for voltage but not for
rate, your monitor is refreshing at a rate less than 31Hz which precludes your using
the syncing features of the Streaming Mode FOB driver.

WTflock_setcrtsync

FLAG WTflock_setcrtsync(
WTsensor *sensor,
int mode);

Corresponds to thé/Third_setsynéunction.

WTflock_resetorigin

FLAG WTflock_resetorigin(
WTsensor *sensor);

Returns TRUE if the FOB's current position and orientation values have been set to the
FOB's original position and orientation values.

Updating/Getting sensor Position/Orientation

WTflock_update

void WTflock_update(
WTsensor *sensor);

Corresponds to thé/Third_updatdunction. Note: orientations are absolute. This update
function relativizes the current absolute position of the FOB and then applies the
translational scale that may have been set by the funafisensor_setsensitivitpnce

the record has been relativized and scaled it is stored in the sensor object’s record. Note: If
you design and implement your own update function, you must relativize and scale the
records yourself.

13-48 WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

WTflock_getorgmat

FLAG WTflock_getorgmat(
WTsensor *sensor,
WTm3 mat);

This function is used to retrieve the FOB sensor’s original position/orientation matrix and
place it in mat. This matrix, which is set at FOB initialization, is updated only upon
subsequent calls WTflock_resetorigin The function returns TRUE if successful.

WTflock_getlastmat

FLAG WTflock_getlastmat(
WTsensor *sensor,
WTm3 mat);

This function is used to copy the FOB'’s last stored absolute sensor matrix into mat. When
using theNVTflock _updatéunction, each iteration of the simulation loop updates the FOB's
absolute position/orientation matrix with the current, unrelativized, unscaled position/
orientation matrix excepting an error case. The function returns TRUE if successful.

WTflock_getlastpos

FLAG WTflock_getlastpos(
WTsensor *sensor,
WTp3 p);

This function retrieves the FOB's last stored absolute position and places it in p. When
using theNTflock_updatéunction, each iteration of the simulation loop updates the FOB'’s
absolute position record with the current, unrelativized, unscaled position/orientation
matrix excepting an error case. The function returns TRUE if successful.

WorldToolKit Reference Manual 13-49

Chapter 13: Sensors

WTflock _getabsmat

FLAG WTflock_getabsmat(
WTsensor *sensor,
WTm3 mat);

This function retrieves the FOB’s current abolute position/orientation matrix and stores it
in mat. This function will always contain a valid matrix for you to use as during an error
case it is not updated. This function returns TRUE if successful.

WTflock_getabspos

FLAG WTflock_getabspos(
WTsensor *sensor,
WTp3 p);

This function is used to obtain the FOB’s current unreletavized, absolute, and unscaled
position and store it in p. The WTp3 returned should always be valid as during an error
case, the last good matrix is the current matrix from which the position will be obtained.
This function returns TRUE if successful.

WTflock_getabsoluterecord

FLAG WTflock getabsoluterecord(
WTsensor *sensor,
WTp3 p,
WTq a);

This function retrieves the last absolute, unreletavized, unscaled position and orientation
values stored in the sensor object’s record. This function returns TRUE if successful.

13-50

WorldToolKit Reference Manual

Ascension Extended Range Bird

Default sensor creation macro for FOB

#define WTflock_new(port,unit) \

WTsensor_new(WTflock_open,WTflock close,WTflock_update, \
WTflock_deviceopen(port,38400,’N’,8,1,2600),unit, WTSENSOR_DEFAULT)

Ascension Flock of Birds

Ascension Technology created Flock of Birds to allow users to attach multiple Birds and
communicate with them over a single serial port.

Support for a Flock of Birds is already part of the Bird sensor driver (see page 13-39); the
macroWTbird_new takes aunit argument. With a single Birdpit is always 1, but with a
Flock, unit specifies which Bird to address. You should always open the birds of a flock in
sequential order, like this:

WTsensor *bl, *b2, *b3;

bl = WTbird_new(SERIAL1, 1);
b2 = WTbird_new(SERIAL1, 2);
b3 = WThird_new(SERIALL, 3);

This creates a flock having 3 birds running at 9600 baud. See page 13-39 for the DIP switch
settings. There can be a maximum of 14 birds in a flock.

Additional WTK functions for the Bird—for example, for using the Extended Range
Controller or setting the Bird hemisphere—are describédsaension Extended Range
Bird below, andSetting the Bird Hemispheos page 13-43.

Ascension Extended Range Bird

The Bird sensors normally have a range of up to 3 feet away from the transmitter.
Ascension offers an extended range transmitter (ERT) allowing a range of 8 feet. The ERT
works with a special Bird controller called the Extended Range Controller (ERC). The ERC
will be the first unit in your bird arrangement. The ERC's serial port is used to communicate

WorldToolKit Reference Manual 13-51

Chapter 13: Sensors

with the whole flock. See your ERC documentation for how to connect the ERC to the other
birds in your flock.

When you use the Extended Range Bird, you must call the funwtierchbird_newinstead
of WTbird_new to initialize a bird. Before you initialize the bird, WTK needs to know
which serial port the bird is connected to. You must usethecbird_init macro (with the
port number) to pass this information to WTK.

You must use consecutive addresses (starting at 1) to identify the birds. The Extended
Range Controller (ERC) does not have to be the master unit, and is therefore not restricted
to an address of 1. For example, if you have the ERC at address 3, and two bird receivers
at address 1 and 2 respectively the initialization function calls should be:

/* inform WTK that you are using an ERC at port X */
WTercbird_init(SERIAL_X);

/* initialize the receivers at addresses 1 and 2 */
WTercbird_new(SERIAL_X, 1);

WTercbird_new(SERIAL_X, 2);

If instead, the ERC is set to address 1, the initialization function calls would be:

WTercbird_init(SERIAL_X);
WTercbird_new(SERIAL_X, 2);
WTercbird_new(SERIAL X, 3);

You may notice that the WTK sensor unit numbers correspond to the bird addresses. As
with the regular bird, you must caiTercbird_new for all the receiver units in the system,
even if you are not using them.

Accessing Extended Range Bird Raw Data

SeeAccessing Bird Raw Datan page 13-41.

Scaling Extended Range Bird Records

SeeScaling Bird Recordsn page 13-41.

13-52

WorldToolKit Reference Manual

CIS Graphics Geometry Ball, Jr.

Extended Range Bird Update Function

SeeBird Update Functioron page 13-42.

CIS Graphics Geometry Ball, Jr.

The CIS Graphics Geometry Ball, Jr. is a 6 degree-of-freedom serial port device that sits
on the desktop. It responds to both forces and torques, which can be mapped into
translations and rotations in 3D.

To create a Geometry Ball, Jr. sensor object on serial port 1, you can use the macro call:

WTsensor *geoball;
geoball = WTgeoball_new(SERIAL1);

This macro makes use of the sensor driver functi@ngeoball_open, WTgeoball_close,
and WTgeoball_update. It creates the geoball sensor object running at 9600 baud.

The coordinate frame of this sensor is the same as for the Spaceball and is defined in the
WTK driver functions as follows. If the device is placed on a desk or table in front of you
with the cable coming out the back of the device oriented away from you, then, (as
illustrated in figure 13-6 on page 13-100 for the Spaceball) the Z axis of the device points
straight ahead, the X axis points to the right, and the Y axis points down. If this coordinate
frame is not appropriate for your application, the functiwrsensor_rotate (see page

13-20) can be used to define the device’s coordinate frame.

Accessing Geometry Ball, Jr. Raw Data

WTK maintains a data structure containing the raw data read from the Geometry Ball, Jr.
This information is accessed usigsensor_getrawdata (see page 13-15) as in the
example below.

The raw data structure for the Geometry Ball, Jr. is type defined as follows. Note that both
p andw are in the original Geometry Ball, Jr. coordinates and that no scale factors have
been applied to the values.

WorldToolKit Reference Manual 13-53

Chapter 13: Sensors

typedef struct _WTgeoball_rawdata {
char p[3]; /* absolute position */
char w([3]; /* euler angles */

} WTgeoball_rawdata;

Geometry Ball, Jr. raw data is accessed as follows:

WTsensor *geoball;
WTgeoball_rawdata *raw;

raw = (WTgeoball_rawdata *)WTsensor_getrawdata(geoball);
WTmessage(“Position: %c, %c, %c\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %c, %c, %c\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Geometry Ball, Jr. Records

Translational and rotational records for the Geometry Ball, Jr. can be scaled using the
functionsWTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (See
page 13-12) respectively.

Geometry Ball, Jr. Update Function

WTgeoball_update

void WTgeoball_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after transforming the record to the WTK coordinate convention, and
applying any scale factors that may have been setiidensor_setsensitivity (See page
13-11) andWTsensor_setangularrate (see page 13-12).

The macrdVTgeoball_new creates a Geometry Ball, Jr. sensor object that uses the function
WTgeoball_update and is recommended for most users.

SeeExample 2: Driver for the Geometry Ball dm page E-10.

13-54 WorldToolKit Reference Manual

Fakespace BOOM Devices

Geometry Ball, Jr. Defined Constants

Button presses for a Geometry Ball, Jr. can be detected WSisgnsor _getmiscdata (see
page 13-15) together with the following defined constants:

e Button transitioned down . This event is generated each time the button moves
from up to down. These events are defined/@BGEOBALL_LEFTBUTTON and
WTGEOBALL_RIGHTBUTTON.

Checking the Serial Port for Geometry Ball, Jr.

WTgeoball_present

FLAG WTgeoball_present(
WTserial * serial);

This function checks whether there is a live Geometry Ball, Jr. sensor object at the
particular serial port corresponding to the serial port object (which is given as input).

Fakespace BOOM Devices

The monochrome BOOM, two-color BOOM2C (which uses a color space based onred and
green), and full-color BOOM3C by Fakespace are CRT-based stereoscopic viewing
devices attached to a 6 degree-of-freedom articulated arm. The six joints in the arm permit
the BOOM viewer to be moved and oriented within a sphere of about six feet in radius.

WTK’s BOOM sensor driver functiong/Tboom_open, WThoom_close, and
WTboom_update manage the serial port communications with the BOOM to generate
correct position and orientation records based on the configuration of the BOOM arm.

To create a BOOM sensor object on serial port 1, you can use the macro call:

WTsensor *boom;
WTmessage(“About to create BOOM sensor ...\n");
boom = WThoom_new(SERIAL1);

WorldToolKit Reference Manual 13-55

Chapter 13: Sensors

if ('boom)

WTwarning(“Couldn’t open BOOM\n”);
else

WTmessage(“Calibration complete.\n”);

This macro makes use of the sensor driver functigisoom_open, WTboom_close, and
WTboom_update to generate correct position and orientation record based on the
configuration of the BOOM arm. It creates the BOOM sensor object running at 9600 baud.

Accessing BOOM Raw Data

WTK maintains a data structure containing the raw data read from the BOOM device. The
information is accessed using the functiwfsensor_getrawdata (see page 13-15). The
BOOM raw data structure stores the angular readings from the BOOM arm.

The raw data structure for the BOOM is type defined as follows:

typedef struct _WTboom_rawdata {
short angles[6];
} WTbhoom_rawdata;

and is accessed as follows:

WTboom_rawdata *raw;
raw = (WTboom_rawdata *)WTsensor_getrawdata(boom)

Scaling BOOM Records

The sensitivity of the BOOM (as set Tsensor_setsensitivity on page 13-11) determines

the magnitude of the translation record generated by motion of the BOOM arm. Therefore
by setting the sensor sensitivity, you can affect the apparent range of motion within the
virtual environment. There is no angular adjustment for the BOOM (i.e., the function
WTsensor_setangularrate has no effect).

13-56

WorldToolKit Reference Manual

Fakespace BOOM Devices

BOOM Update Function

WTboom_update

void WThoom_update(
WTsensor *sensor);

This update function reads the raw angular data from the BOOM arm into the angles array
in the WThoom_rawdata structure angles[0] refers to the angle of the first joint above the
base. Refer to the BOOM documentation for more information about interpreting the data
read.

The macronThoom_new creates a BOOM sensor object that usesttihieoom_update
function and is recommended for most users.

BOOM Defined Constants

The BOOM also supports two push-button switches mounted on the ends of the grip
handles. Events from these functions can be accessed using the function
WTsensor_getmiscdata to determine whether the BOOM buttons are currently pressed:

e Button held down . This event is generated each frame that the button is held
down. These events are defined &8 BOOM_LEFTBUTTON, and
WTBOOM_RIGHTBUTTON.

Following is an example of accessing BOOM button events to drive motion through the
virtual world:

WTsensor *boom;
WTviewpoint *view;
WTp3 trans;

/* Obtain the viewpoint direction vector and scale it to a fraction of the
size of the universe being navigated. */

view = WTuniverse_getviewpoints();

WTviewpoint_getdirection(view, trans);

WTp3_mults(trans, WTnode_getradius(WTuniverse_getrootnodes()));

WorldToolKit Reference Manual 13-57

Chapter 13: Sensors

/* If the left BOOM button is pressed, translate the viewpoint

along the viewpoint direction */

if (WTsensor_getmiscdata(boom)&WTBOOM_LEFTBUTTON)
WTviewpoint_translate(view, trans, WTFRAME_WORLD);

/* Use the right BOOM button to move backwards */

if (WTsensor_getmiscdata(boom)&WTBOOM_RIGHTBUTTON) {
WTp3_invert(trans, trans);
WTviewpoint_translate(view, trans, WTFRAME_WORLD);

}

The defined constants used with BOOMSs configured with a joystick are described in the
following section.

BOOM Joystick

Some BOOMs are configured with a joystick rather than buttons built into the handle. Use
the macroA/Thoom_newjoystick (which references the update function
WTboom_joystickupdate) for instantiating such a BOOM sensor object, rather than
WTboom_new.

The defined constant¥ TBOOM_LEFT, WTBOOM_RIGHT, WTBOOM_UP,

WTBOOM_DOWN are provided for use with the functi@nrsensor_getmiscdata (see page

13-15) to determine the current state of the joystick. In addition, the defined constant
WTBOOM_RESET can be used to determine whether the reset button has been pressed. The
joystick has nine possible positions that can be determined by calling
WTsensor_getmiscdata. These positions are: up, down, right, left, up and to the right, up
and to the left, down and to the right, down and to the left, and centered (i.e., none of the
above). For example, to test the various possibilities, your code might be structured as
follows:

WTboom *boom;
int data;

data = WTsensor_getmiscdata(boom);
if (data&WTBOOM_LEFT) {
if (data&WTBOOM_UP)
WTmessage(“joystick is up and to the left\n”);

13-58 WorldToolKit Reference Manual

Fakespace Pinch Glove System

else if (data&WTBOOM_DOWN)
WTmessage(“joystick is down and to the left\n”);
else
WTmessage(“joystick is to the left\n”);
}
else if (data&WTBOOM_RIGHT) {
if (data&WTBOOM_UP)
WTmessage(“joystick is up and to the right\n”);
else if (data&WTBOOM_DOWN)
WTmessage(“joystick is down and to the right\n”);
else
WTmessage(“joystick is to the right\n®);
}
else if (data&WTBOOM_UP)
WTmessage(“joystick is up\n”);
else if (data&WTBOOM_DOWN)
WTmessage(“joystick is down\n”);
else
WTmessage(“joystick is centered\n”);

Fakespace Pinch Glove System
The Pinch Glove provides a way of recognizing natural gestures that have natural meaning
to the user. For example a pinching gesture can be used to grab a virtual object.

To create a Pinch Glove sensor object on serial port 1 running at 9600 baud (default baud
rate setting), you can use the macro call:

WTsensor *pinch;
pinch = WTpinch_new(SERIAL1, 9600);

This macro makes use of the sensor driver functi@nginch_open, WTpinch_close, and
WTpinch_update.

The right-most 3 switches are for setting baud rates. Following are the DIP switch settings
(for the right-most 3 switches) for the Pinch Glove running at 9600 baud:

WorldToolKit Reference Manual 13-59

Chapter 13: Sensors

Pinch Glove OFF OFF ON

Consult your Pinch Glove reference manual if you are uncertain of how to set the DIP
switches.

Accessing Pinch Glove Raw Data

The raw data structure for the Pinch Glove is type defined as follows:

typedef struct _WTpinch_rawdata {
int ntouch; I* number of touches - maximum 5 */
short int touch[5]; /* information for each touch */

} WTpinch_rawdata;

and accessed as follows:

WTsensor *pinch;
WTpinch_rawdata *raw;
short rp,rr,rm,ri,rt,Ip,Ir,Im,li,It;
inti;

raw = (WTpinch_rawdata *)WTsensor_getrawdata(pinch);

[* print number of touches */
WTmessage("Number of touches %d\n", raw->ntouch);

/* for each touch print out what fingers touched */
for(i=0;i<raw->ntouch;i++) {
rp = raw->touch[i]&WTPINCH_RPINKIE;
rr = raw->touch[i]&WTPINCH_RRING;
rm = raw->touch[i]&WTPINCH_RMIDDLE;
ri = raw->touch[i]&WTPINCH_RINDEX;
rt = raw->touch[i]&WTPINCH_RTHUMB;
Ip = raw->touch[i]J&WTPINCH_LPINKIE;
Ir = raw->touch[i]&WTPINCH_LRING;
Im = raw->touch[i]&WTPINCH_LMIDDLE;
li = raw->touch[i]J&WTPINCH_LINDEX;

13-60 WorldToolKit Reference Manual

Fakespace Pinch Glove System

It = raw->touch[i]&WTPINCH_LTHUMB;
WTmessage("Touch number %d \n", i+1);
if(rp) WTmessage("rpinkie);

if(rr) WTmessage("rring ");

if(rm) WTmessage("rmiddle ");

if(ri) WTmessage("rindex ");

if(rt) WTmessage("rthumb ");

if(Ip) WTmessage("Ipinkie ");

if(Ir) WTmessage("lring ");

if(Im) WTmessage("Imiddle ");

if(liy) WTmessage("lindex ");

if(It) WTmessage("lthumb ");
WTmessage("\n");

Scaling Pinch Glove Records

Records cannot be scaled for this sensor object. So the funidtiGessor_setsensitivity
andWTsensor_setangularrate have no effect.

Pinch Glove Update Function

WTpinch_update

void WTpinch_update(
WTsensor *sensor);

This update function updates the raw data structure to get contact information between
fingers.

The macrowTpinch_new creates a Pinch Glove sensor object that uses the
WTpinch_update function and is recommended for most users.

WorldToolKit Reference Manual 13-61

Chapter 13: Sensors

Pinch Glove Defined Constants

The contact information between fingers of the Pinch Glove can be accessed using the
function WTsensor_getrawdata (see page 13-15). Also sAecessing Pinch Glove Raw
Data on page 13-60.

WTK provides defined constants that are common to both left and right fingers as well
individual constants for left and right fingers.

The common constants are:

WTPINCH_THUMB (thumb)
WTPINCH_INDEX (index finger)
WTPINCH_MIDDLE (middle finger)
WTPINCH_RING (ring finger)
WTPINCH_PINKY (pinky finger)

The individual constants for the left hand fingers are:

WTPINCH_LTHUMB
WTPINCH_LINDEX
WTPINCH_LMIDDLE
WTPINCH_LRING
WTPINCH_LPINKY

The individual constants for the right hand fingers are:

WTPINCH_RTHUMB
WTPINCH_RINDEX
WTPINCH_RMIDDLE
WTPINCH_RRING
WTPINCH_RPINKY

In addition, the defined constalMsTPINCH_NOTOUCH (indicating there is no contact
between the fingers) aMiTPINCH_FINGERS (indicating there is contact between fingers)
are provided.

13-62 WorldToolKit Reference Manual

Fifth Dimension Technologies’ 5DT Glove

Fifth Dimension Technologies’ 5DT Glove

The 5DT Glove measures finger flexure and the orientation (roll and pitch) of a user's hand.
It can emulate a Mouse as well as a baseless joystick and the user can also type while
wearing the glove.

To create a 5DT Glove sensor object on serial port 1, you can use the macro call:

WTsensor *glove5DT,;
glove5DT = WTglove5DT_new(SERIALL);

This macro makes use of the sensor driver functiénglove5DT_open,
WTglove5DT_close, andWTglove5DT_update. It creates the 5DT Glove sensor object
running at 19200 baud.

Accessing 5DT Glove Raw Data

The raw data structure for the 5DT Glove is type defined as follows:

typedef struct _WTglove5DT_rawdata

{
char bSerial;
char bFinger[5]; /* finger flex values 0=Thumb 1=Index ...*/
char bPitch; [*-128 to +128, 0 being straight up*/
char bRoll; /*-128 to +128, 0 being straight up*/

} WTglove5DT_rawdata;

and is accessed as follows:

WTsensor *glove5DT,;
WTglove5DT_rawdata *raw;
raw = (WTglove5DT_rawdata *)WTsensor_getrawdata(glove5DT);

WTmessage ("PITCH: %d\tROLL: %d\tFINGERS: %d %d %d %d %d\n", raw->bPitch,
raw->bRoll,
raw->bFinger[0],
raw->bFinger[1],

WorldToolKit Reference Manual 13-63

Chapter 13: Sensors

raw->bFinger[2],
raw->bFinger[3],
raw->bFinger[4]

Scaling 5DT Glove Records

Records cannot be scaled for this sensor object. So, the funidtitsessor_setsensitivity
and WTsensor_setangularrate have no effect.

5DT Glove Update Function

WTglove5DT_update

void WTglove5DT_update(
WTsensor *sensor);

This update function call&/Tglove5dt rawupdate (see page 13-65) to update the raw data
structure to get absolute orientation and the current state of the fingers in the hand model.
It then applies any rotational contraints to the record. Finally it relativizes the record and
stores it with the sensor by calligTsensor_setrecord (see page 13-24).

The macronTglove5DT_new creates a 5DT Glove sensor object that uses the
WTglove5DT_update function.

WTglove5dt_updatefingers

void WTglove5dt_updatefingers(
WTsensor *sensor);

WTglovesdt_updatefingers is provided so that the current state of the fingers in the hand
model can be updated independently of the model's orientation.

This function can be used insteadvsfglove5DT_update if the user does not need the
orientation information.

13-64 WorldToolKit Reference Manual

Fifth Dimension Technologies’ 5DT Glove

Writing Your Own 5DT Glove Update Function

Your update function should first calfTglove5DT_rawupdate (see below) to obtain the
absolute pitch and roll data and the finger flex information. It should then specify how the
raw data is to be transformed into an orientation record. Finally, your update function must
store this record by calling/Tsensor_setrecord (see page 13-24). SEgample 3: Update
Function for Absolute Device (Pseudocode)page E-15.

WTglovebdt rawupdate

int WTglove5dt_rawupdate(
WTsensor *sensor);

This function obtains the absolute pitch and roll data and the finger flex information and
stores it in the sensor's raw data structur&glove5DT_rawdata). This information can be
accessed with/Tsensor_getrawdata (see page 13-15). Also skecessing 5DT Glove Raw
Data on page 13-63.

5DT Glove Defined Constants

The current state of the fingers can be accessed using the fun@Sensor_getmiscdata
(see page 13-15) together with the following defined constants:

WTGLOVE5DT_OPEN (glove is open)

WTGLOVE5DT_CLOSED (glove is closed)

WTGLOVE5DT_THUMB (thumb)

WTGLOVE5DT_INDEX (index finger)

WTGLOVE5DT_MIDDLE (middle finger)

WTGLOVE5DT_RING (ring finger)

WTGLOVES5DT_PINKY (pinky finger)

WTGLOVESDT_ALL (all fingers).

WorldToolKit Reference Manual 13-65

Chapter 13: Sensors

Calibrating the 5DT Glove

WTglovebdt_calibrateopen

int WTglove5dt_calibrateopen(
WTsensor *sensor);

This function allows you to set the state and orientation of the glove, which makes up the
“open” state. Calibrating the closed position along with the open position allows
miscellaneous data to provide an accurate reading of the glove states (i.e.,
WTGLOVE5DT_OPEN,WTGLOVE5DT_CLOSED).

WTglove5dt_calibrateclosed

void WTglove5dt calibrateclosed(
WTsensor *sensor);

This function allows you to set the state and orientation of the glove, which makes up the
“closed” state. Calibrating the open position along with the closed position allows
miscellaneous data to provide an accurate reading of the glove states (i.e.,
WTGLOVE5DT_OPEN,WTGLOVE5DT_CLOSED).

Changing the Hand Model of the 5DT Glove

WTglove5dt_loadhandmodel

int WTglove5dt_loadhandmodel(
WTsensor *sensor,
char *filename,
float scale);

This function lets you change the hand model while a simulation is running. The name and
scale of the model file are specified figname andscale, respectively.

Note: The default hand model loaded when the sensor is first initialized is "hand5DT.nff".

13-66 WorldToolKit Reference Manual

Gameport Joystick

Gameport Joystick

Limitations

* Only 2 axes Gameport Joysticks with up to 4 buttons are supported.

* You can only have one joystick attached to the system and it must be on port 1.
(This is a limitation of the current NT joystick driver.)

Installing the joystick driver under NT

You must have the NT system driver for the gameport joystick installed to use it under
WorldToolKit. If you have not previously installed one before or are unsure, follow the
steps below to add the driver to your system.

Insert the NT 4.0 CD into your drive.

Open the control panel

Select 'multimedia’

Select 'devices'

Select 'add'

Choose 'unlisted or updated driver' and press 'ok’

N o g M w NP

Type in 'd:\drvlib\multimed\joystick\x86' where d is the letter of your CD-ROM
drive

8. Restart system when prompted

Configuring and calibrating the joystick

WorldToolKit uses the standard NT joystick control panel to calibrate the gameport
joystick. You must calibrate before you use a joystick for the first time, and any time your
joystick is not behaving correctly. To calibrate your joystick:

WorldToolKit Reference Manual 13-67

Chapter 13: Sensors

Open the control panel
Select ‘joystick’
Select the attributes that reflect your joystick

Choose 'calibrate’ and follow directions

o > w N kE

Choose 'test' to verify your calibration

Creating a Gameport Joystick Sensor Object

To create a Gameport Joystick sensor object on serial port 1, you can use the macro call:

WTsensor *joystick;
joystick = WTjoystick_new(SERIAL1);

(if ljoystick)
WTwarning(“Could not open gameport joystick\n”);

This macro makes use of the sensor driver functiBnwystick open, WTjoystick_close,
andWTjoystick_walk. It creates the Gameport Joystick sensor object running at 19200 baud.

At initialization, WTK searches the current directory for a joystick calibration file named
ajoy.cal. The calibration file is in ASCII format with six values specifying floating point
values for minimum X, maximum X, minimum Y, maximum Y, center X and center Y,
respectively. This is a sample calibration file and also represents the default values used by
WTK:

0.0 255.0 0.0 255.0 128.0 128.0

If the calibration file is not found, default values are used for the center and range values of
the joystick.

To use an update function other thémjoystick walk, for exampleWTjoystick_fly, you can
call WTsensor_new directly or simply make the following call after usingjoystick_new.

WTsensor_setupdatefn(joystick, WTjoystick_fly);

13-68 WorldToolKit Reference Manual

Creating a Gameport Joystick Sensor Object

Accessing Gameport Joystick Raw Data

WTK maintains a data structure containing the raw data from the Gameport Joystick. This
information can be accessed using the fundtidsensor_getrawdata (see page 13-15) as

in the example below. The raw data structure for the Gameport Joystick is type defined as
follows:

typedef struct _WTjoystick_rawdata
{

unsigned short x;

unsigned short y;
} WTjoystick_rawdata;

and is accessed as follows :
WTsensor *joystick;
WTjoystick_rawdata *raw;

raw = (WTjoystick_rawdata *)WTsensor_getrawdata(joystick);

WTmessage("Roll %d Pitch %d\n", raw->X, raw->y);

Scaling Gameport Joystick Records

Translational and rotaional records for the Gameport Joystick can be scaled using the
functionsWTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (see
page 13-12) respectively.

Gameport Joystick Update Functions

The WTK update functions for the Gameport Joystick store the position record from the
device into the sensor object’s record, after applying any scale factors set with
WTsensor_setsensitivity (see page 13-11) andiTsensor_setangularrate (see page 13-12).

WorldToolKit Reference Manual 13-69

Chapter 13: Sensors

WTjoystick_fly

void WTjoystick_fly(
WTsensor *sensor);

This function is an update function that moves a sensor forward along the Z-axis at a
constant velocity. It can be used to operate the joystick in a manner familiar to users of
flight simulation programs. When this update function is used, the sensor moves forward
along Z at a small constant velocity (0.1 times the sensor sensitivity each frame). Moving
the joystick forward/backward pitches around X, and moving the joystick right/left rolls
around Z.

The macrow/Tjoystick_newfly creates a gameport joystick object that uses the
WTjoystick_fly update function.

WTjoystick_walk

void WTjoystick_walk(
WTsensor *sensor);

This function initializes a sensor to move in the “walkthrough” mode. The joystick can be
used to move a viewpoint or object in the X-Z plane. When no buttons are pressed, moving
the joystick forward or backward moves forward or backward along the Z axis. Moving the
joystick right or left yaws around the Y axis. When the front button is depressed, moving
the joystick forward or backward pitches around the X axis, and moving the joystick right
or left rolls around the Z axis.

The macrowTjoystick_new creates a Gameport Joystick object that uses the
WTjoystick_walk update function.

WTjoystick_walk2

void WTjoystick_walk2(
WTsensor *sensor);

This function initializes a sensor to move in a second “walkthrough” mode. The
WTjoystick_walk2 update function is likevTjoystick_walk except that holding down the
trigger button allows you to raise or lower the viewpoint.

13-70

WorldToolKit Reference Manual

Creating a Gameport Joystick Sensor Object

The macrowTjoystick_newwalk2 creates a gameport joystick object that uses the
WTjoystick_walk2 update function.

Writing your Own Gameport Joystick Update Function

Your update function should first caliTjoyserial_rawupdate to obtain the Gameport
Joystick's raw data. It should then specify how the raw data is to be transformed into 3D
position record. Finally, your update function must store this record by calling
WTsensor_setrecord (see page 13-24). SEgample 3: Update Function for Absolute
Device (Pseudocoden page E-15.

WTjoystick_rawupdate

int WTjoystick_rawupdate(
WTsensor *sensor);

This function reads in the raw data from the Gameport Joystick and stores it in the sensor’s
raw data structure. This information can be accessed with the function
WTsensor_getrawdata (see page 13-15). Also séecessing Gameport Joystick Raw Data

on page 13-69

Gameport Joystick Defined Constants

The Gameport Joystick supports three momentary buttons in addition to the trigger. These
values can be accessed by usingWiaensor_getmiscdata function with any of the
following constants described in tfwystick.h file in theinclude directory:

WTJOYSTICK_TRIGGERDOWN
WTJOYSTICK_TOPDOWN
WTJOYSTICK_BUTTON1DOWN
WTJOYSTICK_BUTTON2DOWN
WTJOYSTICK_BUTTONNORM
WTJOYSTICK_BUTTONREVERSE

WorldToolKit Reference Manual 13-71

Chapter 13: Sensors

Gameport Joystick Range

WTjoystick_getrange

void WTjoystick_getrange(
WTsensor *sensor,
WTp2 range);

This function returns the maximum X and Y values (divided by 2), which can be attained
by the joystick.

Gameport Joystick Drift

WTjoystick_setdrift

void WTjoystick_setdrift(
WTsensor *sensor,
float drift_per);

This function sets the joystick’s drift amount to a percentage of the joystick’s range. The
drift_per parameter specifies the percentage.

13-72 WorldToolKit Reference Manual

Logitech 3D Mouse (Red Baron)

WTjoystick _getdrift

float WTjoystick _getdrift(
WTsensor *sensor);

This function returns the drift amount of the specified joystick sensor. See
WTjoystick_setdrift, above.

Reinitializing the Gameport Joystick

WTjoystick_readcalibrationfile

void WTjoystick _readcalibrationfile(
void);

This function reads the joystick’s calibration filgdy.cal) so that the joystick can be re-
initialized. Page 13-68 describes Hjey.cal file.

Logitech 3D Mouse (Red Baron)

An early version of the Logitech 3D Mouse went by the name “Red Baron,” and WTK
adopted this name for the sensor driver functions for this device. The Logitech 3D Mouse
has two modes of operation. When it is on the desk surface, it functions in a manner very
similar to a 2D Mouse, with asynchronous cursor tracking. (Cursor tracking with the
Logitech 3D Mouse is not supported on all platforms.) When the device is lifted from the
desk, it is driven by software in a mode that tracks 3D positions and orientations. In this
mode it is used for direct manipulation of viewpoints or objects in the same way as other
position and orientation sensing devices.

To create a 3D Mouse sensor object on serial port 1, you can use the macro call;

WTsensor *baron;
baron = WTbaron_new(SERIAL1);

WorldToolKit Reference Manual 13-73

Chapter 13: Sensors

This macro makes use of the sensor driver functi@ngaron_open, WTbaron_close, and
WTbaron_update. It creates the 3D Mouse sensor object running at 9600 baud on UNIX
platforms and running at 1200 baud on Windows 32-bit platforms.

At initialization, both the transmitter triangle and Mouse should be on the desk surface.
Unlike for the head tracker, where the transmitter and receiver triangles point in opposite
directions, for desk-based operation the configuration at initialization is for the two
triangles to point in the same direction.

When the side button (suspend button) on the 3D Mouse is depressed, position and
orientation records for the sensor are frozen at their current values, until the button is
released. In this manner, the button can be used as a “clutch” or “ratchet” to be able to
traverse large distances or angles by depressing the button while returning the sensor to
within range of the ultrasonic speakers.

Accessing 3D Mouse Raw Data

WTK maintains a data structure containing the raw data read from the 3D Mouse. This
information is accessed using the functitgfisensor_getrawdata (see page 13-15) as in the
example below.

The raw data structure for the 3D Mouse is type defined as follows:

typedef struct _WTbaron_rawdata {

WTp3 p; /* absolute position in WTK coordinates*/
WTp3 w; /* euler angles in WTK coords, in degrees */
float x,y; /* desk-based mouse-like rawdata */

} WTbaron_rawdata;

While the values stored mandw are updated each frame, the X, Y raw data values are
only updated when the unit is on the desk. When the device has been in flying mode (as
indicated byWTLOGITECH_FLYING) and then is returned to the desk, the X, Y values are
re-initialized to the middle of the screen or window.

3D Mouse raw data is accessed as follows:

WTsensor *baron;
WTbaron_rawdata *raw;

13-74 WorldToolKit Reference Manual

Logitech 3D Mouse (Red Baron)

/* get raw baron values */
raw = (WTbaron_rawdata *)WTsensor_getrawdata(baron);

/* print position and orientation data if in flying mode */

if (WTsensor_getmiscdata(baron) & WTLOGITECH_FLYING) {
WTp3_print(raw->p, “Baron position: *);
WTp3_print(raw->w, “Baron angles: *);

}
else {

WTmessage(“X,y coordinates: %f %f\n”,x, y);
}

Scaling 3D Mouse Records

As for the Logitech Head Tracker, the 3D Mouse translation records can be scaled using
the functionWTsensor_setsensitivity (see page 13-11).

There is no angular speed adjustment for the 3D Mouse, i.e., the function
WTsensor_setangularrate has no effect.

WorldToolKit Reference Manual 13-75

Chapter 13: Sensors

3D Mouse Update Function

WTbaron_update

void WTbaron_update(
WTsensor *sensor);

This update function updates the raw data structure to get absolute 3D position and euler
angles. It also updates the screen coordinates if the unit is on the desk. It then applies any
translational contraints and scale factors. Finally, it relativizes the record and stores it with
the sensor by calling/Tsensor_setrecord (see page 13-24).

The macraVTbaron_new creates a 3D Mouse sensor object that usa#/Tiharon _update
function and is recommended for most users.

3D Mouse Defined Constants

The 3D Mouse has three buttons (left, middle, and right) similar to a normal Mouse. In
addition, it has a button on the side of the Mouse body called the “suspend button”, so
named because itis used to suspend motion when pressed (this is the “ratcheting” described
above). Events from these buttons are accessed using the fun@sensor_getmiscdata

(see page 13-15) together with the defined constants:

* Button transitional down . This generates a single event each time the button
moves from up to down. These events are defined as:
WTLOGITECH_LEFTBUTTON, WTLOGITECH_MIDDLEBUTTON,
WTLOGITECH_PEDESTALBUTTON, WTLOGITECH_RIGHTBUTTON, and
WTLOGITECH_SUSPENDBUTTON.

In addition, the defined constarMsTLOGITECH_FLAGBIT andWTLOGITECH_FLYING

are providedWTLOGITECH_FLAGBIT can be used to detect a bad record.
WTLOGITECH_FLYING can be used to detect when the 3D Mouse is currently off the
desktop, as in the example below. Note that this constant makes sense only if the Mouse
was on the desk at initialization. The following code fragment illustrates using this flag to
control the viewpoint with the tracker when it is in flying mode:

/* Logitech 3D Mouse starts off on the desk */
FLAG baron_flying = FALSE;

13-76

WorldToolKit Reference Manual

Logitech Head Tracker

/* this function tests whether the Logitech 3D Mouse is entering or leaving
* 6D mode, and if so, attaches or detaches the sensor from the viewpoint. */
baron_control_view(WTsensor *baron) {

WTviewpoint *view;

view = WTuniverse_getviewpoints();

/* If lifted off from desk, attach sensor to viewpoint.*/
if (WTsensor_getmiscdata(baron) & WTLOGITECH_FLYING
&& 'baron_flying) {
WTviewpoint_addsensor(view, baron);
baron_flying = TRUE;
}
/* Else if landing, remove sensor from viewpoint */
else if (/(WTsensor_getmiscdata(baron) &
WTLOGITECH_FLYING) && baron_flying) {
WTviewpoint_removesensor(view, baron);
baron_flying = FALSE;

Logitech Head Tracker

The Logitech Head Tracker from Logitech, Inc. is a serial port device that measures
absolute position and orientation by using three microphones to triangulate on three
ultrasonic speakers. The speakers are mounted in a large triangle, and the microphones are
in a smaller triangle, which is either attached to the end of a special Logitech Mouse (see
page 13-73) for desk-based use or is mounted on top of a head-mounted display for use as
a head tracker. WTK provides sensor drivers for these two different physical
configurations. In another configuration, the Head Tracker is built in to the StereoGraphics
CrystalEyesVR combined viewing and tracking system. An additional driver is provided in
WTK for this system (see page 13-108).

When the Head Tracker sensor moves out of range of the ultrasonic transmitters, records
returned from the device are thresholded by WTK so that they cease to change until the
sensor returns within range. The tracked area is approximately a two foot cube, with
diminished accuracy within a seven foot cube. In using this device, remember that it

WorldToolKit Reference Manual 13-77

Chapter 13: Sensors

operates ultrasonically and therefore, unlike the magnetic ISOTRAK or Bird, the sensor
microphones must be within line of sight of the transmitting speakers for stable operation.

To create a Head Tracker on serial port 1, you use the macro call:

WTsensor *logitech;
WTmessage(“About to create Logitech head tracker...\n");
logitech = WTlogitech_new(SERIALL1);
if (llogitech)
WTwarning(“Couldn’t open Logitech\n”);
else
WTmessage(“Calibration complete.\n");

This macro makes use of the sensor driver functi@hegitech_open, WTlogitech_close,
and WTlogitech_update. It creates the Head Tracker sensor object running at 19200 baud
on UNIX platforms and running at 1200 baud on Windows 32-bit platforms.

At sensor initialization, the transmitter and receiver must be in a particular spatial
relationship with one another for its subsequent operation to be correct. The correct
orientation is to place both the helmet and transmitter triangles level so that the planes of
the triangles are parallel and the transmitter and receiver units face each other (see figure
13-3 on page 13-79). The cables from the two triangles should point in opposite directions.
If the transmitter and receiver triangles are not within range of each other at the time of
sensor initialization, th&/Tlogitech_open function prompts you to move the receiver

within range so that the initialization can be completed.

13-78

WorldToolKit Reference Manual

Logitech Head Tracker

transmitter

S ———

3 feet

HMD

Figure 13-3: Setup for the Logitech Head Tracker.

Accessing Head Tracker Raw Data

WTK maintains a data structure containing the raw data read from the Head Tracker device.
This information is accessed using the functigFsensor_getrawdata (see page 13-15) as
in the example below.

The raw data structure for the Head Tracker is type defined as follows:

typedef struct _WTlogitech_rawdata {
WTp3 p; /* absolute position in WTK coordinates */
WTp3 w; /* euler angles in WTK coords, in degrees */
} WTlogitech_rawdata;

WorldToolKit Reference Manual 13-79

Chapter 13: Sensors

and accessed as follows:

WTsensor *logitech;
WTlogitech_rawdata *raw;

/* print out the raw data */

raw = (WTlogitech_rawdata *)WTsensor_getrawdata(logitech);
WTp3_print(raw->p, “logitech raw position: “);
WTp3_print(raw->w, “logitech raw angles: “);

Scaling Head Tracker Records

Translational records for the Head Tracker can be scaled using the function
WTsensor_setsensitivity (see page 13-11).

There is no angular speed adjustment for the Head Tracker, i.e., the function
WTsensor_setangularrate has no effect.

Head Tracker Update Function

WTlogitech_update

void WTlogitech_update(
WTsensor *sensor);

This update function updates the raw data structure to get absolute 3D position and euler
angles. It then applies any translational contraints and scale factors. Finally, it relativizes
the record and stores it with the sensor by callirigensor_setrecord (see page 13-24).

The macrowTlogitech_new creates a Head Tracker sensor object that uses the
WTlogitech_update function and is recommended for most users.

13-80

WorldToolKit Reference Manual

Logitech Space Control Mouse (Magellan)

Head Tracker Defined Constants

The defined constant&TLOGITECH_FLAGBIT (to detect bad records) and
WTLOGITECH_OUTBIT (to detect whether the receiver is out of range of the transmitter)
are provided and can be used with the funcorsensor_getmiscdata (see page 13-15).

Logitech Space Control Mouse (Magellan)

The Space Control Mouse, from Logitech, Inc. @xadegrees-of-freedoserial port

device that sits on the desktop. It responds to both forces and torques, which can be mapped
into translations and rotations in 3D. The WTK update functions package the translation
and rotation record from the Space Control Mouse into the sensor object’s record, after it
transforms the record to the WTK coordinate convention and applys any scale factors set
with WTsensor_setsensitivity and WTsensor_setangularrate.

To create a Space Control Mouse sensor object on serial port 1, you can use the macro call:

WTsensor *magellan;
magellan = WTspacecontrol_new(SERIAL1);

This macro makes use of the sensor driver functi@nspacecontrol_open,
WTspacecontrol_close andWTspacecontrol_update. It creates the Space Control Mouse
sensor object running at 9600 baud.

The coordinate frame of these sensors is defined in the WTK driver functions as follows.
If the device is placed on a desk or table in front of you with the cable coming out the back
of the device pointing away from you, as illustrated in figure 13-4, then the Z axis of the
device points straight ahead, the X axis points to the right, and the Y axis points down. If
this coordinate frame is not appropriate for your application, the funétiGensor_rotate

(see page 13-20) can be used to define the device’s coordinate frame.

WorldToolKit Reference Manual 13-81

Chapter 13: Sensors

@v X axis

Z axis
Y axis

Figure 13-4: Logitech Space Control Mouse (Magellan) reference frame.

Accessing Space Control Mouse Raw Data

WTK maintains a data structure containing the raw data read from the Space Control
Mouse. This information is accessed usitifisensor_getrawdata (see page 13-15) as in
the following example.

The raw data structure for the Space Control Mouse is type defined as follows. Note that
bothp andw are in the original Space Control Mouse coordinates and that no scale factors
or constraints have been applied to the values.

typedef struct _WTspacecontrol_rawdata {
short p[3]; [* absolute position */
short w[3]; /* euler angles */
} WTspacecontrol_rawdata;

Space Control Mouse raw data is accessed as follows:

WTsensor *spacecontrol;
WTspacecontrol_rawdata *raw;

[* get the raw spacecontrol values and print them out */

raw = (WTspacecontrol_rawdata *)WTsensor_getrawdata(spacecontrol);
WTmessage(“Position: %d, %d, %d\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %d, %d, %d\n”, raw->w[X], raw->w[Y], raw->w[Z]);

13-82 WorldToolKit Reference Manual

Logitech Space Control Mouse (Magellan)

Scaling Space Control Mouse Records

Translational and rotational records for the Space Control Mouse can be scaled using the
functionsWTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (see
page 13-12) respectively.

Space Control Mouse Update Function

WTspacecontrol_update

void WTspacecontrol_update(
WTsensor *sensor);

This update function call@/Tspacecontrol_rawupdate (see below) to update the raw data
structure to get the 3D position and euler angle. It then applies any scale factors set with
WTsensor_setsensitivity (see page 13-11) andTsensor_setangularrate (see page 13-12).
Finally it converts the euler to a quarternion and stores the record with the sensor by calling
WTsensor_setrecord (see page 13-24).

The macranVTspacecontrol_new creates a Space Control Mouse sensor object that uses the
WTspacecontrol_update function.

Writing your own Space Control Mouse Update Function

Your update function should first c&lfTspacecontrol_rawupdate (see below) to obtain the
sensor’s raw position and orientation. It should then specify how the raw data is to be
transformed into 3D position and orientation record. Finally, your update function must
store this record by calling/Tsensor_setrecord (see page 13-24).

WTspacecontrol_rawupdate

void WTspacecontrol_rawupdate(
WTsensor *sensor);

This function obtains raw position, orientation, and button-press data for a Space Control
Mouse deviceWTspacecontrol_rawupdate should be called at the beginning of the sensor

WorldToolKit Reference Manual 13-83

Chapter 13: Sensors

user’s update function to obtain the raw Space Control Mouse position, orientation and
button-press data. It obtains the relative translation and orientation information from the
Space Control Mouse and stores it in the sensor’s raw data structure
(WTspacecontrol_rawdata). This information can be accessed Witfisensor_getrawdata

(see page 13-15). Also sAecessing Space Control Mouse Raw Datgpage 13-82.

This function also reads the SpaceController button presses, which can be accessed with
WTsensor_getmiscdata (see page 13-15). Also sBpace Control Mouse Defined
Constantdelow.

Space Control Mouse Defined Constants

There are nine user-programmable buttons on the Space Control Mouse. All of these are
positioned on the top edge of the Space Control Mouse frame. The button marked with a
“*" is called the “pick button” (to maintain compatibility with the Spaceball).

Events from these buttons can be accessed ugiisgnsor_getmiscdata (see page 13-15)
together with the following defined constants:

e Button held down . This event is generated each frame that the button is held
down. These events are defined&3'SPACECONTROL_BUTTONXx (where X is
a number between 1 and 8. For exampil@ SPACECONTROL_BUTTON4) and
WTSPACECONTROL_BUTTONA (the “pick button”).

Special Space Control Mouse Modes

As indicated in the Space Control Mouse documentation, you can set the device into a
special ‘dominant’ mode where only the largest of the six DOF values is returned. This
makes the device easier to operate for new users. This and other control modes are accessed
through a special combination of key presses. WTK should work fine with any of these
settings.

13-84 WorldToolKit Reference Manual

Polhemus ISOTRAK

Polhemus ISOTRAK

The ISOTRAK tracker from Polhemus, Inc. is an electromagnetic-based six degree-of-
freedom sensor that measures absolute position and orientation.

To create an ISOTRAK sensor object on serial port 1, you can use the macro call:

WTsensor *isotrak;
isotrak = WTpolhemus_new(SERIAL1);

This macro makes use of the sensor driver functigngo/hemus_open,
WTpolhemus_close, andWTpolhemus_update. It creates the ISOTRAK sensor object
running at 9600 baud.

Following are the DIP switch settings for the ISOTRAK sensor objects running at 9600
baud.

ISOTRAK ON ON OFF ON OFF OFF OFF OFF

Consult your ISOTRAK reference manual if you are uncertain of how to set your
ISOTRAK DIP switches.

When you calWTpolhemus_new to construct a new ISOTRAK sensor object, ¢henfn

for the device is automatically called. Part of the function obtleafn for this device is to
calibrate the sensor, which consists of obtaining an initial position and orientation record.
This takes several seconds, during which the device should not be moved. Records
subsequently generated by thmlatefn are with respect to this initial reference frame. It
may be useful in your application to let the user know that the device is about to be
calibrated. For example, you might want to have a print statement:

WTsensor *sensor;

WTmessage(“About to calibrate/initialize ISOTRAK...\n");
sensor = WTpolhemus_new(SERIAL1);
WTmessage(“Initialization complete.\n”);

WorldToolKit Reference Manual 13-85

Chapter 13: Sensors

Z axis

X axis

Y axis

Figure 13-5: ISOTRAK sensor reference frame

The coordinate frame of this sensor is defined in the WTK driver functions as follows. If
the receiver cube is placed “flat-end down” in front of you with the cable from the cube
coming out the back of the cube toward you, then (as illustrated in figure 13-5) the Z axis
of the device points straight ahead, the X axis points to the right, and the Y axis points
down. If this coordinate frame is not appropriate for your application, the function
WTsensor_rotate (see page 13-20) can be used to define another coordinate frame for the
device.

Accessing ISOTRAK Raw Data

WTK does not provide a separate raw data structure for this device. The most recent sensor
record can be obtained usiWgrsensor_getlastrecord (see page 13-25). This function

retrieves the absolute record in WTK coordinates with no scale factors applied. This record
is called “absolute” because it describes a location in 3D space rather than a change in
location since the last frame. This absolute record is, however, relative to the position and
orientation of the device when the device was opened by WTK.

Scaling ISOTRAK Records

Translation records for the ISOTRAK can be scaled using the function
WTsensor_setsensitivity (see page 13-11). It is often useful, for example, to scale sensor
inputs with the size of the scene.

13-86 WorldToolKit Reference Manual

Polhemus ISOTRAK

Unlike translation records, however, orientation records from the ISOTRAK cannot be
scaled in the WTK update function for this device. For example, if the ISOTRAK is used
to track head motion (the sensor object is attached to the viewpoint), then a 360 degree
rotation of the ISOTRAK device in the real world generates a 360 degree rotation in the
virtual world.

It is possible to turn off all rotational input from this device by writing your own update
function which nullifies the orientation record. The following is a simple update function
that accomplishes this for the ISOTRAK:

/* update function which turns off all rotational input from the ISOTRAK */
void polhemus_myupdate(WTsensor *sensor)

{
WTp3 p;
WTq q;

/* call the WTK-supplied update function */
WTpolhemus_update(sensor);

[* use the translation record as is */
WTsensor_gettranslation(sensor, p);

/* nullify the orientation record */
WTq_init(q);

/* reset the ISOTRAK sensor record */
WTsensor_setrecord(sensor, p, q);

}
This update function could be set as follows:

WTsensor_setupdatefn(sensor, polhemus_myupdate);

or by passing imolhemus_myupdate to WTsensor_new.

WorldToolKit Reference Manual 13-87

Chapter 13: Sensors

ISOTRAK Update Function

WTpolhemus_update

void WTpolhemus_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after relativizing it and then applying any translational scale factor
that may have been set witWirsensor_setsensitivity (see page 13-11). The macro
WTpolhemus_new creates an ISOTRAK sensor object that usesitheolhemus_update
function and is recommended for most users.

Polhemus ISOTRAK Il

The ISOTRAK Il tracker is very similar to the ISOTRAK (see page 13-85), except that it
supports two sensors (receivers) instead of one. In fact, an ISOTRAK Il with only one
receiver attached operates exactly like an ISOTRAK, and from WTK you should treat it
just like an ISOTRAK (however, us€Tpolhemus_new rather thawTisotrak2_newif you

are using just one receiver).

To create an ISOTRAK Il sensor object having two receivers on serial port 1, you can use
the macro call:

WTsensor *i1, *i2;
il = WTisotrak2_new(SERIAL1, 1);
i2 = WTisotrak2_new(SERIALL, 2);

This macro makes use of the sensor driver functignisotrak2_open, WTisotrak2_close,
and WTisotrak2_update. It creates the ISOTRAK Il sensor object having two receivers
running at 9600 baud.

The second argument ¥gTisotrak2_new is the unit number (1 or 2). Following are the DIP
switch settings for the ISOTRAK 1l running at 9600 baud:

ISOTRAK II ON ON OFF ON OFF OFF OFF OFF

13-88 WorldToolKit Reference Manual

Polhemus ISOTRAK Il

Consult your ISOTRAK Il reference manual if you are uncertain of how to set your DIP
switches. You should try to use the ISOTRAK Il at 19200 baud as this may dramatically
improve response time. To do so, change the DIP switches on the ISOTRAK Il and change
your WTisotrak2_new macro (in thesensor.h file in theinclude directory) to use the higher

baud rate.

Following are the DIP switch settings for the ISOTRAK Il running at 19200 baud:
ISOTRAK Il OFF OFF ON ON OFF OFF OFF OFF

Consult your ISOTRAK Il reference manual if you are uncertain of how to set your
ISOTRAK Il DIP switches.

When you calWTisotrak2_new for the first receiver (unit 1), thepenfn for the device is
called, which calibrates the sensor. Calibration consists of obtaining an initial position and
orientation record, which takes several seconds, during which the device should not be
moved. Records subsequently generated bydhetefn are with respect to this initial
reference frame. As with other 6D sensors, it may be useful in your application to let the
user know that the device is about to be calibrated (see the examplé&alienus
ISOTRAKonN page 13-85).

The coordinate frame of the ISOTRAK Il is the same as for the ISOTRAK (see figure 13-5
on page 13-86).

Accessing ISOTRAK Il Raw Data

SeeAccessing ISOTRAK Raw Daia page 13-86.

Scaling ISOTRAK Il Records

SeeScaling ISOTRAK Records page 13-86.

WorldToolKit Reference Manual 13-89

Chapter 13: Sensors

ISOTRAK Il Update Function

WTisotrak2_update

void WTisotrak2_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after relativizing it and then applying any translational scale factor
that may have been set witWirsensor_setsensitivity (see page 13-11).

The macrowTisotrak2_new creates an ISOTRAK |l sensor object that uses the
WTisotrak2_update function and is recommended for most users.

Polhemus InsideTRAK

The InsideTRAK tracker from Polhemus, Inc. is very similar to the Polhemus ISOTRAK
(see page 13-85) , but it is only available on Intel-based workstations with ISA bus slots.
This six-degree-of-freedom electromagnetic tracking system supports one transmitter and
two receivers that measure absolute position and orientation.

To create an InsideTRAK sensor object having two receivers you can use the macro call:

WTsensor *i1, *i2;
i1 = WTinsidetrak_new(1);
i2 = WTinsidetrak_new(2);

if (11] Yi2)
WTwarning("Could not open InsideTRAK receivers\n");

This macro makes use of the sensor driver functitsn@sidetraknt_open,
WTinsidetraknt_close, andWTinsidetraknt_update. It creates the InsideTRAK sensor
object having two receivers.

13-90 WorldToolKit Reference Manual

Polhemus Inside TRAK

Note: Unlike other sensor objects, you do not need to specify the serial port for the
InsideTRAK. So, if using the generic sensor constructor function - WTsensor_new (see
page 13-7), the serial port argument should always be NULL.

When you calWTinsidetrak_new for the first receiver (unit 1), thepenfn for the device is
called, which calibrates the sensor. Calibration consists of obtaining an initial position and
orientation record, which takes several seconds, during which the device should not be
moved. Records subsequently generated bygdhetefn are with respect to this initial
reference frame. As with other 6D sensors, it may be useful in your application to let the
user know that the device is about to be calibrated (see the examplé&atienus
ISOTRAKonN page 13-85).

The coordinate frame of the InsideTRAK is the same as for the ISOTRAK (see figure 13-5
on page 13-86).

Accessing InsideTRAK Raw Data

SeeAccessing ISOTRAK Raw Daia page 13-86.

Scaling InsideTRAK Records

SeeScaling ISOTRAK Recoras page 13-86.

InsideTRAK Update Function

WTinsidetrak_update

void WTinsidetrak_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after relativizing it and then applying any translational scale factor
that may have been set witWirsensor_setsensitivity (see page 13-11).

WorldToolKit Reference Manual 13-91

Chapter 13: Sensors

The macrowTinsidetrak_new creates an InsideTRAK sensor object that uses the
WTinsidetrak_update function and is recommended for most users.

Polhemus FASTRAK

The FASTRAK is similar to previous Polhemus sensors, except that it supports multiple
trackers (up to four) and has much reduced sensor lag and increased accuracy.

To create a FASTRAK sensor object on serial port 1, you can use the macro call:

WTsensor *fastrak;
fastrak = WTfastrak_new(SERIALL, unit);

This macro makes use of the sensor driver functiéngastrak_open, WTfastrak_close,
and WTfastrak_update. It creates the FASTRAK sensor object running at 9600 baud on
UNIX platforms and running at 19200 baud on Windows 32-bit platforms.

unitis a unit number, from 1 to 4, specifying which FASTRAK receiver to open. If you are
using multiple receivers, open them in sequential order. For example, if you are using 3
FASTRAK receivers, open them like this:

WTsensor *f1, *f2, *{3;

fl = WTfastrak_new(SERIALL, 1);
f2 = WTfastrak_new(SERIALL, 2);
f3 = WTfastrak_new(SERIALL, 3);

Following are the DIP switch settings for the FASTRAK running at 9600 baud:
FASTRAK ON ON OFF OFF ON OFF OFF ON

You should try to use the FASTRAK at 19200 baud as this will dramatically improve
response when used with multiple sensors. To do this, you must first power down your
FASTRAK, change the DIP switch settings to 19200 baud and then repower the device.
With WTK, you will need to modify theensors.h include file to specify a baud rate of
19200.

13-92

WorldToolKit Reference Manual

Polhemus FASTRAK

Following are the DIP switch settings for the FASTRAK running at 19200 baud:
FASTRAK OFF OFF ON ON ON OFF OFF ON

Consult your FASTRAK reference manual if you are uncertain of how to set your
FASTRAK DIP switches.

The first sensor you openustbe the sensor connected to the FASTRAK'’s sensor number
one port. For example, you cannot start up using just sensor number two. In addition, if you
connect multiple sensors to the FASTRAK, but tell WTK to open only a single sensor, you
may get erratic results because the FASTRAK is returning multiple records. If you are only
using a single sensor with WTK, then you should also configure the FASTRAK
accordingly.

Polhemus Stylus

Using the Polhemus Stylus in your WTK applications is no different than using the
Polhemus FASTRAK. However, you must use the Stylus as the first unit of the FASTRAK.
You must plug the Stylus into the back panel of the FASTRAK where, if you were not using
a Stylus, the FASTRAK receiver 1 would have been plugged in. (Refer to your FASTRAK/
Stylus manual for more information.)

Following is an example of accessing the Stylus button event.

WTsensor *stylus,*f2;

stylus= WTfastrak_new(SERIAL1,1);

f2= WTfastrak_new(SERIALL,2);

/*Additional units may be connected*/

if(WTsensor_getmiscdata(stylus) & WTFASTRAK_STYLUSBUTTON_DOWN)
WTmessage("Stylus button is down\n");

else
WTmessage("Stylus button is up\n");

Accessing FASTRAK Raw Data

SeeAccessing ISOTRAK Raw Daia page 13-86.

WorldToolKit Reference Manual 13-93

Chapter 13: Sensors

Scaling FASTRAK Records

SeeScaling ISOTRAK Recoras page 13-86.

FASTRAK Update Function

WTfastrak_update

void WTfastrak_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after relativizing it and then applying any translational scale factor
that may have been set withirsensor_setsensitivity (see page 13-11).

The macrowTfastrak_new creates a FASTRAK sensor object that uses the
WTfastrak_update function and is recommended for most users.

Filtering the FASTRAK

The default operation of the FASTRAK doesn'’t use any filtering of its signal inputs. In
some environments, this may lead to a jumpy or erratic signal. Polhemus supplies two
functions for adaptive filtering of either the position or orientation information returned by
the FASTRAK. These filtering operations are performed by the FASTRAK hardware and
they will add a noticeable sensor lag into the measurement process.

For more detailed information about the use of these filters, please consult your Polhemus
FASTRAK manual.

13-94 WorldToolKit Reference Manual

Polhemus FASTRAK

WTfastrak_afilter

void WTfastrak_afilter(
WTsensor *ftrak,
float sensitivity,
float flow,
float fhigh,
float factor);

This function controls the amount of adaptive filtering applied to the orientation or altitude
values returned by the FASTRAK device.

WTfastrak_afilteroff

void WTfastrak_afilteroff(
WTsensor *ftrak);

This function turns off the filtering of orientation or altitude values previously set by
WTfastrak_afilter.

WTfastrak_pfilter

void WTfastrak_pfilter(
WTsensor *ftrak,
float sensitivity,
float flow,
float fhigh,
float factor);

This function controls the amount of adaptive filtering applied to the position values
returned by the FASTRAK device.

WTfastrak_pfilteroff

void WTfastrak_pfilteroff(
WTsensor *ftrak);

This function turns off the filtering of position values previously seiiyastrak pfilter.

WorldToolKit Reference Manual 13-95

Chapter 13: Sensors

Precision Navigation Wayfinder-VR

The Precision Navigation Wayfinder-VR head tracker is a serial device used to track the
orientation of the wearer using inertial and compass technologies. This tracker provides
360 degrees of yaw rotation, and about +/- 45 degrees of pitch and roll rotation.

To create a Wayfinder-VR sensor object on serial port 1, you can use the macro call:

WTsensor *precision;
precision = WTprecision_new(SERIAL1);

This macro makes use of the sensor driver functigngrecision_open,
WTprecision_close, andWTprecision_update. It creates the Wayfinder-VR sensor object
running at 38400 baud.

Accessing Wayfinder-VR Raw Data

WTK maintains a data structure containing the raw data read from the Wayfinder-VR. This
information can be accessed using the fundtiGisensor_getrawdata (see page 13-15) as

in the example below. The Wayfinder-VR raw data structure stores the absolute rotation of
the tracker as an euler.

The raw data structure for the Wayfinder-VR is type defined as follows:

typedef struct _WTprecision_rawdata {
WTp3 e;
} WTprecision_rawdata;

and is accessed as follows:

WTsensor *precision

WTprecision_rawdata *raw;

raw = (WTprecision_rawdata *) WTsensor_getrawdata (precision);
WTp3_print (raw->e, “Raw euler: “);

13-96

WorldToolKit Reference Manual

Precision Navigation Wayfinder-VR

Scaling Wayfinder-VR Records

Records cannot be scaled for this sensor object. So the funidtiGessor_setsensitivity
andWTsensor_setangularrate have no effect.

Wayfinder-VR Update Function

WTprecision_update

void WTprecision_update(
WTsensor *sensor);

This update function call@/Tprecision_rawupdate (see below) to update the raw data
structure, convert it to a quaternion, and relativize it with the previous record. The macro
WTprecision_new creates a Wayfinder-VR sensor object that used/ffgecision_update
function.

Writing your Own Wayfinder-VR Update Function

Your update function should first calfTprecision_rawupdate (see below) to obtain the

sensor object's raw data as an absolute euler. It should then specify how the raw data is to
be transformed into an orientation record. Finally, your update function must store this
record by callingVTsensor_setrecord (see page 13-24). SEgample 3: Update Function

for Absolute Device (Pseudocod®) page E-15.

WTprecision_rawupdate

int WTprecision_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolute euler
rotation. This information can be accessed Withsensor_getrawdata (see page 13-15).
Also seeAccessing Wayfinder-VR Raw Data page 13-96.

WorldToolKit Reference Manual 13-97

Chapter 13: Sensors

Special Notes on Wayfinder-VR

This section provides some tips on what you can do if your Wayfinder-VR is not working.
Before you proceednake sure the battery is not dead

The device keeps track of the previous baud rate at which it was being operated. This means
that suppose it was being used at 9600 baud rate before being disconnected, then the next
time that it is used it would still be running at 9600 baud rate. WTK uses 38400 baud rate
when trying to open the device. Thus, if the device was being used at any other baud rate,
it fails to open.

If you encounter the above problem do the following:
Connect the Precision Navigation Wayfinder-VR to one of the serial ports.

On Windows NT 3.51:

1. From Program Manager/Accessories, double-click on Terminal.

A window displays from which you can either see erroneous records being output
or nothing being output.

2. Click on Settings and select Terminal Preferences. From the dialog box that
displays, check the Local Echo option.

3. Click on Settings and select Communications. From the dialog box that displays,
choose the required COM port. Set Data Bits to 8, Stop Bits to 1 and Parity to
None.

4. If erroneous records are being output, choose the baud rate (from the same dialog
box as above) one by one (i.e., 300/1200/2400/4800/9600/19200/38400) until the
device starts outputting correct records (i.e., of type
$C<compass>P<pitch>R<roll>*checksum<cr><If>).

5. If nothing is being output, the device is probably in halt mode. Choose the baud
rate one by one (as above) but additionally typand press Enter (try to get the
device into continuous mode). If the device is on the correct baud rate, records of
type $C<compass>P<pitch>R<roll>*checksum<cr><If> will start being output.

6. Once correct records have started being outputfitsipd press Enter to bring the
device into halt mode. Now set the baud rate to 38400 by typingrhe device
is now set to baud rate 38400 and can be opened by WTK.

13-98

WorldToolKit Reference Manual

Precision Navigation Wayfinder-VR

7.

Close the terminal program (no need to save settings). Disconnect the device (this
isimportan). The effect of changing the baud rate does not take place unless the
device is disconnected. Now reconnect it and open it with WTK.

On Windows 95/NT 4.0:

1.

Double-click on Hypertrm.exe from Program Files/Accessories/Hyper Terminal.
The Connection Description dialog box displays.

Choose an icon (any icon) and type a name (any name). Click OK.

The Phone Number dialog box displays.

From the Connect Using pull-down menu, choose the required COM port. Click
OK.

The COM Properties dialog box displays.

Set Data Bits to 8, Parity to None, Stop Bits to 1, and Flow Control to Hardware.
Click OK.

From the File menu, click Properties. From the dialog box, choose the Settings
tab. Click on ASCII Setup. Check the Echo Typed Characters Locally option.

If erroneous records are being output, choose the baud rate (from the same dialog
box as above) one by one (i.e., 300/1200/2400/4800/9600/19200/38400) until the
device starts outputting correct records (i.e., of type
$C<compass>P<pitch>R<roll>*checksum<cr><If>).

If nothing is being output, the device is probably in halt mode. Choose the baud
rate one by one (as above) but additionally typand press Enter (try to get the
device into continuous mode). If the device is on the correct baud rate, records of
type $C<compass>P<pitch>R<roll>*checksum<cr><If> will start being output.

Once correct records have started being outputfitgpd press Enter to bring the
device into halt mode. Now, set the baud rate to 38400 by typind he device
is now set to baud rate 38400 and can be opened by WTK.

Close the terminal program (no need to save settings). Disconnect the device (this
isimportan). The effect of changing the baud rate does not take place unless the
device is disconnected. Now reconnect it and open it with WTK.

WorldToolKit Reference Manual 13-99

Chapter 13: Sensors

Spacetec IMC Spaceball

The Spacetec IMC Spaceball is a 6 degree-of-freedom serial port device that sits on the
desktop. It responds to both forces and torques, which can be mapped into translations and
rotations in 3D.

Z axis

———®»Xaxis

Y axis

Figure 13-6: Spaceball and its reference frame
To create a Spaceball sensor object on serial port 1, you can use the macro call:

WTsensor *spaceball;
spaceball = WTspaceball_new(SERIAL1);

This macro makes use of the sensor driver functignspaceball_open,
WTspaceball_close, andWTspaceball_update. It creates the Spaceball sensor object
running at 9600 baud.

The coordinate frame of this sensor is defined in the WTK driver functions as follows. If
the device is placed on a desk or table in front of you with the cable coming out the back of
the device oriented away from you, then, (as illustrated above) the Z axis of the device
points straight ahead, the X axis points to the right, and the Y axis points down. If this
coordinate frame is not appropriate for your application, the funetiteensor_rotate (see

page 13-20) can be used to define the device’s coordinate frame.

13-100 WorldToolKit Reference Manual

Spacetec IMC Spaceball

Accessing Spaceball Raw Data

WTK maintains a data structure containing the raw data read from the Spaceball. This
information is accessed usiWgTsensor_getrawdata (see page 13-15) as in the example
below.

The raw data structure for the Spaceball is type defined as follows. Note thatamobiv
are in the original Spaceball coordinates and that no scale factors have been applied to the
values.

typedef struct _WTspaceball_rawdata {
short p[3]; [* absolute position */
short w[3]; /* euler angles */

} WTspaceball_rawdata;

Spaceball raw data is accessed as follows:

WTsensor *spaceball;
WTspaceball_rawdata *raw;

/* get the raw spaceball values and print them out */

raw = (WTspaceball_rawdata *)WTsensor_getrawdata(spaceball);
WTmessage(“Position: %d, %d, %d\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %d, %d, %d\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Spaceball Records

Translational and rotational records for the Spaceball can be scaled using the functions
WTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (See page 13-12)
respectively.

WorldToolKit Reference Manual 13-101

Chapter 13: Sensors

Spaceball Update Functions

WTspaceball_update

void WTspaceball_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after transforming the record to the WTK coordinate convention, and
applying any scale factors that may have been setWiidensor_setsensitivity (See page
13-11) andWTsensor_setangularrate (see page 13-12).

The macroVTspaceball_new creates a Spaceball sensor object that uses the
WTspaceball_update function and is recommended for most users.

WTspaceball_dominant

void WTspaceball_dominant(
WTsensor *sensor);

This update function restricts the Spaceball movement to just one axis. It is an update
function for the Spaceball that can be used in plac&Tspaceball_update.

In “dominant” mode, the largest single input value from the Spaceball is considered the
only input. So, out of the six possible values only the largest value is kept, and the other
five values are filtered out (reduced to zero). This can be very useful for avoiding unwanted
motion. For example, if you push the Spaceball forward intending to cause a forward
motion, the Spaceball is likely to detect small forces in other directions or rotations. In
dominant mode, these small values are filtered out and the viewpoint would move forward
along a single axis only. This can be a useful technique for “rookie” users or for more
precise control over positioning objects.

To toggle the use of dominant mode, simply usetigensor_setupdatefn to switch
between the functionid/Tspaceball_dominant and WTspaceball_update.

The macroVTspaceball_newdominant creates a Spaceball sensor object that uses the
WTspaceball _dominant function.

13-102 WorldToolKit Reference Manual

Spacetec IMC Spaceball

Spaceball Defined Constants

There are nine user-programmable buttons on the Spaceball. Eight of these are positioned
on the top edge of the Spaceball frame. One other button, called the “pick button,” is
mounted on the forward face of the ball itself. Events from these buttons can be accessed
usingWTsensor_getmiscdata (see page 13-15) together with the following defined
constants:

» Button held down . This event is generated each frame that the button is held
down. These events are defined &4§'SPACEBALL_BUTTONx wherex is a
number between 1 and 8 (for examM&,SPACEBALL BUTTON4) and
WTSPACEBALL_PICKBUTTON. In addition, there is a mask called
WTSPACEBALL_BUTTONS that can be used to see if any button is currently held
down.

» Button transitioned down . This event is generated each time the button moves
from up to down. These events are defined as:
WTSPACEBALL _BUTTONx_DOWN, wherex is a number between 1 and 8, and
WTSPACEBALL_PICKBUTTON_DOWN. In addition, there is a mask called
WTSPACEBALL _BUTTONS _DOWN that can be used to see if any button
transitioned down.

e Button transitioned up . This generates a single event each time the button moves
from down to up. These events are definedVdBSPACEBALL_BUTTONx_UP,
wherex is a number between 1 and 8, Mi@SPACEBALL PICKBUTTON_UP.

In addition, there is a mask call@drSPACEBALL BUTTONS_UP that can be
used to see if any button transitioned up.

Redefining the Center for the Spaceball

WTspaceball_rezero

WTspaceball_rezero(
WTsensor *spaceball);

This function redefines the Spaceball’s center value at its current position. Spaceballs may
become slightly inaccurate with use and may “drift” when their default “center” value has
changed. If you have a drifting Spaceball, you can call this function to redefine the

WorldToolKit Reference Manual 13-103

Chapter 13: Sensors

Spaceball’s “center” as its current position. The Spaceball should not have any forces
applied to it when this function is called.

Special Notes on Spaceball Model 3003

If you are using the Spacetec Spaceball Model 3003, be aware that the WTK driver has not
been rewritten for the Model 3003. The 2003 driver works for both units, with a couple of
differences. The ball controls translation and rotation in 6 degrees in real time for both
models, but the 3003 only has one button (whereas the 2003 has 8 plus a pick button) that
WTK supports. The button on the right side of the 3003 acts as the pick button. Future
drivers for the 3003 may include additional support.

Spacetec IMC Spaceball SpaceController

The Spacetec IMC Spaceball SpaceController is a 6 degree-of-freedom serial port device
that sits on the desktop. It responds to both forces and torques, which can be mapped into
translations and rotations in 3D.

To create a Spaceball SpaceController sensor object on serial port 1, you can use the macro
call:

WTsensor *spacecontrol;
spacecontrol = WTspaceballSC_new(SERIAL1);

This macro makes use of the sensor driver functitsnspaceballSC_open,
WTspaceballSC_close, andWTspaceballSC_update. It creates the Spaceball
SpaceController sensor object running at 9600 baud.

The coordinate frame of this sensor is the same as for the Spaceball and is defined in the
WTK driver functions as follows. If the device is placed on a desk or table in front of you
with the cable coming out the back of the device oriented away from you, then, (as
illustrated in figure 13-6 on page 13-100 for the Spaceball) the Z axis of the device points
straight ahead, the X axis points to the right, and the Y axis points down. If this coordinate
frame is not appropriate for your application, the functidrsensor_rotate (see page

13-20) can be used to define the device’s coordinate frame.

13-104 WorldToolKit Reference Manual

Spacetec IMC Spaceball SpaceController

Accessing Spaceball SpaceController Raw Data

WTK maintains a data structure containing the raw data read from the Spaceball
SpaceController. This information is accessed ugifigensor_getrawdata (see page
13-15) as in the example below.

The Spaceball SpaceController raw data structure is type defined as follows. Note that both
p andw are in the original Spaceball SpaceController coordinates and that no scale factors
have been applied to the values.

typedef struct _WTspaceballSC_rawdata {
WTp3 p; /* absolute position */
WTp3 w; /* euler angles */
} WTspaceballSC_rawdata;

Spaceball SpaceController raw data is accessed as follows:

WTsensor *spacecontrol;
WTspaceballSC_rawdata *raw;

raw = (WTspaceballSC_rawdata *)WTsensor_getrawdata(spacecontrol);
WTmessage(“Position: %f, %f, %f\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Rotation: %f, %f, %f\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Spaceball SpaceController Records

Translational and rotational records for the Spaceball SpaceController can be scaled using
the functiondWTsensor_setsensitivity (see page 13-11) andTsensor_setangularrate (see
page 13-12) respectively.

WorldToolKit Reference Manual 13-105

Chapter 13: Sensors

Spaceball SpaceController Update Functions

WTspaceballSC_update

void WTspaceballSC_update(
WTsensor *sensor);

This update function packages the translation and rotation record from the device into the
sensor object's record after transforming the record to the WTK coordinate convention, and
applying any scale factors that may have been setWiidensor_setsensitivity (See page
13-11) andWTsensor_setangularrate (see page 13-12).

The macroVTspaceball_new creates a Spaceball sensor object that uses the function
WTspaceballSC_update and is recommended for most users.

WTspaceballSC_dominant

void WTspaceballSC_dominant(
WTsensor *sensor);

This update function restricts Spaceball SpaceController movement to just one axis. Itis an
update function for the Spaceball SpaceController that can be used in place of
WTspaceballSC_update.

In “dominant” mode, the largest single input value from the Spaceball SpaceController is
considered the only input. So, out of the six possible values only the largest value is kept,
and the other five values are filtered out (reduced to zero). This can be very useful for
avoiding unwanted motion. For example, if you push the Spaceball SpaceController
forward intending to cause a forward motion, the Spaceball SpaceController is likely to
detect small forces in other directions or rotations. In dominant mode, these small values
are filtered out and the viewpoint would move forward along a single axis only. This can
be a useful technique for “rookie” users or for more precise control over positioning
objects.

To toggle the use of dominant mode, simply useMieensor_setupdatefn (see page
13-10) to switch between the functiongspaceballSC_dominant and
WTspaceballSC_update.

13-106 WorldToolKit Reference Manual

Spacetec IMC Spaceball SpaceController

Spaceball SpaceController Defined Constants

There are two buttons on the Spaceball SpaceController, one on each side. Events from
these buttons can be accessed ugingensor_getmiscdata (see page 13-15) together with
the following defined constants:

» Button held down.This event is generated each frame the button is held down.
These events are defined #8TSPACEBALLSC BUTTONx wherex is either 1
and 2 (for example)/TSPACEBALLSC BUTTONI). In addition, there is a mask
calledWTSPACEBALLSC BUTTONS that can be used to see if either button is
currently held down.

Redefining the Center for the Spaceball SpaceController

WTspaceballSC_rezero

WTspaceballSC_rezero(
WTsensor *spacecontrol);

This function redefines the Spaceball SpaceController’s center value at its current position.
Spaceball SpaceControllers may become slightly inaccurate with use and may “drift” when
their default “center” value has changed. If you have a drifting Spaceball SpaceController,
you can call this function to redefine the Spaceball SpaceController's “center” as its current
position. The Spaceball SpaceController should not have any forces applied to it when this
function is called.

Changing the Input Focus Window for the Spaceball
SpaceController

WTspaceballSC_setwindow

FLAG WTspaceballSC_setwindow(
WTsensor *sensor,
WTwindow *window);

WorldToolKit Reference Manual 13-107

Chapter 13: Sensors

The Spaceball SpaceController has a WTK window associated with it to which it sends
messages. By default, this is the WTK window created by the défltmiverse _new (see

page 2-2). So, you need to call this function only if you want to change the WTK window
having the input focus associated with the Spaceball Spacecontrollers.

StereoGraphics CrystalEyes and
CrystalEyesVR LCD Shutter Glasses

WTK supports StereoGraphics CrystalEyes and the CrystalEyesVR display system. The
CrystalEyes provide stereo viewing, whereas the CrystalEyesVR display system is actually
a specialized usage of the Logitech position tracker together with stereo viewing. The
system consists of LCD-shutter glasses synchronized with a high-frequency monitor and
imbedded Logitech ultrasonic receivers. Since orientation and initialization differ from a
generic Logitech sensor, WTK provides a separate sensor driver for CrystalEyesVR.

Logitech transmitter

CrystalEyes
emitter

CrystalEyesVR
LCD shutter glasses
with built in tracker

Stereo-capable monitor

Figure 13-7: CrystalEyesVR sensor reference frame.

13-108

WorldToolKit Reference Manual

StereoGraphics CrystalEyes and CrystalEyesVR LCD Shutter Glasses

To create a CrystalEyesVR sensor object on serial port 1, you can use the macro call:

WTsensor *ceyesuvr;
WTmessage(“About to open CrystalEyes VR...\n");
ceyesvr =WTcrystaleyesVR_new(SERIAL1);
if (Iceyesvr)
WTwarning(“Warning, couldn't open CrystalEyesVR\n");
else
WTmessage(“Calibration complete.\n");

This macro makes use of the sensor driver functitsngrystaleyesVR _open,

WTlogitech_close, andWTcrystaleyesVR_update. It creates the CrystalEyerVR sensor

object running at 9600 baud on UNIX platforms and running at 1200 baud on Windows 32-
bit platforms.

At sensor initialization, the transmitter and receiver must be in a particular spatial
relationship with one another for everything to work correctly. The correct orientation is
with the goggles and transmitter triangle facing each other directly as shown in figure 13-7
on page 13-108. If the transmitter and receiver are not within range of each other at the time
of sensor initialization, th&/TcrystaleyesVR_open function prompts you to move the

receiver within range so that the initialization process can be completed.

Accessing CrystalEyesVR Raw Data

The raw data structure for the CrystalEyesVR is the same raw data structure used for the
Logitech Head Tracker device (see page 13-79).

Scaling CrystalEyesVR Records

As for the Logitech Head Tracker, CrystalEyesVR translation records can be scaled by
using the functioWTsensor_setsensitivity (see page 13-11).

There is no angular adjustment for the CrystalEyesVR (i.e., the function
WTsensor_setangularrate has no effect).

WorldToolKit Reference Manual 13-109

Chapter 13: Sensors

CrystalEyesVR Defined Constants

The defined constant&TLOGITECH_FLAGBIT (to detect bad records) and
WTLOGITECH_OUTBIT (to detect whether the receiver is out of range of the transmitter)
are provided and can be used with the funcorsensor_getmiscdata (see page 13-15).

CrystalEyesVR Update Function

WTcrystaleyesVR_update

void WTcrystaleyesVR_update(
WTsensor *sensor);

The update function provided in WTK follows the approach recommended by
StereoGraphics (the vendor of the CrystalEyesVR system). This update function is
appropriate for a user who is sitting or standing in front of the monitor on which the scene
is displayed. Most likely the transmitter triangle is fixed to the top of the monitor.

The functionWTcrystaleyesVR_update uses only the X and Y translation values returned

by the ultrasonic tracker. In other words, only the side-to-side motion and up-and-down
motion of the user, as returned by the head-tracker, is used by the update function. This
information is turned into translation and rotation records by the update function as follows:

» Horizontal and vertical (X and Y) translatioase generated by this update
function based on the X and Y input values. As with other WTK sensor drivers,
the translation amounts are scaled by the sensor’s sensitivity, which can be set
usingWTsensor_setsensitivity (See page 13-11), and is by default equal to 1.0. No
Z translations are generated.

» Rotationsare computed as a function of the X, Y translation values of the device
(while rotational inputs from the device are ignored). The viewpoint is yawed (i.e.,
rotated about Y) when the user shifts left or right. The yaw angle (in radians) is
computed by scaling the user’s X location, relative to the user’s original location,
so that it is between plus and minus the sensor’s angular rate value, as set with
WTsensor_setangularrate (see page 13-12). Similarly, the angle of pitch is
computed based on the user’'s Y location relative the user’s original position. This
update function does not generate roll, that is, rotations corresponding to tilting the
head.

13-110 WorldToolKit Reference Manual

ThrustMaster Formula T2 Steering Console

The effect is that when you translate your head to the right, your viewpoint is also rotated
(by an amount controlled by the sensor’s angular rate) to the left. If you translate your head
to the left, your viewpoint is rotated to the right. If you move your head upward, your
viewpoint translates upward within the scene, and is also pitched down. If you move your
head down, your viewpoint is translated down in the scene and is also pitched upward.

With this approach, as you move your head from side-to-side and up and down, you are able
to see around to the sides of objects as well as above and below them, enhancing the sense
of 3D.

The macrowTcrystaleyesVR_new creates a CrystalEyesVR sensor object that uses the
WTcrystaleyesVR_update function and is recommended for most users.

ThrustMaster Formula T2 Steering Console

The Formula T2 provides a natural driving experience around your virtual world.
To create a Formula T2 sensor object you can use the macro call:

WTsensor *formula;
formula = WTformula_new(unit);

This macro makes use of the sensor driver functi@n®rmula_open, WTformula_close,
and WTformula_update. It creates the Formula T2 sensor object having two steering
consoles. The unit argument is unused and can be set to 1.

At initialization, WTK searches the current directory for a Formula T2 calibration file
namedformula.cal. The calibration file is in ASCII format with six values specifying

integer values for wheel center, wheel range, wheel drift, pedal center, pedal range, and
pedal drift. This is a sample calibration file and also represents the default values used by
WTK:

1124420214

If the calibration file is not found, the default values are used.

WorldToolKit Reference Manual 13-111

Chapter 13: Sensors

Note: Unlike other sensor objects, you do not need to specify the serial port for the Formula
T2. So, if using the generic sensor constructor functi@rsensor_new (see page
13-7), the serial port argument should always be NULL.

Accessing Formula T2 Raw Data

The raw data structure for the Formula T2 is type defined as follows:

typedef struct _WTformula_rawdata {
unsigned short wheel;
unsigned short pedal;

} WTformula_rawdata;

and accessed as follows:

WTsensor *formula;

WTformula_rawdata *raw;

raw = (WTformula_rawdata *)WTsensor_getrawdata(formula);
WTmessage(" Wheel %d Pedal %d\n", raw->wheel, raw->pedal);

Scaling Formula T2 Records
Translational and rotational records for the Formula T2 can be scaled using the functions

WTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (see page 13-12)
to change the speed and turning radius respectively.

Formula T2 Update Function

WTformula_drive

void WTformula_drive(
WTsensor *sensor);

13-112 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

This function calldWTformula_rawupdate (see below) to obtain the raw wheel and pedal
information. It then applies any scale factors that may have been set with
WTsensor_setsensitivity (see page 13-11) andTsensor_setangularrate (see page 13-12).
Finally it stores the record with the sensor by callintsensor_setrecord (see page 13-24).

The macrowTformula_new creates a Formula T2 sensor object that uses the
WTformula_update function.

Writing Your Own Formula T2 Update Function

Your update function should first cadiTformula_rawupdate (see below) to obtain the raw
wheel and pedal information. It should then specify how the raw data is to be transformed
into a 3D position and orientation record. Finally, your update function must store this
record by callingVTsensor_setrecord (see page 13-24).

WTformula_rawupdate

void WTformula_rawupdate(
WTsensor *sensor);

This function obtains the raw wheel and pedal information. It stores the raw wheel and
pedal information in the sensor's raw data structBdrmula_rawdata). This

information can be accessed willTsensor_getrawdata (see page 13-15). Also see
Accessing Formula T2 Raw Data page 13-112.

ThrustMaster Serial Joystick

The ThrustMaster Mark Il Flight Control System is similar to a number of game-port
joysticks available for Intel-based personal computers, although this version has a DB9
serial connector which makes it usable on virtually all platforms supported by WTK. In
addition to left and right analog actuators, this joystick has three buttons, one trigger, and
a four-way hat switch. For more inputs, you can attach a ThrustMaster Mark Il Weapons
Control System directly to the Mark Il Flight Control System.

WorldToolKit Reference Manual 13-113

Chapter 13: Sensors

To create a Serial Joystick sensor object on serial port 1, you can use the macro call:

WTsensor *joyserial;
joyserial = WTjoyserial_new(SERIALL1);

(if ljoyserial)
WTwarning(“Could not open serial joystick\n”);

This macro makes use of the sensor driver functi@fysyserial_open, WTjoyserial_close,
and WTjoyserial_walk. It creates the Serial Joystick sensor object running at 19200 baud.

At initialization, WTK searches the current directory for a joystick calibration file named
joystick.cal. The calibration file is in ASCII format with six values specifying floating point
values for minimum X, maximum X, minimum Y, maximum Y, center X and center Y,
respectively. This is a sample calibration file and also represents the default values used by
WTK:

0.0 255.0 0.0 255.0 128.0 128.0

If the calibration file is not found, default values are used for the center and range values of
the joystick.

To use an update function other théfmjoyserial_walk, for example WTjoyserial _fly, you
can callwTsensor_new directly or simply make the following call after using

WTjoyserial_new.

WTsensor_setupdatefn(joyserial, WTjoyserial_fly);

Accessing Serial Joystick Raw Data

WTK maintains a data structure containing the raw data from the Serial Joystick. This
information can be accessed using the functiaiensor_getrawdata (see page 13-15) as
in the example below.

13-114 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

The raw data structure for the Serial Joystick is type defined as follows:

typedef struct _WTjoyserial_rawdata
{
unsigned short x,y; /* roll & pitch */
unsigned short throttleleft; /* weapons control system throttle (wcs) */
unsigned short throttleright;
unsigned short throttletrim;
unsigned short rudder;
} WTjoyserial_rawdata;

and is accessed as follows :

WTsensor *joyserial;
WTjoyserial_rawdata *raw;
raw = (WTjoyserial_rawdata *)WTsensor_getrawdata(joyserial);

WTmessage("Roll %d Pitch %d\n", raw->X, raw->y);
WTmessage("Throttleleft %d ThrottleRight %d Rudder %d\n", raw->throttleleft,
raw->throttleright, raw->rudder);

Scaling Serial Joystick Records

Translational and rotaional records for the Serial Joystick can be scaled using the functions
WTsensor_setsensitivity (see page 13-11) amdTsensor_setangularrate (see page 13-12)
respectively.

Serial Joystick Update Functions

The WTK update functions for the Serial Joystick store the position record from the device
into the sensor object’s record, after applying any scale factors set with
WTsensor_setsensitivity (see page 13-11) andiTsensor_setangularrate (see page 13-12).

WorldToolKit Reference Manual 13-115

Chapter 13: Sensors

WTjoyserial_fly

void WTjoyserial_fly(
WTsensor *sensor);

This function is an update function that moves a sensor forward along the Z-axis at a
constant velocity. It can be used to operate the joystick in a manner familiar to users of
flight simulation programs. When this update function is used, the sensor moves forward
along Z at a small constant velocity (0.1 times the sensor sensitivity each frame). Moving
the joystick forward/backward pitches around X, and moving the joystick right/left rolls
around Z.

The macraA/Tjoyserial_newfly creates a serial joystick object that usedMigoyserial_fly
update function.

WTjoyserial_walk

void WTjoyserial_walk(
WTsensor *sensor);

This function initializes a sensor to move in the “walkthrough” mode. The joystick can be
used to move a viewpoint or object in the X-Z plane. When no buttons are pressed, moving
the joystick forward or backward moves forward or backward along the Z axis. Moving the
joystick right or left yaws around the Y axis. When the front button is depressed, moving
the joystick forward or backward pitches around the X axis, and moving the joystick right
or left rolls around the Z axis.

The macroVTjoyserial_new creates a Serial Joystick object that usesitieyserial_walk
update function.

WTjoyserial_walk2

void WTjoyserial_walk2(
WTsensor *sensor);

This function initializes a sensor to move in a second “walkthrough” mode. The
WTjoyserial_walk2 update function is likéVTjoyserial_walk except that holding down the
trigger button allows you to raise or lower the viewpoint.

13-116 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

The macrowTjoyserial_newwalk2 creates a serial joystick object that uses the
WTjoyserial_walk2 update function.

Writing your Own Serial Joystick Update Function

Your update function should first céTjoyserial_rawupdate to obtain the Serial Joystick's
raw data. It should then specify how the raw data is to be transformed into 3D position
record. Finally, your update function must store this record by callifggnsor_setrecord
(see page 13-24). Sexample 3: Update Function for Absolute Device (Pseudoamule)
page E-15.

WTjoyserial_rawupdate

int WTjoyserial_rawupdate(
WTsensor *sensor);

This function reads in the raw data from the Serial Joystick and stores it in the sensor’s raw
data structure. This information can be accessed with the funfiesnsor_getrawdata
(see page 13-15). Also sAecessing Serial Joystick Raw Data page 13-114.

Serial Joystick Defined Constants

The ThrustMaster Mark 1l Flight Control System supports three momentary buttons in
addition to the trigger and a hat switch. The Mark Il Weapons Control System adds an
additional six momentary switches as well as a three position rocker switch. These values
can be accessed by using tW@&sensor_getmiscdata function with any of the following
constants described in tiwserial.h file in theinclude directory:

WTJOYSERIAL_TRIGGERDOWN
WTJOYSERIAL_TOPDOWN
WTJOYSERIAL_SIDEDOWN
WTJOYSERIAL_BOTTOMDOWN
WTJOYSERIAL_HATRIGHT
WTJOYSERIAL_HATLEFT
WTJOYSERIAL_HATDOWN
WTJOYSERIAL_HATUP

WorldToolKit Reference Manual 13-117

Chapter 13: Sensors

WTJOYSERIAL_WCS1
WTJOYSERIAL_WCS2
WTJOYSERIAL_WCS3
WTJOYSERIAL_WCS4
WTJOYSERIAL_WCS5
WTJOYSERIAL_WCS6
WTJOYSERIAL_WCS7
WTJOYSERIAL_WCSTOGGLEA
WTJOYSERIAL_WCSTOGGLEB

Serial Joystick Range

WTjoyserial_getrange
void WTjoyserial_getrange(
WTsensor *sensor,

WTp2 range);

This function returns the maximum X and Y values (divided by 2), which can be attained
by the joystick.

Serial Joystick Drift

WTjoyserial_setdrift

void WTjoyserial_setdrift(
WTsensor *sensor,
float drift_per);

This function sets the joystick’s drift amount to a percentage of the joystick’s range. The
drift_per parameter specifies the percentage.

13-118 WorldToolKit Reference Manual

VictorMaxx Technologies’ CyberMaxx2 HMD

WTjoyserial_getdrift

float WTjoyserial_getdrift(
WTsensor *sensor);

This function returns the drift amount of the specified joystick sensor. See
WTjoyserial_setdrift, above.

Reinitializing the Serial Joystick

WTjoyserial_readcalibrationfile

void WTjoyserial_readcalibrationfile(
void);

This function reads the joystick’s calibration filejsgstick.cal can be re-initialized. Page
13-113 talks about theystick.cal file.

VictorMaxx Technologies’ CyberMaxx2 HMD

VictorMaxx Technologies’ CyberMaxx2 HMD is a serial device used to track the
orientation of the wearer using inertial and compass technologies. This tracker provides
360 degrees of yaw rotation, and about +/- 60 degrees of pitch and roll rotation.

To create a CyberMaxx2 HMD sensor object on serial port 1, you can use the macro call:

WTsensor *cybermaxx2;
cybermaxx2 = WTcybermaxx2_new(SERIALL);

This macro makes use of the sensor driver functitsng/bermaxx2_open,
WTcybermaxx2_close, andWTcybermaxx2_update. It creates the CyberMaxx2 HMD
sensor object running at 9600 baud.

WorldToolKit Reference Manual 13-119

Chapter 13: Sensors

Accessing CyberMaxx2 HMD Raw Data

WTK maintains a data structure containing the raw data read from the CyberMaxx2 HMD.
This information can be accessed using the fundti@sensor_getrawdata (see page

13-15) as in the example below. The CyberMaxx2 HMD raw data structure stores the
absolute rotation of the tracker as an euler.

The raw data structure for the CyberMaxx2 HMD is type defined as follows:

typedef struct _WTcybermaxx2_rawdata {
float e[3];
} WTcybermaxx2_rawdata;

and is accessed as follows:

WTsensor *cybermaxx2;

WTp3 p3;

WTcybermaxx2_rawdata *raw;

raw = (WTcybermaxx2_rawdata *) WTsensor_getrawdata (cybermaxx2);
WTp3_copy(raw->e, p3);

WTp3_print (p3, “Raw euler: *);

Scaling CyberMaxx2 HMD Records

Records cannot be scaled for this sensor object. So the fundtitsessor_setsensitivity
andWTsensor_setangularrate have no effect.

CyberMaxx2 HMD Update Function

WTcybermaxx2_update

void WTcybermaxx2_update(
WTsensor *sensor);

13-120 WorldToolKit Reference Manual

Virtual i-O i-glasses!

This update function callg/Tcybermaxx2_rawupdate (see below) to update the raw data
structure, convert it to a quaternion, and relativize it with the previous record. The macro
WTcybermaxx2_new creates a CyberMaxx2 HMD sensor object that uses the
WTcybermaxx2_update function.

Writing your Own CyberMaxx2 HMD Update Function

Your update function should first cafTcybermaxx2_rawupdate (see below) to obtain the
sensor object's raw data as an absolute euler. It should then specify how the raw data is to
be transformed into an orientation record. Finally, your update function must store this
record by callingVTsensor_setrecord (see page 13-24). SEgample 3: Update Function

for Absolute Device (Pseudocod®) page E-15.

WTcybermaxx2_rawupdate

FLAG WTcybermaxx2_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolute euler
rotation. This information can be accessed Withsensor_getrawdata (see page 13-15).
Also seeAccessing CyberMaxx2 HMD Raw Data (see page 13-120).

Virtual i-O i-glasses!

Virtual i-O i-glasses! is a serial device used to track the orientation of the wearer using
inertial and compass technologies. This tracker provides 360 degrees of yaw rotation, and
about +/- 60 degrees of pitch and roll rotation.

To create an i-glasses! sensor object on serial port 1, you can use the macro call:

WTsensor *iglasses;
iglasses = WTiglasses_new(SERIAL1);

This macro makes use of the sensor driver funclighglasses_open, WTiglasses_close,
andWTiglasses_update. It creates the i-glasses! sensor object running at 19200 baud.

WorldToolKit Reference Manual 13-121

Chapter 13: Sensors

Accessing i-glasses! Raw Data

WTK maintains a data structure containing the raw data read from the i-glasses!. This
information can be accessed using the functiaiensor_getrawdata (see page 13-15) as

in the example below. The i-glasses! raw data structure stores the absolute rotation of the
tracker as an euler.

The raw data structure for the i-glasses! is type defined as follows:
typedef struct _WTiglasses_rawdata {
WTp3 e;

} WTiglasses_rawdata;

and is accessed as follows:

WTsensor *iglasses;

WTiglasses_rawdata *raw;

raw = (WTiglasses_rawdata *) WTsensor_getrawdata (iglasses);
WTp3_print (raw->e, “Raw euler: “);

Scaling i-glasses! Records

Records cannot be scaled for this sensor object. So the funatitsessor_setsensitivity
andWTsensor_setangularrate have no effect.

I-glasses! Update Function

WTiglasses_update

int WTiglasses_update(
WTsensor *sensor);

This update function calls WTiglasses_rawupdate (see below) to update the raw data
structure, convert it to a quaternion, and relativize it with the previous record.

13-122 WorldToolKit Reference Manual

Virtual Technologies CyberGlove

The macrowTiglasses_new creates an i-glasses! sensor object that uses the
WTiglasses_update function.

Writing your Own i-glasses! Update Function

Your update function should first callTiglasses_rawupdate (see below) to obtain the

sensor object's raw data as an absolute euler. It should then specify how the raw data is to
be transformed into an orientation record. Finally, your update function must store this
record by callingVTsensor_setrecord (see page 13-24). SEgample 3: Update Function

for Absolute Device (Pseudocod®) page E-15.

WTiglasses_rawupdate

void WTiglasses_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolute euler
rotation. This information can be accessed Withsensor_getrawdata (see page 13-15).
Also seeAccessing i-glasses! Raw Daia page 13-122.

Virtual Technologies CyberGlove

The Virtual Technologies CyberGlove is a popular serial port device for direct
manipulation of objects in virtual worlds. The CyberGlove comes in an 18-sensor model
and a 22-sensor model. WorldToolKit's CyberGlove driver automatically handles
CyberGloves with either number of sensors, and also supports both left and right gloves.
WTK's CyberGlove device driver is different from the other WTK device drivers and uses
a WTcybglove structure which is different from the WTsensor structure. The reason for this
difference is to be able to provide functions for calibrating and graphically representing this
compound device. WorldToolKit's CyberGlove driver enables you to do the following:

* Instantiate up to two WTcybglove entities.
e Optionally specify CyberGlove parameters in the VirtualHand resource file.
e Calibrate the CyberGlove.

WorldToolKit Reference Manual 13-123

Chapter 13: Sensors

e Create a graphical hand model which is automatically updated by input from the
CyberGlove.

e Set the visibility of the hand model.

« Access the movable objects comprising the hand model and the angle information
from the glove.

« Perform collision detection between the hand model objects and the other objects
in the scene graph.

Note: This device is supported on the SGI and Windows NT platforms only. The subsection
- "For Windows NT Users" - lists some characteristics of the driver that are specific to its
functioning on the Windows NT platform.

Initializing the CyberGlove

WTcybglove _new

WTcybglove *WTcybglove_new(
int baud,
char *device,
char *calibrationfilename);

Call WTcybglove new to initialize a CyberGlove and obtain a pointer to a new
WTcybglove object. WTcybglove new must be called separately for each CyberGlove you
wish to use. For example, to create an application which uses both a left and a right glove,
you must call WTcybglove new twice. In addition, you must use a different serial port
device for each CyberGlove.

Note: The WTcybglove structure is different from the WTsensor structure and may not be
passed in to the WTsensor functions.

Currently WTK supports the use of up to two CyberGloves in an application. Once two
WTK CyberGlove objects have been constructed, subsequent calls to WTcybglove _new
return NULL.

The first argument to WTcybglove new is the baud rate, which must be one of 1200, 2400,
4800, 9600, 19200, 38400 or 57600. The second argument is the serial port device name,
which is, for example, SERIAL1 for serial port 1. You can find out more about serial ports

13-124 WorldToolKit Reference Manual

Initializing the CyberGlove

by consulting your hardware guide. The third argument to WTcybglove _new is the name
of a calibration file for the glove. This file must be located in the same directory as the
application executable. A default calibration file (default.cal) is supplied with the
CyberGlove product.

Note: You must have a CyberGlove calibration file to call WTcybglove_new. If the
specified calibration file is not found in the directory in which your executable is located,
then WTcybglove new produces a warning message and returns NULL.

On the Windows platform, you must have the calibration panel resource file, panel.res,
included in the project makefile. The file "panel.res" is located in the CyberGlove
distribution provided by Virtual Technologies. The CyberGlove driver will not be able to
create the calibration panel without this file, and will exit with an "unhandled exception” if
thefile is not present. If your application has a resource file of its own, you must merge the
resources specified in panel.res into your application's resource file. This may be done by
dragging and dropping the resources fromone file into the other, from within the Visual
C++ development environment. Even if you do not wish to open and use the calibration
panel, WTcybglove new initializes the panel window and requires this file to be present.
There is no equivalent calibration panel resource file on the UNIX platform.

The baud rate, serial port selection, and calibration file name can alternatively be specified
in a configuration file. The configuration (or application resource) file is called
VirtualHand. Refer to the CyberGlove User's Manual for a description of the format that
must be used in the VirtualHand resource file. Apart from the initialization parameters,
there are various other application specific options that can be set using the resource
file.These, and their respective field definitions are discussed in the CyberGlove User's
Manual. On UNIX platforms, you may use the xrdb command to merge the VirtualHand
resource file into the X server's resource database. (Type xrdb -merge VirtualHand at the
command prompt). On Windows platforms the VirtualHand resource file must exist in the
directory that contains the executable. The resource file will not be read otherwise. By
using the VirtualHand file you can make changes to the values of the initialization
parameters without having to recompile your application.

If you wish to use the resource file to specify the baud rate for your glove, simply pass in 0
for the baud argument to WTcybglove_new. If you pass in 0 as the baud rate argument, but
no value for the baud rate is found in the configuration file, then the baud rate defaults to
38400.

Similarly, to use the VirtualHand resource file to specify the device name and/or calibration
file name, pass in NULL for the corresponding argument to WTcybglove _new. The default
value for the device name is /dev/ttyd1l on UNIX platforms and COM1 on Windows

WorldToolKit Reference Manual 13-125

Chapter 13: Sensors

platforms. You must use a system-specific device designation in the configuration file and
not one of WTK's cross-platform serial device constants. The default value for the glove
calibration file is default.cal.

Following are example entries such as might appear in the VirtualHand resource file. Note
that "glovel" refers to the first CyberGlove activated with WTcybglove_new. You can add
similar lines substituting "glove2" for "glovel" if two CyberGloves are in use.

VirtualHand*gloveldevice: /dev/ttyd2
VirtualHand*glovelspeed: 38400
VirtualHand*glovelcalFile: default.cal
VirtualHand*handModel: hires_hand.vnf

(On Windows platforms, a device name of COM2 is specified by entering:

VirtualHand*gloveldevice: COM2)

Calibrating the CyberGlove

WorldToolKit enables you to interactively recalibrate your CyberGlove while your
WorldToolKit application is running. Please note though that an initial calibration file is
still required to be present at the time that WTcybglove_new is called, as described in the
previous section.

WTcybglove_showcalibrationpanel

void WTcybglove_showcalibrationpanel(
FLAG on);

Call WTcybglove showcalibrationpanel passing in TRUE to display a panel from which
you can alter the calibration settings loaded from your calibration file. If you do not call this
function, your calibration remains as originally loaded from your calibration file. To close
the calibration panel, call WTcybglove_showcalibrationpanel passing in FALSE.This
function may not be called until at least one CyberGlove has been initialized by calling
WTcybglove new.

The adjustments made using the calibration panel will be used in the current WTK session.
If you wish to save the adjustments, you may do so by clicking on the "save" button in the

13-126 WorldToolKit Reference Manual

Creating a Graphical Hand Model for CyberGlove

calibration panel. The default name of a saved calibration file is "untitled.cal." This can be
changed by editing the name field in the panel. You will not be warned about overwriting
an existing calibration file.

The calibration panel can be used to calibrate multiple gloves. To do so, you must enter the
desired glove number into the field next to the "Show" button on the calibration panel, and
then click the "Show" button. Make sure that all CyberGloves to be calibrated have been
activated using WTcybglove_new before trying to calibrate them.

The calibration file written out by this function may be used in a new WTK session by
specifying the new file name in the configuration file.

Creating a Graphical Hand Model for CyberGlove

WTcybglove usehandmodel

WTnode *WTcybglove_usehandmodel(
WTcybglove *glove,
char *handmodelname,
float scale,
WTnode *parent);

WTcybglove usehandmodel builds a hand model from a multi-object NFF file. The order
and naming of the objects in this file is described in the CyberGlove User's Manual.

The first argument to WTcybglove_usehandmodel specifies the CyberGlove sensor object
by which the hand model is to be controlled. Once this call has been made, the hand model
is automatically updated by WTK with the latest CyberGlove input once per frame.

The second argument is the name of the file which contains the hand model. The file must
follow the Virtual Technologies guidelines for a hand model file. You may supply NULL

as an argument here, which will result in a default to the value specified in your
VirtualHand resource file. If the hand model file is not found, a very simple hand model is
generated automatically without a model file. WTK supplies a more complex hand model
for use with the CyberGlove, if you so desire. Please see the Readme.txt file in the models
directory of the WTK distribution.

WorldToolKit Reference Manual 13-127

Chapter 13: Sensors

WTK assigns the following names to the hand model objects constructed by this call:
"cyforearm1”, "cypalml", "cythumbbasel”, "cythumbmediall”, "cythumbtipl",
"cyindexbasel”, "cyindexmediall”, "cyindextipl", "cymiddlebasel”, "cymiddlemediall",
"cymiddletipl", "cyringbasel”, "cyringmediall”, "cyringtipl", "cypinkiebasel",
"cypinkiemediall”, "cypinkietipl”, for the first WTcybglove object constructed. If a
second WTcybglove is constructed, the names are "cyforearm2", etc. These are the

names that are returned by the function WTnode_getname.

The third argument specifies the scale of the hand model. The hand model may not be
scaled after it is created by the WTcybglove usehandmodel function. If you use any of the
geometry scaling functions provided by WTK on the hand model objects, the hand will
become distorted.

The fourth argument, parent, is a pointer to a WTnode that indicates the node below which
the CyberGlove hand model structure will be attached in the scene graph. If you do not wish
to insert the CyberGlove hand model into the scene graph, you may pass in NULL for this
argument.

This function returns the top most node in the CyberGlove hand model structure. The hand
model is created as a hierarchy of movable nodes and attachments. If you passed in NULL
for the parent argument, you may use the returned node to add the CyberGlove model
structure anywhere in the scene graph by using WTnode_addchild or WTnode_insertchild.
Use the function WTnode_print (with the node returned by this function) to get a listing of
the hierarchy of nodes in the hand model structure.

Once constructed, WTK updates the graphical hand's position each frame using input from
the CyberGlove device. The forearm object is the only object in the hand model which you
may attach another sensor to or alter the orientation of. Any sensor, such as a 6-D tracker,
can be attached to the forearm object, and the rest of the hand model will move along with
the forearm. In the WTK event loop, the CyberGlove finger and wrist objects are updated
immediately after all other objects (including the forearm object) have been updated by all
active WTsensors in the simulation. The input from the CyberGlove determines the
position and orientation of all of the finger and wrist objects relative to the forearm. For this
reason, attempts to alter the orientation or position of any of the hand model objects other
than the forearm will have no effect.

You may not delete the nodes which comprise the hand model objects using
WTnode_delete or WTnode_deletechild; your program will crash if any node belonging to
the CyberGlove hand model structure is deleted. To delete the hand model, use
WTcybglove_deletehandmodel. The forearm node (which is the top most node in the hand

13-128 WorldToolKit Reference Manual

Creating a Graphical Hand Model for CyberGlove

model hierarchy) may be removed and attached elsewhere in the scene graph. The entire
hand model will automatically be moved along with the forearm node.

If there is already a hand model associated with the WTcybglove object at the time
WTcybglove usehandmodel is called, it is deleted and a new hand model is built
corresponding to the current args to WTcybglove_usehandmodel. Note that when the new
hand model is created, it is positioned at the universe origin and oriented along the Y-axis.

You may wish to obtain the position and orientation of the forearm object before creating
the new hand model, so that you can position and orient the new hand model where the old
one was. Also, if a WTK sensor had been attached to the original forearm object, you may
wish to attach the sensor to the new forearm object if you want it to have the same behavior
as the original hand model.

In order to get the current position and orientation of the forearm node, you must create a
nodepath from the root node of the scene graph to the forearm node. A nodepath is
necessary to obtain the cumulative transformation matrix from the root node to the hand
model. Pass this nodepath to the function WTnodepath_gettransform to get a 4x4 matrix
containing the position and orientation information of the forearm node in world
coordinates.

WTcybglove_deletehandmodel

void WTcybglove deletehandmodel(
WTcybglove *glove);

WTcybglove_deletehandmodel deletes and frees all of the objects in the hand model. The
calibration of the CyberGlove remains the same, so that if you call
WTcybglove_usehandmodel again, the current calibration data will be used for the new
model.

You must use this function only to delete the CyberGlove object and hand model nodes.
The hand model nodes must not be deleted using WTnode_delete.

WorldToolKit Reference Manual 13-129

Chapter 13: Sensors

Setting the Visibility of the Hand Model

WTcybglove_setvisibility

void WTcybglove_setvisibility(
WTcybglove *glove,
FLAG visible);

WTcybglove_setvisibility sets the visibility of all of the objects in the hand model
associated with the given CyberGlove. The second argument should be TRUE to make the
hand model visible, that is, to have WTK render the hand model each frame, or FALSE to
make it invisible. The hand model is visible by default.

To set the visibility of an individual object in the hand model, such as the forearm or the
thumb, you must first access the relevant node. Accessing individual nodes in the hand
model is discussed in the next section. Once you get a pointer to the node, you may then
call WTnode_enable passing in TRUE or FALSE to turn the visibility on or off
respectively. Note that since the hand model is organized as a hierarchy of movable nodes,
turning off the visibility of the palm causes the fingers also to be invisible. This behavior is
programmed to be different for the forearm, in that, calling WTnode_enable on the forearm
disables/enables the forearm only, even though the rest of the hand is hierarchically below
the forearm. This allows you to choose not to render the forearm and display the hand as
just the palm and the fingers.

Use the function WTnode_print to get a listing of the hierarchy of nodes in the hand model
structure.

Accessing Hand Model Objects

The graphical objects making up the hand model can be accessed through the functions
described in this section.

CWTcybglove getforearm

WTnode *WTcybglove getforearm(
WTcybglove *glove);

13-130 WorldToolKit Reference Manual

Accessing Hand Model Objects

WTcybglove getforearm returns a pointer to the forearm object associated with the
specified CyberGlove. This is a pointer to a movable node. The forearm object may be
moved in any way that you wish, and the rest of the hand will follow this orientation. It is
permitted to set the visibility of this or any of the other hand model objects individually
with WTnode_enable.

If you haven't called WTcybglove _usehandmodel before calling this function, NULL is
returned.

You may not delete this node. To delete the CyberGlove hand model structure use
WTcybglove deletehandmodel.

WTcybglove getpalm

WTnode *WTcybglove_getpalm(
WTcybglove *glove);

WTcybglove_getpalm returns a pointer to the palm object constructed
byWTcybglove_usehandmodel. If you haven't called WTcybglove_usehandmodel before
calling this function, NULL is returned.

You may not move this object in relation to the forearm; this relationship is controlled by
the CyberGlove. The only way to affect the position and orientation of a CyberGlove object
(other than the forearm) with respect to the object it is connected to is by changing the angle
information present in the 2-D array of floats returned by WTcybglove_getanglearray.

You may not delete this node. To delete the CyberGlove hand model structure use
WTcybglove_deletehandmodel.

WTcybglove_getfingers

WTnode *WTcybglove getfingers(
WTcybglove *glove);

WTcybglove getfingers returns a 5x3 array of WTnode pointers. These pointers could be
useful if you wish to do collision detection or change the color of the finger objects.

Indexing into the 2d array is accomplished using multiplication and addition as shown in
the example below, which sets the visibility of the finger objects.

WorldToolKit Reference Manual 13-131

Chapter 13: Sensors

If you haven't called WTcybglove _usehandmodel before calling this function, NULL is
returned.

WTnode **fingers;
WTcybglove *glove;
int finger, joint;
glove = WTcybglove_new(19200, SERIAL1, "default.cal");
WTcybglove_usehandmodel(glove, "hires_hand.vnf", 1.0f, NULL);
fingers = WTcybglove_getfingers(glove);
for (finger = WTCG_THUMB,; finger < WTCG_FINGERS,; finger++) {
for (joint = WTCG_BASE; joint < WTCG_FINGER_SEGMENTS; joint++) {
WTnode_enable(fingersfWTCG_FINGER_SEGMENTS * finger + joint],
FALSE);

}

(Note that the above example is only intended to show how to index into the finger array.
In actuality, if you want to disable all the fingers, you would have to call WTnode_enable
on the bases of the fingers only. The medials and tips will be automatically disabled as they
are arranged below the bases in the node hierarchy.)

Refer to the section 'Defined Constants for the CyberGlove Hand Model' for a list of the
constants WTCG_THUMB, WTCG_BASE, etc, that identify the different hand model
parts.

You may not delete the finger objects. To delete the CyberGlove hand model structure use
WTcybglove deletehandmodel.

Accessing the CyberGlove Bend Angle Data

CyberGlove bend angle data can be obtained with a call to WTcybglove getanglearray.
The angles returned reflect the current calibration settings for the glove, and are the angles
used when the CyberGlove hand model is rendered if you have called

WTcybglove usehandmodel. All of the angle information is specified in radians.

WTcybglove getanglearray

float *WTcybglove_getanglearray(

13-132 WorldToolKit Reference Manual

Accessing the CyberGlove Bend Angle Data

WTcybglove *glove);

WTcybglove_getanglearray returns a 6x4 array of floating point values. These values are
bend angles represented in radians. The first index in this array corresponds to the finger,
starting with 0 for the thumb to 4 for the pinkie. Index 5 is used for the palm and wrist - the
palm arch, wrist pitch and wrist yaw are stored from [5][0] through [5][2]. The second
index into this array refers to the joints of each finger. Index 0 is the base, 1 is the medial,
and 2 is the tip. Index 3 holds the abduction angle for each finger.

The following example shows how to access the information in this array.

float *anglearray;
int finger, joint;
anglearray = WTcybglove_getanglearray(glove);
for (finger = WTCG_THUMB,; finger < WTCG_FINGERS; finger++) {
for (joint = WTCG_BASE; joint < WTCG_FINGER_ANGLES; joint++) {
printf("anglearray[%d][%d] = %f\n", finger, joint,
anglearray[WTCG_FINGER_ANGLES * finger + joint]);

finger = WTCG_WRIST;
for (joint = WTCG_PALM_ARCH; joint < WTCG_WRIST_ANGLES; joint++) {
printf("anglearray[%d][%d] = %f\n", finger, joint,
anglearray[WTCG_FINGER_ANGLES * finger + joint]);
}

If you wish to impose constraints on the movement of the hand model, you can do so by
modifying the contents of the angle array. If you choose to do this, you will have to examine
and alter the joint angle values every frame.

Refer to the section 'Defined Constants for the CyberGlove Hand Model' for a list of the
constants WTCG_THUMB, WTCG_BASE, etc, that identify the different hand model
parts.

Note that in the angle array, the following elements:

array[WTCG_FINGER_ANGLES * WTCG_WRIST + 3]
array[WTCG_FINGER_ANGLES * WTCG_INDEX + WTCG_ABDUCT]

WorldToolKit Reference Manual 13-133

Chapter 13: Sensors

are not used or updated by the CyberGlove, and the following element:

array[WTCG_FINGER_ANGLES * WTCG_WRIST + WTCG_PALM_ARCH]

is not considered during the rendering process.

Defined Constants for the CyberGlove Hand Model

The following constants are used for the fingers and the wrist.

WTCG_THUMB
WTCG_INDEX
WTCG_MIDDLE
WTCG_RING
WTCG_PINKIE
WTCG_WRIST
WTCG_FINGERS

The first five of the above are used for the thumb, index, middle, ring and pinkie fingers
respectively. WTCG_WRIST is used to identify the wrist joint. WTCG_FINGERS is
provided as a delimiter for the set of finger constants.

The following constants are used to identify the joint angles for each finger, from the base
to the tip (for the three joints in a finger) and the abduction angle for the finger as a whole.

WTCG_BASE
WTCG_MEDIAL
WTCG_TIP
WTCG_ABDUCT
WTCG_FINGER_ANGLES

WTCG_FINGER_ANGLES is a delimiter for the finger angles.

13-134 WorldToolKit Reference Manual

For Windows NT Users:

The following constants are used to identify the joint angles for the wrist -the arch of the
palm, the pitch and yaw of the wrist. WTCG_WRIST_ANGLES is a delimiter for the wrist
angles.

WTCG_PALM_ARCH
WTCG_WRIST_PITCH
WTCG_WRIST_YAW
WTCG_WRIST_ANGLES

For Windows NT Users:

» The resource file panel.res must be included in the Visual C++ project makefile.
If this file is not present, the CyberGlove driver will notbe able to create the
calibration panel, and will exit because of an"unhandled exception”. (panel.res
exists in the CyberGlove distribution provided by Virtual Technologies.)

e The glove defaults resource file, VirtualHand, must be present in the current
working directory. (VirtualHand exists in the CyberGlove distribution provided
by Virtual Technologies.)

WorldToolKit Reference Manual 13-135

Chapter 13: Sensors

13-136 WorldToolKit Reference Manual

14

Paths

Introduction

A WorldToolKit path stores a series of position and orientation records in absolute world
coordinates. These paths can be used to guide the viewpoint or move other entities in the
scene. Paths can be dynamically recorded, edited, saved and loaded, and played back in a
variety of ways. You can also use interpolation to smooth a roughly defined path.

First element

N

- B
T T

Last element

Figure 14-1: A path around an object

As shown in figure 14-1, paths are made up of a set of dislmtentswhere each

element stores an absolute position and orientation. A path may be constructed by recording
the position and orientation of the viewpoint each frame, creating one element each time
through the simulation loop or at a specified sample rate.

Chapter 14: Paths

Paths are useful for a variety of applications. For example, if you are creating a
demonstration program, you can record an optimal path through the virtual environment
before the actual demonstration. Viewpoint paths are useful for any application in which it
may be important for the user to see certain aspects of the virtual world. Viewpoint paths
can also be used whenever an application requires that a viewpoint be moved from one
location to another and you want to provide a smooth transition.

Similarly, there are many uses for paths associated with other entities in the scene. Consider
a simple case in which you want to have a door swing open and shut. One approach is to
create a task function, in which the door is rotated a specified amount each frame. The task
function would also include a test to determine when the door was fully open so that it could
be made to rotate in the opposite direction. An alternative approach is to use pathing to
record the motion of the door while it is interactively swung open and shut. For example,
you could attach a sensor such as the Spaceball to the door, and while twisting the Spaceball
to open and close the door, record the door’s path. Then, whenever the door needed to be
opened and closed in the simulation, the path could be replayed. If the path’s playback
mode were set to oscillate, then you would only need to record the motion of the door as it
opened to have it both open and shut on playback.

Path Construction and Destruction

There are five ways to create or define a new path. You can:

 Recordit

e Construct it element by element
e Interpolate an existing path

e Copy an existing path

* Load a path from a file

TO RECORD A PATH:

1. CallwTpath_newto obtain a pointer to a new, empty path.

2. CallwTpath_record to start recording your current viewpoint’s location and
orientation.

14-2 WorldToolKit Reference Manual

Path Construction and Destruction

3. CallwTuniverse go to start the simulation loop if it is not already running. One
element will be recorded to the path each frame.

4. Call WTpath_stop to stop recording.

TO CONSTRUCT A PATH ELEMENT BY ELEMENT:

1. Call WTpath_newto obtain a pointer to a new, empty path.
2. Call WTpathelement_new to create a new element at the desired location.

3. Call wTpath_insertelement or WTpath_appendelement to add the element to the
path.

TO INTERPOLATE AN EXISTING PATH

To construct a path which is an interpolated (“smoothed”) version of an existing path, use
the functionWTpath_interpolate.

TO COPY AN EXISTING PATH:

e SeeWTpath_copy on page 14-5.

TO LOAD A PATH FROM A FILE

* SeeWTpath_load on page 14-11.

WorldToolKit Reference Manual 14-3

Chapter 14: Paths

Functions

WTpath_new

WTpath *WTpath_new(
NULL);

This function creates and returns a pointer to a new path. The path is initially empty, that
is, it contains no elementSULL is passed in as the only argument. (The NULL parameter
is a redundancy necessitated by earlier releases of WTK.) necessary

A path has a variety of state parameters, summarized in the following list. The default
values listed here are the values set when a new path is constructedpédth new:

Visibility TRUE (on) or FALSE (off). The default is FALSE (off).
SeeWTpath_setvisibility on page 14-8 and
WTpath_setmarker on page 14-9.

Direction WTDIRECTION_FORWARD or
WTDIRECTION_BACKWARD. The default is
WTDIRECTION_FORWARD. SeeWTpath_setdirection on
page 14-19.

Play mode WTPLAY _TOEND, WTPLAY CONTINUOUS, and/or
WTPLAY OSCILLATE. The default iWTPLAY_TOEND.
SeeWTpath_setmode on page 14-21.

Speed The default playback speed is 1 (one) element per frame.
SeeWTpath_setplayspeed on page 14-22.

Sample rate The default sample rate is 1 (one) element recorded each
frame. SeeVTpath_setsamples on page 14-22.

Constraints The default is none. Se&Tpath_setconstraints on page
14-20.

By default, a path created witMTpath_record is associated with the motion of the current
viewpoint. Any viewpoint’s motion can be recorded in a path by first assigning that
viewpoint to be the current viewpoint (if it isn't already) usiW@universe_setviewpoint

(see page 2-15). To associate a path with an entity other than the viewpoint (and which
could be controlled by a sensor) Ws@path_setrecordlink (see page 14-15).

14-4 WorldToolKit Reference Manual

Functions

To visually represent the path, a marker is displayed at each element of the path. This
marker (a geometry) can be set usigpath_setmarker (see page 14-9). As no default
marker will be used, you must set the marker before setting the visibility of a path with
WTpath_setvisibility (see page 14-8).

WTpath_delete

void WTpath_delete(
WTpath *path);

This function deletes the path specified by ghe argument. If the path is playing, it is
stopped. All elements belonging to the path are deleted, as are all markers used to display
the path if it is visible. The path is removed from the universe’s list of paths, and all memory
used by the path is released.

WTpath_copy

WTpath *WTpath_copy(
WTpath *path);

This function copies an existing path. It creates a new path with a sequence of path elements
with the same position and orientation values as in the original path. No other information
is copied from the original path to the new path, so the new path’s play direction, visibility,
and other state values are the same as those of a path just construct&dpaith new.

If successful, a pointer to the copy of the path is returned, otherwise NULL is returned.

Note: If you plan to visually display the copied path, you mustglath setmarker for the
new copied path, as in the example below.

WTpath *path, *copy;
WTgeometry *newmarker;

copy = WTpath_copy(path);
WTpath_setmarker(copy, newmarker);

WorldToolKit Reference Manual 14-5

Chapter 14: Paths

WTpath_interpolate

WTpath *WTpath_interpolate(
WTpath *path,
int nsectors,
int method);

This function creates a new path by interpolating between the elements of the specified
path. The new path’s play direction, visibility, and other state values are the same as those
of a path just constructed withTpath_new.

If successful, the new path is returned, otherwise NULL is returned. The original path is
unaffected by this operation.

The nsectors argument specifies the number of sectors to be created between each of the
elements of the original path. This number must be 1 (one) or greater and the original path
must have at least two elements for the interpolation to be successful.

The method argument indicates the approach to be used to genergtesitiensof the
interpolated points (see figure 14-2). The possible valuesdtitod are as follows:

WTPATH_LINEAR For a straight line path between elements.
WTPATH_BEZIER For a Bezier curve.
WTPATH_BSPLINE For a B-spline curve.

Theorientationsof the elements are also interpolated, however the method used to
interpolate orientations is always linear, independent of the method chosen to interpolate
positions.

14-6

WorldToolKit Reference Manual

Functions

) o e
o) O
o O O o) o
o O O @] ©)
[J O o [] O o
o) 5 © o o o)
0,0 o 50 O
[] ® O
Linear Bezier
®
OO0,
00970,
® OO o [J
OOOOO
[]
B-spline

Figure 14-2: Path Interpolation methods

The Linear path interpolation option places the interpolated points along a straight line
between each pair of points in the original path.

The Bezier option may be the most generally useful since it gives a smooth curve that
passes through the elements of the original path. WTK sets the control points for the Bezier
interpolation so that the tangent vector to the curve at any point on the original path is
parallel to the vector from the previous point on the path to the next one.

The B-spline option produces a curve which is the “smoothest” of all the options, but which
does not in general pass through the elements of the original path.

WorldToolKit Reference Manual 14-7

Chapter 14: Paths

An example of callingvTpath_interpolate is the following. Note that after calling this
function, you can delete the original path if it is no longer needed.

WTpath *oldpath, *newpath;
newpath = WTpath_interpolate(oldpath, 6, WTPATH_BEZIER);

The new path created by the example above has six elements between every pair of
elements in the original path, or 7 times as many elemeuwtssh (plus one). The
elements of the new path lie on a Bezier curve through the elements of the original path.

Path Management

There can be many multiple active paths in the universe, each in a different state. To find
the list of all paths in the universe, us@universe_getpaths (see page 2-13), then
WTpath_next (see page 14-10) to iterate through the list. By default, paths are associated
with the universe’s current viewpoint (seduniverse_setviewpoint on page 2-15). You

can use the functiowTpath_setrecordlink (see page 14-15) to associate a path with any
other entity.

Paths can be made visible by callinpath_setvisibility (see below). When visible, the

path’s “marker,” passed in as the argumenttpath_setmarker (see page 14-9), is

replicated at each path element location. The effect is that you can see the entire path as a
string of geometries through space.

WTpath_setvisibility

void WTpath_setvisibility(
WTpath *path,
FLAG flag);

This function toggles the visibility of a path’s graphical representation. When visible, a

copy of the path’s marker appears at each element of the path (with the path element’s
position and orientation). Thitag argument should be TRUE to make the path visible and
FALSE to make it invisible.

14-8 WorldToolKit Reference Manual

Path Management

By default, paths are invisible. Once a path is made visible for the first time, subsequent
calls toWTpath_setvisibility adds or removes the marker replicas from the universe as
needed. See the example below, und@path_getvisibility.

Also seeWTpath_setmarker on page 14-9 and/Tpath_getmarker onpage 14-10.

WTpath_getvisibility

FLAG WTpath_getvisibility(
WTpath *path);

This function returns TRUE if a path is currently visible, otherwise FALSE. In the
following example, a path’s visibility is toggled, so that if it was invisible it becomes visible
and vice versa:

WTpath *path;
WTpath_setvisibility(path, !WTpath_getvisibility(path));

WTpath_setmarker

void WTpath_setmarker(
WTpath *path,
WTgeometry *marker);

This function sets the geometry that will be used to display a path element, when the path's
visibility is TRUE. The function takes in the relevant path and the geometry as arguments.

This function is provided to visualize a path that has been recorded, loaded or created. The
requested geometry is displayed at every path element position. It is best to use a very
simple geometry model (with very few polygons) for the marker since potentially hundreds
of copies of it could be visible in the simulation. If either the path or the geometry is NULL,
the function returns without any effect.

Note: This function should only be called for a path that has never been made visible.

WorldToolKit Reference Manual 14-9

Chapter 14: Paths

WTpath_getmarker

WTgeometry *WTpath_getmarker(
WTpath *path);

This function returns a pointer to the geometry that is currently being used to represent path
elements when the path is made visible.

The function returns NULL when the path passed in is void. This function should be used

only after a call tdV/Tpath_setmarker, otherwise NULL will be returned since there is no
default geometry to make the path elements visible.

WTpath_getelements

WTpathelement *WTpath_getelements(
WTpath *path);

This function returns a pointer to the first element in the specified path’s list of elements.
UseWTpathelement_next to iterate through the path’s list of elements. If the path does not

contain any elements, for example if the path was just createtmjghth_new, NULL is
returned. See als@Tpath_getcurrentelement on page 14-18.

WTpath_numelements

int WTpath_numelements(
WTpath *path);

This function returns the number of elements in a path’s element list.

WTpath_next

WTpath *WTpath_next(
WTpath *path);

This function iterates through the universe’s list of paths. Iptifeargument is NULL, or
if the specified path is the last path on the list, then NULL is returned.

14-10

WorldToolKit Reference Manual

Loading and Saving Paths

The following example useé#/Tpath_next to iterate through the universe’s list of paths,
turning off the visible representation of each path:

WTpath *path;
for (path=WTuniverse_getpaths() ; path ; path=WTpath_next(path)) {
WTpath_setvisibility(path, FALSE);

Loading and Saving Paths

Paths can be saved to files and loaded back again. The file created when a path is saved
contains a simple ASCII listing of the path elements’ coordinates. No other information
about the path is saved.

WTpath_load

WTpath *WTpath_load(
char *filename,
NULL);

This function creates a new path by loading in path data from the file specified by the
filename argument. The new path consists of one element for each position and orientation
record in the path file. Aside from the elements constructed from the file, the state of the
new path is the same as that of a path constructed w&ipgth_new. If successful, a
complete, new path is returned, otherwise NULL is returned.

SeeWTpath_new on page 14-12 for more information about the default state of a newly-
created path, and how to set a marker to visualize it.

WorldToolKit Reference Manual 14-11

Chapter 14: Paths

WTpath_save

This function saves a path to the file specifiedilepame. The file that is written contains
a sequential list of the positions and orientations of the elements making up the path.
Success is indicated by the return value; TRUE indicates success, otherwise FALSE is

FLAG WTpath_save(

WTpath *path,
char *filename);

returned.

Path File Format

WTK path files are usually given a .pth extension. (Note however, that this is not necessary). A
WTK path file stores position and orientation records in the ASCII format. An example path file

is shown below:

path record v.2

8

Posi
Orie
Posi
Orie
Posi
Orie
Posi
Orie
Posi
Orie
Posi
Orie
Posi
Orie
Posi
Orie

-10.60 651.98 875.80

-0.330.01 -0.004 0.94

-6.14 646.44 3885.47

-0.33 0.011 -0.004 0.94

-1.680267 640.893738 3895.134277
-0.334686 0.011820 -0.004199 0.942246
2.781840 635.345947 3904.798096
-0.334686 0.011820 -0.004199 0.942246
7.243946 629.798096 3914.461914
-0.335399 0.014391 -0.005124 0.941952
11.024731 624.091980 3923.803711
-0.335399 0.014391 -0.005124 0.941952
14.805515 618.385864 3933.145508
-0.335399 0.014391 -0.005124 0.941952
18.586300 612.679749 3942.487305
-0.335399 0.014391 -0.005124 0.941952

14-12 WorldToolKit Reference Manual

Recording and Playback

The first line is used by WTK to identify that the file is indeed a path file in the WTK format.
If the path file is generated by WTK (using WTpath_save), this line is inserted for you. If you
are generating the file using an external editor, make sure the first line says "path record v.2".

The second line indicates the number of position and orientation pairs contained in the file. In
the above example, this number is 8, which means that there are 8 position records and 8
orientation records in the file. If the number of records in the file is less than this value, WTK
will not load the file. If the number of records in the file is greater than this number, WTK will
quit reading the file after the specified number of records have been read. A path can contain
any (non-negative) number of position and orientation pairs.

The path data follows next, as a sequence of alternating position and orientation records. Each
pair of position and orientation records constitutes a 'path element'.

A position record begins with the keyword "Posi", and consists of three floats representing the
X,y and z values of that position respectively. An orientation record begins with the keyword
"Orie", and consists of four floats that represent the orientation in the form of a quaternion.

Recording and Playback

Many options are provided for recording and playing back WTK paths. It may help to think
of WTK paths as analogous with a common tape deck or VCR, since similar functions are
available: play, record, stop, rewind, etc. One difference between using a WTK path and
using a VCR is that the path only affects the viewpoint or any other associated entity when
it is being played — you can rewind the path or change the current element setting without
actually moving the viewpoint there.

By default, a path plays (either forward or backward) until the end (or beginning) of the
path is reached, and then it stops. Using alternative playback modes (set with
WTpath_setmode) a path can be played back continuously and can be made to play
backwards and forwards between its two ends.

WorldToolKit Reference Manual 14-13

Chapter 14: Paths

WTpath_play

void WTpath_play(
WTpath *path);

This function begins the playback of the indicated path starting from the path’s current
element. Prior to calling this function, a motion link connecting the specified path with a
target object must have been created. (8&miotionlink_new on page 15-3.) When a path
plays, the target of the motion link associated with the path is moved from element to
element along the path. At any given path element, the target of the motion link (viewpoint,
transform or movable) is given the position and orientation stored with the path element.

OnceWTpath_play is called, the path continues to play until eithéfpath_stop is called
or the conditions for stopping, as determined by the path’s play mode, are met.

You cannot simultaneously play and record a path. If the path you wish to play is currently
recording, callWTpath_stop before callingWTpath_play.

See alsWTpath_stop, WTpath_setplayspeed, WTpath_setdirection, WTpath_setmode,
andWTpath_setcurrentelement.

WTpath_playl

void WTpath_play1(
WTpath *path);

This function begins the playback of the indicated path starting from the path’s current
element, but plays for one frame only. Depending on the path’s play speed, the viewpoint,
or any associated entity may or may not advance Wherath_play1 is called.

WTpath_record

FLAG WTpath_record(
WTpath *path);

This function starts recording the position and orientation of the current viewpoint (default)
or the position and orientation of the target of a motion link. (88eath_setrecordlink on

page 14-15.) By default, position and orientation are recorded once per frame, however this
sample rate can be changed by calltifpath_setsamples.

14-14 WorldToolKit Reference Manual

Recording and Playback

Each position/orientation record obtained while recording is stored in a new path element
that is added to the end of the specified path. In this way, you camfusgh_record to

build a completely new sequence of path elements for a newly constructed path or to add
new path elements to the end of an existing path.

To stop recording, callvTpath_stop. You can not simultaneously play and record a path.
If the path you wish to record is currently playing, you must eithevgblath_stop first
or wait until the path finishes playing. The return value indicates success or failure.

WTpath_recordl

FLAG WTpath_record1(
WTpath *path);

This function starts recording the position and orientation of the current viewpoint (default)
or the position and orientation of the target of a motion link, but only one frame is recorded.

WTpath_setrecordlink

FLAG WTpath_setrecordlink(
WTpath *path,
WTmotionlink *link)

Use this function to record the motion of the target of a motion link. The motion link is
expected to have been created with a valid source (a sensor or another path), and a valid
target (a viewpoint, a transform node, a node path, or a movable node). If the path does not
already existWTpath_new must be called to create a new path prior to calling this function.

The path should be stopped (i.e., not playing or recording) at thetimeth_setrecordlink
is called. If the path you wish to record is currently playing, you must either call
WTpath_stop first or wait until the path finishes playing.

WTpath_setrecordlink returns TRUE if it is able to begin recording or FALSE if either the
path or the motion link is void, or if the path is already playing or recording.

If this function is not called first, thewTpath_record will record the position and

orientation of the current viewpoint. To record the position and orientation of an entity
other than the current viewpoint, you must ¢#ifpath_setrecordlink prior to calling
WTpath_record or WTpath_record1. To begin recording, caWTpath_record or

WTpath_record1 after calling this function. Once the path has been recorded, you can create

WorldToolKit Reference Manual 14-15

Chapter 14: Paths

a motion link between this newly created path and any target for playback. See
WTmotionlink_new on page 15-3.

WTpath_stop

void WTpath_stop(
WTpath *path);

This function stops a path that is either playing or recording.

WTpath_rewind

void WTpath_rewind(
WTpath path);

This function sets a path’s current pointer to the path’s first element. Only the path’s
pointer and, not the current viewpoint (or other entity associated with the path), is moved
by this call. To move the current viewpoint (or other entity associated with the path), to the
current element, callvTpath_showcurrentelement.

WTpath_isplaying

FLAG WTpath_isplaying(
WTpath *path);

This function returns TRUE if the specified path is currently playing, otherwise it returns
FALSE.

WTpath_isrecording

FLAG WTpath_isrecording(
WTpath *path);

This function returns TRUE if the specified path is currently being recorded, otherwise it
returns FALSE.

14-16

WorldToolKit Reference Manual

Recording and Playback

WTpath_showcurrentelement

void WTpath_showcurrentelement(
WTpath *path);

This function moves the current viewpoint (or other entity associated with the path) to the
position and orientation of the path’s current element. In the following example, the
viewpoint is moved to the first element of a path:

WTpath *path;
WTpath_rewind(path);
WTpath_showcurrentelement(path);

WTpath_setcurrentelement

FLAG WTpath_setcurrentelement(
WTpath *path,
WTpathelement *element);

This function sets the current element of a path. The current element is the element from
which play begins, wheWTpath_play or WTpath_play1 is called. It is also the element

after which a new element is inserted wh@Tpath_insertelement is called. This function
affects only the current element setting, not the location of the current viewpoint. To move
the current viewpoint (or an entity associated with the path) to the current element location
after callingWTpath_setcurrentelement, call WTpath_showcurrentelement as in the

following example:

WTpath *path;

WTpathelement *element;
WTpath_setcurrentelement(path, telement);
WTpath_showcurrentelement(path);

If successful, TRUE is returned. Otherwise, for example if the specified path element does
not belong to the path, then FALSE is returned.

WorldToolKit Reference Manual 14-17

Chapter 14: Paths

WTpath_getcurrentelement

WTpathelement *WTpath_getcurrentelement(
WTpath *path);

This function returns a path’s current element. If the path has no elements, for example, if
the path was just created withiTpath_new, then NULL is returned.

WTpath_seek

FLAG WTpath_seek(
WTpath *path,
int offset,
int where);

This function moves a path’s current element pointer forward or backward in the path’s
element list. Theffsetvalue, which can be either positive or negative, specifies the number
of elements to move. Thehere argument specifies the starting point from which the offset
is made. Valid values afhere are:

e WTPATH_FIRST
e WTPATH_CURRENT
e WTPATH_LAST

The return value is TRUE if successful and FALSE if the seek is invalid, that is, if an
attempt is made to seek to a non-existent paosition in the list.

For example, to move the element position backward by one, call;
WTpath_seek(path, -1, WTPATH_CURRENT);
To move the element position forward by two, call:

WTpath_seek(path, 2, WTPATH_CURRENT);

To move the element position to the third element in the list (two ahead of the first element),
call:

WTpath_seek(path, 2, WTPATH_FIRST);

14-18

WorldToolKit Reference Manual

Recording and Playback

To move the element position to three before the last element, call:

WTpath_seek(path, -3, WTPATH_LAST);

If there were 10 elements in the list, after the above calfipath _seek the current
element position would be at the 7th element.

Additional examples of usin@/Tpath_seek are provided below under
WTpath_setdirection.

WTpath_setdirection

void WTpath_setdirection(
WTpath *path,
FLAG flag);

This function sets the play direction of a path. Thagargument should be
WTDIRECTION_BACKWARD for backward oMWVTDIRECTION_FORWARD for forward.

The default play direction for a path is forward. In the following example, a path is made
to play back and forth between its fifth and tenth elements. This example assumes that a
path with at least this many elements has been constructed.

WTpath *path;

WTpathelement *element, *element5, *element10;

/* make sure we actually have this many elements */

if (WTpath_numelements(path)<10)
WTwarning(“Don’t proceed\n”);

/* get pointers to the 5th and 10th elements */

WTpath_seek(path, 9, WTPATH_FIRST);

element10 = WTpath_getcurrentelement(path);

WTpath_seek(path, 4, WTPATH_FIRST);

element5 = WTpath_getcurrentelement(path);

/* set the play direction to forward and start playing from the
5th element. */

WTpath_setdirection(path, WTDIRECTION_FORWARD);
WTpath_play(path);

WorldToolKit Reference Manual 14-19

Chapter 14: Paths

/* reverse the path playback direction when the 5th and 10th elements
are reached while the simulation runs. */
element = WTpath_getcurrentelement(path);
if (element==element5)
WTpath_setdirection(path, WTDIRECTION_FORWARD);
else if (element==element10)
WTpath_setdirection(path, WTDIRECTION_BACKWARD);

WTpath_getdirection

FLAG WTpath_getdirection(
WTpath *path);

This function returns a path’s play direction, eitléFDIRECTION_BACKWARD or
WTDIRECTION_FORWARD.

WTpath_setconstraints

void WTpath_setconstraints(
WTpath *path,
short constraints);

This function constrains the position and orientation information played back by a path.
This is accomplished by passing in a combination of the flags listed below separated by the
C language bitwise OR operator “|".

One particularly useful application of this function is to provide a guided tour around a
simulation for someone wearing a head-mounted display. In this case it is often desirable
to have the viewpoint follow the path, while leaving orientations under the complete control
of the user as their head motion is tracked. The following line of code constrains the
playback of path orientations (rotations):

WTpath *path;
WTpath_setconstraints(path, WTCONSTRAIN_XROT |
WTCONSTRAIN_YROT | WTCONSTRAIN_ZROT);

It is not possible to constrain path rotations about the individual coordinate axes
independently. Turning on any of the rotational constraltBAONSTRAIN_XROT,
WTCONSTRAIN_YROT, or WTCONSTRAIN_ZROT) effectively turns all of them on.

14-20

WorldToolKit Reference Manual

Recording and Playback

Similarly, it is not possible to constrain path translations along the individual coordinate
axes independently. Turning on any of the translational constr&TiSQNSTRAIN_X,
WTCONSTRAIN_Y, or WTCONSTRAIN_Z) effectively turns all of them on.

Also seeWTsensor_setconstraints on page 13-21.

WTpath_getconstraints

short WTpath_getconstraints(
WTpath *path);

This function returns a path’s constraints, as setbyath_setconstraints. The default
value is O (zero), meaning no constraints are applied.

A restriction on the use of path constraints is described W@eath_setconstraints.

WTpath_setmode

void WTpath_setmode(
WTpath *path,
short mode);

This function sets a path’s playback mode. The following list summarizes the possible
values of thenode argument.

WTPLAY _TOEND The path plays in its current direction until it reaches either
end of the path, then it stops.

WTPLAY_CONTINUOUS The path plays in its current direction until it reaches either
end of the path, then it repeats continuously. For example,
when a forward-playing path reaches the end of the path, it
starts playing again from the beginning of the path.

WTPLAY_OSCILLATE When a playing path reaches either end of the path, it stops,
but its direction is reversed.

WTPLAY_OSCILLATE | The path plays continuously backward and forward
WTPLAY_CONTINUOUS between the ends of the path.

If the fourth option above is set, as in the following example, the path will both change
directionandkeep going when it reaches either end of the path:

WorldToolKit Reference Manual 14-21

Chapter 14: Paths

short mode;

WTpath *path;

mode = WTPLAY_CONTINUOUS | WTPLAY_OSCILLATE;
WTpath_setmode(path, mode);

WTpath_getmode

short WTpath_getmode(
WTpath *path);

This function returns a path’s play mode, as setfipath _setmode. The return value is
eitherWTPLAY _TOEND, WTPLAY_CONTINUOUS, WTPLAY _OSCILLATE or
WTPLAY _CONTINUOUS|WTPLAY OSCILLATE.

The following code fragment call&Tpath_getmode to determine whether the mode
WTPLAY _OSCILLATE has been set for the path:

WTpath *path;

if (WTpath_getmode(path) & WTPLAY_OSCILLATE)
WTmessage(“Path set to oscillate\n”);

else
WTwarning(“Path not set to oscillate\n”);

WTpath_setplayspeed

void WTpath_setplayspeed(
WTpath *path,
int speed);

This function sets the playback speed for a path. The speed is the number of path elements
advanced each frame of the simulation. $teed argument must be an integer greater than
or equal to 1 (one). The default speed is 1 (one).

14-22 WorldToolKit Reference Manual

Recording and Playback

WTpath_getplayspeed

int WTpath_getplayspeed(
WTpath *path);

This function returns the playback speed of a path. The default value is 1 (one).

WTpath_setsamples

void WTpath_setsamples(
WTpath *path,
int frames_per_element);

This function sets a path’s sample rate, that is, the number of frames of the simulation
which elapse for each recorded element. For examgilepiés per_elementis 10, an

actively recording path will record position and orientation information once every 10
frames. Thdrames_per_element argument must be an integer greater than or equal to 1
(one). The default sample rate is 1 (one), meaning that one element is created each frame.

This function allows you to save memory by recording fewer elements. This is especially
useful for long paths and/or high frame rates.

WTpath_getsamples

int WTpath_getsamples(
WTpath *path);

This function returns the sample rate of a path. The default value is 1 (one).

WorldToolKit Reference Manual 14-23

Chapter 14: Paths

Path Element Management

The WTpathelement Class

The individual elements in a path are a WTK class of their owntipathelement class.

With this class you can create a path element by element or edit an existing path. There are
functions for creating, deleting, and copying path elements, and functions for adding and
removing path elements from paths. You can also set and get the locations of path elements
directly. Once a path element is created, it can be added to a path with either
WTpath_insertelement or WTpath_appendelement.

WTpathelement_new

WTpathelement *WTpathelement_new(
WTpq *location);

This function creates and returns a pointer to a new path element, which is initialized to the
specified position and orientation.

Position and orientation are specified in ibwation structure. The path element does not
belong to any path until specifically added to one Witfpath_insertelement or
WTpath_appendelement.

A path element can belong to only one path at a time. If a path element is currently in a path

and you wish to insert it in another path, it must first be removed from the path it is in using
WTpathelement_remove.

WTpathelement_delete

void WTpathelement_delete(
WTpathelement *element);

This function deletes a path element and frees the memory used. If the path element is a
member of a path, it is first removed from the path and then deleted.

14-24 WorldToolKit Reference Manual

The WTpathelement Class

WTpathelement_remove

void WTpathelement_remove(
WTpathelement *element);

This function removes a path element from the path that references it but does not delete it.
If the path element does not belong to a path, this function has no effect.

WTpathelement_copy

WTpathelement *WTpathelement_copy(
WTpathelement *element);

This function creates a copy of the path element pointed to ydivent argument. The

copy is a new path element with the same position and orientation as the original one. If
successful, a pointer to the path element copy is returned, otherwise NULL is returned. The
new path element does not belong to any path.

WTpathelement_setposition

void WTpathelement_setposition(
WTpathelement *element,
WTp3 pos);

This function sets the position of a single path element to the location specified Rath

element positions are the positions to which the viewpoint (or an entity associated with the
path) is moved as a path is played back.

WTpathelement_getposition

void WTpathelement_getposition(
WTpathelement *element,
WTp3 pos);

This function retrieves the position of the specified path element and placesst in

WorldToolKit Reference Manual 14-25

Chapter 14: Paths

WTpathelement_setorientation

void WTpathelement_setorientation(
WTpathelement *element,
WTq a);

This function sets the orientation of a single path element to the orientation specified by

WTpathelement_getorientation

void WTpathelement_getorientation(
WTpathelement *element,
WTq a);

This function retrieves the orientation of a single path element and places it in

WTpathelement_getpath

WTpath *WTpathelement_getpath(
WTpathelement *element);

This function returns a pointer to the path to which a path element belongs. If the path
element does not belong to any path, NULL is returned. Path elements are assigned to a
path either automatically when a path is in record mode or with the functions
WTpath_appendelement or WTpath_insertelement.

WTpathelement_next

WTpathelement *WTpathelement_next(
WTpathelement *element);

This function returns the next element in a list of path elements. Use this function to iterate
through the list of elements in a path, as in the following example.

WTp3 p;
WTpathelement *element;
WTpath *path;

14-26

WorldToolKit Reference Manual

Path Editing

/* Display the positions of the elements in a path */
for (element=WTpath_getelements(path) ; element ;
element=WTpathelement_next(element)) {
WTpathelement_getposition(element, p);
WTp3_print(p, “element position™);

Path Editing

These path-editing functions let you add elements to the end of the path or insert elements
at the current element position. Elements can be removed from a path and/or deleted with
WTpathelement_remove andWTpathelement_delete, which are described in the previous
section.

WTpath_appendelement

void WTpath_appendelement(
WTpath *path,
WTpathelement *element);

This function appends a path element onto a specified path’s list of elements, making it the
last element of the path. Tleement argument is a pointer to an existing path element
object. A path element can only belong to one path at a time. If the path element pointed to
by theelement argument is already in a path, then this function has no effect. To append
this element to the new path, first calrpathelement_remove to remove it from the old

path.

WTpath_insertelement

void WTpath_insertelement(
WTpath *path,
WTpathelement *element);

This function inserts a path element into a path’s list of elements at the path’s current
position. The element is inserted immediately after the path’s current element.

WorldToolKit Reference Manual 14-27

Chapter 14: Paths

An element can only belong to one path at a time. If the path element pointed to by the
element argument is already in a path, then this function has no effect. To insert this
element into the new path, first ca#lrpathelement_remove to remove it from the old path.

The elementargument is either a pointer to an existing path element or it may be NULL. If
element is NULL, then a new path element is created and inserted into the path, and the
position and orientation of this new path element are taken from the current viewpoint (or
any other entity associated with the path).

For example, suppose that you wish to insert an element in a path so that the path passes
through the world coordinate origin with the same orientation as the path element just
before the inserted element. The following example shows how to create such a element
between the fifth and sixth elements in a path:

WTpath *path;
WTpathelement *element;
WTpq location;

/* go to the 5th element in the path (the 4th element after the first one) */
WTpath_seek(path, 4, WTPATH_FIRST);

/* get the orientation of that element and store it in location */
WTpathelement_getorientation(WTpath_getcurrentelement(path),
location.q);

[* construct a pathelement at the world origin with the same orientation
as the 5th element */

WTp3_init(location.p);

element = WTpathelement_new(&location);

/* insert the element in the path after the 5th (current) element */
WTpath_insertelement(path, element);

14-28

WorldToolKit Reference Manual

Path Name

Path Name

WTpath_setname
void WTpath_setname(

WTpath *path,
const char *name);

This function sets the name of the specified path. All paths have a name; by default, a path’'s
name is *” (i.e., a NULL string).

WTpath_getname

const char *WTpath_getname(
WTpath *path);

This function returns the name of the specified path.

User-specifiable Path Data

A void pointer is included as part of the structure defining a path, so that you can store
whatever data you wish with a path. The following functions can be used to set and get this
field within any path.

WTpath_setdata

void WTpath_setdata(
WTpath *path,
void *data);

This function sets the user-defined data field in a path. Private application data can be
stored in any structure. To store a pointer to the structure within the path, pass in a pointer
to the structure, cast imid*, as thedata argument.

WorldToolKit Reference Manual 14-29

Chapter 14: Paths

WTpath_getdata

void *WTpath_getdata(
WTpath *path);

This function retrieves user-defined data stored within a path. Cast the value returned by
this function to the same type used to store the data withTpath setdata function.

14-30 WorldToolKit Reference Manual

15

Motion Links

Introduction

Sensors and paths allow you to interact with a virtual world by providing you with control
over the motion of objects or the viewpoint. To associate a sensor (or a path) with an entity
in a world, use motion links. A motion link connectsaairceof position and orientation
information with aargetthat moves to correspond with that changing set of information.

Motion Link Sources and Targets

The motion link source can be a path or a sensor. Motion link targets include the following:

» viewpoint: Use this as your target when you want to control your viewpoint by
the source you've specified.

« transform node: Use this as your target when you want your source to affect a
specific transformation in the scene graph, such as the one that controls wrist
movement in a human figure.

« node path Use this as your target when you want your source to affect the
cumulative set of transformations used for a specific node, as when you want to
control the position of a human figure in the world coordinate frame. Note that the
leaf node of the node path must be either a transform node or a movable node.

e movable node Use this as your target when you want your source to affect a
movable node (with or without attachments). Refer tavtbeable Nodeshapter
(starting on page 5-1) for more information about movable nodes.

Figure 15-1 illustrates the targets that can be attached to a sensor using a motion link.
Although a sensor is shown on one end (the source) of the motion link. A path can also be
used as the source that is connected to a target via a motion link.

Chapter 15: Motion Links

Viewpoint

via a motion link
Sensor) N Node Path
can attach to

Gives position and Transform Node
transform information
Movable Node

Figure 15-1: Some ways to use motion links

Once a motion link is createtMmotionlink_new on page 15-3), position and orientation
records from the motion link source automatically cause corresponding translation and
rotation of the motion link’s target. If the target has more than one motion link associated
with it, each of these motion links contributes to the motion of the target.

You can also use a path as the source of position and orientation information which can then
be directed to some object by a motion link. This would be an advantage if you want to
move a viewpoint through your scene along a defined path. If you have a Grand Canyon
simulation, for example, you can define a path through the best parts of the canyon, then
attach the path to the viewpoint using a motion link.

Additionally, you can use functions lik&Tpath_setrecordlink (see page 15-14) to create a
path from the position and orientation information being transmitted by a motion link. This
path can then be used as a source of position and orientation information to some target
using another motion link.

Reference Frames

When you create a new motion link, the source affects the position and orientation of the
target relative to a particular reference frame. The default reference frame used for a newly
created motion link is dependent upon the target type. The target types and their default
references frames are as listed in table 15-1 on page 15-4.

15-2

WorldToolKit Reference Manual

Constraints

It is possible to change the reference frame in which the source’s position and orientation
information is applied to the motion link’s target by using the function
WTmotionlink_setreferenceframe (see page 15-8). For example, if you have created a
motion link which connects a sensor to a movable, the sensor’s position and orientation
information will, by default, affect the movable in its local frame. By calling
WTmotionlink_setreferenceframe, you could apply a sensor’s position and orientation
information to the movable in a coordinate frame other than the default.

Constraints

WTK lets you add control to a motion link so that the position and/or orientation of the
motion link’s target is constrained. You can add the constraint along any degree of freedom
(DOF) or any combination of DOFs using thW&motionlink_addconstraint (see page

15-11) function.

Motion Link Functions

WTmotionlink_new

WTmotionlink *WTmotionlink_new(
void *source,
void *target,
int from_type,

int to_type);
Arguments:
source Pointer to either a sensor or a path.
target Pointer to either a viewpoint, a movable, a transform node,
or a node path leading to either a transform node or a
movable node.
from_type The type of the source — one of the following pre-defined

constants:
WTSOURCE_SENSOR

WorldToolKit Reference Manual 15-3

Chapter 15: Motion Links

to_type

WTSOURCE_PATH

The type of the target — one of the following pre-defined
constants:

WTTARGET_VIEWPOINT
WTTARGET_MOVABLE
WTTARGET_TRANSFORM
WTTARGET_NODEPATH

This function creates a new motion link whose source will affect the position and
orientation of the target relative to a particular reference frame. The default reference frame
used for a newly created motion link is dependent upon the target type and is shown in table

15-1.

The possible reference frames WeFRAME_LOCAL, WTFRAME_PARENT,
WTFRAME_VPOINT, andWTFRAME_WORLD.

Table 15-1: Default Motion Link Reference Frames

Target type

Default reference frame

WTTARGET_VIEWPOINT

WTFRAME_LOCAL

WTTARGET_TRANSFORM

WTFRAME_LOCAL

WTTARGET_NODEPATH

WTFRAME_WORLD

WTTARGET_MOVABLE

WTFRAME_LOCAL

To change the reference frame of a motion link from its default value, use the function
WTmotionlink_setreferenceframe. For sensors that return absolute records (e.qg.,
FASTRAK, ISOTRAK, InsideTRAK, and Flock of Birds), to either a transform or
movable node, you must set the reference frame of the corresponding motion link to
WTFRAME_PARENT in order to get the expected behavior.

15-4 WorldToolKit Reference Manual

Motion Link Functions

WTmotionlink_delete

void WTmotionlink_delete(
WTmotionlink *link);

This function deletes the specified motion link from the universe’s list of motion links, and
releases all memory used by the motion link.

WTuniverse_deletelink

SeeWTuniverse_deletelink on page 2-17 for a description.

WTmotionlink_enable

void WTmotionlink_enable(
WTmotionlink *link,
FLAG flag);

If the flag is TRUE, this function enables the specified motion link. If the flag is FALSE,
this function disables the specified motion link. When disabled, a motion link has no effect
on its target. By default, a motion link is enabled, meaning that it is active.

WTmotionlink_isenabled

FLAG WTmotionlink_isenabled(
WTmotionlink *link);

This function returns TRUE if the specified motion link is enabled (i.e., active), and returns
FALSE if the motion link is disabled. If a motion link is disabled, it ceases to have effect
on its target.

WorldToolKit Reference Manual 15-5

Chapter 15: Motion Links

WTmotionlink_setdata

void WTmotionlink_setdata(
WTmotionlink *link,
void *data);

This function sets the user-defined data field for the specified motion link. You will have
to type castlata to a VOID pointer. Use the data field if you need to store any application
information that is specific to a motion link.

WTmotionlink_getdata
void *WTmotionlink_getdata(
WTmotionlink *link);

This function retrieves the user-defined data field for the specified motion link. This
function returns NULL if you did not set the data field with non-NULL data, by way of
WTmotionlink_setdata.

WTmotionlink_getsource
FLAG WTmotionlink_getsource(

WTmotionlink *link,
void **source,

int *type);

Use this function to retrieve the source and source type of the specified motion link. The
return value is TRUE if successful. S&@motionlink_gettarget below for an example of
usage.

WTmotionlink_gettarget

FLAG WTmotionlink_gettarget(
WTmotionlink *link,
void **target,
int *type);

Use this function to retrieve the target and target type of the specified motion link. The
return value is TRUE if successful.

15-6

WorldToolKit Reference Manual

Motion Link Functions

Example:

WTmotionlink *link;
void *from, *to;
int from_type, to_type;
WTmotionlink_getsource(link, &from, &from_type);
WTmotionlink_gettarget(link, &to, &to_type);
switch (from_type){
case WTSOURCE_SENSOR:
WTmessage(“From a sensor”);
break;
case WTSOURCE_PATH:
WTmessage(“From a path”);
break;
}
switch (to_type){
case WTTARGET_VIEWPOINT:
WTmessage(“ to a viewpoint.\n");
break;
case WTTARGET_MOVABLE:
WTmessage(“ to a movable.\n”);
break;
case WTTARGET_TRANSFORM:
WTmessage(“ to a transform.\n");
break;
case WTTARGET_NODEPATH:
WTmessage(“ to a nodepath.\n”);
break;

WTuniverse_getmotionlinks

SeeWTuniverse_getmotionlinks on page 2-17 for a description.

WorldToolKit Reference Manual 15-7

Chapter 15: Motion Links

WTmotionlink_next

WTmotionlink *WTmotionlink_next(
WTmotionlink *link);

This function returns the next motion link in the universe’s list of motion links. A pointer
to the first link is obtained with a call WTuniverse _getmotionlinks. You can then iterate
through the list of existing motion links usitgrmotionlink_next.

WTmotionlink_setreferenceframe

FLAG WTmotionlink_setreferenceframe(
WTmotionlink *link,
int frame,
WTviewpoint *vpoint);

Use this function to set the reference frame in which the indicated motion link will operate.
A reference frame, (not to be confused with a constraint frame) is the coordinate frame in
which motion of the motion link’s target is expected. Depending on the type of the motion
link’s target, only certain coordinate frames are valid reference frames. Table 15-2 lists the
valid motion link reference frames.

Table 15-2: Valid Motion Link Reference Frames

Target Valid reference frames

WTTARGET_VIEWPOINT WTFRAME_LOCAL, (equivalent to
WTFRAME_VPOINT) and
WTFRAME_WORLD

WTTARGET_TRANSFORM WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD),
WTFRAME_LOCAL and
WTFRAME_VPOINT

WTTARGET_NODEPATH WTFRAME_WORLD,
WTFRAME_VPOINT and
WTFRAME_LOCAL

WTTARGET_MOVABLE WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD),
WTFRAME_VPOINT and
WTFRAME_LOCAL

WorldToolKit Reference Manual

Constraints on Motion links

If a motion link is to be applied in a viewpoint frame, then a pointer to the pertinent
viewpoint is passed in as the third argumepjnt. In this case, if this pointer is invalid
the function returns FALSE. In all other casesub@int argument should be NULL.

This function returns FALSE if an invalid motion link is passed in, or if the requested
reference frame is not a valid one, otherwise TRUE is returned. If this function returns
FALSE, the reference frame of the specified motion link remains unchanged. When a
motion link is created, the reference frame is assigned to a default value, depending upon
the target type. See table 15-1 for a list of the default motion link reference frames.

Note: Forsensors that return absolute records (e.g., FASTRAK, ISOTRAK, InsideTRAK, and
Flock of Birds), to either a transform or movable node, you must set the reference
frame of the corresponding motion linkWorFRAME_PARENT in order to get the
expected behavior.

WTmotionlink_getreferenceframe

int WTmotionlink_getreferenceframe(
WTmotionlink *link);

This function returns the fram@UFRAME_LOCAL, WTFRAME_WORLD,
WTFRAME_PARENT, or WTFRAME_VPOINT), in which the indicated motion link is
applied. If the specified motion link is invalid, -1 is returned.

Constraints on Motion links

Use the following functions to set and manipulate constraints on motion links. You can
constrain translation along and rotation about any axis, to either prevent motion entirely or
to restrict motion to a specified range.

For ease of use, this release supports the fundtiFisensor_setconstraints and
WTsensor_getconstraints (see Chapter 1&ensors Remember, however, that these
functions constrain the values returned by a sensor so they affect all the targets (or entities)
that are controlled by that sensor. Constraints on motion links, on the other hand, apply only
on the target of the motion link and are not associated with a sensor. That is why they
provide better flexibility.

WorldToolKit Reference Manual 15-9

Chapter 15: Motion Links

WTmotionlink_setconstraintframe

FLAG WTmotionlink_setconstraintframe(
WTmotionlink *link,
int constraintframe);

Use this function to set trenstraint frameof a motion link. A constraint frame is the
coordinate frame in which the constraints on a motion link are applied. If the constraints
are to be applied in a frame different from the default one, the new frame is passed in as the
argumentconstraintframe. Depending on the motion link's target type, only certain

constraint frames are valid. Table 15-3 lists the valid motion link constraint frames.

Table 15-3: Valid Motion Link Constraint Frames

Target Valid constraint frames

WTTARGET_VIEWPOINT WTFRAME_LOCAL, (equivalent to
WTFRAME_VPOINT) and
WTFRAME_WORLD.

WTTARGET_TRANSFORM WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD) and
WTFRAME_LOCAL.

WTTARGET_NODEPATH WTFRAME_WORLD and
WTFRAME_VPOINT.

WTTARGET_MOVABLE WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD) and
WTFRAME_LOCAL.

This function returns FALSE if an invalid motion link is passed in, or if the requested
constraint frame is an invalid one, otherwise TRUE is returned. When a motion link is
created, the constraint frame is set to a default value. If there are no constraints applied upon
the motion link, then the constraint frame assigned to this motion link has no significance.
The default constraint frame assigned to a motion link is dependent upon the motion link’s
target type and are listed in table 15-4.

15-10 WorldToolKit Reference Manual

Constraints on Motion links

Table 15-4: Default Motion Link Constraint Frames

Target Default constraint frames
WTTARGET_VIEWPOINT WTFRAME_LOCAL
WTTARGET_TRANSFORM WTFRAME_LOCAL
WTTARGET_NODEPATH WTFRAME_WORLD
WTTARGET_MOVABLE WTFRAME_LOCAL

WTmotionlink_getconstraintframe

int WTmotionlink_getconstraintframe(
WTmotionlink *link);

This function returns the fram@U/FRAME_LOCAL, WTFRAME_WORLD,
WTFRAME_PARENT or WTFRAME_VPOINT) in which the constraints on the specified
motion link are applied. If the motion link is invalid, -1 is returned. Even if no constraints
have been applied on the motion link/@FRAME_ value (the default value, if not set) is
returned which indicates the frame in which constraints, if added, would be in effect.

See alsdWVTmotionlink_setconstraintframe on page 15-10.

WTmotionlink_addconstraint

FLAG WTmotionlink_addconstraint(
WTmotionlink *link,
int dof,
float min,
float max);

Use this function to add a constraint to a motion link so that the position and/or orientation
of the motion link’s target is constrained. The constraint is added along the degrees of
freedom (DOF) specified by thénf argument WTCONSTRAIN_X, WTCONSTRAIN_Y,
WTCONSTRAIN_Z, WTCONSTRAIN_XROT, WTCONSTRAIN_YROT or
WTCONSTRAIN_ZROT). Themin andmax arguments specify the range within which the
target of the motion link is constrained (within that DOF). When constraining a

WorldToolKit Reference Manual 15-11

Chapter 15: Motion Links

translational DOFmin andmax specify coordinates, and when constraining a rotational
DOF min andmax represent angles specified in radians.

This function returns FALSE if an invalid motion link is passed in or if the min and max
values are unacceptable for the indicated DOF. \falidandmax values for the different
DOFs and target types are discussed below. When constraining a translational DOF,
regardless of the motion link’s target typep must be less than or equaltax. When
constraining a rotational DOF with a target type of eiW@TARGET_TRANSFORM,
WTTARGET_NODEPATH or WTTARGET_MOVABLE, min must be less than or equal to
max. When constraining a rotational DOF with a target typ& fFARGET_VIEWPOINT,

the following rules apply:

« For constraining rotations about the x-axis or the y-amigandmax could
assume either positive or negative values, withbeing less than or equal to
max. The absolute values ofin andmax should individually be less than two
times Pi. Also, the sum of the absolute valuemiafandmax should be less than
two times Pi.

» For constraining rotation about the z-axis (or twist) apart from min having to be
less than or equal taax, min andmax must each be between -Pi and Pi.

WTmotionlink_removeconstraint

FLAG WTmotionlink_removeconstraint(
WTmotionlink *link,
int dof);

This function removes a particular constraint, if applied, from the specified motion link.
The constraint is specified by the degree of freedtwf) rgument. For examplépfcould

be WTCONSTRAIN_X, WTCONSTRAIN_YROT or some otheWTCONSTRAIN_ value.
(SeeWTmotionlink_addconstraint on page 15-11.)

If the motion link passed in is invalid, or if the specified constraint does not exist in the
motion link’s list of constraints, FALSE is returned, otherwise, the specified constraint is
removed and TRUE is returned.

15-12 WorldToolKit Reference Manual

Constraints on Motion links

Example of Constraining a Motion Link

/* Program segment to demonstrate the use of constraints on a motion link between
/* a sensor and a transform node */

WTmotionlink *link;

WTsensor *sensor;

WTnode *pos_xform, *sens_xform;

WTnode *root;

WTnode *sep;

WTnode *door_node;

WTgeometry *door_geom;

root = WTuniverse_getrootnodes();

sep = WTsepnode_new(root);

/* Create and set a tranfsorm node that sets the door in its global position */

pos_xform = WTxformnode_new(sep);

WTnode_translate(pos_xform, 4.0f, 0.0f, 4.0f);

/* Create a transform node that will be linked to the sensor to allow sensor

control of the door */

sens_xform = WTxformnode_new(sep);

door_geom = WTgeometry_newblock(2.4f, 4.8f, 0.4f, TRUE);

door_node = WTgeometrynode_new(sep, door_geom);

sensor = WTmouse_new();

link = WTmotionlink_new(sensor, sens_xform,
WTSOURCE_SENSOR, WTTARGET_TRANSFORM);

/* Set constraints on the motion link to the door, to allow only restricted

rotation around Y-axis. */

WTmotionlink_addconstraint(link, WTCONSTRAIN_X, 0.0f, 0.0f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_Y, 0.0f, 0.0f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_Z, 0.0f, 0.0f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_XROT, 0.0f, 0.0f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_YROT, 0.0f, 1.4f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_ZROT, 0.0f, 0.0f);

The above code segment constrains the motion of a door such that it is allowed to rotate
only about its Y axis between 0.0 and 1.4 radians. (Translation along all three axes and
rotation about the X axis and Z axis is completely restrained.)

WorldToolKit Reference Manual 15-13

Chapter 15: Motion Links

WTpath_setrecordlink

SeeWTpath_setrecordlink on page 14-15 for a description.

15-14 WorldToolKit Reference Manual

16

Viewpoints

Introduction

A WorldToolKit viewpoint defines the position and orientation from which all of the
geometries associated with a simulation are rendered and projected to the computer screen.
Each WTK window has a viewpoint associated with it, and it is from this viewpoint that the
scene graph associated with the window is drawn.

When you create a universe withTuniverse_new, WTK automatically creates a

viewpoint for it. For many applications, this one viewpoint is sufficient. WTK also lets you
construct additional viewpoints and switch between them. For example, you may wish to
create a “birds-eye view,” an “out-the-window view,” or a “rear view.” Changing
viewpoints in this way is like cutting between different cameras in a movieAfiiheting
Texturessection on page 10-18 of tlextureschapter discusses rear-view mirrors.) To
create additional viewpoints, or to copy or delete existing viewpoint8ae Viewpoint
Managemenbn page 16-3.

To display several viewpoints simultaneously, you create multiple windows and then use
the WTwindow_setviewpointfunction (see page 17-11) to specify the viewpoint from which

the scene is rendered into each window. Each of these windows is associated with a scene
graph; alternate views of the same scene would use the same scene graph, while windows
depicting different scenes would use different scene graphs. Unlike some systems (such as
Open Inventor), viewpoints aren’t nodes in the WTK scene graph; the viewpoint is
determined before a scene is rendered.

You can set the position and orientation of a viewpoint through function calls like
WTviewpoint_setposition and WTviewpoint_setorientation (seeAccessing Viewpoint

Position and Orientatiomn page 16-8). Or, you can control a viewpoint's position and
orientation using a sensor, which you attach to it (&sléng a Sensor to a Viewpoiah

page 16-6). For example, if a mouse sensor object is constructed and attached to a
viewpoint (se&Tmotionlink_new on page 15-3), you can translate and rotate the viewpoint
using mouse motion and button clicks.

Chapter 16: Viewpoints

You can also manage a viewpoint’s motion through viewpatiting Using the functions

in thePathschapter, you can record a suitable path through a virtual world. You can then
play back the path such that the viewpoint moves smoothly along the path. Refer to the
Pathschapter (starting on page 14-1) andMwtion Linkschapter (starting on page 15-1)

for more information.

Apart from position and orientation, a viewpoint is characterized by other parameters such
as aspect ratio, parallax, convergence and convergence distance. These parameters are
defined in detail in the description of the functisfTviewpoint_new on page 16-3. The

WTK functions that manipulate these parameters are presented in the Séievgpaint

Aspect Ratimn page 16-18 artereo Viewingn page 16-19.

Figure 16-1 and Figure 16-2 illustrate monoscopic and stereoscopic viewing geometries for
symmetric window projections. (For information on the different stereoscopic viewing
modes, see page 2-34). The view angle and the hither and yon values are set using functions
described in th&Vindowschapter (starting on page 17-1). (These terms are explained in
detail on page 17-5.) Note that the view position and orientation is relative to the global
(i.e., world) coordinate frame.

In figure 16-1, the view position is the origin of the viewpoint coordinate frame. The view
direction is the same as the Z axis of the viewpoint frame. Although the Y axes in the
viewpoint frame and the world coordinate frame happen to be parallel, this is not generally
the case. The yon clipping plane, which truncates the view pyramid defining its far end, is
not shown.

. view plane

hither clipping plane

World coordinate z
frame axes

ewviewing angle y

—

.) \ view position
hither distance \ Viewpoint coordinate
y frame axes

Figure 16-1: Monoscopic viewing geometry

WorldToolKit Reference Manual

Basic Viewpoint Management

right eye view

left eye view

A/'\
view position J ~ parallax

Figure 16-2: Stereoscopic viewing

Figure 16-2 illustrates how stereoscopic viewing has the same parameters as monoscopic
viewing, except that there atwo view pyramids, linearly offset by the parallax distance.

Basic Viewpoint Management

WTviewpoint_new

WTviewpoint *WTviewpoint_new(
void);

This function creates and returns a pointer to a new viewpoint object with the following
default parameter values:

Position The origin of the world coordinate frame: (0.0, 0.0, 0.0).

Orientation Looking straight down the Z axis, with no twist about this
axis. From this orientation, the world X axis points to the
right, the world Y axis points straight down, and the world
Z axis points straight ahead. The corresponding quaternion
is (0.0, 0.0, 0.0, 1.0), and the corresponding orientation
matrix is the identity matrix.

WorldToolKit Reference Manual 16-3

Chapter 16: Viewpoints

Direction Looking straight down the Z axis: (0.0, 0.0, 1.0).

Aspect ratio 1.0. This is a vertical scale factor applied to the screen
image. You can use this value to correct for any monitor or
pixel distortions that cause spherical or square objects to
look flattened.

Parallax 0.0. Both right and left eye views are from the same
position. Parallax is the distance between the right and left
eye views in the simulation.

Convergence 0. Convergence is a horizontal offset in pixels, which is
applied to both the left and right eye images. This offset is
subtracted from the left eye and added to the right eye.

Convergence distance 100.0. For asymmetric window projections only. The
distance at which a stereoscopic image is perceived to
exist. For example, with StereoGraphics CrystalEyesVR
LCD Shutter Glasses, this parameter determines the
perceived location of an object relative to the plane of the
computer screen.

If only one viewpoint is needed for your application, you do not need to call
WTviewpoint_new becauseV/Tuniverse_new automatically constructs a viewpoint and

adds it to the univers@VTuniverse_new (which must be called at the beginning of any

WTK application) also creates a window, which by default uses the automatically created
viewpoint when the scene is rendered.

The WTwindow_setviewpoint function is used to set the viewpoint for a window. The
WTwindow_seteye function is used to specify whether the view is rendered as seen from
the left or right eye.

The universe maintains a list of all viewpoints created Willviewpoint_new. This list can

be accessed witWTuniverse_getviewpoints (see page 2-15), which returns a pointer to the
first viewpoint. You can then iterate through the list usingitt@iewpoint_next function,
which returns the next viewpoint in the list.

16-4 WorldToolKit Reference Manual

Basic Viewpoint Management

WTviewpoint_delete

void WTviewpoint_delete(
WTviewpoint *viewpoint);

This function deletes the specified viewpoint, and frees the memory it uses. WTK does not
delete the viewpoint if that is the universe’s current viewpoint. You can, however, delete
any other viewpoint. All viewpoints are deleted wh&muniverse _delete is called.

WTviewpoint_copy

WTviewpoint *WTviewpoint_copy(
WTviewpoint *old_viewpoint);

This function copies an existing viewpoint and returns a pointer to a new viewpoint. The

new viewpoint’s state is initialized to the values of the original viewpoint. The entire state
of the original viewpoint is copied, except for any sensors that may be attached to it. The
new viewpoint has no sensors attached to it.

WTviewpoint_next

WTviewpoint *WTviewpoint_next(
WTviewpoint *viewpoint);

This function returns the next viewpoint in the universe’s list of viewpoints. A pointer to
the first viewpoint is obtained with a call WsTuniverse _getviewpoints. You can then
iterate through the list of existing viewpoints usiv@viewpoint_next.

WorldToolKit Reference Manual 16-5

Chapter 16: Viewpoints

Linking a Sensor to a Viewpoint

It is possible to attach a sensor to a viewpoint, so that the sensor’s position and orientation
records automatically cause a corresponding translation and rotation of the viewpoint. The
easiest way to attach a sensor to a viewpoint is by calingewpoint_addsensor as

shown in the example below. Motion links, which are described Mthien Linkschapter
(starting on page 15-1), are a more powerful and general-purpose mechanism for attaching
sensors to viewpoints or other entities in the scene graph.

Motion links cause position and orientation information generated by a sensor or a path to
be applied to the link’s target. A viewpoint is one such target.

Once you've linked a sensor or a path to a viewpoint, translation and rotation of the
viewpoint can be controlled by the sensor. If a viewpoint is linked to more than one sensor,
each sensor contributes to the motion of the viewpoint.

In the following example, Polhemus ISOTRAK and Spacetec IMC Spaceball sensor
objects are created and attached to the viewpoint. This is a useful sensor configuration in
setups where head tracking with an absolute sensor such as the ISOTRAK is desired, but
where you also want to independently control the viewpoint with a joystick-like device
such as the Spaceball.

#include “wt.h”

main()

{
WTsensor *polhemus, *spaceball; /* sensor objects */
WTnode *root, *scene;

/* initialize the universe */
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

[* create some graphics */
root = WTuniverse_getrootnodes();
scene = WTnode_load(root, “myscene”, 1.0);

/* create a polhemus sensor object on serial port SERIALL */
polhemus = WTpolhemus_new(SERIAL1);

16-6

WorldToolKit Reference Manual

Linking a Sensor to a Viewpoint

/* create a spaceball sensor object on serial port SERIAL2 */
spaceball = WTspaceball_new(SERIAL?2);

/* attach the polhemus and spaceball to the universe’s viewpoint */
WTviewpoint_addsensor(WTuniverse_getviewpoints(), polhemus);
WTviewpoint_addsensor(WTuniverse_getviewpoints(), spaceball);

[* prepare to enter the simulation */
WTuniverse_ready();

/* start the simulation */
WTuniverse_go();

[* clean up */
WTuniverse_delete();

return O;

This example uses an absolute device and a relative device to control the viewpoint, and is
a fairly intuitive configuration to work with. It can be interesting to experiment with
different sensor configurations. Not all work equally well, although what works well
depends on your particular application. Linking more than one absolute sensor to the same
viewpoint, for example, can lead to non-intuitive results if the devices generate input
simultaneously. Refer tGonstraints on Motion linken page 15-9 in thilotion Links

chapter to constrain the effect of a sensor on the motion of a viewpoint.

WTviewpoint_addsensor
void WTviewpoint_addsensor(
WTviewpoint *viewpoint,

WTsensor *sensor);

This function attaches a sensor to a viewpoint.

WorldToolKit Reference Manual 16-7

Chapter 16: Viewpoints

WTviewpoint_removesensor

void WTviewpoint_removesensor(
WTviewpoint *viewpoint,
WTsensor *sensor);

This function detaches a sensor from a viewpoint object, so that input from the sensor no
longer affects the motion of the viewpoint.

Accessing Viewpoint Position and Orientation

When sensors are linked to a viewpoint, the viewpoint moves automatically with input from
the sensors. The functions in this section provide additional means for specifying the
motion or placement of viewpoints.

Several of the functions in this section take a reference frame as the final argument. If
WTFRAME_LOCAL or WTFRAME_VPOINT is specified, then the viewpoint is translated
and/or rotated with respect to its own reference frame.

WTviewpoint_setposition

void WTviewpoint_setposition(
WTviewpoint *viewpoint,
WTp3 p);

This function moves the viewpoint to the specified 3D position. The position is specified
in the p parameter (in world coordinates).

WTviewpoint_getposition

void WTviewpoint_getposition(
WTviewpoint *viewpoint,
WTp3 p);

16-8 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

This function retrieves the 3D position of the viewpoint and placesitlimthe case of
stereo viewing with non-zero parallax, this is the position of the left eye, as shown in figure
16-2 on page 16-3.

WTviewpoint_getlastposition

void WTviewpoint_getlastposition(
WTviewpoint *vpoint,
WTp3 pos);

This function gets a viewpoint’s position when the last frame was rendered. The viewpoint
is passed in agoint and the position is returned pos.

Technically speaking, this is the viewpoint’s position after the completion of the last frame.
Before the viewpoint moves in the current framé&,viewpoint_getposition and
WTviewpoint_getlastposition return the same position. For example, suppose the viewpoint
is being controlled by a sensor. Now, working with the default event order, a call to
WTviewpoint_getlastposition in the actions function would return the same value as would
a call towTviepwoint_getposition because the sensor updates have not occurred yet. To
effectively use this function, you should change the event order (using
WTuniverse_seteventorder) such that sensor updates occur before the actions function is
called. This way, the sensor updates the viewpoint's positionVamidwpoint_getposition
returns the new position, whil&Tviewpoint_getlastposition returns the previous position.

This function is especially useful if you are implementing a collision detection algorithm
to prevent the viewpoint from bumping into objects in the universe. After the viewpoint is
updated by the sensor, if you detect a collision with any object, you can reset it with the
value returned byVTviewpoint_getlastposition.

WTviewpoint_translate

void WTviewpoint_translate(
WTviewpoint *viewpoint,
WTp3 p,
short frame);

This function translates a viewpoint by the specified vector in the world, local/viewpoint
frame. The parameteris the specified vector. The world, local or viewpoint frame are
specified byW TFRAME_WORLD, WTFRAME_LOCAL, or WTFRAME_VPOINT. Note that

WorldToolKit Reference Manual 16-9

Chapter 16: Viewpoints

WTFRAME_LOCAL andWTFRAME_VPOINT both refer to the reference frame of the
viewpoint in this case, and produce the same result when used.

The following code fragment shows how to shift a viewpoint to the right in its own
reference frame by one unit. Recall that for any reference frame, the X axis points to the
right, the Y axis points straight down, and the Z axis points straight ahead (see figure 16-3).

WTviewpoint *viewpoint;
WTp3 p;

p[X] = 1.0; p[Y] = p[Z] = 0.0;
WTviewpoint_translate(view, p, WTFRAME_VPOINT);

geometry WTFRAME_LOCAL
geometry x
world z viewing plane (screen)
geometry y
world x view X
world y
Y WTFRAME_WORLD WTFRAME_VPOINT

Figure 16-3: Reference frames for geometry motion

16-10 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

WTviewpoint_setorientation

void WTviewpoint_setorientation(
WTviewpoint *viewpoint,
WTq q);

This function sets the viewpoint’s orientation to the specified quaterniory pai@meter
is the specified quaternion.

If orientations are represented as 3x3 matrices in your program, the conversion function
WTm3_2q can be used to generate the corresponding quaternion, which can then be passed
in to WTviewpoint_setorientation.

WTviewpoint_getorientation

void WTviewpoint_getorientation(
WTviewpoint *viewpoint,
WTq a);

This function returns the orientation of the viewpoint, specified as a quaternion {in the
parameter). To convert this to a 3x3 matrix representation, use the fundtipema3.

WTviewpoint_getlastorientation

void WTviewpoint_getlastorientation(
WTviewpoint *view,
WTq q);

This function gets a viewpoint’s orientation in the last frame. The viewpoint is passed in as
view and the orientation is returnedgn

Similar to theWTviewpoint_getlastposition function, the way you use this function depends
on the universe event order — whether the sensor updates are done before the actions
function is called. Se&/Tviewpoint_getlastposition (on page 16-9) for more information
about how and where you can use this function.

WorldToolKit Reference Manual 16-11

Chapter 16: Viewpoints

WTviewpoint_rotate

void WTviewpoint_rotate(
WTviewpoint *viewpoint,
short axis,
float angle,
short frame);

This functionrotates a viewpoint on a specified axis about the viewpoint's position in the
world, local/viewpoint frame (see figure 16-3 on page 16-10).aklsgparameter is one of
the defined constants X, Y, or Z, and pertains to the specified reference frame
(WTFRAME_WORLD, WTFRAME_LOCAL, or WTFRAME_VPOINT). Note that
WTFRAME_LOCAL and WTFRAME_VPOINT both refer to the reference frame of the
viewpoint in this case, and produce the same result when usedagib@arameter
represents the amount of rotation (in radians) to perform about the specified axis.

The following example shows how to roll a viewpoint by 90 degrees to the right:

WTviewpoint *viewpoint;
WTviewpoint_rotate (view, Z, 0.5*PI, WTFRAME_VPOINT);

WTviewpoint_move

void WTviewpoint_move(
WTviewpoint *viewpoint,
WTpq *moveby,
short frame);

This function moves a viewpoint by the translation and rotation values specifiedany.
The argumentnoveby is a pointer to &/Tpg structure (which contains both/@rp3 and a
WTq), and is applied to the viewpoint in the specified reference frame
WTFRAME_WORLD, WTFRAME_LOCAL or WTFRAME_VPOINT. (The latter two
reference frames are the same when referring to a viewpoint.) This function causes a
translation and a rotation of the viewpoint, becauséufeg structure contains both
translation and rotational informatiow/.Tviewpoint_move is a relative move, compared to
WTviewpoint_moveto (see below), which is an absolute move.

The rotational component of thoveby parameter (thg portion of the WTpq structure)
is applied about the viewpoint position (see figure 16-1 on page 16-2).

16-12 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

WTviewpoint_moveto

void WTviewpoint_moveto(
WTviewpoint *viewpoint,
WTpq *newviewat);

This functionmoves a viewpoint to the position and orientation specifiedurviewat. The
argumentewviewat is a pointer to &/Tpq structure (which contains both/Tp3 and a
WTq). WTviewpoint_moveto moves the viewpoint to the absolute position and orientation
contained in them Tviewpoint_moveto is an absolute move, compared to
WTviewpoint_move (see above), which is a relative move.

Since aWTpgq is a structure, only a pointer to it can be passed in to a function. Structures
should not be directly passed in to functions.

WTviewpoint_setdirection

void WTviewpoint_setdirection(
WTviewpoint *viewpoint,
WTp3 dir);

This function sets the viewpoint direction to the view specified by/tgarameter. The
view direction represents the Z axis of the local viewpoint frame.

The WTviewpoint_rotate function can be used after a calli@viewpoint_setdirection to
specify the amount of twist (rotation) around the new view direction.

WTviewpoint_getdirection

void WTviewpoint_getdirection(
WTviewpoint *viewpoint,
WTp3 dir);

This function returns the direction of the viewpoint. Tirevector points along the Z axis
of the viewpoint’s local coordinate frame.

WorldToolKit Reference Manual 16-13

Chapter 16: Viewpoints

WTviewpoint_getaxis

void WTviewpoint_getaxis(
WTviewpoint *viewpoint,
short axis,
WTp3 vector);

This function returns the unitctor in the direction of the specified viewpointsis in the
world frame, which is specified by tlais parameter. Valid values fauis are X, Y, and
Z (which represent axes).

WTviewpoint_alignaxis

void WTviewpoint_alignaxis(
WTviewpoint *viewpoint,
short axis,
WTp3 dir);

This function rotates the viewpoint so the specified axis aligns with the specified direction.
The axis is specified by thexis parameter. Valid values akis are X, Y, and Z (which
represent axes). Direction is specified bydh&ector. Thedir vector should be specified
relative to the world frame axis.

Using a Specified Reference Frame

The first function in this sectiomyTviewpoint_getframe, is used to obtain reference frame
information (awTpgq) which can then be passed in to any of the other “frame” functions.

The functions in this section are just like the correspondingly named functions without the
final “frame” at the end of the function name, except that the positions (or 3D vectors) and
orientations passed in to these functions are interpreted as being relative to the specified
reference frame.

16-14 WorldToolKit Reference Manual

Using a Specified Reference Frame

WTviewpoint_getframe

void WTviewpoint_getframe(
WTviewpoint *viewpoint,
WTpq *frame);

This function returns the specified viewpoint’s position and orientation and places it in the
frame parameter.

WTviewpoint_setpositionframe

void WTviewpoint_setpositionframe(
WTviewpoint *viewpoint,
WTp3 pos,
WTpq *frame);

This function moves the viewpoint to the specified 3D position in the specified frame. It is
like WTviewpoint_setposition (See page 16-8) but takes an additional argurreng.

WTviewpoint_getpositionframe

void WTviewpoint_getpositionframe(
WTviewpoint * view,
WTp3 pos,
WTpq *frame);

This function returns the 3D position of the viewpoint relative to the specified frame. It is
like WTviewpoint_getposition (see page 16-8) but takes an additional arguifnane.

WTviewpoint_translateframe

void WTviewpoint_translateframe(
WTviewpoint * view,
WTp3 p,
WTpq *frame);

This function translates a viewpoint by the specified vector in the specified frame. It is like
WTviewpoint_translate but takes an additional argumeiaime.

WorldToolKit Reference Manual 16-15

Chapter 16: Viewpoints

WTviewpoint_setorientationframe

void WTviewpoint_setorientationframe(
WTviewpoint * view,
WTq q,
WTpq *frame);

This function sets the viewpoint’s orientation in the specified frame to the specified
guaternion. It is likew/Tviewpoint_setorientation (see page 16-11) but takes an additional
argumentrame.

WTviewpoint_getorientationframe

void WTviewpoint_getorientationframe(
WTviewpoint * view,
WTq g,
WTpq *frame);

This function returns the orientation of the viewpoint relative to the specified frame,
specified as a quaternion. It is likéTviewpoint_getorientation (See page 16-11) but takes
an additional argumenitame.

WTviewpoint_rotateframe

void WTviewpoint_rotateframe(
WTviewpoint * view,
short axis,
float angle,
WTpq *frame);

This function rotates a viewpoint around a given axis around the viewpoint’s position in the
specified frame. It is likéVTviewpoint_rotate (see page 16-12) but takes an additional
argumentframe, which can be any coordinate frame (i.e., the specifi€dq).

16-16

WorldToolKit Reference Manual

Using a Specified Reference Frame

WTviewpoint_moveframe

void WTviewpoint_moveframe(
WTviewpoint * view,
WTpq *pq,
WTpq *frame);

This function moves a viewpoibly the specified translation and rotation values in the
specified frame. It is likéVTviewpoint_move (see page 16-12) but takes an additional
argumentrame, which can be any coordinate frame (i.e., the specified WTpq). This is a
relative move, compared t@Tmovetoframe (see below), which is an absolute move.

WTviewpoint_movetoframe

void WTviewpoint_movetoframe(
WTviewpoint * view,
WTpq *pq,
WTpq *frame);

This function moves a viewpoit the specified position and orientation in the specified
frame. It is likeWTviewpoint_moveto (see page 16-13) but takes an additional argument
frame, which can be any coordinate frame (i.e., the specifiéfdg). This is an absolute
move, compared t@/Tmoveframe (see above), which is a relative move.

WTviewpoint_setdirectionframe

void WTviewpoint_setdirectionframe(
WTviewpoint * view,
WTp3 dir,
WTpq *frame);

This function rotates the viewpoint to the specified view direction in the specified frame. It
is like WTviewpoint_setdirection but takes an additional arguméeiame.

WorldToolKit Reference Manual 16-17

Chapter 16: Viewpoints

WTviewpoint_getdirectionframe

void WTviewpoint_getdirectionframe(
WTviewpoint * view,
WTp3 dir,
WTpq *frame);

This function returns the direction of the viewpoint relative to the specified frame. It is like
WTviewpoint_getdirection but takes an additional argumétme.

For more information about the use of reference frames, please see the discussion in
Geometry Motion Reference Franmspage 13-19.

Viewpoint Aspect Ratio

WTviewpoint_setaspect

void WTviewpoint_setaspect (
WTviewpoint *viewpoint,
float aspect);

This function sets the viewpoint’s aspect ratio. This function can be used to correct for any
monitor or pixel distortion that causes round objects to look elliptical or square objects to
look rectangular. If the horizontal and vertical extents of pixels in the display are equal,
then no correction should be needed. Otherwise, call this functioraspitiat set to the

ratio of the horizontal pixel extent to the vertical pixel extent. Increasing valuspadt

make objects appear taller on the screen (without affecting their apparent width).

For example, if the pixels in your display are twice as wide as they are tall, then an object
which was modeled as a perfect square would appear on the screen to be only half as tall as
it was wide when rendered with the default viewpoint aspect rati@o¥ou could

compensate for this by using the following call.

WTviewpoint *viewpoint;
WTviewpoint_setaspect(view, 2.0);

16-18

WorldToolKit Reference Manual

Stereo Viewing

This effectively stretches objects vertically by a factor of two, making the particular object
appear square. See alsGwindow_setviewangle on page 17-1%nd
WTviewpoint_getaspect, below.

WTviewpoint_getaspect

float WTviewpoint_getaspect(
WTviewpoint *viewpoint);

This function returns the viewpoint's current aspect ratio. This value is specified as a ratio
of the horizontal and vertical drawing dimensions. See \Boindow_setviewangle,
WTviewpoint_setaspect above

Stereo Viewing

The functions in this section are used to set and get the parameters used for stereo viewing.
Please refer to the functiamTviewpoint_new on page 16-3 for parameter definitions and
default values.

WTviewpoint_setparallax

void WTviewpoint_setparallax(
WTviewpoint *viewpoint,
float parallax);

This function sets the parallax value for stereo viewing. Parallax is the distance between the
left and right eye views in the simulation (see figure 16-2 on page 16-3).

It is often desirable to set the parallax value to some fraction of the typical range of units of
interest in your application. For example, you might use the radius of the volume defined
by the scene graph, as in the following:

WTviewpoint *viewpoint;
WTviewpoint_setparallax(view, 0.05 *
WTnode_getradius(WTuniverse_getrootnodes());

WorldToolKit Reference Manual 16-19

Chapter 16: Viewpoints

In some applications, the volume defined by the scene graph may be very large compared
to the size of typical objects in the scene. For example, consider a driving simulation over
a very large terrain containing trees and buildings that are considerably smaller in extent
than the terrain. In this case, it may be preferable to scale the viewpoint parallax relative to
the extents of just a portion of the scene graph, as in the following:

WTnode*node;
WTviewpoint *viewpoint;
WTviewpoint_setparallax(view, 0.1 * WTnode_getradius(node));

By increasing the parallax value, you can achieve an enhanced stereo effect (sometimes
called “hyper-stereo”). However, as parallax increases, it may become difficult for your
eyes to fuse the stereo pair of images into a single 3D image.

WTviewpoint_getparallax

float WTviewpoint_getparallax(
WTviewpoint *viewpoint);

This functionreturns the viewpoint's parallax value, which is the distance in world
coordinates between the left and right eyes.

The following example uses the viewpoint’s parallax value to determine the location of the
viewpoint's left and right eyes in the world coordinate frame.

WTviewpoint *viewpoint;
WTp3 pleft, pright;

[* retrieve the position of the viewpoint’s left eye */
WTviewpoint_getposition(view, pleft);

/* set pright to the position of the right eye
in the viewpoint frame */

pright[X] = WTviewpoint_getparallax(view);

pright[Y] = pright[Z] = 0.0;

/* convert pright to world coordinates */
WTviewpoint_local2world(view, pright, pright);

16-20 WorldToolKit Reference Manual

Stereo Viewing

/* print out eye positions in world coordinates */
WTp3_print(pleft, “left eye”);
WTp3_print(pright, “right eye”);

WTviewpoint_setconvergence

void WTviewpoint_setconvergence(
WTviewpoint *viewpoint,
short convergence);

This function sets the horizontal offset (in pixels) that is applied to both the left and right
eye images. The offset is subtracted from the left eye and added to the right eye.

This function can be used to achieve stereo fusion in head-mounted displays where the
display screens are not exactly centered in front of the user’s eyes. A negative convergence
value moves the images for the eyes closer together, a positive value moves them further
apart.

WTviewpoint_getconvergence

short WTviewpoint_getconvergence(
WTviewpoint *viewpoint);

This function returns the viewpoint's stereo convergence value in screen pixel units. This
value should not be confused with the convergence distance value used with asymmetric
viewing projections, shown in figure 16-4.

WorldToolKit Reference Manual 16-21

Chapter 16: Viewpoints

(5]
[&]
c
5]
Az
©
Q
[&]
c
()
>
()
=
Left eye 8 Right eye
view plane view plane
View
direction v
2x horizontal Asymmetric Symmetric

view angle

Figure 16-4: Top view of stereoscopic viewing pyramid with asymmetric projection

WTviewpoint_setconvdistance

void WTviewpoint_setconvdistance(
WTviewpoint *viewpoint,
float val);

This function sets the convergence distance of the specified viewpoint. This value has no
effect on the scene that is drawn unless asymmetric viewing has been turned on by calling
WTwindow_setprojection and specifyingVTPROJECTION_ASYMMETRIC for the

projection type.

When asymmetric viewing is on, the scene is drawn from the same view position, view
direction, and view angle as when asymmetric viewing is off. However, with asymmetric
viewing, the scene appears horizontally skewed. The amount of skew is determined by the
value of the viewpoint's convergence distance parameter, as illustrated in figure 16-4. As
the convergence distance decreases, the amount of skew increases.

16-22

WorldToolKit Reference Manual

Stereo Viewing

Asymmetric viewing is useful in some stereo viewing configurations. By changing the
convergence distance, geometries can be made to appear either in front of or behind the
display device (e.g., the screen). A geometry in the 3D world closer to the viewpoint than
the convergence distance appears to be in front of the screen, while a geometry that is
farther from the viewpoint than the convergence distance appears to be behind the screen.

The most dramatic stereo effect is often achieved when part of your scene appears to be in
front of the screen, and part appears to be behind the screen. You may wish to experiment
with setting the value of the convergence distance to the distance from the viewpoint to the
midpoint of your scene, as in the following exampleis example assumes that the
asymmetric projection type has already been set for the specified window:

void adjustconvergencedistance(WTwindow *w)

{
WTviewpoint *viewpoint;
float distance;
WTp3 p, midpt;
/* find distance from viewpoint to midpoint of scene graph*/
view = WTwindow_getviewpoint(w);
WTnode_getmidpoint(WTwindow_getrootnode(), midpt);
WTviewpoint_getposition(view, p);

distance = WTp3_distance(midpt, p);

/* set viewpoint convergence distance to that value */
WTviewpoint_setconvdistance(view, distance);

WTviewpoint_getconvdistance

float WTviewpoint_getconvdistance(
WTviewpoint *viewpoint);

This function returns the value of the viewpoint’s convergence distance parameter.

See alsWTviewpoint_setconvdistance above andWTwindow_setprojection on page 17-14.

WorldToolKit Reference Manual 16-23

Chapter 16: Viewpoints

Coordinate Transformations

WTviewpoint_world2local

void WTviewpoint_world2local(
WTviewpoint *viewpoint,
WTp3 pin,
WTp3 pout);

This function takes the specified 3D pofiit in the world coordinate frame, and
determines the location of that point in relation to the specified viewpoint’s reference
frame. The result is stored in theut parameter.

WTviewpoint_local2world

void WTviewpoint_local2world(
WTviewpoint *viewpoint,
WTp3 pin,
WTp3 pout);

This function takes a 3D poipin in the coordinate frame of the specified viewpoint
(specified in theviewpoint parameter), and determines the location of that point in relation
to the world coordinate frame. The result is storegbin.

The following example use&Tviewpoint local2world to place a geometry in front of a
viewpoint. Another example is provided und&Tviewpoint_getparallax on page 16-20.

WTnode *geom;

WTviewpoint *viewpoint;

WTp3 pos_local; /* position in viewpoint’s frame */
WTp3 pos_world; /* position in world frame */

/* place the object in front of the viewpoint.

The object’s orientation is not considered in this example. */
pos_local[X] = pos_local[Y] = 0.0;

pos_local[Z] = 5.0 * WTnode_getradius(geom);
WTviewpoint_local2world(view, pos_local, pos_world);
/* move the object to the world-coordinate location */
WTnode_settranslation(geom, pos_world);

16-24 WorldToolKit Reference Manual

Viewpoint Name

Viewpoint Name

WTviewpoint_setname
void WTviewpoint_sethame(

WTviewpoint *viewpt,
const char *name);

This function sets the name of the specified viewpoint. All viewpoints have a name; by
default, a viewpoint’'s name is “” (i.e., a NULL string).

WTviewpoint_getname

const char *WTviewpoint_getname(
WTviewpoint *viewpt);

This function returns the name of the specified viewpoint.

User-specifiable Viewpoint Data

A void * pointer is included as part of the structure defining a viewpoint, so that you can
store whatever data you want with a viewpoint. The following functions can be used to set
and get this field within any viewpoint.

WTviewpoint_setdata

void WTviewpoint_setdata(
WTviewpoint *viewpoint,
void *data);

This function sets the user-defined data field in a viewpoint. Private application data can be
stored in any structure. To store a pointer to a structure within the viewpoint, pass in a
pointer to the structure, cast to@d*, as thedata argument.

WorldToolKit Reference Manual 16-25

Chapter 16: Viewpoints

WTviewpoint_getdata

void *WTviewpoint_getdata(
WTviewpoint *viewpoint);

This function retrieves private data stored within a viewpoint. You should cast the value
returned by this function to the same type used to store the data with the
WTviewpoint_setdata function.

Viewpoint Intersection Test

WTviewpoint_intersectpoly

For information on this function, see page 4-89. AlsoHm& Do | Test For Objects
Intersecting With Other Objects In The Universeage A-25.

16-26 WorldToolKit Reference Manual

17

Windows

Introduction

A WTK window object corresponds to a region of the screen in which a view of the
graphical universe is displayed. With the window class, multiple views can be displayed
simultaneously and flexibly to different parts of the screen.

Included in this chapter are WTK functions that let you do the following:
» create a window with system-specific characteristics (such as border type) and
delete it
* reposition and resize a window
» define the way in which the scene is viewed in a window when rendered
« define the way in which the scene is projected to the window when rendered
e picking and ray-casting in a window

« set the rendering properties of a window (such as background color and texture
backdrop)

» assign user-specifiable data to a window
» get the system-specific ID of a window

» create multiple viewports within a window

Chapter 17: Windows

Window Construction and Destruction

WTwindow_new

WTwindow *WTwindow_new(
int x0,
int yO,
int xsize,
int ysize,
int flags);

This function creates a new WTK window object and displays it on the screen using the
host system window manager. If successful, a pointer to the window object is returned;
otherwise NULL is returned.

The values in the0 andy0 arguments are the minimum X, Y screen coordinates of the
window. The values in thesize andysize arguments are the width and height of the
window, not including the window border. The paraméteys is a constant defining the
window’s characteristics. (For information on the different stereoscopic viewing modes,
see page 2-34).

These are the possible valuesflags:

WTWINDOW _DEFAULT Creates a window with no special attributes.
The window has a border unless
WTWINDOW_NOBORDER is used in
combination with this constant (via the
bitwise OR operator).

WTWINDOW _STEREO Creates a stereo window on systems that have
hardware support for stereo. On systems
without hardware stereo support, this option
will create 2 images in the window (one on
the top with the left eye view, the other on the
bottom with the right eye view). On Windows
platforms, if this option is selected and the
WTDISPLAY_NEEDSTENCIL option is
selected in thelisplay_config parameter
when WTuniverse_new is called, the

17-2

WorldToolKit Reference Manual

Window Construction and Destruction

WTWINDOW _STEREOVSPLIT

WTWINDOW _RBSTEREO
WTWINDOW_INTERLACEEVENODD

WTWINDOW_INTERLACEODDEVEN

WTWINDOW_NOBORDER

WTWINDOW _SCREENnN

behavior you will obtain is that of
WTWINDOW _STEREOVSPLIT.

This constant can be combined with the
WTWINDOW _STEREO option by using the
bitwise OR operator (|), to create 2 images in
the window (one on the top with the left eye
view, the other on the bottom with the right
eye view) even if your system has hardware
stereo support. In essence, this option will
cause WTK to disable your system’s stereo
hardware and to create a “vertically split”
stereo window instead.

Creates a window with red/blue stereo.

Creates an interlaced stereo window whose
even numbered scanlines correspond to the
left eye view and whose odd numbered
scanlines correspond to the right eye view.
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in thelisplay_config parameter
whenWTuniverse_new is called.

Creates an interlaced stereo window whose
odd numbered scanlines correspond to the
left eye view and whose even numbered
scanlines correspond to the right eye view
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in thelisplay_config parameter
whenWTuniverse_new is called.

This constant can be combined with any of
the above listed options by using the bitwise
OR operator (|), to create a window without
a border.

Where n is a number from 0 to 8. In the multi-
pipe/multi-processor version of WTK, this
constant can be combined with any of the
above listed options by using the bitwise OR

WorldToolKit Reference Manual 17-3

Chapter 17: Windows

operator (|), to specify which screen the
window is to be placed on.

If the window_config parameter is set to any of the stereo optigh8(NDOW_STEREO,
WTWINDOW _RBSTEREO, WTWINDOW _INTERLACEEVENODD, or

WTWINDOW _INTERLACEODDEVEN), you will need to adjust the viewpoint’'s parallax
and convergence values. S&&viewpoint_setparallax and WTviewpoint_setconvergence.

You only need to calWTwindow_new to create additional windows besides those created
by the call tovTuniverse_new. The windows created W Tuniverse _new have viewpoints
associated with them, while windows created by calliffvindow_new are assigned a
NULL viewpoint. A window’s viewpoint is set usingyTwindow_setviewpoint (see page
17-11).

As windows are created, they are added to the end of the universe’s list of windows. A
pointer to the front window in this list is returned by Wi@universe_getwindows (see page
2-13) function. When the window is created, the following parameters are set:

projection type This defines how the scene is projected into the window.
The default projection is symmetric
(WTPROJECTION_SYMMETRIC). See
WTwindow_setprojection on page 17-14.

viewpoint This is the viewpoint from which the scene is projected into
the window. By default, this viewpoint is NULL. See
WTwindow_setviewpoint on page 17-11.

eye By default, the scene projected into the window as viewed
from the left eye WTEYE_LEFT) of the window's
viewpoint. To have the scene rendered from the right eye,
useWTwindow_seteye on page 17-12. As explained in the
Viewpointschapter, the viewpoint’s left eye position is
obtained whewWTviewpoint_getposition (on page 16-8) is
called. The right eye position is obtained by a translation
from the left eye along the viewpoint's X axis by the
parallax distance.

background color Default value: blue (rgb=0, 0, 255). See
WTwindow_setbgrgb on page 17-22.

view angle (in radians) ~ The default view angle (half the total horizontal viewing
angle) is 0.698131 radians (40 degrees). Given the
horizontal view angle, the vertical view angle is determined

17-4 WorldToolKit Reference Manual

Window Construction and Destruction

from the window’s aspect ratio, which is the ratio of the
vertical view angle tangent to the horizontal view angle
tangent. Se@&/Twindow_setviewangle on page 17-19. and
WTviewpoint_setaspect on page 16-18. For general and
orthographic window projections
(WTPROJECTION_GENERAL and
WTPROJECTION_ORTHOGRAPHIC), the view angle is
not used. Se&/Twindow_setparams on page 17-16.

hither clipping value The distance (along the viewpoint direction) from the
viewpoint position to the hither clipping plane. Graphical
entities are clipped at this plane; only things on the opposite
side of the hither plane from the viewpoint are drawn. The
default hither clipping value is 1.0. See
WTwindow_sethithervalue on page 17-18.

yon clipping value The distance (along the viewpoint direction) from the
viewpoint position to the yon clipping plane. Graphical
entities are clipped at this plane; only things on the side of
the yon clipping plane closest to the viewpoint are drawn.
The default yon clipping value is 65536.0. See
WTwindow_setyonvalue on page 17-19.

Figure 17-1 illustrates the relationship of the viewpoint to the window parameters. The
view plane is a slice through the view frustum (pyramid) determined by the size of the
window and the view angle. The yon clipping plane, which truncates the view pyramid
defining its far end, is not shown.

WorldToolKit Reference Manual 17-5

Chapter 17: Windows

World coordinate z
frame axes

. View plane

Hither clipping plane z (View direction)

ewviewing angle y

Hither distance Viewpoint coordinate

frame axes

Figure 17-1: Monoscopic viewing geometry

WTinit_usewindow
Prototype for Windows:

void WTinit_usewindow(
HWND *parent);

Prototype for UNIX:

void WTinit_usewindow(
Widget *parent)

Argument:

parent The ID of the parent host-specific window that will enclose
the WTK window.

This function integrates WTK windows with host-specific windows. This function must be
calledbeforeWTuniverse_new (see page 2-2). Sétow Do | Integrate A WTK Rendering
Window With A Host-Specific Windowf page A-35.

17-6

WorldToolKit Reference Manual

Window Construction and Destruction

WTwindow_newuser
Prototype for Windows

WTwindow *WTwindow_newuser(
HWND *parent,
int window_config);

Prototype for UNIX:

WTwindow *WTwindow_newuser(
Widget *parent,
int window_config);

Argument:
parent The ID of the parent host-specific window that would
enclose the WTK window.
window _config This value is the same as the flag’s value in the

WTwindow_new (see page 17-2) function.

This function integrates WTK windows with host-specific windows. This function must be
calledafter WTuniverse_new (see page 2-2). Sétow Do | Integrate A WTK Rendering
Window With A Host-Specific Windowf page A-35.

WTwindow_delete

void WTwindow_delete(
WTwindow *window);

This function deletes a WTK window object. Tivadow argument may be a pointer to a
window object, created by an explicit calli@window_new, or a pointer to a window that
was created implicitly by a call W Tuniverse_new.

WorldToolKit Reference Manual 17-7

Chapter 17: Windows

Accessing Universe’s Windows

WTwindow_next

WTwindow *WTwindow_next(
WTwindow *window);

This function returns the next window in the universe’s list of WTK window objécts
pointer to the first window in this list is obtained by calliMJuniverse_getwindows (see
page 2-13).

For example, suppose that your application uses a stereo display created by calling
WTuniverse_new with the WTDISPLAY_STEREO option, and that you wish to obtain
pointers to the windows in which the left and right-eye views are displayed. This can be
accomplished as follows:

WTwindow *wileft, *wright;

/* WTuniverse_new is first WTK call in program */
WTuniverse_new(WTDISPLAY_STEREO, WTWINDOW_NOBORDER);

/* left eye view is displayed in first window created by WTuniverse_new */
wleft = WTuniverse_getwindows();

/* right eye view displayed in second window created. */

wright = WTwindow_next(wleft);

Associating Scene Graphs with Windows

WTwindow_setrootnode

void WTwindow_setrootnode(
WTwindow *window,
WTnode *rootnode);

This function associates a scene graph with a specified window by passing in the root node
of the scene graph. Once this is done, the scene graph will be rendered into the specified
window.

17-8

WorldToolKit Reference Manual

Associating Scene Graphs with Windows

The WTuniverse_new (see page 2-2) function automatically associates the default scene
graph (i.e., the root node constructedisfuniverse_new) with each of the windows it

creates. So, if your application uses only the default scene graph and does not create any
additional windows, then you do not need to call this function.

WTwindow_getrootnode

WTnode *WTwindow_getrootnode (
WTwindow *window);

This function returns the root node of the scene graph associated with the specified
window.

WTwindow_enable

void *WTwindow_enable (
WTwindow *window,
FLAG enable);

This function allows you to enable or disable rendering to a specified window. By default,
each window is enabled. This is useful when your simulation contains multiple windows
and one or more windows are not active, i.e., they do not need to be updated in the
simulation loop. Using this function to disable rendering to inactive windows can
substantially improve performance.

WTwindow_isenabled

FLAG WTwindow_isenabled (
WTwindow *window);

This function returns TRUE if the specified window is enabled and returns FALSE if the
specified window is disabled. SeeTwindow_enable above.

WorldToolKit Reference Manual 17-9

Chapter 17: Windows

Window Size and Placement

A WTK window object'’s initial size and location on the screen are set at the time it is
created. For a window created withrwindow_new (see page 17-2), the initial size and
location are specified as arguments of the function. Size and location depend on the display
option chosen, and can also be set using WTK'’s resource facility (discus&esbinrce

Files on page 2-28).

After the windows objects are created, you can obtain their current size and location, resize
them, or move them using the functions described in this section.

WTwindow_setposition

void WTwindow_setposition(
WTwindow *window,
int x0,
int yO,
int width,
int height);

This function changes a window’s size and/or location on the screexOHmely0
parameters are the minimum X and Y screen coordinates of the window widnfl@nd

height specify the width and height of the window in screen coordinates (not including the
window border).

WTwindow_getposition

void WTwindow_getposition(
WTwindow *window,
int *x0,
int *y0,
int *width,
int *height);

This function returns the location and size of a window. It places the minimum X and Y
window coordinates into the valugg andy0, and the width and height of the window (in
pixels) into the valueidth andheight (not including the window border).

17-10 WorldToolKit Reference Manual

Windows and Viewpoints

Windows and Viewpoints

Each WTK window object has, associated with it, a viewpoint, as well as the eye (either
left or right) from which the scene is rendered in that window (see figure 17-1 on page
17-6). For example, it may be useful to have a window that provides a bird’s-eye view of
the simulation, or a close-up view, or an out-the-window view. It may even be useful to
have a window with a NULL viewpoint, which simply displays status information with
user-defined drawing functions.

The functions in this section allow you to control your viewpoints.

WTwindow_setviewpoint

void WTwindow_setviewpoint(
WTwindow *window,
WTviewpoint *view);

This function sets the viewpoint to be displayed in the specified window. The window or
stereo-pair of windows created wheTuniverse _new (see page 2-2) is called is assigned
the viewpoint which is automatically created by W€universe_new call. However, when
awindow is created with/Twindow_new (see page 17-2), the viewpoint set for it is NULL.
To have a viewpoint displayed in a window other than the windows put up by the call to
WTuniverse_new, you must explicitly set the viewpoint for the window by calling
WTwindow _setviewpoint.

To have a window in your WTK application which does not display a view of the WTK

graphical universe, but which only displays the results of user-defined drawing functions,
set the viewpoint for the window to NULL.

WTwindow_getviewpoint

WTviewpoint *WTwindow_getviewpoint(
WTwindow *window);

This function returns the viewpoint currently set for the specified window. See
WTwindow _setviewpoint, above.

WorldToolKit Reference Manual 17-11

Chapter 17: Windows

WTwindow_seteye

void WTwindow_seteye(
WTwindow *window,
short eye);

This function specifies whether the scene displayed in the specified window should be
rendered from the left or right eye of the viewpoint. The left and right eyes are separated
by the viewpoint’s parallax value.

The value okye must be one the defined constamMBEYE _LEFT or WTEYE_RIGHT. The
default value for a window I&/TEYE LEFT.

This function is useful in the case where two distinct windows are created for stereo
viewing and when it is desirable to use a common viewpoint for each window. Even though
each window shares a common viewpouiT,viewpoint_setparallax (see page 16-19) can

be used to set the distance in the 3D virtual world between the points from which the left
and right eye views are drawn. You can thenW3eindow_seteye to specify which eye

view to use for each window of the stereo window pair.

WTwindow_geteye

short WTwindow_geteye(
WTwindow *window);

This function determines which eye the window’s viewpoint is set to display. It returns
eitherWTEYE_LEFT or WTEYE_RIGHT. If the pointer passed in is not in the universe’s list
of windows, it returns -1. Se@Twindow _seteye above, andVTviewpoint_setparallax on
page 16-19.

WTwindow_setviewpoint2

void WTwindow_setviewpoint2(
WTwindow *window,
WTviewpoint *view);

This function sets the second viewpoint to display for the specified window when using a
stereo window. Use this function in special situations, when it is necessary to perform view
projections into a stereo window using two completely different viewpoints.

17-12

WorldToolKit Reference Manual

Zooming the Window Viewpoint

If the viewpoints used for the left and right eye view only differ in their parallax value, then
you do not need to use this function. You can instead use a single viewpoint and set the
viewpoint's parallax value to an appropriate value. B@aindow_setviewpoint on page
17-11 andWTviewpoint_setparallax on page 16-19.

WTwindow_getviewpoint2

WTviewpoint *WTwindow_getviewpoint2(
WTwindow *window);

This function returns the second viewpoint associated with the specified window. See
WTwindow _setviewpoint2 above.

WTwindow_getscreen

int WTwindow_getscreen(
WTwindow *window);

This function returns the screen number upon which the window appears.

Zooming the Window Viewpoint

WTwindow_zoomviewpoint

void WTwindow_zoomviewpoint(
WTwindow *window);

This function zooms the viewpoint of the given window so that all geometries in the scene
graph (associated with that window) are visible. The orientation of the viewpoint is
preserved. This is useful when you associate a new scene graph with the window and
require orientation.

WorldToolKit Reference Manual 17-13

Chapter 17: Windows

WTwindow_zoomviewtonode

void WTwindow_zoomviewtonode(
WTwindow *window,
WTnode *node,
int which);

This function zooms the viewpoint of the specified window so that all geometries in the
node (and the node’s sub-tree) are visible. The orientation of the viewpoint is preserved.
This is useful when you associate a new scene graph with the window and require
orientation. Thewvhich parameter indicates which instance of the node to zoom to, since
there may be many instances of the node in the scene graph.

Window-projection Functions

In WTK Version 2.0, thew/Tviewpoint class contained all parameters pertaining to the
viewing pyramid or frustum. Beginning with WTK 2.1 and including the current release,
functions are provided so that the view frustum parameters can instead be stored with the
window. This gives more flexibility, because with this capability, you are able to render the
scene from the same viewpoint into different windows using different viewing projections
into each window.

WTwindow_setprojection

void WTwindow_setprojection(
WTwindow *window,

int type);
This function sets one of the following projection types for the specified window:

WTPROJECTION_SYMMETRIC Commonly used projection, especially for
monoscopic and flat screen displays. This is
the default projection type.

WTPROJECTION_ASYMMETRIC Useful for stereoscopic displays. By varying
the viewpoint convergence distance, objects
can be made to appear in front of or behind

17-14 WorldToolKit Reference Manual

Window-projection Functions

WTPROJECTION_GENERAL

WTPROJECTION_ORTHOGRAPHIC

the projection plane. See the discussion under
WTviewpoint_setconvdistance on page
16-22.

Provides the greatest flexibility; useful when
the viewer is not always perpendicular to the
display surface, for example in CAVE
environmentsSee note below.

Useful for plan views or anytime a
perspective distortion is not desired; parallel
lines remain parallel regardless of viewpoint
position. Translations in the X and Y
directions work as before, but translations
along the Z-axis do not affect the scene
(except when either the hither or yon clipping
planes interact with the scene’s geometries).
See note below.

Note: When using eithe#/ TPROJECTION_GENERAL or
WTPROJECTION_ORTHOGRAPHIC, you must specify any aspect of the window's
viewing frustum usin@VTwindow_setparams. The functions
WTwindow _setviewangle, WTwindow_sethithervalue, and WTwindow_setyonvalue,
do not affect the window's view frustum when using orthographic or general

projections.

The default projection type i TPROJECTION_SYMMETRIC. However, when
WTuniverse_new is called withWTDISPLAY CRYSTALEYES, the window projection is

set toWTPROJECTION_ASYMMETRIC.

If you intend to use a projection type other than the default one
(WTPROJECTION_SYMMETRIC), the call towTwindow_setprojection must precede calls
to any other window functions. For example, if you ¢#@ftwindow_zoomviewpoint and
then set the projection to orthographic, it will look as if the zoom didn’t work.

WorldToolKit Reference Manual 17-15

Chapter 17: Windows

WTwindow_getprojection

int WTwindow_getprojection
WTwindow *window);

This function returns the projection type for the specified window. The projection type is
one of the following:

WTPROJECTION_SYMMETRIC
WTPROJECTION_ASYMMETRIC
WTPROJECTION_GENERAL
WTPROJECTION_ORTHOGRAPHIC.

WTwindow_setparams

void WTwindow_setparams(
WTwindow *window,
FLAG eye,
float left,
float right,
float bottom,
float top,
float near,
float far);

This function specifies the parameters describing the window’s viewing frustum used for
the specified eyeWTEYE_LEFT or WTEYE_RIGHT). This function only works when a
window’s projection type has been set to eithdiPROJECTION_GENERAL or
WTPROJECTION_ORTHOGRAPHIC.

The near parameter defines the distance to the near (hither) clipping plané&rThe
parameter defines the distance to the far (yon) clipping plane. The parawpeterd/eft

are the distances along the X and Y axes in the viewpoint coordinate frame which define
the top-left corner of the view pyramid where it intersects the hither clipping plane. The
parametersottom andright are the distances along the X and Y axes in the viewpoint
coordinate frame which define the bottom-right corner of the view pyramid where it
intersects the hither clipping plane. For orthographic projections the viewing “pyramid” is
not a pyramid at all, but a box with all of its walls mutually perpendicular. The view
pyramid is shown in figure 17-1 on page 17-6.

17-16

WorldToolKit Reference Manual

Other Window-projection Functions

With this function, you can create windows that are not directly in front of the viewpoint,
depending on the left, right, bottom, and top coordinates. If left and right are positive, then
the window is off to the right. If bottom and top are both negative, then the window is below
the viewpoint.

To keep the viewpoint within the window boundaries, make left negative, right positive,
bottom negative, and top positive. For example, to create a window like the default WTK
window (with the viewpoint directly in the center) W&PROJECTION_GENERAL, make

left a negative numberight a positive number of the same magnitudéefsop a positive
number, andottom a negative number of the same magnitudie@as

When this function is called, the values specifiechtar andfar override the hither and
yon values of the window.

WTwindow_getparams

void WTwindow_getparams(
WTwindow *window,
FLAG eye,
float *left,
float *right,
float *bottom,
float *top,
float *near,
float *far);

This function obtains the current window parameters describing the viewing frustum for a
window with general or orthographic projection. The eye parameter can be either
WTEYE_LEFT or WTEYE_RIGHT. SeeWTwindow_setprojection on page 17-14.

Other Window-projection Functions

The functions described in this section &wrewindow class functions that had
corresponding functions in thgTviewpoint class in releases of WTK prior to Release 6 and
this current release. These functions have been moved tw@nh@dow class to give
greater flexibility in associating viewpoints and viewing parameters with windows.

WorldToolKit Reference Manual 17-17

Chapter 17: Windows

For backward compatibility, the correspondingviewpoint class functions will continue

to be supported, and applications created with WTK 2.1 should behave in exactly the same
way if recompiled using the current release. However, if you call one of the functions in
this section, it will override any calls to the correspondintyiewpoint function that you
previously made for the viewpoint associated with that window. In future development, it
is recommended that you use the functions in this section rather than the old corresponding
WTviewpoint functions.

The functions described in this section have no effect when the window projection type is

WTPROJECTION_GENERAL or WTPROJECTION_ORTHOGRAPHIC, because in those
cases all view frustum parameters are set Willwindow_setparams (see page 17-16).

WTwindow_sethithervalue

void WTwindow_sethithervalue(
WTwindow *window,
float val);

This function sets the distance of the window’s hither clip plane in front of the viewpoint.
The default hither clipping value is 1.0

The new value specified in tha/ argument must be greater than the floating point “fuzz”

value WTFUZZ (0.004) used by WTK, or the function will leave the hither clipping plane
as close to the viewpoint as it can.

WTwindow_gethithervalue

float WTwindow_gethithervalue(
WTwindow *window);

This function returns the window’s hither clipping value.

17-18

WorldToolKit Reference Manual

Other Window-projection Functions

WTwindow_setyonvalue

void WTwindow_setyonvalue(
WTwindow *window,
float val);

This function sets the window's yon clipping value. This is the distance in front of the
viewpoint beyond which the scene is not rendered in that window. For example, if you pass
in a value of 100.0 to this function, then those geometries or portions of geometries which
are beyond 100.0 distance units from the eye are not rendered.

The default yon clipping value is 65536.0.

WTwindow_getyonvalue

float WTwindow_getyonvalue(
WTwindow *window);

This function returns the window’s yon clipping value.

WTwindow_setviewangle

void WTwindow_setviewangle(
WTwindow *window,
float angle);

This functionsets the specified window’s horizontal view angle.The view angle is defined
as half the horizontal angular field of view (in radians). The angle specified must be
between 0.0 and P1/2.0 or the function has no effect. The default view angle (half the total
horizontal viewing angle) is 0.698131 radians (40 degrees).

When the horizontal view angle is set with this function, the vertical view angle is
automatically sets as well, based on the dimensions of the window.

WorldToolKit Reference Manual 17-19

Chapter 17: Windows

WTwindow_getviewangle

float WTwindow_getviewangle(
WTwindow *window);

This function returns the window’s view angle in radians. The view angle is half the
horizontal angular field of view.

Picking and Ray Casting

WTwindow_pickpoly

WTpoly *WTwindow_pickpoly(
WTwindow *window,
WTp2 point,

WTnodepath **nodepath,
WTp3 p);

This function obtains a pointer to the frontmost polygon at the specified 2D point in the
specified window. The 2[point argument is specified in window coordinates, not screen
coordinates, where (0.0, 0.0) represents the top-left corner of the window and the bottom-
right corner of the window is represented by (window width - 1, window height - 1). If the
specified point does not lie within the specified window, or if there is no polygon at that
coordinate, then NULL is returned.

The WTp3 value obtained is the 3D world coordinate point of the picked polygon which
projects to the specified 2D point.

This function also fills in the value of th¢Tnodepath pointer, indicating the node path to
which the selected polygon belongs. The node path returned begins at the root node of the
specified window. If the polygon selected is im@geometry node which is referenced

more than once in the scene graph, it may be useful to know for which occurrence of the
WTgeometry node the polygon was selected. You are allowed to pass in NULL for the
nodepath argument. If you do pass in NULL, then the function does not provide the
WTnodepath pointer information to you and does not creat#®&Taodepath for you. If a
WTnodepath is created, you are responsible for deleting thimodepath, when you no

longer need it. To do so, caMlTnodepath_delete.

17-20

WorldToolKit Reference Manual

Picking and Ray Casting

The following example shows how to pick the frontmost polygon in the center of a window.

WTpoly *pick_center_poly(WTwindow *w)
{

int width, height, x0, y0;

WTpoly *pickedpoly;

WTp2 point;

WTp3 p;

WTwindow_getposition(w, &x0, &y0, &width, &height);
point[X] = width/2.0;
point[Y] = height/2.0;

pickedpoly = WTwindow_pickpoly(w, point, NULL, p);
return pickedpoly;

WTwindow_getray

FLAG WTwindow_getray(
WTwindow *window,
WTp2 point,

WTp3 rayorigin,
WTp3 ray);

This function determines the ray that emanates from the view position (where the scene in
that window is rendered), which passes through the specified point. Foith&rgument,

the point (0.0, 0.0) corresponds to the upper-left corner of the window. This ray is
normalized (that is, has a length equal to 1.0) and is in world coordinates; it is placed in the
parameteray by this function. The view position is placedréyorigin by this function.

WTwindow_projectpoint

FLAG WTwindow_projectpoint(
WTwindow *window,
int eye,
WTp3 pos,
WTp2 point);

WorldToolKit Reference Manual 17-21

Chapter 17: Windows

This function computes the 2D screen point relative to the window position where a 3D
world coordinate projects. If the 3D point projects to a 2D screen point that is outside of the
window, this function still returns the 2D point relative to the window but it will also return
FALSE.

If the specified window is a stereo window, then the eye parameter identifies whether the
projection is computed from the lef{TEYE_LEFT) eye of the window’s viewpoint or the
right WTEYE_RIGHT) eye. For non-stereo windows, the eye parameter is ignored.

Window-rendering Properties

WTwindow_setbgrgb

void WTwindow_setbgrgb(
WTwindow *window,
unsigned charr,
unsigned char g,
unsigned char b);

This function sets the 24-bit background color for the specified window. Valid values for
r, g, andb are 0 to 255. The default value is blue (rgb = 0, 0, 255).

The following example sets the background color of the first window created by the WTK
application to yellow:

WTwindow_setbgrgb(WTuniverse_getwindows(), 255, 255, 0);

WTwindow_getbgrgb

void WTwindow_getbgrgh(
WTwindow *window,
unsigned char *r,
unsigned char *g,
unsigned char *b);

This function obtains the background color of the specified window.

17-22

WorldToolKit Reference Manual

Window-rendering Properties

WTwindow_setdrawfn

void WTwindow_setdrawfn(
WTwindow *window,
void (*drawfn)(WTwindow *win, FLAG eye));

This function specifies a function containing calls to 3D drawing routine88gawing
on page 19-8 in thBrawing Functionshapter). For example, you could use this function
to incorporate a 3D grid, or other objects, into the simulation.

Your user-defined 3D drawing functiahawfn is invoked by WTK during the simulation
loop. If the specified window is a stereo window tleawfn will be invoked twice, once
for each eye. In this case the eye parameter that WTK passes/fowill be
WTEYE_RIGHT and thenWTEYE_LEFT. If the specified window is not a stereo window
then WTK will pass inWTEYE_LEFT as the eye parameter.

Beforedrawfn is called within the WTK simulation loop, a copy of the current view matrix

is pushed on top of the model view stack, so that your drawing elements can be drawn from
this viewpoint if desired. Don’t forget that the WTK coordinate convention differs from the
OpenGL convention. (The WTK convention has X pointing to the right, Y pointing down,
and Z pointing straight ahead. WTK coordinates are obtained by simply negating Y and Z
OpenGL coordinate values.)

The current view matrix in WTK incorporates the transformation from OpenGL to WTK
coordinates. So, if youtrawfn uses the current view matrix, you must specify your drawing
coordinates such as values passed into the OpenGL fugfitmrex using the WTK
coordinate convention.

If using OpenGL drawing routines in tleawfn function, you must pop all matrices, and
only those matrices, that you pushed onto the stack.

Note that no WTK function calls (other than math library calwindow_set3D...,
WTwindow_draw3D..., or WTwindow_loadimage) may be used in the user-defined draw
function, drawfn.

It is recommended that you not use this function because 3D drawing calls made in the user-
specifieddrawfn are platform specific and hence make your application non-portable.

WorldToolKit Reference Manual 17-23

Chapter 17: Windows

WTwindow_setfgactions

void WTwindow_setfgactions(
WTwindow *window,
void (*fgdrawfn)(WTwindow* win,
FLAG eye));

This function specifies a function containing calls to 2D drawing routines (drawn in the
foreground). (Se@D Drawingon page 19-1 in thBrawing Functionschapter.) The

drawing routines are incorporated as an overlay onto the WTK scene. WTK handles the
overlaying of the drawing elements onto the WTK scene; you do not have to manage this
yourself. WTK does not actually draw into overlay bitplanes. Instead it uses the normal
draw bitplanes, so that you can use the full image depth of the normal draw buffer. For
example, you could use this function to create a “heads-up display” including text or other
2D graphical entities.

Your user-defined 2D drawing functidgdrawfn is invoked by WTK during the simulation
loop. If the specified window is a stereo window, thgirawfn is invoked twice, once for
each eye; the eye parameter that WTK passigitavfn will first be WTEYE_RIGHT and
thenWTEYE_LEFT. If the specified window is not a stereo window then WTK passes in
WTEYE_LEFT as the eye parameter.

Before the functiorfgdrawfn is called, the matrix stack is initialized so that all the 2D
functions use a normalized window coordinate system. A value of:

0.0 for X Specifies the left edge of the window

1.0 for X Specifies the right edge of the window
0.0 forY Specifies the bottom edge of the window
1.0forY Specifies the top edge of the window

Note: This coordinate convention is unique within WTK.

If using OpenGL drawing routines in the functigarawfn, you must pop all matrices and
only those matrices that you push onto the stack.

Note that no WTK function calls (other than math library calswindow_set2D...,
WTwindow_draw2D..., or WTwindow _loadimage) may be used in the user-defined draw
function, fgdrawfn. In fact, theWwTwindow_set2D... andWTwindow_draw2D... functions
can only be called from thigdrawfn specified inWTwindow_setfgactions.

17-24 WorldToolKit Reference Manual

Window-rendering Properties

It is recommended that you do not use this function because 2D drawing calls made in the
user-specifiedirawfn are platform specific and hence make your application non-portable.

WTwindow_numpolys

int WTwindow_numpolys(
WTwindow *window);

This function returns the number of polygons sent to the graphics pipeline associated with
the specified window.

WTwindow_loadimage

FLAG WTwindow_loadimage(
WTwindow *window,
char *filename,
float zval,

FLAG swapbuf,
FLAG bitmapdel);

This function loads an image (bitmap) file to the specified window so that it fills the
window. This function can be called from the universe action function, or from a user-
specified draw function (se&Twindow_setdrawfn andWTwindow_setfgactions above).

This function draws the image at deptla/ in a view frustum for which depth values are
scaled to lie between z =-0.999 and z = 1.0. To create a texture backdrop for your WTK
scene, callWTwindow_loadimage from a user-defined draw function specifying/ = -

0.999. If you want the image to be placed on top of the WTK scene, you must call
WTwindow _loadimage with zval = 1.0.

The parameteswapbuf (either TRUE or FALSE) is used to specify whether the image
buffer should be swapped immediately after the image is drawrlfndow _loadimage

is called from an action function, then this value should be TRUE, so that the image is
displayed immediately. (In this case, you will probably want to put in a delay after calling
WTwindow_loadimage so that the image is visible for a specified time.) If
WTwindow_loadimage is called from a user-defined draw function, then you should pass in
FALSE for swapbuf, so that the image can be incorporated into the WTK scene.

WorldToolKit Reference Manual 17-25

Chapter 17: Windows

The value obitmapdel specifies whether you want the bitmap that is created when the
image is loaded to be deleted after the caWwindow _loadimage. If you will only be
displaying this bitmap once, and not using it as a surface texture, then you should call
WTwindow _loadimage with bitmapdel set to TRUE. However, if this bitmap will be reused
in your program, you should callTwindow _loadimage with bitmapdel set to FALSE,
which saves time when it is reused.

It returns TRUE if it successfully loads and draw the image in the window. It returns
FALSE if the specified pointer is not a valid window pointer, or if the bitmap specified by
filename could not be loaded.

WTwindow_saveimage

FLAG WTwindow_saveimage(
WTwindow *window,
int X,
inty,
int width,
int height,
char *filename);

Use this function to save a part or all of the display in a WTK window into a file. The
argumenwindow is a pointer to the WTK window. (S&®&Tuniverse_getwindows on page
2-13 to get a pointer to your WTK window.) The image is saved in the TARGA (.tga)
format. The last argumenflename is your name for the image file.

The arguments, y, width andheight, determine what area of the display you want captured.

x =0 andy = 0 corresponds to the lower left corner of the window. Wiugh andheight
arguments indicate the extents in the X and Y axes respectively, that is, the extents over
which the image will be saved. The lower-left corner of the captured part will have the
window-coordinates, y and the upper-right corner of the captured part will have the
window-coordinates + width, y + height. For example, if you need to capture your entire
window:

WTwindow_saveimage(w, 0, 0, width, height, “file.tga”);
wherewidth andheight are determined with the following call:

WTwindow_getposition(w, &xpos, &ypos, &width, &height);

17-26

WorldToolKit Reference Manual

Window Name

Note that the second and third parameters intheindow_saveimage call are 0 (zero),
indicating that you want to capture from the lower left corner of the window. This function
only works if your system is set to true color (24 bit) mode. It will not work in 16 bit or 8
bit mode. See alsw/Twindow_getimage.

WTwindow_getimage

See page 10-33 for a descriptionsfwindow_getimage.

Window Name

WTwindow_setname

void WTwindow_setname(
WTwindow *win,
const char *name);

This function sets the name of the specified window. All windows have a name; by default,
a window’s name is *” (i.e., a NULL string).

WTwindow_getname

const char *WTwindow_getname(
WTwindow *win);

This function returns the name of the specified window.

WorldToolKit Reference Manual 17-27

Chapter 17: Windows

User-specifiable Window Data

WTwindow_setdata

void WTwindow_setdata(
WTwindow *window,
void *data);

This function sets the user-defined data field for the specified window. Private application
data can be stored in any structure. To store a pointer to this structure within the window,
pass in a pointer to the structure, cast toia*, as thedata argument.

The following example stores a pointer to a WTK graphical object in the window’s user-
defined data field:

WTnode *geo;
WTwindow *window;
WTwindow_setdata(window, (void *) geo);

WTwindow_getdata

void *WTwindow_getdata(
WTwindow *window);

This function retrieves a pointer to the user-defined data stored within a window. Cast the
value returned by this function to the same type that was used to store the data in the
window with WTwindow_setdata (see above)

In the following example, the user-defined data field set in the example under
WTwindow _setdata is retrieved.

WTnode *geo;
WTwindow *window;

[* retrieve pointer to the geometry node that was associated with the window */
geo = (WTnode *) WTwindow_getdata(window);

17-28

WorldToolKit Reference Manual

System-specific Window ID

System-specific Window ID

WTwindow_getidx

WTwinidtype WTwindow_getidx(
WTwindow *window);

This function returns the system-specific window ID for the specified window. The return
value's type is host-system specific:

UNIX platforms The return type is Widget (i.e., an XID)
Windows platforms The return type is HWND.

See alsdWTuniverse_getwindows on page 2-13 and/Tuniverse_getcurrwindow on page
2-14.

WTwindow_getwidget

Widget WTwindow_getwidget(
WTwindow *wy);

This function gets the X Widget that corresponds to a WTK wincaow,
If wis invalid, that is if the pointer is not recognized to be a valid WTK window, NULL is
returned. (Available only on UNIX systems.)

This is a very useful function when you need to make Xt calls that require WTK's pointer
to the X11 Display. (Display = XtDisplay(Widget);)

SeeOn UNIX Platforms, How Do | Get A Pointer To The Display That WTK Is Using?
page A-38 for an example of how to use this function.

WorldToolKit Reference Manual 17-29

Chapter 17: Windows

Viewports

Every WorldToolKit window contains, by default, a single viewport which covers the
entire area of the window and wherein the scene is rendered. Additional viewports can be
created for each WTK window so that multiple views of one or more scenes can be
rendered inside a single WTK window.

There are two advantages to creating and using multiple viewports in a single window
instead of creating and using multiple windows. The first advantage is that performance is
improved when using multiple viewports in a WTK window instead of using multiple
(single viewport) WTK windows. The reason for this is that the rendering buffers are
cleared and swapped only once for the single window, rather than having to clear and swap
for several windows. The second advantage is that the rendering of each viewport is frame
synchronized, i.e. all viewports are rendered on the screen at the same time in a given
frame. In contrast, using multiple windows means that WTK must process and render the
geometry associated with the first WTK window before it can process and render the
geometry associated with succeeding WTK windows and if your application’s frame rate
is low, there will be a discernable time lag between the updates of each window within one
frame.

It is also possible to create a rear-view mirror effect by using multiple viewports in a
window. Refer to the Rv_mirror.c example program in the examples sub-directory of the
WTK distribution for an example of how viewports can be used to achieve a rear-view
mirror effect.

Applications which do not require multiple viewports within a window, can ignore the
concept of a viewport entirely, because viewports are not directly exposed like other WTK
objects such ag/Twindow, WTnode, etc. There are no objects such &gTaiewport object
because the viewport concept is embedded inteVtheindow type. By embedding

viewports into thewTwindow type, all of the functionality pertaining to viewports can be
accessed via three functioTwindow_setviewport, WTwindow_getviewport, and
WTwindow_newviewport. The WTwindow_setviewport function is used to position and size

a window’s default viewport/Twindow_newviewport