
WORLDTOOLKIT®

REFERENCE MANUAL

RELEASE 9

ENGINEERING ANIMATION, INC.
SENSE8® PRODUCT LINE

100 Shoreline Highway, Suite 282
Mill Valley, CA 94941

d, or

d

ve
This Reference Manual copyright  1991 - 1999 by Engineering Animation, Inc. All
rights reserved. No part of it may be copied, photocopied, reproduced, translate
reduced to any electronic medium or machine-readable form without prior written
consent of Engineering Animation, Inc.

SENSE8, WorldToolKit, and World Up are registered trademarks of Engineering
Animation, Inc. World2World is a trademark of Engineering Animation, Inc. Soun
technology provided by DiamondWare, Ltd. Portions Copyright 1994-1999
DiamondWare, Ltd. All rights reserved. Other brand and product names are
trademarks or registered trademarks of their respective holders.

WorldToolKit is based in part on the work of the Independent JPEG Group.

Current version: April 1999

ENGINEERING ANIMATION, INC.

SENSE8 Product Line

100 Shoreline Highway, Suite 282

Mill Valley, CA 94941 USA

Telephone: 415/339-3200

Facsimile: 415/339-3201

Web site: www.sense8.com

Acknowledgements to the WorldToolKit team: Leon Franzen, Hans Kessock, Da
Hinkle, Sumanth Ravulakollu and Mukund Bhakta.

This book was printed in the United States of America.

Contents in Brief

Introduction to WorldToolKit .. 1-1
The Universe ... 2-1
Object/Property/Event Architecture ... 3-1
Scene Graphs .. 4-1
Movable Nodes .. 5-1
Geometries .. 6-1
Polygons .. 7-1
Materials .. 8-1
3D Text .. 9-1
Textures ... 10-1
Tasks ... 11-1
Lights ... 12-1
Sensors ... 13-1
Paths ... 14-1
Motion Links .. 15-1
Viewpoints ... 16-1
Windows .. 17-1
Adding User Interface (UI) Objects .. 18-1
Drawing Functions ... 19-1
Sound .. 20-1
Client-Server Networking
(Via the World2World Servers) .. 21-1
Multicast Networking ... 22-1
Serial Ports .. 23-1
Portability ... 24-1
Math Library ... 25-1
C++ Programming ... 26-1
Frequently Asked Questions ... A-1
Environment Variables .. B-1
Defined Constants ... C-1
Error Messages and Warnings .. D-1
Writing a Sensor Driver ... E-1
WTK Neutral File Format... F-1
Transitioning From
Version 2.1 To Release 6/7/8/9 .. G-1
i

Transitioning From Release 6 To Release 7/8/9......................... H-1
Third-party Software... I-1
Sources of Components... J-1
The WTK Users’ Group... K-1
Technical Support ... L-1
Glossary ... M-1
ii WorldToolKit Reference Manual

... 1-1

.. 1-1
... 1-2
.. 1-2
.. 1-3
.. 1-4
.. 1-5
.1-7
.1-11
1-12

..1-12
1-12
-13

1-14
.1-15
.1-15
.1-16
..1-16
1-17
1-17
.1-17
1-18
..1-18
1-19
.1-19
.1-19

... 2-1

... 2-1
... 2-5
2-11
.2-12
Contents

1: Introduction to WorldToolKit ... 1-1
Welcome ..
What is WTK? ..

Scene Graph Architecture ...
What WTK Does ...
Overview of the WTK Classes ..
Naming Conventions ...
Additional Features ..
WTK Documentation ...
Special Interest Group ..
Basic System Configuration ..
Input Sensors Supported ..
Extending a System for Virtual Reality ...

A Sample WTK Application ... 1
Important WTK Functions ..

Universe ..
Geometry ..
Polygon ...
Sensor ..
Light ...
Viewpoint ..
Path ...
Window ...
Scene Graph ...
Drawing ...
User Interface ...
Sound ..

2: The Universe .. 2-1
Introduction ..
Universe Construction and Destruction ...
Simulation Management ..

The Universe Action Function ..
The Universe’s Objects ..
 iii

..2-18

.2-18

.2-20
.2-22
.2-24
..2-28
.2-29
.2-29
.2-30
-32
2-34

.2-34
2-35

.2-36

..3-1
....3-2
...3-3
..3-4
..3-4
...3-5
...3-6
....3-7
...3-7
3-10
..3-14
..3-23
.3-27

...4-2
....4-2
...4-2
..4-3
....4-3
...4-4
....4-5
...4-5
...4-6
...4-8
..4-9
Global Rendering Parameters ...
Rendering Options ..
Other Global Functions ...

Performance and Timer Functions ...
Universe Options ...
Resource Files ...

The Resource Hierarchy ...
Choosing an Appropriate Resource File ...
WTK Parameters Specified in a Resource File ..
Telling WTK to Use Resource Information ..2

Modes of Stereoscopic Viewing ...
Field Sequential Mode ..
Over/Under Mode ..
Interlaced Mode ..

3: Object/Property/Event Architecture .. 3-1
Overview ...
Supported Types and Supplied Properties ..

WTnode Properties ...
WTviewpoint Properties ..
WTwindow Properties ...
WTsensor Properties ...
WTpath Properties ..

WTbase Objects and Functions ..
WTbase Functions for WTbase Objects ...
WTbase Functions for the Supported WTK Object Types

Properties ..
Events ..
Time ...

4: Scene Graphs .. 4-1
Introduction ..

The Scene ...
Elements Of A Scene ..
The Viewpoint ...
The Scene Graph ..
Why WTK Uses the Scene Graph Structure ...

Scene Graph Concepts in Detail ...
The Node ..
The Scene Graph Hierarchy ..
Viewing your Scene Graph ...
How WTK Draws the Scene Graph ...
iv WorldToolKit Reference Manual

-15
.4-17
.4-21
.4-25
.4-29
..4-29

.4-30
.4-39
.4-39
4-43
.4-44
4-45
.4-45
.4-45
..4-48
.4-48
.4-51
4-55
.4-56
4-57
4-58

4-62
.4-63
4-63
.4-64
4-67
4-72
.4-74
4-76
.4-76
..4-78
.4-79
..4-79
.4-85
4-91
.4-92

... 5-1
.. 5-1
... 5-3
Why the Ordering of Children is Important .. 4
State Accumulation and State Propagation ..
State Encapsulation ...
Other Node Types ...

Building a Scene Graph ...
How to Create the Scene Graph Tree ..
Building a Composite Object in the Scene –
Composite Transformations ...

WTK Scene Graph Functions ..
Constructing Node Types ...
Constructing Light Nodes ..
Constructing Geometry Nodes ...
Constructing Movable Nodes ..
Constructing Fog Nodes ...
Loading a File into a Scene Graph ...
Saving a Scene Graph ..
Node Property Functions ..
Geometrical Property Functions ...
LOD Node Functions ...
Separator Node Functions ..
Switch Node Functions ..
Transform Node Functions ..
URL for Anchor and Inline Nodes ..
Anchor Node Functions ..
Inline Node Functions ...
Fog Node Functions ..
Open GL Callback Node Functions ...
Bounding Boxes ..
Scene Graph Assembly ...
Utility Functions ..
Scene Graph Structure Inquiry ...
Scene Graph Traversal ...

Additional Topics Related to the Scene Graph ..
Node Paths ...
Intersection Testing ..
Picking Polygons ...
Sensor Attachment ..

5: Movable Nodes ... 5-1
Introduction ..

What Makes Up a Movable Node? ..
Movable Node Creation Functions ..
 v

..5-3
..5-4
..5-6
..5-7
...5-9
.5-13

..6-1
...6-2
..6-2
6-4
6-4
...6-5
..6-5
..6-7
6-7
...6-8
..6-9
.6-10
.6-12
.6-13
..6-14
.6-21
.6-26
..6-28
.6-30
.6-32
6-37
6-39
6-41
6-42

..7-1

..7-2
..7-6
...7-7
...7-8
...7-8
.7-10
.7-12
Geometry and Light Movable Node Creation ...
Group Movable Node Creation ...
Movable Nodes Compared to ‘Regular’ Nodes ...

Movable Node Position and Orientation ...
Movable Node Hierarchies ..
Movable Node Instancing ..

6: Geometries ... 6-1
Introduction ...
Modeling Considerations ...

File Formats Supported by WTK ..
WTK VRML 1.0 Limitations ..
Exporting a File in the VRML Format ..
Notes on the Autodesk 3DStudio Mesh reader ...
Notes on the MultiGen OpenFlight File Reader ..
Subfaces in MultiGen/ModelGen ..
Constructing a World with Multiple Objects ...
Vertex Normals and Gouraud Shading ...
Vertex Colors and Radiosity ..
Back Face Rejection ...
Overlapping Polygons ..
Roundoff and Scaling ...

Creating Predefined Geometries ...
Creating Custom Geometries ...
Other Geometry Functions ...
Geometry Properties ...
Materials used with Geometries ...
Geometry Polygons and Vertices ...
Geometry Modification ...
Geometry Optimization ..

Creating Reflection Mapped Optimized Geometries
Vertex-level Geometry Editing ...

7: Polygons ... 7-1
Introduction ...
Polygon Attributes ..

Polygon ID’s ..
Geometry that Contains a Polygon ...

Polygon Access ..
Vertex Access ..
Dynamic Polygon Creation ..
Deleting Polygons ..
vi WorldToolKit Reference Manual

. 7-13

..8-1
.. 8-1
.. 8-3
8-5
... 8-5
.. 8-7
-10
8-14
.8-17
-17
8-18
8-18
8-19

8-19

.9-1
.. 9-5

.10-2
.10-3
10-4
0-5

.10-7
10-8

.. 10-8
-13
0-18
0-22
0-23

10-23
0-24

0-25
0-27
0-27
-32

10-33
Polygon Intersection Testing ...

8: Materials ... 8-1
Introduction ...
Material Properties ..
Calculations Made to Determine Color ..

About “In” and “Out” Vectors ...
Using Material Tables ..
Material Table Functions ..

Example: Adding Shininess to a Multi-colored Geometry 8
Material Table Entry Functions ...

Advanced Topics ...
How WTK Deals With Out-Of-Range Indices .. 8
Using Material Index Table Entries ...
Using Materials Tables With Geometries ...
Notes on Specific File Formats ...
OpenGL Compatibility ..

9: 3D Text ... 9-1
Creating Three-dimensional Text in WTK ..
NFF 3D Font Files ..

10: Textures .. 10-1
Introduction ..

Supported Texture File Formats ...
Applying Textures ..

How WTK Applies a Texture to a Polygon .. 1
Texture Size ..
Texture Naming Conventions ..
Transparent Textures ...
Applying Textures with Explicit uv Values ..10
Animating Textures ...1
Assigning Textures in 3D File Formats ...1
Deleting Textures ..1

Changing Texture Properties ..
FilteringTextures ...1

Setting the Default Texture Filter ..1
Manipulating Textures ..1

Texture Rotation, Scaling, and Other Operations1
Manipulating Texture uv Values Directly ...10

Screen Loading ...
 vii

11-1
.11-2
.11-5

.12-1
12-1
12-2
12-3
12-3
.12-4
12-4
.12-4
.12-5
2-12

..13-2
..13-5
..13-5
.13-11
13-16
3-19
3-21
3-22
13-23
13-23
13-24
13-26
3-39
-44

13-51
3-53

13-55
13-59
-63

13-67
3-67
-67
-67

13-68
11: Tasks .. 11-1
Introduction ...
Creation and Deletion Functions ...
Other WTtask Functions ..

12: Lights .. 12-1
Introduction ..

Light Nodes ...
Light Node Attributes ..
Calculating Color ...
Determining Intensity ..
Creating Shadows ...
Using Light Files ...
Performance ..

Constructing Light Nodes ..
Light Properties ...1

13: Sensors .. 13-1
Introduction to the Sensor Class ...
Sensor Lag and Frame-rate ...
Sensor Construction and Destruction ..
Accessing Sensor State ..
Rotating Sensor Input ...

Geometry Motion Reference Frames ...1
Constraining Sensor Input ...1

Using Different Baud Rates ..1
Sensor Name ...
User-specifiable Sensor Data ..
Custom Sensor Drivers ...
The Mouse ..
Ascension Bird ..1
Streaming-Mode Flock of Birds Driver ..13
Ascension Extended Range Bird ..
CIS Graphics Geometry Ball, Jr. ..1
Fakespace BOOM Devices ...
Fakespace Pinch Glove System ..
Fifth Dimension Technologies’ 5DT Glove ...13
Gameport Joystick ..

Limitations ...1
Installing the joystick driver under NT ..13
Configuring and calibrating the joystick ...13
Creating a Gameport Joystick Sensor Object ..
viii WorldToolKit Reference Manual

3-73
3-77
3-81
3-85
3-88
3-90
3-92
3-96
3-100
3-104
3-108
-111
-113
19
-121
-123
-124
-126
-127
130
-130
-132
-134
-135

14-1
.14-2
.14-4
.. 14-8
14-11
4-12

14-13
14-24
14-24
4-27

14-29
14-29

15-1
15-1
Logitech 3D Mouse (Red Baron) ..1
Logitech Head Tracker ...1
Logitech Space Control Mouse (Magellan) ..1
Polhemus ISOTRAK ..1
Polhemus ISOTRAK II ...1
Polhemus InsideTRAK ...1
Polhemus FASTRAK ...1
Precision Navigation Wayfinder-VR ..1
Spacetec IMC Spaceball ...1
Spacetec IMC Spaceball SpaceController ..1
StereoGraphics CrystalEyes and CrystalEyesVR LCD Shutter Glasses ..1
ThrustMaster Formula T2 Steering Console ..13
ThrustMaster Serial Joystick ..13
VictorMaxx Technologies’ CyberMaxx2 HMD13-1
Virtual i-O i-glasses! ...13
Virtual Technologies CyberGlove ..13

Initializing the CyberGlove ...13
Calibrating the CyberGlove ...13
Creating a Graphical Hand Model for CyberGlove13
Setting the Visibility of the Hand Model ...13-
Accessing Hand Model Objects ..13
Accessing the CyberGlove Bend Angle Data ..13
Defined Constants for the CyberGlove Hand Model13
For Windows NT Users: ..13

14: Paths .. 14-1
Introduction ...
Path Construction and Destruction ..

Functions ..
Path Management ...
Loading and Saving Paths ...

Path File Format ..1
Recording and Playback ...
Path Element Management ...

The WTpathelement Class ...
Path Editing ...1
Path Name ...
User-specifiable Path Data ..

15: Motion Links ... 15-1
Introduction ...

Motion Link Sources and Targets ...
 ix

..15-2

.15-3
15-3
15-9

16-1
16-3
16-6
16-8
16-14
6-18
6-19
6-24
6-25
6-25
6-26

17-1
17-2
17-8
17-8
17-10
7-11
-13
7-14
7-17
17-20
7-22
7-27
7-28
7-29
7-30

18-2
18-13
18-13
8-13
18-15
8-15
Reference Frames ..
Constraints ..

Motion Link Functions ...
Constraints on Motion links ...

16: Viewpoints .. 16-1
Introduction ...
Basic Viewpoint Management ..
Linking a Sensor to a Viewpoint ..
Accessing Viewpoint Position and Orientation ..
Using a Specified Reference Frame ..
Viewpoint Aspect Ratio ..1
Stereo Viewing ..1
Coordinate Transformations ...1
Viewpoint Name ...1
User-specifiable Viewpoint Data ..1
Viewpoint Intersection Test ..1

17: Windows ... 17-1
Introduction ...
Window Construction and Destruction ...

Accessing Universe’s Windows ..
Associating Scene Graphs with Windows ...

Window Size and Placement ..
Windows and Viewpoints ...1

Zooming the Window Viewpoint ..17
Window-projection Functions ..1
Other Window-projection Functions ..1
Picking and Ray Casting ...
Window-rendering Properties ...1
Window Name ..1
User-specifiable Window Data ...1
System-specific Window ID ...1
Viewports ..1

18: Adding User Interface (UI) Objects 18-1
Creating a UI Application ...
User Interface Objects ...

Forms ...
File-selection Boxes ...1
Message Boxes ..
Text-input Dialogs ...1
x WorldToolKit Reference Manual

18-16
18-17
18-18
18-18
18-19
8-21
8-23
8-24
8-24
8-28
-29

18-29
8-29
8-31
8-32
8-32
8-33
8-34
8-35
8-36
37
37
8-40

19-1
19-1
19-1
19-8
19-8

20-1
.20-1
20-3
.20-7
20-9
0-10
0-17
Checkbuttons ...
Labels ...
Pushbuttons ..
Radioboxes ..
Scales ...
Scrolled Lists ...1
Scrolled Text ..1
Text Fields ...1
Menus ..1
Tool Bars ...1

User Interface Object’s Utility Functions ...18
Accessing the Scale Factors ..
Accessing the Text for Text UI Objects ..1
Accessing the Position of a Selection (Scrolled Lists and Radioboxes) .1
Accessing the Number of Items (Scrolled Lists and Radioboxes)1
Accessing Text of Scrolled List Items ...1
Inserting or Deleting Items (Scrolled Lists) ..1
Accessing Status of UI Objects ...1
Accessing State of UI Objects (Menu Items and Checkbuttons)1
Accessing the Position of UI objects ...1
Extending The UI Functionality of Your Application18-
Controlling the WorldToolKit Simulation Loop18-
Miscellaneous Functions ...1

19: Drawing Functions .. 19-1
User-defined Drawing Functions ..
2D Drawing ...

Pre-defined 2D Drawing Functions ...
3D Drawing ...

Pre-defined 3D Drawing Functions ...

20: Sound ... 20-1
Introduction ...

Supported Devices ..
Device-level Functionality ..
CRE Device Parameters ...
Device-level Spatializing Functions ..
Sound-level Functionality ..2
Sound-level Spatializing Functions ...2

21: Client-Server Networking
(Via the World2World Servers) .. 21-1
 xi

.21-1
..21-2
.21-3
..21-3
..21-3
.21-4
21-5
.21-5
21-11
21-12
21-13
21-14
21-15
1-22

21-22
21-23
1-23
1-26

21-34
1-34
-38

2-1
22-2
22-3
2-3

22-4
..22-4
22-4
.22-5
..22-5
.22-6
.22-7

.23-1

.23-1
23-3
.23-4
.23-5
Introduction ..
Sharing Properties ...

Locked Properties ...
Persistent Properties ...
Update Frequencies ...
Time Sensitive Properties ...
WTbase – Working with Unsupported Object Types
Property Sharing Functions ..

Sharegroups ...
Locked Sharegroups ..
Registered Interest ...
Persistent Sharegroups ...
Sharegroup Functions ..

Network Connections ..2
Synchronous and Asynchronous Connections ...
Update Rates ..
Connection Callbacks ..2
Connection Functions ..2

Enumeration ..
Example of an Enumeration Tree ..2

WorldToolKit and World Up Compatible Properties21

22: Multicast Networking .. 22-1
Introduction to Networking in WTK ..2
How the Transport Layer Works ..
How the Protocol Layer Works ..
How the WorldToolKit Layer Works ...2
How the Application Layer Works ...
Sample Transaction ...

Local Machine ...
Remote Machines ...

Message Latency ...
Byte Ordering ...
Network Functions ...

23: Serial Ports ... 23-1
Introduction to the Serial Port Class ..
Serial Port Construction and Destruction ..
Reading and Writing to a Serial Port Object ..
User-specifiable Serial Data ..
Platform Specific Functions ...
xii WorldToolKit Reference Manual

24-1
.24-1
24-4

... 24-5

.24-8
24-9

25-1
25-2
25-4
25-5
25-12
5-19
5-21
5-22
25-25
5-33
5-34

26-1
.26-2
.. 26-4
26-5
6-5
.. 26-6
26-33
26-39
6-45

.. A-1
d?

. A-4
-5
-
.. A-6
.. A-8
-10
24: Portability .. 24-1
Providing for Portability ...

Reading the Keyboard ..
Reading File Directories ..

Messages and Errors ..
Waiting ...
Memory Allocation ...

25: Math Library .. 25-1
Introduction ...
WTK Math Conventions ...
WTp2: 2D Vectors ..
WTp3: 3D Vectors ..
WTq: Quaternions ...
WTpq: Coordinate Frame Structure ...2
WTm3: 3D Matrices ...2
WTm4: 4D Matrices ...2
Conversion Functions ...
Floating-point Comparisons ...2
Reference-frame Math Utilities ..2

26: C++ Programming .. 26-1
Introduction ...
Class Diagrams ..
Classes and their Methods ..

Prototypes for Global functions ...
World2World Client C++ Applications .. 2
WtBase Classes ..
Stand-alone Classes ...
Math Classes ..
Defines ...2

Appendix A: Frequently Asked QuestionsA-1
Introduction ..
What Is The Difference Between WTnode_load And WTgeometrynode_loa
A-3
What Is The Difference Between WTmovnode_load and WTnode_load? ..
How Do I Display Multiple Instances Of An Object? A
How Do I Pick The Frontmost Polygon At A Specific Point In A Specific Win
dow? ...
Can WTK Detect Keyboard Events? ...
How Can I Detect Button Events Using the “Misc Data” Functions? A
 xiii

-11
A-12
-13
-

.A-13

.A-13
A-14
.A-14
A-15
-15
16
16
-19
-20
-21
A-22
? .

? .

-25
-26
-29
-31

.A-33
A-34

.A-35
A-36

36
A-37
-38

s-
.A-38
ter
.A-39

. B-1
B-2
How Do I Use Material Tables for Colors? ...A
How Do I Get Transparencies In A Texture? ..
How Do I Dynamically Change The Appearance Of A Geometry?A
How Do I Create Special Effects: Clouds, Missile Trails, Exhaust and Explo
sions ..

Gas Clouds ...
Missile plumes ..
Spaceship exhaust ..
Explosions ...

How Do I Load Lights As Movables? ...A
How Do I Make An Object Follow A Light? ..A-
How Do I Make An Object Follow The Viewpoint?A-
How Do I Recursively “Walk” Down The Scene Graph?A
How Do I Get A Pointer To A Node Using Its Name?A
How Do I Associate A Task With a Particular Object?A
How Do I Handle Portals In This Release? ...
How Do I Test For Intersections Between The Viewpoint And The Universe
A-24
How Do I Test For Objects Intersecting With Other Objects In The Universe
A-25
How Do I Get The Rendered Position Of An Object?A
How Do I Create A Simple Animation Using Switch Nodes?A
How Can I Optimize Performance Using LOD Nodes?A
What Is Terrain Following? ...A
How Do I Keep An Object Perpendicular To The Viewpoint Direction At All
Times? ...
How Do I Change The Event Order? ...
How Do I Integrate A WTK Rendering Window With A Host-Specific Win-
dow? ..
Orienting Sensors Differently ..

How Do I Use Orientation-Tracking Sensors (On A Head-Mount-Display)
That Are Not Positioned Along The Central Axis Of The HMD?A-
Example Code ...

How Do I Measure Performance On My Machine?A
On UNIX Platforms, How Do I Get A Pointer To The Display That WTK Is U
ing? ..
How do I use Boston Dynamic's DiGuy with WTK (or any other BDI charac
set)? ...

Appendix B: Environment Variables .. B-1
WTKCODES ...
WTIMAGES ...
xiv WorldToolKit Reference Manual

B-2
B-3
B-3
-4
B-4
B-4
-5

B-5
. B-5
B-6
-6

. B-6
B-7
B-8

.. C-1
.. C-2
.. C-2
... C-3
.. C-3
.. C-3
... C-4
.. C-4
. C-5
.. C-5
.. C-6
... C-6
. C-7
.. C-7
.. C-9
... C-9
C-10
C-10

. C-11
C-17

. C-18
C-19
C-20

. C-20
C-21
C-21
WTMODELS ..
WTKZBUFFERSIZE ...
WTKALPHATEST ..
WTKMAXTEXSIZE .. B
WTKSQRTEX ..
WTKPROXY ..
WTKALPHAENABLE .. B
WTBIRDDELAY ...
WTKLS ...
WTKNOSTEREO ..
WTKMULTISAMPLE ... B
WTKCPU ..
WTKDISPLAY ..
WTKSHMEM ..

Appendix C: Defined Constants ..C-1
Constraint Constants ...
Display Constants ...
Drawing Constants ...
Event Order Constants ...
Eye Constants ...
Filetype Constants ..
Frames of Reference Constants ...
Keyboard Constants ..
Light Type Constants ...
Material Table Property Constants ...
Mathematical Constants ...
Message Constants ..
Motion Link Source and Target Constants ..
Node Constants ...
Option Constants ..
Path Constants ...
Projection Type Constants ..
Rendering Constants ...
Sensor Constants ..
Serial Port Constants ..
Sound Constants ..
Sound Device Constants ...
Texture Constants ...
User Interface Constants ..
Window Constants ..
Other Constants ..
 xv

...D-1
..D-5

. E-2
E-2
.. E-2
... E-3
... E-3
. E-4
.. E-4
. E-5
. E-8
-10

E-15

...F-1
..F-1
...F-2
...F-2
...F-3
..F-4
...F-4
...F-6
...F-8
..F-8
F-9
F-10

.G-1

...G-2
...G-2
..G-5
..G-5
..G-6
..G-6
..G-7
G-7
Appendix D: Error Messages and WarningsD-1
Error Messages ..
Warnings ..

Appendix E: Writing a Sensor Driver ... E-1
Overview ...

WTK Math Conventions ...
Sensor Records Must Be Relative ..
Constraining Sensor Records ...
Scaling Sensor Records ...
Talking to the Serial Port ...
Include Files ..

Driver Functions ...
Example 1: Update Function for the Mouse ..
Example 2: Driver for the Geometry Ball Jr. ... E
Example 3: Update Function for Absolute Device (Pseudocode)

Appendix F: WTK Neutral File Format .. F-1
The NFF Format ..

The BFF Format (Binary NFF) ..
NFF Syntax ..

NFF Header ..
NFF Objects ..
NFF Materials ..
NFF Vertices ...
NFF Polygons ...

NFF Format Extensions ...
Automatic Normal Generation ..

NFF Version History, Backward Compatibility ...
A Sample NFF File ...

Appendix G: Transitioning From
Version 2.1 To Release 6/7/8/9 ...G-1

Introduction ...
Paradigms of this Release ...

The Scene Graph ..
Instancing ..
Materials ...
Lights ..
Special Effects (Fog) ..
3D Sound ..
Multiple Windows ..
xvi WorldToolKit Reference Manual

. G-7
G-7
. G-8
... G-8
G-9
-22

G-22
-24
-25
-26

-27
-28
G-28
-29
try

G-31
G-31
-32

G-32
G-34

G-34
.. G-34
G-35

... H-1
H-1
.. H-4

....I-2
..I-2
...I-3
....I-3

... J-1

... J-2
.. J-3
User-Interface (UI) Objects ...
Motion Links ..
Switches and Level of Detail Nodes ..
Replaced Features ..

Mapping WTK V2.1 Functions To This Release ..
Details on Mapping WTK V2.1 Functions to This Release G

Loading In Objects ...
Changes in Reading/Writing NFF Files ... G
Attaching Objects To One Another .. G
Handling Of Lights In This Release ... G
Moving from WTxx_addsensor to Motion Links G
Rotating A Movable About Its Midpoint ... G
Changing Vertex Positions ...
Differences in Applying Tasks ... G
Positioning And Moving Objects In Your Scene: WTobject and WTgeome
G-30
Picking ..
Animation ...
The Lack of WTgroup_* Functions ... G
Pivot Points And Handles ...
Coordinate Frames ..

New Functions to Facilitate Incorporation of WTK V2.1 Applications into the
R6/R7/R8/R9 Paradigm ...

Scene Graphs and Nodes ..
Material Colors ...

Appendix H: Transitioning From Release 6 To Release 7/8/9H-1
Changed Functions from Release 6 to
Release 7/8/9 ...

WTK User-Interface (UI) Functions ..
Transformations ..

Appendix I: Third-party Software .. I-1
Image Conversion (SGI) ...
Image Conversion (Windows 32-bit Platforms) ...
Model Conversion ...
3D Modelers ...

Appendix J: Sources of Components .. J-1
Input Devices ..
Output Devices ...
Video Accelerators ..
 xvii

K-1
K-2
K-2

.. L-1
. L-2
L-2
Appendix K: The WTK Users’ Group ... K-1
Participating in SIG-WTK ...

Communicating with SIG-WTK ...
SIG-WTK:Email Archives ...

Appendix L: Technical Support ... L-1
U.S. Technical Support ...
Non-US Technical Support ..
SIG-WTK Users’ Group ...

Appendix M: Glossary .. M-1
Index.. Index-1
xviii WorldToolKit Reference Manual

ent
ry
r

TK
pter
or

K

here

es.

le
play.

 are
1
Introduction to WorldToolKit

Welcome

Welcome to WorldToolKit (WTK), an advanced cross-platform development environm
for high-performance, real-time 3D graphics applications. WTK has the function libra
and end-user productivity tools you need to create, manage, and commercialize you
applications. With the high-level application programmer’s interface (API), you can
quickly prototype, develop, and configure your applications as required.

From writing custom sensor drivers to rapidly developing virtual reality applications, W
offers an intuitive set of functions that provide a wide range of functionality. This cha
introduces you to the WTK application development environment, highlights the maj
concepts and features in this release, and reviews the basic hardware and software
components of a WTK development system.

What is WTK?

Simply stated, you build your virtual world by writing code to call WTK functions. WT
is a library of over 1000 functions written in C that enable you to rapidly develop new
virtual reality applications. One function call can do the work of hundreds of lines of C
code, dramatically shortening development time.

WorldToolKit is so named because your applications can resemble virtual worlds, w
objects can have real-world properties and behavior. You control these worlds with a
variety of input sensors, from a simple mouse to “six degrees of freedom” input devic
Users can experience these worlds with a computer display (which acts as a movab
window into a world) or by using a position-tracked, head-mounted, stereoscopic dis

WTK is structured in an object-oriented way, although it does not use inheritance or
dynamic binding. WTK functions are object-oriented in their naming convention, and

Chapter 1: Introduction to WorldToolKit

 the
,

,
ing

 With

tate-
scene

l, and
m

you
ffects

your
e
g a
TK

and a
e

TK is
 on the
organized into over 20 classes. These classes include the Universe (which manages
simulation and contains all other objects), Geometries, Nodes, Viewpoints, Windows
Lights, Sensors, Paths, Motion Links, and others. (See Overview of the WTK Classes on
page 1-3.) Functions are included for things such as device instancing, display setup
collision detection, loading geometry from a file, dynamic geometry creation, specify
object behavior, manipulating textures, and controlling rendering.

Scene Graph Architecture

The architecture of this release of WTK incorporates the power of scene hierarchies.
WTK you can build a simulation by assembling nodes into a hierarchical scene graph,
which dictates how the simulation is rendered and allows all of the efficiencies of a s
preserving, stack-oriented rendering architecture. Each node of the scene graph (or
graphs) represents part of the simulation.

This efficient visual database representation provides increased performance, contro
flexibility through features such as hierarchical object culling, efficient use of transfor
information, Level of Detail switching, object grouping, VRML compatibility, and the
ability to load in models and data from the Internet. With the scene graph approach,
can create a light, and specify the light’s location in the scene graph such that it only e
the geometry you choose.

While providing the expressiveness and flexibility of constructing the scene graph for
visual database node-by-node, WTK also contains functions that let you create scen
graphs by loading in files that contain scene graph descriptions. For example, loadin
VRML file from the Internet into your scene graph requires just a single function call. W
also provides functions for easily modifying and reconfiguring scene graphs.

What WTK Does

WTK manages the tasks of rendering, reading input sensors, importing geometries,
wide range of simulation functions. You are left free to concentrate on developing th
details of your 3D applications.

At the core of an application written using WTK is a simulation loop that reads input
sensors, updates objects, and renders a new view of your scene onto the display. W
designed to be used in real-time applications such as simulations, where frame rates
1-2 WorldToolKit Reference Manual

Overview of the WTK Classes

tching
tions
cts in

zed
ns to

ate
WTK

 in

u can

ck,
ort

e
odes,
n

rces
 or

ate
order of 5 to 30 frames per second are maintained. WTK's main loop and event dispa
mechanisms are similar to those of a conventional window manager, but WTK applica
differ in that they are intended for use in situations where the user’s viewpoint or obje
the universe are continuously changing.

WTK incorporates the philosophy of OpenVRTM, which means it is portable across
platforms, including SGI, Sun, DEC, Intel, and Evans and Sutherland. WTK is optimi
to leverage the power of each hardware platform it supports, enabling your applicatio
use the “fast path” through whatever graphics acceleration system you are using.

WTK supports a wide variety of input and output devices, and allows you to incorpor
existing C code (such as device drivers, file readers, and drawing routines) into your
application.

Overview of the WTK Classes

WTK is structured in an object-oriented way. Most WTK functions are object-oriented
their naming conventions and are grouped into the following classes:

• Universe is the “container” of all WTK objects such as geometries, nodes,
viewpoints, sensors, etc. While you can have multiple scene graphs and
simulations, there is only one universe. You can temporarily add or remove
geometries and nodes from being considered by the simulation manager. Yo
also define the sequence of events in the simulation.

• Geometries are graphical objects that are visible in a simulation, such as a blo
sphere, cylinder, and 3D text. You can dynamically create geometries or imp
them from other sources. Once you create a geometry, you need to create a
corresponding (geometry) node so that it can be included in a scene graph.

• Nodes are the building blocks from which scene graphs are constructed. Nod
types other than geometry nodes, such as light nodes, fog nodes, transform n
level-of-detail (LOD) nodes, and switch nodes are not visible, though they ca
affect the appearance of geometry nodes.

• Polygons can be dynamically created and texture-mapped using various sou
of image data. You can render polygons in either wireframe, smooth-shaded
textured modes.

• Vertices can be dynamically created or read from a file. You can also associ
vertices with vertex normals for gouraud shading.
WorldToolKit Reference Manual 1-3

Chapter 1: Introduction to WorldToolKit

ll
WTK
and

s.

c., to

an

rance)

layed.

s

sly
This
IX

fact,
s
The
 in the
• Lights can be dynamically created or loaded from a file.

• Viewpoints define the position and orientation in a virtual world from which a
of the geometries in a simulation are projected to the screen and rendered.
supports one or more viewpoints. You can also control a viewpoint’s position
orientation by attaching sensors to it.

• Windows display your scene. A WTK application can have multiple windows
into the same virtual world and/or multiple windows into different virtual world

• Sensors can be connected to transform nodes, viewpoints, movable nodes, et
manipulate object motion. Multiple sensor objects are supported.

• Path objects allow geometric or viewpoints to follow predefined paths. You c
dynamically create, interpolate, record, and play paths.

• Tasks can be used to assign behaviors (such as movement, change in appea
to individual objects.

• Motion Links connect a source of position and orientation information with a
target that moves to correspond with that changing set of information. For
example, you can have a motion link between a sensor and a viewpoint.

• Sound objects can be loaded, associated with 3D objects in the scene, and p

• User Interface elements can be created for both X/Motif and Microsoft Window
environments.

• Networking capabilities enable you to build applications that can asynchronou
communicate over an Ethernet between several PC and UNIX workstations.
allows distributed simulations to be created where a mixture of PCs and UN
workstations support a single simulation.

• Serial Port functions simplify the task of communicating over serial ports.

Naming Conventions

Naming conventions for WTK functions are such that each class of object has a typedef
(type definition) defining an object of that type. For instance, WTsensor is a sensor object,
and WTserial is a serial port object. Objects are always dealt with through pointers. In
the internal state of WTK objects is not accessible except through WTK function call
provided for this purpose. Objects in WTK are “opaque,” enforcing data abstraction.
state of any object must be accessed through “set” and “get” access functions defined
WTK library.
1-4 WorldToolKit Reference Manual

Additional Features

 class
e name
ding

is the

 a

r this

2-bit
d
 the
All functions acting on a given class have, by convention, a name that begins with the
name. In addition, all classes accessible by the user have an object constructor whos
ends in _new, which returns a new object of the given class, and an object destructor en
in _delete, which accepts and destroys an object of the given class.

For instance, the function:

WTviewpoint *WTviewpoint_new();

creates a new viewpoint object and returns a pointer to that object, as in:

newview = WTviewpoint_new();

This new viewpoint could subsequently be destroyed by the call:

WTviewpoint_delete(newview);

Most functions expect a pointer to an object of their class as the first argument. This
object to which the function is directed. To copy a viewpoint, you would call the function
WTviewpoint_copy, which takes a pointer to an already-existing viewpoint and returns
pointer to a newly-created copy of that viewpoint:

WTviewpoint *old_viewpoint, *new_viewpoint;
new_viewpoint = WTviewpoint_copy(old_viewpoint);

The universe object is special in that there is only one universe at any given time. Fo
reason, universe functions do not require a universe pointer as the first argument.

Additional Features

SOUND

WTK provides a cross-platform API for creating 3D and stereo sound. On Windows 3
systems, WTK supports Windows-compatible sound cards, DiamondWare sound, an
Crystal River Engineering products. On Silicon Graphics Workstations, WTK supports
SGI system audio and Visual Synthesis 3D sound products. See Appendix H, Third Party
Software, and the SENSE8 web site at http://www.sense8.com for the latest information on
third party sound device support.
WorldToolKit Reference Manual 1-5

Chapter 1: Introduction to WorldToolKit

ume
ding

ser-
er
atch

,
mpile
 new

le

ilable
s for

ble
WTK's sound API provides support for 3D spatialization of sounds, doppler shifts, vol
and roll-off controls, and other effects. It supports output to a variety of devices inclu
headphones, surround sound, and stereo systems.

USER-INTERFACE OBJECTS

You can add a user interface (UI) to your simulations by using WTK’s cross-platform u
interface objects. These objects let you quickly and easily create a (2D) graphical us
interface. These UI objects have been designed in both Motif and Windows styles, to m
the native operating system. The UI object types provided include: toolbars, bitmaps
menus, message boxes, text boxes, file-request dialogs, and others. When you reco
your simulation on another platform, the UI objects automatically change to match the
operating system. For example, if you develop an application using toolbars for
X-Windows, and then recompile it in Windows, your simulation will use Windows sty
toolbars.

MULTIPIPE/MULTI-PROCESSOR SUPPORT

A multipipe/multi-processor version of WTK is also available. It provides support for
rendering to multiple graphics pipes or screens and utilizes the additional power ava
on multi-processor systems. This is useful for creating high-resolution stereo display
Computer-Assisted Virtual Environment’s (CAVEs).

VRML SUPPORT

WTK supports the reading and writing of VRML 1.0 files.

OTHER FEATURES

Other features of this release include the following:

• Materials and Translucency - Complete control of coloring geometries,
including specular highlights. WTK takes full advantage of the features availa
with OpenGL.

• Task Objects - You can specify the behavior of any geometry, node, or C
structure by assigning tasks to it.
1-6 WorldToolKit Reference Manual

WTK Documentation

d

l has

ture,

ystem.

y
• Performance Optimizations for Rendering - Support for triangle stripping,
state sorting, etc.

• Atmospheric Effects - Support for special effects, such as fog, haze, and clou
layers.

• Constraints - Available on the translations and rotations of your geometry or
other scene graph components.

• Textures from Memory - For video and playback onto object surfaces.

• Orthographic Projections - Useful for plan views or anytime a perspective
projection is not desired.

• Cross-Platform 2D Drawing Calls - Support for geometrical shapes, lines,
bitmaps, etc.

• Support for Many Sensors - See the table on page 13-3 for a list of the WTK
supported sensors.

• Support for 3D Text - Capability of creating 3D text in your virtual world.

• Support for Many File Formats - Supports WRL, FLT, DXF, NFF, OBJ, 3DS,
BFF, SLP, and GEO file formats.

• C++ Wrappers - Provides the choice of programming in either C or C++.

WTK Documentation

The available sources of documentation for WTK include the following:

REFERENCE MANUAL

The Reference Manual describes the core functionality of WTK. This reference manua
23 chapters and 12 appendices:

Chapter 1, Introduction to WorldToolKit, provides an overview of the WTK application
development system, introduces key concepts pertaining to WTK’s object-oriented na
and reviews the basic hardware and software components of a WTK development s

Chapter 2, The Universe, introduces the universe class and describes many of the ke
functions for interacting with and managing your simulation.
WorldToolKit Reference Manual 1-7

Chapter 1: Introduction to WorldToolKit

t

es,

and
y

er

re

hical

ct) to
s, etc.

 the

ata

and
using
Chapter 3, Object/Property/Event Architecture, describes the new Object/Property/Even
programming paradigm that has been introduced with WTK Release 8.

Chapter 4, Scene Graphs, describes how scene graphs are created and describes the
various kinds of nodes used to construct a scene graph.

Chapter 5, Movable Nodes, describes the concept and basic structure of movable nod
and how they are created, positioned and built into hierarchies.

Chapter 6, Geometries, introduces the concept of geometries, and provides file format
instancing information. Functions are provided to create predefined geometries, cop
existing geometries, add materials to geometries, etc.

Chapter 7, Polygons, discusses the polygonal surfaces that geometrically describe an
object. Functions for polygon construction, querying, and intersection-testing with oth
graphical entities are also presented.

Chapter 8, Materials, introduces material tables and their functions, including setting
values in the material table and creating new material tables.

Chapter 9, 3D Text, shows how to create 3D text in your simulation. 3D text objects a
special forms of graphical objects.

Chapter 10, Textures, describes the textures that can be applied to the surfaces of grap
objects, and the functions to apply, manipulate, and animate them.

Chapter 11, Tasks, discusses the way tasks are assigned to a geometry (or other obje
provide movement, change its appearance, detect intersections with other geometrie

Chapter 12, Lights, describes the WTK functions used to manage lighting conditions in
graphical environment.

Chapter 13, Sensors, provides information about the WTK sensor functions, using the d
from sensors, and using various manufacturers’ hardware with your simulation.

Chapter 14, Paths, introduces the concept of a path, which is a sequence of position
orientation information. Functions are described for creating paths, editing them, and
them to guide the viewpoint or other objects.
1-8 WorldToolKit Reference Manual

WTK Documentation

ion
to

r
int

s,

 and

r

king

s
Chapter 15, Motion Links, introduces the concept of linking sources and targets of posit
and orientation information with a motion link. Functions are provided to link targets
sensors or paths.

Chapter 16, Viewpoints, introduces the WTK “viewpoint” object, which defines how you
simulation is projected onto your display device. Functions are described for viewpo
construction, movement, coordination with sensor input data, and stereo viewing.

Chapter 17, Windows, shows how to create windows, associate viewpoints with window
and set or change the characteristics of a window.

Chapter 18, Adding User Interface (UI) Objects, describes how to add a cross-platform
graphical user interface to your simulations.

Chapter 19, Drawing Functions, provides information on 2D and 3D drawing functions
supported by WTK.

Chapter 20, Sound, introduces spatialized and regular sound support for a variety of
hardware platforms. Options and functions give you the ability to control how, when,
where sound is included in your simulation.

Chapter 21, Client-Server Networking (Via the World2World Servers), describes how to
create multi-user client-server applications for use with Sense8’s World2World serve
product.

Chapter 22, Multicast Networking, describes how you can create applications that
asynchronously communicate over an Ethernet network.

Chapter 23, Serial Ports, describes the class of functions that simplifies the task of
communicating over serial ports.

Chapter 24, Portability, discusses issues associated with constructing platform-
independent WTK applications, and describes functions for using the keyboard, wor
with files and directories, and handling messages or errors.

Chapter 25, Math Library, provides a description of the WTK math functions for
managing position and orientation data.

Appendix A, Frequently Asked Questions, provides answers to some common question
on how to use many of WTK’s powerful features.
WorldToolKit Reference Manual 1-9

Chapter 1: Introduction to WorldToolKit

se

,

in this

r

rs

’

ts.

nd

this
Appendix B, Environment Variables, describes the environment variables that you can u
to customize WTK’s operation on your computer.

Appendix C, Defined Constants, lists WTK’s constants.

Appendix D, Error Messages and Warnings, reviews the error messages and warnings
and how to suppress or redirect them.

Appendix E, Writing a Sensor Driver, introduces the functions available to simplify the
task of writing a custom sensor driver. Sample sensor driver programs are also given
chapter.

Appendix F, WTK Neutral File Format, describes WTK’s generic ASCII and binary
formats for describing polygonal geometry, and gives sample NFF files.

Appendix G, Transitioning From Version 2.1 To Release 6/7/8/9, provides key
information to smooth your transition from WTK V2.1 to this Release 6/7/8/9.

Appendix H, Transitioning From Release 6 To Release 7/8/9, lists the functions that have
changed from Release 6 to Release 7/8/9, and describes what you need to do if you
application uses these functions.

Appendix I, Third-party Software, includes a list of other software products and their
vendors that you may find useful.

Appendix J, Sources of Components, includes a list of hardware products and their vendo
that you may find useful.

Appendix K , The WTK Users’ Group, gives you contact information for the WTK Users
Group.

Appendix L, Technical Support, gives technical support contact information for WTK.

Appendix M, Glossary, provides definitions for many important WTK terms and concep

THE WTK INSTALLATION AND HARDWARE GUIDES

System-specific aspects of WTK are described in the appropriate WTK Installation a
Hardware Guide. There is a version of the Installation and Hardware Guide for most
platforms on which WTK runs. Throughout this Reference Manual you’re referred to
1-10 WorldToolKit Reference Manual

Special Interest Group

 for a

TK
he

e

s

e a
n.
 the
more

ted
 web

IG-
Installation and Hardware Guide whenever there are system-specific considerations
particular subject.

THE WTK QUICK REFERENCE GUIDE

An alphabetical summary of all WTK functions, macros, and constants is given in the W
Quick Reference Guide. This Quick Reference Guide is available in PDF format on t
WTK product CD. A hardcopy of the Quick Reference Guide is NOT shipped with the
WTK product.

ONLINE DOCUMENTATION

An online version of this manual and the (platform-specific) Installation and Hardwar
Guide is installed with WTK in the portable document format (PDF). PDF is a cross-
platform file format that you can read with an Adobe Acrobat reader. This reader wa
installed during WTK installation unless you chose not to install it.

These online documents are identical with the printed documents but allow you to us
search feature to quickly find WTK functions and other valuable reference informatio
(TIP: While you are viewing a document in the PDF reader, click the second icon on
toolbar to display the bookmarks. Then, click a bookmark to go to any chapter.) For
information on using the PDF reader, see the Adobe Acrobat help file.

ADDITIONAL SOURCES

See the Readme file that was installed with WTK for last minute information or repor
problems. You can also find the latest product information by accessing the SENSE8
site (http://www.sense8.com).

Special Interest Group

WTK users are invited to join the WTK User’s Group (SIG-WTK). The WTK User’s
Group has been organized by WTK customers with assistance from EAI/SENSE8. S
WTK provides a worldwide electronic forum for the discussion of shared interests.
WorldToolKit Reference Manual 1-11

Chapter 1: Introduction to WorldToolKit

ckets].

 as the

evices
ported

ll
n your

onal
ftware
To subscribe or unsubscribe to SIG-WTK, e-mail your request to:
sig-wtk-request@sense8.com with the text subscribe or unsubscribe as the body of the
message.

Basic System Configuration

A basic WTK development system includes several key hardware and software
components. These components are listed as follows. Additional system-dependent
components that may not be necessary with your system are also listed [in square bra

• Host computer(s)

• [Hardware graphics accelerator board]

• WTK library

• C compiler

• [3-D modeling program]

• [Bit-map editing software]

It is also suggested that you have a mouse and at least one 3D/6D input sensor such
Spacetec IMC Spaceball.

Input Sensors Supported

WTK supports a wide range of 3D and 6D input sensors, both desktop devices and d
that can be worn on the body to sense position and orientation. Routines to read sup
sensor types are part of the WTK library. (See Introduction to the Sensor Class on page
13-2 for a list of the sensors that WTK supports.) Not all devices are supported on a
systems, so please check your Hardware Guide to see which devices are supported o
system.

Extending a System for Virtual Reality

To extend the basic system configuration for a virtual reality interactive display, additi
hardware components are required. The following list assumes that you have the so
1-12 WorldToolKit Reference Manual

A Sample WTK Application

e to

tion

y to

ions
el”
tend

s:
and hardware listed under Basic System Configuration on page 1-12, including a 3D/6D
input sensor:

• A stereoscopic head-mounted display or stereo projection system.

• Video signal conversion, typically from the RGB signals of the graphics devic
the NTSC video inputs on the head-mounted display.

• One or more position tracking devices (to track the head position and orienta
and/or other body gestures).

These components are system-dependent, so talk to your local distributors or directl
SENSE8 when configuring your system.

A Sample WTK Application

A WTK application is C source code that includes WTK function calls. These applicat
may be as simple or as complex as you like. Because WTK includes many “high-lev
function calls, you can prototype an application with a few lines of code, and then ex
it based on the demands of your application.

The following example is a simple, but complete WTK application; here’s what it doe

• Creates a new universe (with an empty scene graph).

• Loads a graphical model of a planet into the scene graph.

• Attaches a mouse device to the viewpoint.

• Assigns a behavior (task) to the planet, causing it to spin about its axis.

• Allows the user to fly around the planet using the mouse.

/* simple.c Usage: Use the mouse buttons to fly around a spinning planet. */

#include “wt.h”

void spin(WTnode *);
#define Y_AXIS 1

void main(int argc, char *argv[])
WorldToolKit Reference Manual 1-13

Chapter 1: Introduction to WorldToolKit

n the
{
 WTnode *root;
 WTnode *planet;

 WTsensor *sensor; /* the Mouse */
 WTviewpoint *view; /* the Viewpoint */

 WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

 root = WTuniverse_getrootnodes();
 planet = WTmovnode_load(root, “PLANET.NFF”, 1.0);
 sensor = WTmouse_new();

 view = WTuniverse_getviewpoints();
 WTviewpoint_addsensor(view, sensor);
 WTtask_new(planet, spin, 1.0);

 WTuniverse_ready();
 WTuniverse_go(); /* Starts simulation */
 WTuniverse_delete(); /* All done */

}

void spin(WTnode *planet)
{

 WTmovnode_axisrotation(planet, Y_AXIS, 0.1);
}

Important WTK Functions

Some of the most widely used WorldToolKit functions are briefly described here; the
actual WTK functions are described in their respective chapters. They’re also listed i
index. Also see your Quick Reference Guide, which includes all the WTK functions,
macros, and constants, with a brief description of each one.

Note: Most classes use new to create an object, add to add it to the simulation, remove to
remove it from the simulation, and delete to delete it from memory. All set functions
have a corresponding get function.
1-14 WorldToolKit Reference Manual

Universe

 in

Universe

WTuniverse_framerate Returns the current simulation framerate.

WTuniverse_go Starts the simulation.

WTuniverse_setactions Defines actions that take place within the
simulation event loop.

WTuniverse_setbgrgb Sets the background color of the universe.

WTuniverse_seteventorder Changes the processing order of the events
the simulation.

Geometry

WTgeometry_newvertex Adds a vertex to a geometry object.

WTgeometry_begin Creates a new geometry object for vertex
addition.

WTgeometry_beginedit Informs WTK that you are going to edit a
geometry.

WTgeometry_close Finishes the definition of the geometry.

WTgeometry_deletetexture Removes all textures from the geometry.

WTgeometry_endedit Informs WTK that you are finished editing a
geometry.

WTgeometry_getvertices Gets the first vertex of a geometry.

WTgeometry_save Saves a geometry to a file.

WTgeometry_settexture Globally applies a texture to a geometry
object.

WTgeometry_settextureuv Drapes a texture over the geometry.

WTgeometry_setvertexnormal Sets the vertex normal.

WTgeometry_setvertexmatid Sets the material of a vertex.

WTgeometry_stretch Stretches the geometry along the X, Y, or Z
axis.
WorldToolKit Reference Manual 1-15

Chapter 1: Introduction to WorldToolKit

s.

f a

Polygon

WTpoly_addvertex Adds a vertex to a polygon under
construction.

WTpoly_begin Adds an empty polygon to a geometry.

WTpoly_close Finishes the definition of a polygon.

WTpoly_intersectpolygon Tests for intersection between two polygon

WTpoly_deletetexture Removes a texture from a polygon.

WTpoly_rotatetexture Rotates a texture on a polygon.

WTpoly_scaletexture Scales and automatically tiles a texture.

WTpoly_setmatid Sets the material of a polygon.

WTpoly_settexture Applies a texture to a polygon.

WTpoly_settexturestyle Sets the shading and transparency values o
texture.

WTpoly_settextureuv Maps texture onto a polygon in a user-
specified way.

WTpoly_setuv Changes the way a texture is mapped to a
polygon’s vertices.

WTpoly_stretchtexture Stretches a polygon's texture.

WTpoly_translatetexture Shifts a texture on a polygon by a pixel
amount.

Sensor

WTsensor_getmiscdata Retrieves button-press information from the
sensor object.

WTsensor_setconstraints Constrains values read in from a sensor.

WTsensor_setsensitivity Sets the sensitivity value of a sensor.

WTsensor_setrecord Stores the current relative position and
orientation record.

WTsensor_setupdatefn Changes a sensor's update function.
1-16 WorldToolKit Reference Manual

Light

.

Light

WTlightnode_load Reads a formatted file to create spot, point,
directed, and/or ambient lights.

WTlightnode_newdirected Creates a directed light.

WTlightnode_newpoint Creates a point light.

WTlightnode_newspot Creates a spot light.

WTlightnode_newambient Creates an ambient light.

WTlightnode_setambient Sets the ambient light color.

WTlightnode_setangle Sets the half-angle of a spot light’s cone.

WTlightnode_setattenuation Sets the attenuation of point and spot lights

WTlightnode_setdirection Sets the direction of a light.

WTlightnode_setposition Sets the location of a light.

Viewpoint

WTviewpoint_addsensor Attaches a sensor to control the viewpoint.

WTviewpoint_moveto Moves the viewpoint to a particular location
and orientation.

WTviewpoint_setaspect Adjusts the aspect ratio of the image.

WTviewpoint_setconvergence Adjusts the convergence of the image.

WTviewpoint_setparallax Adjusts the parallax of the image.

Path

WTpath_copy Copies a path.

WTpath_interpolate Performs a Bezier, B-spline, or Linear
interpolation of a path.

WTpath_play Begins the playback of a path.
WorldToolKit Reference Manual 1-17

Chapter 1: Introduction to WorldToolKit

t

d

s.

.

-

WTpath_record Begins recording the viewpoint position and
stores the information in a path.

WTpath_setmode Sets the path’s playback mode.

Window

WTwindow_setbgrgb Sets the background color of a window.

WTwindow_setprojection Sets symmetric, asymmetric, or general
window projections.

WTwindow_setviewangle Sets the window's horizontal view angle.

WTwindow_setyonvalue Sets the window's yon clipping value.

WTwindow_zoomviewpoint Moves the window's viewpoint so the entire
scene is in view.

Scene Graph

WTnode_load Loads a data file into the scene graph.

WTnode_addchild Makes a node a child of the specified paren
node.

WTnode_getchild Retrieves the specified child of the specified
parent node.

WTnode_getparent Retrieves the specified parent of the specifie
child node.

WTnode_numchildren Returns the number of children for a
specified node.

WTnode_remove Removes a node from all of its parent node

WTnode_boundingbox Highlights a node of the scene graph with a
bounding box that is visible in the simulation

WTnode_getextents Obtains the extents of the scene graph sub
tree.

WTnode_intersectnode Tests for intersection between parts of the
scene graph.
1-18 WorldToolKit Reference Manual

Drawing
Drawing

WTwindow_draw2Dcircle Draws a 2D circle.

WTwindow_draw2Drectangle Draws a 2D rectangle.

WTwindow_draw2Dpoint Draws a 2D point.

WTwindow_draw2Dline Draws a 2D line.

WTwindow_draw3Dpoints Draws a 3D point.

WTwindow_draw3Dlines Draws a 3D line.

User Interface

WTuimessagebox_new Creates a message box.

WTuiscrolledtext_new Creates a scrollable text box.

WTuimenubar_new Creates a menu bar.

WTui_dimitem Grays out a menu item.

Sound

WTsound_load Loads a sound from a file.

WTsound_play Plays the sound.

WTsound_setnodepath Assigns the sound to a source.
WorldToolKit Reference Manual 1-19

Chapter 1: Introduction to WorldToolKit
1-20 WorldToolKit Reference Manual

tries,
 these

 the
e.
ire a

on’s

nly

be

 with

2
The Universe

Introduction

The universe is the “container” of all WTK objects. These objects can include geome
sensors, lights, viewpoints, serial ports, paths, or other object types. Once you create
objects, they are automatically maintained by the WTK simulation manager (see
Simulation Management on page 2-5). While you can have multiple scene graphs (see
next chapter, Scene Graphs) in your universe simulation, there is only one WTK univers
As a result, unlike the methods for other WTK objects, universe methods do not requ
pointer as the first argument.

This chapter describes WTK’s functions for constructing (or destroying) a universe,
managing a simulation, specifying universe rendering styles, calculating an applicati
performance, setting global parameters for WTK, and using a resource file to set
parameters for your universe.

Universe Construction and Destruction

In a WTK application, you create the universe using the function WTuniverse_new.
WTuniverse_new must be the first WTK call in your main program and must be called o
once in an application. This function initializes the universe’s state and initializes the
graphics device, configuring it for the output device with which the virtual world is to
viewed.

The universe is deleted using the WTuniverse_delete function. This function frees all of the
objects in the universe, including those that have been removed from the simulation
the remove function appropriate for that object type, such as WTnode_remove. The
WTuniverse_delete function also cleans up and closes the graphics hardware or WTK
display.

Chapter 2: The Universe

unted

nitor.

nly

y

or

ll
.

of

WTuniverse_new

void WTuniverse_new(
int display_config,
int window_config);

This function initializes the universe’s state and the graphics device used to view the
simulation. The graphics device used to view the simulation may be a stereo head-mo
display, stereo shutter glasses, or (for a monoscopic view) simply your computer mo
Other than for functions whose names begin with WTinit_ (for example, WTinit_defaults),
WTuniverse_new must be the first WTK call in your main program and must be called o
once in an application.

Note: If using WTK’s UI functionality, make the call to WTuniverse_new after the call to
WTui_init, which is used for creating the top-level application shell.

WTuniverse_new also creates a viewpoint for the universe. In WTK there can be man
viewpoints. The viewpoint created by WTuniverse_new is by default the viewpoint through
which the simulation is displayed.

See also WTviewpoint_new on page 16-3 and WTwindow_setviewpoint on page 17-11.

The display_config parameter specifies the number of windows which are displayed. F
information on stereoscopic viewing, see page 2-34.

The possible values for display_config are:

WTDISPLAY_DEFAULT Creates a single window.

WTDISPLAY_NOWINDOW No windows will be created. Sometimes
useful when creating a GUI using Motif,
MFC, or WTK’s UI functions.

WTDISPLAY_CRYSTALEYES For CrystalEyes glasses. Creates a single fu
screen stereo window which has no border

WTDISPLAY_STEREO Creates two windows. Should only be used
by legacy code.

WTDISPLAY_NEEDSTENCIL This constant can be combined with
WTDISPLAY_DEFAULT or
WTDISPLAY_NOWINDOW by using the
bitwise OR operator (|), to request the use
the stencil buffer on systems which contain
2-2 WorldToolKit Reference Manual

Universe Construction and Destruction

il
n

ed

TSC

.

ve

e

in

stencil buffer hardware. It should only be
used if you want to use your system’s stenc
buffer hardware to obtain interlaced stereo i
your window(s) or if your application uses
the stencil buffer hardware for application
specific purposes.

The values for window_config specify the characteristics of the window or windows creat
by WTuniverse_new. With window_config, you can specify host-system specific window
parameters. Your Hardware Guide also describes how to configure your system if an N
(television) signal is required by your display device. (Many head-mounted displays
require an NTSC signal.) For information on stereoscopic viewing, see page 2-34.

These are the possible values for window_config:

WTWINDOW_DEFAULT Creates a window with no special attributes
The window has a border unless
WTWINDOW_NOBORDER is used in
combination with this constant (via the
bitwise OR operator).

WTWINDOW_STEREO Creates a stereo window on systems that ha
hardware support for stereo. On systems
without hardware stereo support, this option
will create 2 images in the window (one on
the top with the left eye view, the other on th
bottom with the right eye view). On Windows
platforms, if this option is selected and the
WTDISPLAY_NEEDSTENCIL option is
selected in the display_config parameter, the
behavior you will obtain is that of
WTWINDOW_STEREOVSPLIT.

WTWINDOW_STEREOVSPLIT This constant can be combined with the
WTWINDOW_STEREO option by using the
bitwise OR operator (|), to create 2 images
the window (one on the top with the left eye
view, the other on the bottom with the right
eye view) even if your system has hardware
stereo support. In essence, this option will
cause WTK to disable your system’s stereo
WorldToolKit Reference Manual 2-3

Chapter 2: The Universe

e
t

i-

hardware and to create a “vertically split”
stereo window instead.

WTWINDOW_RBSTEREO Creates a window with red/blue stereo.

WTWINDOW_INTERLACEEVENODD Creates an interlaced stereo window whose
even numbered scanlines correspond to the
left eye view and whose odd numbered
scanlines correspond to the right eye view.
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in the display_config parameter.

WTWINDOW_INTERLACEODDEVEN Creates an interlaced stereo window whose
odd numbered scanlines correspond to the
left eye view and whose even numbered
scanlines correspond to the right eye view
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in the display_config parameter..

WTWINDOW_NOBORDER This constant can be combined with any of
the above listed options by using the bitwis
OR operator (|), to create a window withou
a border.

WTWINDOW_SCREENn Where n is a number from 0 to 8. In the mult
pipe/multi-processor version of WTK, this
constant can be combined with any of the
above listed options by using the bitwise OR
operator (|), to specify which screen the
window is to be placed on.

If the window_config parameter is set to any of the stereo options (WTWINDOW_STEREO,
WTWINDOW_RBSTEREO, WTWINDOW_INTERLACEEVENODD, or
WTWINDOW_INTERLACEODDEVEN), you will need to adjust the viewpoint’s parallax
and convergence values. See WTviewpoint_setparallax and WTviewpoint_setconvergence.

This is an example of calling WTuniverse_new to create a display appropriate for
monoscopic, flat-screen viewing directly from the monitor:

WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
2-4 WorldToolKit Reference Manual

Simulation Management

e,

akes

e
while the following is an example of calling WTuniverse_new to create a display with a
stereo window which has no border:

WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_STEREO |
WTWINDOW_NOBORDER);

WTuniverse_delete

void WTuniverse_delete(

void);

This function frees all of the objects in the universe, including those that have been
removed from the simulation with the remove function appropriate for that object typ
such as WTnode_remove. WTuniverse_delete also cleans up and closes the graphics
hardware or WTK display. This should be the last WTK call in your main program.

Simulation Management

The simulation loop is the heart of a WTK application. Every aspect of the simulation t
place in the universe. The simulation loop is entered by calling WTuniverse_go and is
exited by calling WTuniverse_stop. Alternatively, you can use the function
WTuniverse_go1 to go through the simulation loop exactly once and then exit the loop
automatically. Figure 2-1 shows the default order of events in the simulation loop. Th
order can be changed by using the function WTuniverse_seteventorder.
WorldToolKit Reference Manual 2-5

Chapter 2: The Universe

her
Figure 2-1: The default simulation loop

WTuniverse_ready

void WTuniverse_ready(

void);

This function prepares your application for entry into the main simulation loop. Call this
function before starting the simulation for the first time (i.e., before the first call to eit
WTuniverse_go or WTuniverse_go1), but after all graphical entities have been created.

Sensors are read.

 The universe’s action function is called.

Objects are updated with sensor input

 Objects perform tasks.

The universe is rendered.

WTuniverse_go() or WTuniverse_go1()
to enter simulation loop

WTuniverse_stop()
to exit simulation loop

The order in
which these
items are
executed is
user-definable.

Paths in record or playback mode are stepped.

if WTuniverse_go() was called.

(if WTuniverse_go() was called)
2-6 WorldToolKit Reference Manual

Simulation Management

.

s not

ion
n (set

h are

nt

ting

Subsequently, you also need to call WTuniverse_ready before re-entering the simulation
loop if new graphical entities have been created or existing ones removed or deleted

WTuniverse_go

void WTuniverse_go(
void);

This function starts the main simulation loop, and can only be called once. Control doe
return to the statement following the call to WTuniverse_go until the WTuniverse_stop
function is called. However, your application can gain control through a universe act
function or through a task function. The universe has a user-specifiable action functio
by calling WTuniverse_setactions described on page 2-12), which is called before the
rendering occurs for each frame. Individual objects can also have task functions, whic
called for the object once per frame (see WTtask_new on page 11-2). The principle is
similar to the “callback” or “event” functions typically provided by a window manageme
system.

Note: You cannot call WTuniverse_go from the universe’s action function or from a task
function.

Before calling WTuniverse_go for the first time you must call WTuniverse_ready. You
should also call WTuniverse_ready before subsequent calls to WTuniverse_go if new
graphical entities have been created since the last call to WTuniverse_ready. See the above
description of WTuniverse_ready.

Note: If using WTK’s UI functionality to create a user interface, call WTui_go instead of
WTuniverse_go.

WTuniverse_go1

void WTuniverse_go1(
void);

This function starts the main simulation loop for one loop only. This is useful for crea
a splash screen, for example, which is displayed while a program is loading. It is not
necessary to call WTuniverse_stop to exit the simulation loop when WTuniverse_go1 is
called.
WorldToolKit Reference Manual 2-7

Chapter 2: The Universe

on

An example is shown here:

main()
{

WTuniverse_new();

.... /* code to load graphical entities */
WTuniverse_ready();
WTuniverse_go1(); /* draw 1 frame */

.... /* code to initialize simulation */
WTuniverse_go();
WTuniverse_delete();

}

Before calling WTuniverse_go1 for the first time, WTuniverse_ready must be called. You
should call WTuniverse_ready before subsequent calls to WTuniverse_go1 if new graphical
entities have been created since the last call to WTuniverse_ready. See the previous
description of WTuniverse_ready.

Note that WTuniverse_go1 is not reentrant; it must not be called from the universe’s acti
function or from an object task function.

WTuniverse_stop

void WTuniverse_stop(
void);

Call this function to exit the main simulation loop, which was entered by calling
WTuniverse_go. When WTuniverse_stop is called, the simulation continues to the bottom
of the loop and then exits. It does not exit mid-way through the loop.
2-8 WorldToolKit Reference Manual

Simulation Management

s
d

a
-6)

 in the

d

ed.

the
Typically WTuniverse_stop is called from the universe’s action function. The following i
an example of such an action function, where mouse is a pointer to a sensor object create
earlier in the application:

/* Exit the simulation loop if the left mouse button has been pressed. */
void actions()
{

if (WTsensor_getmiscdata(mouse) &
 WTMOUSE_LEFTBUTTON) {

WTuniverse_stop();

}
}

WTuniverse_seteventorder

FLAG WTuniverse_seteventorder(

short nevents,
short *events);

This function allows you to change the order of activity in the simulation loop. When
WTK application is running, the simulation loop (as illustrated in figure 2-1 on page 2
is repeatedly executed. The function WTuniverse_seteventorder allows you to change the
order of activity in the simulation loop from the default order shown.

There are four items in the simulation loop that you can rearrange. They are specified
function WTuniverse_seteventorder using the following constants, (listed here in the
default order in which the corresponding events occur in the simulation):

WTEVENT_ACTIONS The user-defined universe action function is
called.

WTEVENT_OBJECTSENSOR Graphical objects and viewpoints are update
by the sensors attached to them.

EVENT_TASKS Object task functions are called.

WTEVENT_PATHS Paths in record or playback mode are stepp

To change the order of events, define an array of shorts containing the constants in
desired order and pass it to WTuniverse_seteventorder as the events argument. The nevents
argument should always be 4.
WorldToolKit Reference Manual 2-9

Chapter 2: The Universe

 used
lish
it is

etry

 the
ns

 See
lt
For example, you may use this function in an application where input from a sensor is
to move the viewpoint, while keeping the viewpoint within a certain room. To accomp
this, you would want to have the viewpoint moved with input from the sensor before
tested for inclusion in the room. WTEVENT_OBJECTSENSOR is the constant
corresponding to the viewpoint update with sensor input, and WTEVENT_ACTIONS is the
constant corresponding to the test of the viewpoint location relative to the “room” geom
(assuming that a universe action function has been written to perform this test).

The following code fragment shows how to set this event order by calling
WTuniverse_seteventorder so that the universe action function is called last:

short myevents[4];

/* set the order so the action function is last */
myevents[0] = WTEVENT_OBJECTSENSOR;

myevents[1] = WTEVENT_TASKS;
myevents[3] = WTEVENT_PATHS;
myevents[2] = WTEVENT_ACTIONS;

WTuniverse_seteventorder(4, myevents);

Each of the four constants must occur exactly once in the array passed in to
WTuniverse_seteventorder. If a valid array is passed in, then the event order is set and
function returns TRUE. If an invalid array is passed in (for example, if one of the toke
occurs twice), then the event order is unaffected and the function returns FALSE.

 WTuniverse_geteventorder

short *WTuniverse_geteventorder(
void);

This function returns the order of events currently set to occur in the simulation loop.
the function WTuniverse_seteventorder for a description of the constants and their defau
order. The return value of this function is an array of shorts where:

array[0] : is the number of events in this array (4 in the current release), and

array[1] ... array[N] : are the N event tokens, where N is given in array[0]

Note: Do not modify the returned array, or the results may be undefined!
2-10 WorldToolKit Reference Manual

The Universe Action Function

ons.
ical
tion
der in
oop.

:

ion

color.

done
The following illustrates how to use this function:

short *events, event, i;
events = WTuniverse_geteventorder();
for (i = 0; i < events[0]; i++) {

event = events[i+1];
WTmessage(“Event %d is “, i);
if (event==WTEVENT_OBJECTSENSOR)

WTmessage(“OBJECTSENSOR\n”);
if (event==WTEVENT_TASKS)

WTmessage(“TASKS\n”);

if (event==WTEVENT_ACTIONS)
WTmessage(“ACTIONS\n”);

if (event==WTEVENT_PATHS)

WTmessage(“PATHS\n”);
}

The Universe Action Function

You use the universe action function to define and control the activity in your simulati
Using the action function, you can specify actions involving any WTK objects, graph
or otherwise. The action function is a user-defined function that is called by the simula
manager each time through the simulation loop. Figure 2-1 on page 2-6 shows the or
which the action function is called with respect to the other events in the simulation l
This order can be changed with the function WTuniverse_seteventorder.

Some examples of actions that might be specified in the universe action function are

• Program termination by having a button press trigger a call to WTuniverse_stop.

• Simulation activities such as terrain-following, object manipulation, intersect
testing, or others.

• Changes to rendering parameters such as lighting conditions or background

• Event handling for a user interface, for example, calling WTwindow_pickpoly to
enable the user to interactively select a polygon, and specifying what is to be
with the selected polygon; processing keyboard input using the WTkeyboard
functions.
WorldToolKit Reference Manual 2-11

Chapter 2: The Universe

tion
sed,

t has

,
use
Actions pertaining to a specific graphical object can be specified in the object’s task
function using WTtask_new.

WTuniverse_setactions

void WTuniverse_setactions(
void (*actionfn) (void));

This function sets the universe action function. An example of a simple but useful ac
function is the following, which tests whether BUTTON1 of a Spaceball has been pres
and calls WTuniverse_stop if so. This example assumes that a Spaceball sensor objec
been previously constructed in the application.

WTsensor *spaceball;

void myactions(void)
{

/* stop by pressing the 1 button on the Spaceball. */

if (WTsensor_getmiscdata(spaceball)
& WTSPACEBALL_BUTTON1)

WTuniverse_stop();

}

The universe action function is set for the example above by calling:

WTuniverse_setactions(myactions);

The Universe’s Objects

The following functions provide access to the universe’s lists of objects (for example
WTuniverse_getsensors returns a pointer to the sensor list). To iterate through this list,
the corresponding iterator function (such as WTsensor_next) to return the next object on
the list.
2-12 WorldToolKit Reference Manual

The Universe’s Objects

t

th

an

o the
,
th
WTuniverse_getsensors

WTsensor *WTuniverse_getsensors(
void);

This function returns a pointer to a list of all sensors currently in the universe. This lis
includes all sensors that have been constructed using the function WTsensor_new or one of
the sensor macros, such as WTspaceball_new, but does not include any sensors deleted wi
WTsensor_delete. Use the function WTsensor_next to iterate through this list.

WTsensor_next

See WTsensor_next on page 13-10 for a description.

WTuniverse_getpaths

WTpath *WTuniverse_getpaths(

void);

This function returns a pointer to a list of all paths in the universe. You can use
WTpath_next to iterate through the universe’s list of paths.

WTpath_next

See WTpath_next on page 14-10 for a description.

WTuniverse_getwindows

WTwindow *WTuniverse_getwindows(
void);

This function returns a pointer to a list of all windows currently in the universe. You c
then iterate through the list of existing windows using WTwindow_next. When new
windows are created, they are added onto the end of the universe’s list of windows, s
first window returned by WTuniverse_getwindows is the first window that was created (i.e.
the window opened by the WTuniverse_new call, unless that window has been deleted wi
WTwindow_delete).
WorldToolKit Reference Manual 2-13

Chapter 2: The Universe

 on

e

, the

us.
Consult your Hardware Guide for information about support for the WTK window class
your system.

WTwindow_next

See WTwindow_next on page 17-8 for a description.

WTuniverse_getcurrwindow

WTwindow *WTuniverse_getcurrwindow(
void);

This function returns a pointer to the window that has input focus. Normally, this is th
WTK window in which the mouse cursor lies, or NULL if the cursor is not in a WTK
window.

However, if the mouse is moved out of a window while a mouse button is held down
window will still retain input focus. See also WTwindow_getidx on page 17-29.

WTuniverse_getcurrwinidx

WTuiwinidtype WTuniverse_getcurrwinidx(

void);

This function returns the system-specific window ID of the window that has input foc
The return value’s type is host-system specific; on UNIX platforms the return type is
Widget, while on the Windows platform, the return type is HWND.

WTuniverse_getcurrscridx

int WTuniverse_getcurrscridx(
void);

This function returns the number of the screen that has input focus.
2-14 WorldToolKit Reference Manual

The Universe’s Objects

he
t

he

e
ll
 If

e

,

t is
WTuniverse_getviewpoints

WTviewpoint *WTuniverse_getviewpoints(
void);

This function returns a pointer to a list of all viewpoints in the universe. When the universe
is created with WTuniverse_new, a viewpoint is automatically created and is by default t
first viewpoint returned by WTuniverse_getviewpoints. You can then iterate through the lis
of existing viewpoints using WTviewpoint_next.

If VRML files have viewpoint information, new viewpoints are created and added to t
beginning of the list of viewpoints. Thus, once you load a VRML file, a call to
WTuniverse_getviewpoints will not return the same viewpoint as it would have before th
VRML file was loaded. To associate a sensor with a viewpoint, you would usually ca
WTuniverse_getviewpoints to get a pointer to the viewpoint associated with the window.
a VRML file with viewpoints was just loaded, WTuniverse_getviewpoints does not return
the viewpoint associated with the window. That is why you have to get a pointer to th
window's viewpoint before you load a file.

WTviewpoint_next

See WTviewpoint_next on page 16-5 for a description.

WTuniverse_setviewpoint

void WTuniverse_setviewpoint(

WTviewpoint *viewpoint);

Some WTK functions make use of the concept of a “current” viewpoint. This function
allows you to designate a particular viewpoint as the current viewpoint.

Note: WTK won’t delete the viewpoint if it is the universe’s current viewpoint. You can
however, delete any other viewpoint.

In the following example, a new viewpoint is created with the same position as the
viewpoint initially constructed for the universe, but pointing in the opposite direction. I
then set to be the current viewpoint.
WorldToolKit Reference Manual 2-15

Chapter 2: The Universe

e

n

ect to

e you
WTviewpoint *newview; /*new viewpoint for rotated view */

/*make a new viewpoint by copying the universe’s initial viewpoint */
newview = WTviewpoint_copy(WTuniverse_getviewpoints());

/*rotate the viewpoint to point in opposite direction */
WTviewpoint_rotate(newview, Y, PI, WTFRAME_VPOINT);

/*finally, switch to this new viewpoint */

WTuniverse_setviewpoint(newview);

WTuniverse_getinitialview

void WTuniverse_getinitialview(
WTpq *position);

When WTnode_load reads in a model from a DXF or NFF file, it reads in and saves th
viewpoint information contained in the file. WTuniverse_getinitialview extracts the saved
viewpoint position and orientation from the most recently loaded model and places it ipq.
The initial viewpoint location is useful for resetting the viewpoint to a specific start-up
location, like when the end-user has moved around enough to become lost with resp
the model.

Here’s how to set the viewpoint to the stored location, so that you can return to wher
started:

/* get the stored viewpoint from the most recently loaded universe */

WTpq initialview;
WTuniverse_getinitialview(&initialview);

/* move the current viewpoint to the location read in from the model */
WTviewpoint_moveto(WTuniverse_getviewpoints(), &initialview);

See also WTnode_load on and page 4-46 and WTnode_save on page 4-48.
2-16 WorldToolKit Reference Manual

The Universe’s Objects

 You

ks.

cts
d.
WTuniverse_getrootnodes

WTnode *WTuniverse_getrootnodes(
void);

This function returns a pointer to the first root node in the universe’s list of root nodes.
can use WTrootnode_next to iterate through the universe’s list of root nodes.

WTrootnode_next

See WTrootnode_next on page 4-77 for a description.

WTuniverse_getmotionlinks

WTmotionlink *WTuniverse_getmotionlinks(

void);

This function returns a pointer to the first motion link in the universe’s list of motion lin
You can use WTmotionlink_next to iterate through the universe’s list of motion links.

WTmotionlink_next

See WTmotionlink_next on page 15-8 for a description.

WTuniverse_deletelink

void WTuniverse_deletelink(
void *source,

void *target);

This function deletes any motion link connecting the indicated source and target obje
from the universe’s list of motion links. All memory used by the motion link is release
WorldToolKit Reference Manual 2-17

Chapter 2: The Universe

s.
ts.

 style
 style
, then
for the
 on

ring
 the

er

f
Global Rendering Parameters

The functions in this section pertain to WTK rendering parameters and display option
Please consult your Hardware Guide for system-specific information on these subjec

Rendering Options

The rendering style applied to a geometry is a combination of the universe’s rendering
and the geometry’s rendering style. For example, if you set the universe’s rendering
to smooth shaded and textured, but set one geometry’s rendering style to wireframe
all of the objects in the universe will be rendered smooth shaded and textured except
one specified geometry, which is rendered in wireframe mode. For more information
rendering styles for geometries, see page 6-33.

WTuniverse_setrendering

void WTuniverse_setrendering(
FLAG style);

This function specifies the universe’s rendering style. The style argument is a bitmask that
allows you to set several different rendering flags simultaneously. The default rende
style for the universe is lighting enabled, smooth shaded and texturing enabled (i.e.,
style flag is set to WTRENDER_LIGHTING |WTRENDER_SMOOTH |
WTRENDER_TEXTURED).

Note: WTuniverse_setrendering has no effect on a prebuilt geometry, since you cannot
change the rendering style of prebuilt geometry.

The following are valid styles:

WTRENDER_ANTIALIAS Enables anti-aliasing. Note that solid fill
polygon anti-aliasing is only available on
SGI RE systems that have at least two rast
managers. Wireframe anti-aliasing is
available when using the OpenGL version o
WTK (i.e., WTRENDER_ANTIALIAS|
WTRENDER_WIREFRAME).
2-18 WorldToolKit Reference Manual

Rendering Options

,

is

).

s
e

tities

h

 the
t of
WTRENDER_BEST Enables lighting, smooth shading, textures,
perspective texturing, and anti-aliasing (i.e.
WTRENDER_LIGHTING|WTRENDER_
SMOOTH|WTRENDER_TEXTURED|
WTRENDER_PERSPECTIVE|
WTRENDER_ANTIALIAS).

WTRENDER_GOURAUD Enables gouraud shading and lighting (this
an outdated style from WTK 2.1, see note
below).

WTRENDER_LIGHTING Turns on lighting.

WTRENDER_NOSHADE Disables shading, lighting, and texturing.

WTRENDER_PERSPECTIVE Enables perspectively correct texturing.

WTRENDER_SMOOTH Enables smooth shading (gouraud shading

WTRENDER_TEXTURED Enables texturing.

WTRENDER_WIREFRAME Enables wireframe mode. Note that when
WTK renders in wireframe mode, all
texturing and lighting is ignored, and the line
are drawn in a solid color based on the diffus
material components of the vertices.

For example, if the style parameter is set to WTRENDER_WIREFRAME, all of the
geometries in the universe will be rendered as wireframe entities, instead of solid en
(with WTRENDER_WIREFRAME, the only additional rendering option available is
WTRENDER_ANTIALIAS, which causes the wireframe image to be anti-aliased).

Note: WTRENDER_GOURAUD is an outdated WTK 2.1 style that has been replaced wit
WTRENDER_LIGHTING and WTRENDER_SMOOTH.

In many cases you will want to simply change one of the rendering flags while leaving
current set active. For example, if you want to turn texturing off while leaving the res
the currently active rendering flags on, you would do something like this:

FLAG style;
/* get the current rendering flags */
style = WTuniverse_getrendering();

/* now turn off the texturing flag, leaving the rest alone */
style = style & ~(WTRENDER_TEXTURED);
WorldToolKit Reference Manual 2-19

Chapter 2: The Universe

ight
ixels,

and

or
until
tion

el at
 by
/* now pass the modified flag set back to WTK */
WTuniverse_setrendering(style);

WTuniverse_getrendering

FLAG WTuniverse_getrendering(

void);

This function returns the current value of the universe rendering style. See the
WTuniverse_setrendering function above, for possible return values.

Other Global Functions

WTscreen_setyblank

void WTscreen_setyblank(

int distance);

This function allows you to adjust the vertical blanking interval between the left and r
eye images, which are stacked vertically on the display. This interval is measured in p
and appears as a solid bar between the upper and lower images. Use WTscreen_setyblank
for certain hardware platforms when a field-sequential viewing device is being used
you are using the display option WTDISPLAY_CRYSTALEYES.

If you are using one of these devices and experience a rolling vertical sync problem
problem with the vertical alignment of the left and right eye images, adjust this value
the problem disappears. Examine your Hardware Guide for platform-specific informa
about this feature.

It is often useful to be able to interactively adjust the vertical blanking interval one pix
a time, until the correct value is found. Increasing the vertical blanking interval value
one is accomplished by calling:

WTscreen_setyblank(WTscreen_getyblank() + 1);

For more information about creating a display appropriate for CrystalEyes or the
BOOM2C, see your WTK Hardware Guide. See the Sensors chapter for information about
the BOOM (page 13-55) and CrystalEyesVR (page 13-108) as serial port devices.
2-20 WorldToolKit Reference Manual

Other Global Functions

color

. The
WTscreen_getyblank

int WTscreen_getyblank(
void);

This function returns the current value of the screen blanking interval used for field-
sequential devices as described under WTscreen_setyblank. Check your Hardware Guide
to see if your platform supports this feature.

WTuniverse_setbboxrgb

void WTuniverse_setbboxrgb(

float r,
float g,
float b);

This function sets the color of all active bounding boxes in the universe. The default
is white.

WTuniverse_setbgrgb

void WTuniverse_setbgrgb(
unsigned char r,
unsigned char g,

unsigned char b);

This function sets the background color of the universe (0 to 255 are valid rgb values)
default color is blue (0, 0, 255).

WTuniverse_getbgrgb

void WTuniverse_getbgrgb(
unsigned char *r,

unsigned char *g,
unsigned char *b);

This function returns the current background color of the universe.
WorldToolKit Reference Manual 2-21

Chapter 2: The Universe

The

from

y
h that

 the

e last
WTuniverse_setsubfaceoffset

void WTuniverse_setsubfaceoffset(
float val);

This function sets the distance by which a subface is offset from its parent polygon.
default offset value is 0.65, which seems to work well for many models. For more
information, see Subfaces in MultiGen/ModelGen on page 6-7.

Note: The subface offset set through this function is only appicable to models loaded
MultiGen .FLT files.

WTuniverse_getsubfaceoffset

float WTuniverse_getsubfaceoffset(
void);

This function returns the value of the subface offset.

Performance and Timer Functions

For optimizing performance, it is often useful for applications to know how fast the
simulation is running. Although the speed could easily be checked outside of WTK b
making calls to system timer functions, the need for such functions is common enoug
they are provided as part of the WTK library.

When WTuniverse_new is called, the universe clock starts and WTK provides access to
following simulation statistics: simulation time, frame count, and average frame rate.

WTuniverse_time

float WTuniverse_time(

void);

This function returns the number of seconds the simulation has been running since th
time WTuniverse_new or WTuniverse_resettime was called.
2-22 WorldToolKit Reference Manual

Performance and Timer Functions

ently

igit.
in a
WTuniverse_resettime

void WTuniverse_resettime(
void);

This function resets the universe time as if the simulation had just started.

WTuniverse_framecount

int WTuniverse_framecount(

void);

This function returns the number of frames drawn since the last time WTuniverse_new or
WTuniverse_resetframecount was called.

WTuniverse_resetframecount

void WTuniverse_resetframecount(
void);

This function resets the universe frame count as if the simulation had just started.

WTuniverse_framerate

float WTuniverse_framerate(
void);

This function returns the number of frames per second at which the simulation is curr
running. The number returned is actually a running average of the frame rate of the
preceeding 30 frames, in an attempt to stabilize the reading to at least one decimal d
Therefore, you should wait at least 30 frames prior to accessing this function to obta
meaningful result.
WorldToolKit Reference Manual 2-23

Chapter 2: The Universe

ied
pling

calling

ill

e

if
WTuniverse_avgframerate

float WTuniverse_avgframerate(
int samples);

This function returns the number of frames per second, averaged over a user-specif
number of updates. Currently the maximum number of samples is 30. Passing in a sam
value of less than zero or greater than 30 will return -1. Passing in 30 is the same as
WTuniverse_framerate.

Universe Options

WTuniverse_setoption

void WTuniverse_setoption(

int option,
int value);

This function sets certain global parameters. It can be called at any time after
WTuniverse_new has been called. However, for the option to have effect,
WTuniverse_setoption must be called before calling the WTK function that the option w
affect.

The following options, allowed values, and default values (shown in parentheses) ar
currently supported:

WTOPTION_3DSCHGTEXEXT This option pertains only to the reading of 3D
Studio files when a file references a texture
whose name ends in “.gif”, “.tif”, or “.cel”.
These formats are unsupported in WTK, so
WTOPTION_3DSCHGTEXEXT is set to
TRUE, then the texture extension is
automatically changed to “.rgb” for UNIX
platforms or “.tga” for Windows platforms.
Note that “.jpg” extensions are no longer
automatically changed. TRUE/FALSE
(FALSE)
2-24 WorldToolKit Reference Manual

Universe Options

/

t

n

s

o

.
WTOPTION_MGENREADVCOLOR This option reads vertex colors when loading
MultiGen/ModelGen .flt files. (Sometimes
vertex colors are computed and saved out
with .flt files which are not needed when
using the file with another program.) TRUE
FALSE (FALSE)

WTOPTION_NFFWRITE12 This option writes polygon colors out in 12-
bit format rather than 24-bit when NFF files
are written out. (Note that vertex colors are
always written out in 24-bits.) TRUE/FALSE
(FALSE)

WTOPTION_NFFWRITEUV This option writes texture uv information out
(as part of the vertex description) when NFF
files are written out. (See Appendix E, WTK
Neutral File Format, for information about
how uv values are stored in the NFF file.)
TRUE/FALSE (FALSE)

WTOPTION_NFFWRITEV21 This option writes model files out in version
2.1 NFF format. It is only used with
WTobject_save, since there was no
WTgeometry entity in WTK 2.1. When this
option is set to FALSE, the new version 3.0
NFF is used when writing and separate .ma
files are written which contain material
information. TRUE/FALSE (FALSE)

WTOPTION_OLD3DS This option loads 3D Studio files using the
object and texture orientation used in Versio
2.0. TRUE/FALSE (FALSE)

WTOPTION_OLDTEXTROT This option pertains to non-SGI systems
only. In Version 2.1 Beta and earlier release
of WTK on non-SGI platforms,
WTpoly_rotatetexture (and the rot parameter
in the NFF file) rotated the texture opposite t
the direction indicated under
WTpoly_rotatetexture. This was corrected in
Version 2.1. To obtain the previous
(incorrect) behavior, set this option to TRUE
TRUE/FALSE (FALSE)
WorldToolKit Reference Manual 2-25

Chapter 2: The Universe

ct

.
,

n

,
s

e

r
WTOPTION_OLDWFRONT This option loads in Wavefront files using the
object orientation used in Version 2.0.
TRUE/FALSE (FALSE)

WTOPTION_VERTWARN This option produces a warning when
vertices not referenced by a geometry obje
are found and discarded. TRUE/FALSE
(FALSE)

WTOPTION_USEWTPUMP This option pertains to windows applications
If it is FALSE, WTK stops processing events
and it is up to the application to process
events. TRUE/FALSE (TRUE)

WTOPTION_XFORMSCALE This option causes WTK to use the scaling
factors (if any) contained in transform and
movable nodes. Normally, WTK ignores
scaling factors in the transformations
contained in transform and movable nodes
due to some severe side effects. If this optio
is enabled so that scaling factors are
incorporated into WTK’s computations, it is
likely that intersection tests and math
functions pertaining to matrices will operate
incorrectly.

WTOPTION_NOPOSTQUIT This option must be set if you want to
incorporate WTK in a Netscape or ActiveX
plug-in. This option prevents WTK from
automatically shutting down when WTK’s
last rendering window is closed. Since a
Netscape or ActiveX plug-in may require a
WTK window at certain times and not others
you must set this option so that a kill signal i
not sent to your plug-in when WTK is not
active at a particular time.

WTOPTION_NOAUTOALPHA Causes the alpha value of texture elements
(texels) of textures which do not contain
alpha values to be set to 255 (completely
opaque). If this option is not set, texels whos
R, G, and B values are equal to 0, i.e. those
texels which are colored black, will have thei
2-26 WorldToolKit Reference Manual

Universe Options

t)

f

d

f

FF

alpha value set to 0 (completely transparen
while pixels which are not completely black
will have their alpha value set to 255. By
setting this option, you can prevent WTK
from assigning black texels an alpha value o
0. See WTpoly_settexture.

WTOPTION_ NEWMGENREAD This option allows you to select the metho
used to read in MultiGen .flt files. If this
option is set to TRUE, WTK will use
MultiGen’s Read/Write API to read in the .flt
file. By using the MultiGen Read/Write API,
WTK can read in even the newest versions o
.flt files (including v15.x). If this option is set
to FALSE, WTK will use an older reader
which is only capable of reading in .flt files
up to v14.2. For backward compatibility with
WTK R8, set this option to FALSE. Valid
values: TRUE/FALSE (FALSE).

In the following example, the writing out of texture uv information to NFF and binary N
files is enabled:

WTuniverse_setoption(WTOPTION_NFFWRITEUV, TRUE);

WTuniverse_getoption

int WTuniverse_getoption(

int option);

This function returns the value of the specified option. The option parameter can be any of
the following:

WTOPTION_3DSCHGTEXEXT
WTOPTION_MGENREADVCOLOR
WTOPTION_NFFWRITE12
WTOPTION_NFFWRITEUV
WTOPTION_NFFWRITEV21
WTOPTION_OLD3DS
WorldToolKit Reference Manual 2-27

Chapter 2: The Universe

tarts

er

mple,

type:
WTOPTION_OLDTEXTROT
WTOPTION_OLDWFRONT
WTOPTION_VERTWARN
WTOPTION_USEWTPUMP
WTOPTION_XFORMSCALE
WTOPTION_NOPOSTQUIT
WTOPTION_NOAUTOALPHA
WTOPTION_ NEWMGENREAD

If the option parameter is invalid, this function will return -1.

Resource Files

WTK provides the ability to set certain parameters from a file when your application s
up. For example, you can specify background color, viewing angle, window size and
window position this way. On UNIX platforms, you do this with X Resources. For oth
platforms, consult your Hardware Guide.

To use this capability, follow these steps:

1. Add the desired parameters to the appropriate X Resource file.

2. Register those resources with the X Resources Database using xrdb. For exa
if using the .Xdefaults file, when adding new resource values to the file, use:

xrdb -merge ~myuserid/.Xdefaults

To find out what values are currently in your X Resource Database, you can

xrdb -query

3. Call WTinit_defaults before calling WTuniverse_new.

Each of these steps is examined more closely, in the following sections.
2-28 WorldToolKit Reference Manual

The Resource Hierarchy

r

 line,
me.

and
d

 file

llow
hen
The Resource Hierarchy

This is the order in which WTK processes resource files:

1. /usr/lib/X11/app-defaults/Wtk

(except for SUN which uses /usr/openwin/lib/app-defaults/Wtk)

2. $HOME/.Xdefaults

3. File specified by XENVIRONMENT environment variable

4. $HOME/app-defaults/Wtk

5. $HOME/app-defaults/<app-name>

where app-name is the name of the application executable, with its first lette
capitalized. For example, if your application is named Kitchen, then the file
processed is named Kitchen. If the -name option is specified on the command
the next parameter following this option is used instead of the application na

6. Finally, command line arguments used when you run your application will
override X Resource values obtained from any of the above files. Use of comm
line arguments is described below under Specifying Parameters on the Comman
Line on page 2-31.

When resource specifications are made in more than one of the files above, the last
processed takes precedence over previously processed files.

The resource database “class” chosen for WTK resources is Wtk while the “name” is wtk.

Choosing an Appropriate Resource File

It is recommended that you create files in the application defaults directory that will a
different resource definitions for different applications. If you use the .Xdefaults file, t
it is recommended that you use the Wtk class instead of the wtk name.
WorldToolKit Reference Manual 2-29

Chapter 2: The Universe

:

WTK Parameters Specified in a Resource File

The following table describes the WTK parameters specified in a resource file, and
indicates which parameters take boolean values (TRUE or FALSE):

HOW TO SPECIFY THESE PARAMETERS

The following examples show how to specify these parameters in an X Resource file

Parameter Boolean Values
(i.e., TRUE/FALSE)

Description

bgcolor Universe background color (default: 0x0000ff)

ambient Ambient light intensity (default: 0.4)

ambientrgb Ambient light color (default: 0xffffff)

geometry Window size and placement (default: system-
dependent)

fov Total horizontal view angle, in degrees (default: 80.0)

hither Hither clipping value (default: 1.0)

yon Yon clipping value (default: system-dependent)

border X Whether initial windows have a border (default: TRUE)

coplanar X Whether coplanarity testing is on when models are
loaded (default: TRUE)

write12 X Write out NFF files using 12-bit polygon color (default:
FALSE)

writeuv X Write out NFF using texture uv coordinate values,
rather than texture rotation, translation, scale, and
mirror values
(default: FALSE)

old3ds X 3D Studio objects and textures load in as they did in
Version 2.0 (upside down) (default: FALSE)

oldwfront X Wavefront objects load in as they did in Version 2.0
(default: FALSE)
2-30 WorldToolKit Reference Manual

WTK Parameters Specified in a Resource File

 is

d line

e of

 be
Wtk.fov: 40 /* specifies a default field of view of 40 degrees */

Wtk.coplanar: True /* enables coplanarity testing */

Wtk.border: False /* does not display window border */

Wtk.writeuv: True /* Enables writing of uv values in nff files */

Wtk.write12: True /* Enables write of 12-bit color value in nff */

Wtk.geometry: 640x480+0-0 /* places a 640 by 480 window in bottom-left

corner of screen */

Wtk.bgcolor: 0xff0000 /* specifies a red background color */

Wtk.ambient: 0.5 /* specifies an ambient intensity of 0.5 */

Wtk.hither: 2.0 /* specifies a default hither value of 2.0 */

Wtk.screen: 1 /* specifies default screen to be screen # 1 */

Wtk.ambientrgb: 0x0000ff /* specifies an ambient color of blue */

Note: Do not place the comments in the above examples into the resource file. To put
comments into a resource file, begin a line with an exclamation mark “!”— the line
then considered to be a comment.

SPECIFYING PARAMETERS ON THE COMMAND LINE

In addition to the values specified in the resource files, you can also use the comman
to specify the display and the resource file (using the name option). For example:

 wtk -fov 60 -border -hither 2.0 -name xyz

This runs the WTK application with an fov of 60 degrees, no border, and a hither valu
2.0, using the resource file $HOME/app-defaults/xyz instead of $HOME/app-defaults/Wtk.

Note: When specifying parameters on the command line, the full resource name must
used. WTK does not support abbreviations.
WorldToolKit Reference Manual 2-31

Chapter 2: The Universe

tes
Telling WTK to Use Resource Information

To have WTK use the resource information, simply call WTinit_defaults before calling
WTuniverse_new. Make this call before the call to scan_args in the demos since it removes
the X resource arguments.

To use the WTK’s support for X Resources, you must call WTinit_defaults before calling
WTuniverse_new.

For example:

int main(int argc, char **argv)

{
/* initialize WTK application defaults. NOTE the use of “&” before argc */
WTinit_defaults(&argc, argv);

/* Call scan args fn for this demo */
scan_args(argc, argv);

/* Now call WTuniverse_new */

WTuniverse_new(WT......, WT......);

/**/
}

/* scan_args fn, for example, as provided in many WTK demo programs. */
void scan_args(int argc, char **argv)
{

/* */
}

WTinit_defaults

FLAG WTinit_defaults(

int *argc,
char **argv);

This function creates an X Resource database that overrides WTuniverse structure values
(UNIX only). Given an X display and the command line arguments, this function crea
2-32 WorldToolKit Reference Manual

Telling WTK to Use Resource Information

ll

to

 in
h.

 in
This
.
nt
an X Resource Database, then looks through it for program option values. Usually, a
option values modify information in the WTuniverse structure. Thus, X Resources
processed here override WTuniverse structure values set via function calls in the main
application before calling this function. Precedence for default option values (lowest
highest) is as follows:

1. Function calls in the main application before calls to this function.

2. X Resources set from resource file.

3. Command line arguments.

WTinit_setmodels

void WTinit_setmodels(
const char *paths);

This function sets the path to the models directories, so that WTK functions that read
geometry, light and/or sound files will search for the file in the specified directory pat
This function is an embeddable alternative to using the WTMODELS environment
variable. Refer to your system-specific Hardware Guide for more information about
environment variables.

WTinit_setimages

void WTinit_setimages(

const char *paths);

This function sets the path to the images directories, so that WTK functions that read
image, texture, and/or bitmap files will search for the file in the specified diretory path.
function is an embeddable alternative to using the WTIMAGES environment variable
Refer to your system-specific Hardware Guide for more information about environme
variables.
WorldToolKit Reference Manual 2-33

Chapter 2: The Universe

more
have

n from
ifferent

age

 quad-

then
es are
w’.
ince

reen

not,

he
 as
Modes of Stereoscopic Viewing

Depending on the graphics hardware installed in your computer, you may find one or
of the following methods useful to generate a stereo image. You may find it helpful to
at hand the vendor’s manual that describes your hardware.

To display a stereoscopic effect, the software must render two images – one as see
the left eye, and the second as seen from the right eye. There are essentially three d
ways in which these two images can be displayed:

• Render the full images of both eyes into one single window.

• Divide the display into two along a horizontal axis and render the left eye im
in the top part of the display and the right eye image in the bottom part of the
display.

• Interleave the left and right eye images as alternate scan lines on a display.

These three stereoscopic methods are described below in more detail.

Field Sequential Mode

This is also known as quad-buffering, since it requires the graphics hardware to have
buffers – left, right, front and back buffers. This means it has sufficient memory and
performance capabilities to render two full views (the left and right eye images) and
swap the images at 120Hz to generate a field sequential view at 60Hz. Both the imag
thus drawn onto a single display, which is why this mode is called ‘stereo in a windo
The monitor should be capable of supporting a 120Hz update frequency. However, s
this mode uses twice as much frame buffer memory, you may have to lower your sc
resolution.

You can turn on this option by passing in WTDISPLAY_DEFAULT and
WTWINDOW_STEREO as arguments to the WTuniverse_new call. WTK will determine
whether your graphics hardware is indeed capable of supporting this mode. If it is
supported, a single window will be created into which both eye views will be drawn. If
WTK will default to the Over/Under Mode as described in the next section.

This mode requires the graphics hardware to have an emitter signal to synchronize t
swapping with the LCD displays. This mode will work with most LCD shutter systems
2-34 WorldToolKit Reference Manual

Over/Under Mode

ity to

n and
st SGI

about
fers),

 and

er, if
dapter
 is set
ideo
ages

 as

our

cause
m
long as the emitter signal is compatible. Your graphics card should have the capabil
plug in an emitter box that sends the sync signal.

The advantages of using this mode are:

• you obtain stereo in a window

• there is no loss of vertical resolution

• if you are using any GUI, there is no distortion

The stereoscopic hardware known to support this mode are Stereographics, NuVisio
most LCD shutter systems. The graphics hardware Intergraph Z13/Z25 as well as mo
and SUN systems support this mode.

Over/Under Mode

This is another form of the field sequential mode and hence there is some confusion
the terms used. If the graphics board is incapable of supporting quad-buffers (four buf
the display is divided into two parts along the horizontal axis, to have two borderless
viewports within one borderless window. The left eye image is drawn into the top half
the bottom eye image is drawn into the bottom half.

This mode also requires a monitor that supports a 120Hz update frequency. Moreov
the graphics board is incapable of generating a 120Hz vertical sync signal, a special a
box is used to double the vertical frequency to 120Hz (in this case the graphics board
to 60Hz vertical sync). This adapter box is called a vertical sync doubling box. The v
signal is passed through this box before it is fed to the monitor. The top and bottom im
are merged into one by the adapter box.

You can force this option to be activated by using the WTWINDOW_STEREOVSPLIT
the window configuration flag in the call to WTuniverse_new. When you use this flag, you
are forcing a vertical split in the display to generate the over/under images, even if y
system is capable of supporting stereo in a window.

This mode works with any graphics system. The Diamond 4000 is a special case be
Evans & Sutherland has provided the ability to generate the 120Hz vertical signal fro
their graphics board. You don't need the sync doubling box in this case.
WorldToolKit Reference Manual 2-35

Chapter 2: The Universe

n and

 in a
can
 to the
ese

ant

ct
rnating

ses!,

graph
The stereoscopic hardware known to support this mode are Stereographics, NuVisio
most LCD shutter systems.

Interlaced Mode

The interlaced mode interleaves the left and right eye images as alternate scan lines
single window. All the even scan lines belong to the left eye image and all the odd s
lines belong to the right eye image (or vice-versa). There are two distinct approaches
interlaced mode – stencil interlaced and hardware interlaced. WTK supports both th
approaches.

STENCIL INTERLACED

This is a method for supporting interlaced displays through stencils. However, your
graphics board must support stencils for this to work. You must inform WTK that you w
to use the hardware stencils via the display option WTDISPLAY_NEEDSTENCIL.

You may use the window options WTWINDOW_INTERLACEEVENODD (or
WTWINDOW_INTERLACEODDEVEN) to inform WTK to draw the left and right eye
images as even and odd scan lines respectively (or vice-versa).

The advantages to this mode are

• you obtain stereo in a window

• it supports many different LCD glasses

• it works with a 60Hz monitor (and graphics board).

However, not all graphics boards support stencils. There is also a performance impa
because of the use of stencils and the vertical resolution is halved because of the alte
scan lines.

The stereoscopic hardware known to support this mode are VREX, Virtual i-O i-glas
and many cheap LCD solutions.

The graphics hardware known to support this mode are the Diamond 4000, the Inter
Z25, 3D Labs’ GLiNT TX/MX designs, most SGI systems and some SUN systems.
2-36 WorldToolKit Reference Manual

Interlaced Mode

ports
d"

 these
ese

z. The

is

g
ices

 are
3/
HARDWARE INTERLACED

This mode of interlaced display is controlled entirely by the hardware. Intergraph sup
two methods of hardware-interlacing their displays. Their modes are called "Interlace
and "Hardware Interlaced". You can select these from the driver settings. Support for
modes have varied with versions of Intergraph drivers. The latest versions support th
modes.

The "Interlaced" mode forces the hardware to generate an interlaced display at 120H
main reason for doing this is to support the 120Hz display devices.

The stereoscopic hardware known to support Intergraph’s interlaced mode are
Stereographics, and 120Hz LCD shutters. The Intergraph Z13/Z25 boards support th
mode.

The "Hardware Interlaced" mode lets you set the vertical sync frequency to somethin
other than 120Hz. This is necessary in order to work with 60Hz interlaced stereo dev
like VREX and Virtual i-O i-glasses!.

The stereoscopic hardware known to support Intergraph’s hardware interlaced mode
VREX, Virtual i-O i-glasses!, and 60Hz interlaced devices. The Intergraph GLZ1T/Z1
Z25 boards support this mode.
WorldToolKit Reference Manual 2-37

Chapter 2: The Universe
2-38 WorldToolKit Reference Manual

t/
ing

,

ata.
 each

erty
se

ith
tact

TK
ibed in
t
cribed
3
Object/Property/Event Architecture

Overview

WorldToolKit (WTK) Release 8 has been enhanced through the addition of an Objec
Property/Event (OPE) architecture. This new architecture provides you with the follow
capabilities:

• Treat most WTK object types as generic (or base) objects, which can all be stored
manipulated, and retrieved in a uniform manner using certain WTbase_*
functions. (See page 3-2 for a list of WTK object types supported by the new
architecture.)

• Create your own properties for objects, in which to easily store user-defined d
This provides a convenient alternative to the setdata and getdata functions for
object type.

• Trigger reactions to property changes for both user-defined and pre-defined
properties (see page 3-3 for a list of the WTK pre-defined properties.). A prop
change is known as an event, and the optional reaction that is triggered in respon
to an event is controlled by the property’s event handler(s).

• Share properties, allowing you to create multi-user simulations to be used w
Sense8’s World2World product. If you have not purchased World2World, con
Sense8 to learn more about this client/server networking solution.

The OPE architecture can simplify many of the programming tasks encountered by W
programmers and represents an alternative programming paradigm to the one descr
the WorldToolKit Reference Manual. If you are developing multi-user simulations tha
connect to Sense8’s World2World servers, use the OPE programming paradigm des
here. Otherwise, you can use either programming paradigm.

Chapter 3: Object/Property/Event Architecture

re

vent-

s a

t type
metry
stics
bject

orted
For new WTK applications, we recommend that you make use of the OPE architectu
programming paradigm, for the following reasons.

• It is easier to associate user-defined data with objects.

• The event-based architecture corresponds more closely with other modern e
based programming paradigms.

• Should you decide to extend your simulation to be used with World2World a
multi-user simulation, you will save development time if the application has
already been written using the OPE paradigm.

Supported Types and Supplied Properties

The OPE architecture supports the following WTK object types:

• WTnode

• WTviewpoint

• WTwindow

• WTsensor

• WTpath

• WTbase

Note: WTbase is a new object type that you can use to create generic, empty objects
distinguished only by the properties that you add to them. Use the WTbase objec
when you want to create properties for unsupported object types (such as WTgeo
or WTpoly), or when you want to create an object that does not suit the characteri
of any of the WTK supplied object types. For more information on the WTbase o
type, see page 3-7.

The tables below list the pre-defined properties supplied by WTK for each of the supp
object types.
3-2 WorldToolKit Reference Manual

WTnode Properties
WTnode Properties

WTnode Properties Data Type

WTANCHOR_LOCATION WTSTRING

WTFOG_COLOR WTQ (R,G,B,A)

WTFOG_LINEARSTART WTFLOAT

WTFOG_MODE WTINT

WTFOG_RANGE WTFLOAT

WTINLINE_LOCATION WTSTRING

WTLIGHT_AMBIENT WTP3

WTLIGHT_ANGLE WTFLOAT

WTLIGHT_ATTENUATION WTP3

WTLIGHT_DIFFUSE WTP3

WTLIGHT_DIRECTION WTP3

WTLIGHT_EXPONENT WTFLOAT

WTLIGHT_INTENSITY WTFLOAT

WTLIGHT_POSITION WTP3

WTLIGHT_SPECULAR WTP3

WTLOD_CENTER WTP3

WTLOD_RANGE WTSTRING (form of "range;range;range")

WTMOVNODE_ATTACHMENTS WTSTRING (form of "name;name;name")

WTNODE_BOUNDINGBOX WTINT

WTNODE_CHILDREN WTSTRING (form of "name;name;name")

WTNODE_ENABLED WTINT

WTNODE_ROTATION WTQ

WTNODE_TRANSLATION WTP3
WorldToolKit Reference Manual 3-3

Chapter 3: Object/Property/Event Architecture
WTviewpoint Properties

WTwindow Properties

WTSEP_CULLMODE WTINT

WTSWITCH_WHICHCHILD WTINT

WTviewpoint Properties Data Type

WTVIEWPOINT_ASPECT WTFLOAT

WTVIEWPOINT_CONVDISTANCE WTFLOAT

WTVIEWPOINT_CONVERGENCE WTINT

WTVIEWPOINT_ORIENTATION WTQ

WTVIEWPOINT_PARALLAX WTFLOAT

WTVIEWPOINT_POSITION WTP3

WTwindow Properties Data Type

WTWINDOW_BGRGB WTP3

WTWINDOW_BOTTOMRIGHT WTP2

WTWINDOW_ENABLED WTINT

WTWINDOW_EYE WTINT

WTWINDOW_HITHER WTFLOAT

WTWINDOW_KEY WTINT

WTWINDOW_LBUTTON WTINT (1=down, 0=up)

WTWINDOW_LBUTTONDBLCLK WTINT

WTnode Properties Data Type
3-4 WorldToolKit Reference Manual

WTsensor Properties
WTsensor Properties

WTWINDOW_RBUTTON WTINT (1=down, 0=up)

WTWINDOW_RBUTTONDBLCLK WTINT

WTWINDOW_MBUTTON WTINT (1=down, 0=up)

WTWINDOW_MBUTTONDBLCLK WTINT

WTWINDOW_POSITION WTP2

WTWINDOW_PROJECTION WTINT

WTWINDOW_ROOTNODE WTSTRING

WTWINDOW_SIZE WTP2

WTWINDOW_TOPLEFT WTP2

WTWINDOW_VIEWANGLE WTFLOAT

WTWINDOW_VIEWPOINT WTSTRING

WTWINDOW_VIEWPOINT2 WTSTRING

WTWINDOW_YON WTFLOAT

WTsensor Properties Data Type

WTSENSOR_ANGULARRATE WTFLOAT

WTSENSOR_LASTROTATION WTQ

WTSENSOR_LASTTRANSLATION WTP3

WTSENSOR_MISCDATA WTINT

WTSENSOR_RAWDATA WTPOINTER

WTSENSOR_ROTATION WTQ

WTSENSOR_ROTATIONALOFFSET WTQ

WTwindow Properties Data Type
WorldToolKit Reference Manual 3-5

Chapter 3: Object/Property/Event Architecture
WTpath Properties

WTSENSOR_SENSITIVITY WTFLOAT

WTSENSOR_TRANSLATION WTP3

WTSENSOR_UPDATEFN WTPOINTER

WTpath Properties Data Type

WTPATH_CONSTRAINTS WTINT

WTPATH_DIRECTION WTINT

WTPATH_MARKER WTPOINTER)

WTPATH_MODE WTINT

WTPATH_PLAYING WTINT

WTPATH_PLAYSPEED WTINT

WTPATH_ROTATION WTQ

WTPATH_RECORDING WTINT

WTPATH_RECORDLINK WTPOINTER

WTPATH_SAMPLES WTINT

WTPATH_TRANSLATION WTP3

WTPATH_VISIBILITY WTINT

WTsensor Properties Data Type
3-6 WorldToolKit Reference Manual

WTbase Objects and Functions

mpty
bject
Tbase

share
ypes
 not

present

bject
dd a

t

e

orld

in a

e page
ll as
WTbase Objects and Functions

The addition of the WTbase object type with Release 8 allows you to create generic, e
objects, distinguished only by the properties that you add to them. Just like the other o
types supported by the OPE architecture (see page 3-2), you can add properties to W
objects, add event handlers to those properties to react to their value changes, and
those properties across the network when using World2World servers. WTK object t
that are not supported by the OPE paradigm cannot contain properties and, thus, do
generate events or allow for the sharing of data over a network. To extend the OPE
paradigm, create WTbase objects and user-defined properties (see page 3-14) to re
the desired attributes of the unsupported objects.

Suppose you have a texture applied to a geometry, and each time the texture on the
geometry changes, you want to intensify one of your lights. Since the WTgeometry o
type is not supported by the OPE architecture, you would create a WTbase object, a
Texture property to that object (see WTproperty_new on page 3-15), and add an event
handler (see WTproperty_addhandler on page 3-25) to the Texture property. In the even
handler, you would call WTgeometry_settexture to modify the actual geometry, followed
by a call to WTlightnode_setintensity. Remember to always modify the geometry’s textur
via the WTbase object in order to trigger the property change event. By using this
technique, you can share the Texture property with other clients when using World2W
servers.

You can arrange WTbase objects in a hierarchy so that user data can be organized
coherent fashion.

WTbase Functions for WTbase Objects

This section describes the WTbase functions that operate on WTbase objects only. Se
3-10 for information on the WTbase functions that operate on WTbase objects as we
other object types supported by the OPE architecture.
WorldToolKit Reference Manual 3-7

Chapter 3: Object/Property/Event Architecture

ase

. Use
 of

 any
se
WTuniverse_getbases

WTbase* WTuniverse_getbases(
void);

This function returns a pointer to the first WTbase object in the universe’s list of WTb
objects.

WTbase_next

WTbase* WTbase_next(

WTbase *object);

This function returns the next WTbase object in the universe’s list of WTbase objects
WTuniverse_getbases to obtain a pointer to the first WTbase object in the universe’s list
WTbase objects.

WTbase_new

WTbase* WTbase_new(
WTbase *parent);

This function creates a new WTbase object as a child of parent and returns a pointer to it.
If parent is NULL, the WTbase object will be created as an orphan, i.e. it will not have
parent(s) unless WTbase_addparent is used to add a parent to the newly created WTba
object. This new WTbase object is added to the universe’s list of WTbase objects.

WTbase_addparent

void WTbase_addparent(
WTbase *object
WTbase *parent);

This function adds the specified parent WTbase object as a new parent of object.
3-8 WorldToolKit Reference Manual

WTbase Functions for WTbase Objects
WTbase_removeparent

void WTbase_removeparent(
WTbase *object
WTbase *parent);

This function removes the specified parent WTbase object as a parent of object so that the
object WTbase object is no longer a child of parent.

WTbase_numparents

int WTbase_numparents(
WTbase *object);

This function returns the number of parents of the specified WTbase object.

WTbase_getparent

WTbase* WTbase_getparent(

WTbase *object
int parentnum);

This function returns a pointer to the parentnum’th parent of a WTbase object. parentnum
can range from 0 to (WTbase_numparents - 1).

WTbase_numchildren

int WTbase_numchildren(

WTbase *object);

This function returns the number of children of the specified WTbase object.
WorldToolKit Reference Manual 3-9

Chapter 3: Object/Property/Event Architecture

f the

mber
th the
vides
ata.

of the
ame
WTbase_getchild

WTbase* WTbase_getchild(
WTbase *object
int childnum);

This function returns a pointer to the childnum’th child of the specified WTbase object.
childnum can range from 0 to (WTbase_numchildren - 1).

WTbase_ischild

FLAG WTbase_ischild(
WTbase *parent
WTbase *child);

This function returns TRUE if child is a first generation child of parent.

WTbase_findchild

WTbase* WTbase_findchild(
WTbase *object
const char *name);

This function returns a pointer to the WTbase object which is a first generation child o
specified WTbase object and whose name matches the name parameter.

WTbase Functions for the Supported WTK Object Types

In addition to the WTbase_* functions described in the previous section, there are a nu
of additional WTbase_* functions that can be used with WTbase objects as well as wi
other WTK object types supported by the OPE architecture (see page 3-2). This pro
WTK programmers a uniform way to store, manipulate, and retrieve user and WTK d

By using these WTbase functions, WTK applications can now generically access any
supported WTK objects and their properties. So, for example, if you wish to set the n
of a WTnode object, you can use either the WTnode_setname function or the
WTbase_setname function on the WTnode object.
3-10 WorldToolKit Reference Manual

WTbase Functions for the Supported WTK Object Types
WTbase_gettype

int WTbase_gettype(
void *object);

This function returns the type of the object passed in (WTBASE, WTNODE,
WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH).

WTbase_delete

void WTbase_delete(

void *object);

This function deletes an object.

WTbase_print

void WTbase_print(
void *object);

This function prints information about an object.

WTbase_setdata

void WTbase_setdata(
void *object
void *data);

This function sets the user-defined data field in an object.

WTbase_getdata

void* WTbase_getdata(
void *object);

This function returns the user-defined data field from an object.
WorldToolKit Reference Manual 3-11

Chapter 3: Object/Property/Event Architecture
WTbase_setname

void WTbase_setname(
void *object
const char *name);

This function sets the name of an object.

WTbase_getname

char* WTbase_getname(
void *object);

This function returns the name of an object.

WTbase_numproperties

int WTbase_numproperties(

void *object);

This function returns the number of properties associated with an object.

WTbase_getproperty

char* WTbase_getproperty(
void *objecty

int propnum);

This function returns the propnum’th property of the specified object. propnum can range
from 0 to (WTbase_numproperties - 1). To get the value of the property, use
WTproperty_get (see page 3-20).
3-12 WorldToolKit Reference Manual

WTbase Functions for the Supported WTK Object Types

rst
WTbase_nfindproperty

char* Wtbase_nfindproperty(
void *object
const char *propname

int ntocmp);

This function returns the full property name of the first property of an object whose fi
ntocmp characters of the property name match the first ntocmp characters of propname.

WTbase_deleteproperties

FLAG WTbase_deleteproperties(
void *object);

This function deletes all user-defined properties from the specified object.

WTbase_find

void* WTbase_find(
int objtype
const char *name);

This function finds an object of the specified objtype by name. objtype can be WTBASE,
WTNODE, WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH.

WTbase_nfind

void* WTbase_nfind(
int objtype
const char *name

int ntocmp);

This function finds an object of the specified objtype whose name’s first ntocmp characters
matches the first ntocmp characters of name. objtype can be WTBASE, WTNODE,
WTWINDOW, WTVIEWPOINT, WTSENSOR, or WTPATH.
WorldToolKit Reference Manual 3-13

Chapter 3: Object/Property/Event Architecture

 from

 pre-

es can
ata in
ts) can
 WTK
alls

K

n
perty
 types
Properties

Objects that are supported by the OPE architecture (see page 3-2) are distinguished
one another by their properties. Properties describe characteristics of an object. For
example, WTviewpoint objects (as shown in the table on page 3-2) have the following
defined properties:

WTVIEWPOINT_ASPECT

WTVIEWPOINT_CONVDISTANCE

WTVIEWPOINT_CONVERGENCE

WTVIEWPOINT_ORIENTATION

WTVIEWPOINT_PARALLAX

WTVIEWPOINT_POSITION

One of the advantages of the OPE architecture is that additional user-defined properti
be added to an object of any of the supported types. This allows WTK to treat user d
a similar fashion to pre-defined properties. Consequently, changes to user data (even
now trigger reactions to those changes and can be shared on the network. Note that
still allows user data to be associated with WTK objects through their ‘data’ field via c
to functions such as WTviewpoint_setdata and WTviewpoint_getdata. However, you cannot
trigger event reactions or share data across the network for data associated with WT
objects in this manner.

Properties are specified by their property name. Each property’s name (within a give
object) must be unique. That is, no two properties of an object can have identical pro
names. Each property is of a specific data type. The table below lists the property data
available in WTK.

WTdatatype Actual data Range WTProperty_getasstring

WTINT int –2,147,483,648 to
2,147,483,647

"10"

WTUINT unsigned int 0 to 4,294,967,295 “100003223"

WTFLOAT float 3.4E +/- 38 (7 digits) "10.25"

WTDOUBLE double 1.7E +/- 308 (15 digits) "1034.2342342343424"
3-14 WorldToolKit Reference Manual

Properties

te that
sage
Following are the functions that allow you to create, access, and delete properties. No
some of the functions listed below take values of type ‘void *’ as a parameter and its u
is dependent upon the property’s data type. See the examples shown for WTproperty_set on
page 3-17 and WTproperty_get on page 3-20 for clarification.

WTproperty_new

FLAG WTproperty_new(

void *object
const char *propname
WTdatatype dtype);

This function creates a new user-defined property whose name is propname and whose data
type is dtype for the specified object.

WTproperty_delete

FLAG WTproperty_delete(
void *object
const char *propname);

This function deletes the user-defined property whose name is propname from a specified
object.

WTP2 float [2] 3.4E +/- 38 (7 digits) "1.0,2.0"

WTP3 float [3] 3.4E +/- 38 (7 digits) "1.0,2.0,3.0"

WTQ float [4] 3.4E +/- 38 (7 digits) "0.0,0.0,0.0,1.0"

WTSTRING char* – "this is a string value"

WTPOINTER void* – "0x00000000"

WTdatatype Actual data Range WTProperty_getasstring
WorldToolKit Reference Manual 3-15

Chapter 3: Object/Property/Event Architecture
WTproperty_exists

FLAG WTproperty_exists(
void *object
const char *propname);

This function returns TRUE if the property whose name is propname exists on a specified
object.

WTproperty_setdata

void WTproperty_setdata(
void *object
const char *propname

void *data);

This function sets the user-defined data field for a property.

WTproperty_getdata

void* WTproperty_getdata(
void *object

const char *propname);

This function returns the user-defined data field for a property.

WTproperty_getdatatype

WTdatatype WTproperty_getdatatype(
void *object

const char *propname);

This function returns the datatype of the specified object’s propname property.
3-16 WorldToolKit Reference Manual

Properties
WTproperty_getsizeofdata

unsigned int WTproperty_getsizeofdata(
void *object
const char *propname);

This function returns the number of bytes used by the specified object’s propname property
value.

WTproperty_set

FLAG WTproperty_set(
void *object
const char *propname

void *value);

This function sets the specified object’s propname property’s value to value.

Usage of WTproperty_set:

WTINT int v = 10; WTproperty_set(o, p, (void*)(&v));

WTUINT unsigned int v = 23423452345; WTproperty_set(o, p, (void*)(&v));

WTFLOAT float v = 2314.2134f; WTproperty_set(o, p, (void*)(&v));

WTDOUBLE double v = 234234.234234234; WTproperty_set(o, p, (void*)(&v));

WTP2 WTp2 v = {0.0f, 1.0f}; WTproperty_set(o, p, (void*)v);

WTP3 WTp3 v = {0.0f, 1.0f, 0.0f}; WTproperty_set(o, p, (void*)v);

WTQ WTq v = {0.0f, 0.0f, 0.0f, 1.0f}; WTproperty_set(o, p, (void*)v);

WTSTRING char v[] = "Test message"; WTproperty_set(o, p, (void*)v);

WTPOINTER void *v =
WTuniverse_getrootnodes();

WTproperty_set(o, p, v);
WorldToolKit Reference Manual 3-17

Chapter 3: Object/Property/Event Architecture
Alternatively, you could use the following type-specific WTproperty_set functions:

WTproperty_seti

FLAG WTproperty_seti(

void *object
const char *propname
int value);

WTproperty_setui

FLAG WTproperty_setui(

void *object
const char *propname
unsigned int value);

WTproperty_setf

FLAG WTproperty_setf(

void *object
const char *propname
float value);

WTproperty_setd

FLAG WTproperty_setd(

void *object
const char *propname
double value);

WTproperty_setp2

FLAG WTproperty_setp2(

void *object
const char *propname
WTp2 value);
3-18 WorldToolKit Reference Manual

Properties

ee
WTproperty_setp3

FLAG WTproperty_setp3(

void *object
const char *propname
WTp3 value);

WTproperty_setq

FLAG WTproperty_setq(

void *object
const char *propname
WTq value);

WTproperty_sets

FLAG WTproperty_sets(

void *object
const char *propname
const char *value);

WTproperty_setp

FLAG WTproperty_setp(

void *object
const char *propname
void *value);

WTproperty_setat

FLAG WTproperty_setat(
void *object
const char *propname

void *value
double time);

This function sets the specified object’s propname property’s value to value at a specified
time. For more information on time values, see page 3-27. For examples of usage, s
WTproperty_set on page 3-17.
WorldToolKit Reference Manual 3-19

Chapter 3: Object/Property/Event Architecture

erty
ly
ng
WTproperty_get

FLAG WTproperty_get(
void *object
const char *propname

void *value);

This function retrieves the specified object’s propname property value.

Usage of WTproperty_get:

Note: The char* result of a WTproperty_get or WTproperty_gets on a WTSTRING prop
is a pointer to the actual string stored in WTK. DO NOT modify this string direct
with calls to WTfree, WTrealloc, strcat, strcpy, etc. If you need to modify the stri
value, make a local copy of the string before modifying it.

For example:

 {
 char *value;

 char *newvalue;
 value = WTproperty_gets(obj, "myprop");
 newvalue = WTmalloc(strlen(value)+strlen("addtostring")+1);

 strcpy(newvalue, value);

WTINT int v; WTproperty_get(o, p, (void*)(&v));

WTUINT unsigned int v; WTproperty_get(o, p, (void*)(&v));

WTFLOAT float v; WTproperty_get(o, p, (void*)(&v));

WTDOUBLE double v; WTproperty_get(o, p, (void*)(&v));

WTP2 WTp2 v; WTproperty_get(o, p, (void*)v);

WTP3 WTp3; WTproperty_get(o, p, (void*)v);

WTQ WTq v; WTproperty_get(o, p, (void*)v);

WTSTRING char *v; WTproperty_get(o, p, (void*)(&v));

WTPOINTER void *v; WTproperty_get(o, p, (void*)(&v));
3-20 WorldToolKit Reference Manual

Properties

 strcat(newvalue, "addtostring");
 WTproperty_sets(obj, "myprop", newvalue);
 WTfree(newvalue);

 }

As an alternative to the WTproperty_get function, you could use the following type-specific
functions:

WTproperty_geti

int WTproperty_geti(
void *object
const char *propname);

WTproperty_getui

unsigned int WTproperty_getui(

void *object
const char *propname);

WTproperty_getf

float WTproperty_getf(
void *object

const char *propname);

WTproperty_getd

double WTproperty_getd(
void *object
const char *propname);

WTproperty_getp2

FLAG WTproperty_getp2(

void *object
const char *propname
WTp2 value);
WorldToolKit Reference Manual 3-21

Chapter 3: Object/Property/Event Architecture

WTproperty_getp3

FLAG WTproperty_getp3(

void *object
const char *propname
WTp3 value);

WTproperty_getq

FLAG WTproperty_getq(

void *object
const char *propname
WTq value);

WTproperty_gets

char* WTproperty_gets(

void *object
const char *propname);

Note: See page 3-20 for special information on the usage of WTSTRING properties.

WTproperty_getp

void* WTproperty_getp(

void *object);

WTproperty_getasstring

char* WTproperty_getasstring(
void *object

const char *propname);

This function returns the specified object’s propname property value as a string. (Strings
returned are only good until another call to WTproperty_getasstring is executed).
3-22 WorldToolKit Reference Manual

Events

d

ge due

rated

ion

nt, the
rated,

e of

ned
h

 the
WTvalue_tostring

char* WTvalue_tostring(
WTdatatype dtype
void *value);

This function returns the data value of type dtype as a string. (Strings returned are only goo
until another call to WTvalue_tostring is executed).

Events

Events occur when the value of a property changes. The value of a property can chan
to a property being set with a call to WTproperty_set or via typical WTK calls such as
WTnode_settranslation, WTviewpoint_setposition, etc., or through internal processes like
motion link updates.

These value changes can be acted on by adding any number of event handlers (callback
functions) to the property. When a property value changes, an event is internally gene
which will trigger the execution of that property’s event handlers in the main WTK
simulation loop, right before the universe’s actions function is called. If WTK’s simulat
loop is not active (that is, if your application has not called WTuniverse_go or
WTuniverse_go1), a call to WTuniverse_processevents will execute the handlers.

The event handler is given a pointer to the object, the property that generated the eve
new value of the property, the source from which the property change event was gene
and the time the event was generated. The object pointer points to an object of one of the
object types supported by the OPE architecture (see page 3-2). To find out what typ
object it is, use WTbase_gettype (see page 3-11). The propname passed to the event
handler is the name of the property that generated the event (this is either a pre-defi
WTK property like WTNODE_TRANSLATION or a user-defined property created wit
WTproperty_new).

The value argument contains the new value of the property. The value is passed into
function as a void* and must be treated differently depending on the datatype of the
property. To find out what datatype the property is, call WTproperty_getdatatype (see page
3-16). The table below describes how to treat this void* for each datatype.
WorldToolKit Reference Manual 3-23

Chapter 3: Object/Property/Event Architecture

rom

s, is
ts are
Property change events can be triggered from several event sources. WTLOCAL events are
events that originate from the local computer, while WTNETWORK events originate f
another computer on the network involved in a World2World simulation.
WTLOCAL_TIMER and WTNETWORK_TIMER events can occur due to property
changes that result from a call to WTproperty_setat (see page 3-19).

The time argument, which is passed to a connection callback for networked simulation
the time at which the property changed. This may not be the current time, since even
queued and executed at different times.

An event handler callback function takes the form:

void WTeventhandler(

void *object, object which generates the event

const char *propname, property whose value has changed

void *value, new value of the property

double time, time of the change

WTeventsource src); source of the change (WTLOCAL, WTNETWORK, etc.)

Treat the value parameter which is of type ‘void *’ as follows:

‘void *value’ Cast to Usage

WTINT int *value printf("Value: %d\n", *((int*)value));

WTUINT unsigned int *value printf("Value: %u\n", *((unsigned int*)value));

WTFLOAT float *value printf("Value: %f\n", *((float*)value));

WTDOUBLE double *value printf("Value: %f\n", *((double*)value));

WTP2 float *value printf("Value: X=%f\n", ((float*)value)[0]);

WTP3 float *value printf("Value: Y=%f\n", ((float*)value)[1]);

WTQ float *value printf("Value: W=%f\n", ((float*)value)[3]);

WTSTRING char* printf("Value: %s\n", (char*)value);

WTPOINTER void* Wrintf("Value: %x\n", value);
3-24 WorldToolKit Reference Manual

Events

the

Note that if your application does not call WTuniverse_go or WTuniverse_go1 then it must
call WTuniverse_processevents in order for WTK to process these events and execute
callback handlers.

Following are the functions that pertain to events and event handlers.

WTproperty_addhandler

FLAG WTproperty_addhandler(
void *object
const char *propname

WTeventhandler eh);

This function adds an event handler callback to the specified object’s propname property.

WTproperty_removehandler

FLAG WTproperty_removehandler(
void *object

const char *propname
WTeventhandler eh);

This function removes an event handler callback from the specified object’s propname
property.

WTproperty_numhandlers

int WTproperty_numhandlers(

void *object
const char *propname);

This function returns the number of handlers assigned to the specified object’s propname
property.
WorldToolKit Reference Manual 3-25

Chapter 3: Object/Property/Event Architecture

ct.

’s
WTproperty_gethandler

WTeventhandler WTproperty_gethandler(
void *object
const char *propname

int handlernum);

This function returns the handlenum’th handler for the specified object’s propname
property.

WTproperty_removeallhandlers

void WTproperty_removeallhandlers(
void *object

const char *propname);

This function removes all handlers for the specified object’s propname property.

WTbase_removeallhandlers

FLAG WTbase_removeallhandlers(
void *object);

This function removes all event handlers from all the properties of the specified obje

WTuniverse_processevents

void WTuniverse_processevents(
void);

This function processes all events in the universe. You must call it if your application
simulation loop is not active (that is, if your application has not called WTuniverse_go or
WTuniverse_go1) in order to ensure that all of the events are processed.
3-26 WorldToolKit Reference Manual

Time

 of a

-70.

time

ne.
Time

Time values are measured in seconds since January 1st, 1970 and include fractions
second. These time values are used by event handlers and timed functions like
WTproperty_setat (see page 3-19).

WTtime_update

void WTtime_update(void);

If not in a WTuniverse_go loop, call this function to update the time value returned from
WTtime_getcurrent.

WTtime_getcurrent

double WTtime_getcurrent(void);

This function returns the current Greenwich mean time (GMT) in seconds from 01-01

WTtime_getcurrentlocal

double WTtime_getcurrentlocal(void);

This function returns the current (local timezone) time in seconds from 01-01-70.

WTtime_getcurrentsec

int WTtime_getcurrentsec(void);

This function returns the whole number of seconds from 01-01-70 Greenwich mean
(GMT).

WTtime_getcurrentseclocal

int WTtime_getcurrentseclocal(void);

This function returns the whole number of seconds from 01-01-70 in the local timezo
WorldToolKit Reference Manual 3-27

Chapter 3: Object/Property/Event Architecture

wich

time.
WTtime_getcurrentmsec

unsigned short WTtime_getcurrentmsec(void);

This function returns the number of milliseconds beyond the current second in Green
mean time (GMT).

WTtime_getcurrentmseclocal

unsigned short WTtime_getcurrentmseclocal(void);

This function returns the number of milliseconds beyond the current second in local

WTtime_getdouble

double WTtime_getdouble(

int sec
unsigned short msec);

This function returns a ‘double’ version of a seconds and milliseconds time value.

WTtime_getsec

int WTtime_getsec(

double time);

This function returns the seconds part of a ‘double’ time value.

WTtime_getmsec

unsigned short WTtime_getmsec(
double time);

This function returns the milliseconds part of a ‘double’ time value.
3-28 WorldToolKit Reference Manual

they
hapter

K

ne

epts.

.

4
Scene Graphs

This chapter describes the fundamental building blocks of your WTK application, how
are created, their properties, and how to assign behaviors. The main sections of this c
are as follows:

• Introduction – introduces the hierarchical scene graph, and explains why WT
uses the scene graph structure. (see page 4-2)

• Scene Graph Concepts in Detail – offers a more detailed discussion on the sce
graph and its concepts. (see page 4-5)

• Building a Scene Graph – provides a general discussion of how to build a
hierarchical scene graph and explains several important scene building conc
(see page 4-29)

• WTK Scene Graph Functions – gives descriptions of the scene graph functions
(see page 4-39)

• Additional Topics Related to the Scene Graph – includes a section of additional
topics related to the scene graph, including node paths, intersection testing,
picking polygons, and attaching sensors. (see page 4-79)

Chapter 4: Scene Graphs

 scene

hat

s built
nd

u
e

 and
)
scene
Introduction

This section introduces the hierarchical scene graph, and explains why WTK uses the
graph structure.

The Scene

A scene is a collection of geometries and lights, along with the positional information t
places these elements at particular locations. In WTK, the only other element that is
considered to be part of the scene directly is fog. So, in very simple terms, a scene i
from the following four content elements: geometries, lights, positional information, a
fog.

Elements Of A Scene

GEOMETRIES

Geometries include static geometry files you load into WTK (using WTK’s file import
functions) and dynamic geometries you create within WTK at the polygon and vertex
levels.

LIGHTS

Lights include the lights that may be part of a file you load into WTK and the lights yo
dynamically create in WTK. You can use lights in WTK to illuminate some or all of th
geometries in a scene.

POSITIONAL INFORMATION

Positional information includes any positional information that is associated with
geometries and lights read in from a file, and dynamic positional information created
managed within WTK. It describes where particular elements (geometries and lights
should be placed in the scene, either in relation to another object, or in relation to the
as a whole.
4-2 WorldToolKit Reference Manual

The Viewpoint

, mist,
d by

ow

e
xis.

age
 in the

e

uch as
raph
-29)
FOG

Fog is a special effect that simulates environmental conditions such as smoke, haze
and of course fog. A geometry that is further away from the viewer becomes obscure
fog. You can use fog to affect some or all of the geometries in a scene.

The Viewpoint

In order to render a collection of objects in 3D space to the screen, WTK needs to kn
where and how in the scene the viewer is oriented. WTviewpoint is the WTK object that
contains this information. WTviewpoint defines the position of the viewer in the scene, th
direction in which the viewer is looking, and the viewer’s twist about the directional a
For example, if you look at a scene with your head tilted to one side, you will see an im
that is the same as the one you see with no tilt, except that it has been slightly rotated
direction opposite to your head’s tilt.

The Scene Graph

WTK maintains your scene in a hierarchical structure known as a scene graph. You can
think of the scene graph as an upside-down tree, where the root is on the top and th
branches and leaves are on the bottom.

The scene graph is the structure that holds all of the current elements of the scene, s
geometries, lights, fog, and positional information. As shown in figure 4-1, the scene g
is an ordered collection of nodes, in the form of a directed acyclic (defined on page 4
graph, which holds hierarchical scene data.
WorldToolKit Reference Manual 4-3

Chapter 4: Scene Graphs

t, fog,
 the

n.
er

 you
 which

scene)
ich
ly

 the

uch as
Figure 4-1: Simple scene graph

The basic element of the scene graph is the node, which either holds geometry, ligh
and position data, or is a structural element that you use to maintain the hierarchy of
graph.

Why WTK Uses the Scene Graph Structure

The scene graph provides a very powerful scene structure for real-time 3D simulatio
Specifically, it provides the hierarchical framework for easily grouping objects togeth
spatially. This is essential for maintaining performance in scenes that contain many
individual objects. Because you can group objects together in a positional hierarchy,
are able to use the scene graph to easily construct and maintain efficient simulations
contain individual moving parts.

The scene graph enhances performance of the WTK’s rendering stage (drawing the
because it facilitates spatial culling of the scene. In other words, WTK calculates wh
parts of the scene (or scene graph) are visible from the current viewpoint, and quick
rejects non-visible geometry before drawing begins.

In addition to culling, the scene graph enhances the performance of both picking into
scene (using a mouse, for example) and general intersection testing (e.g., collision
detection). WTK’s scene graph also easily supports advanced procedural elements s

Root
Node

Fog
Node

Light
Node

Group
Node

Geom
Node

Xform
Node
4-4 WorldToolKit Reference Manual

Scene Graph Concepts in Detail

rimary
he
ments

hips

 that

ts of a
tion,
al

an
stand
n
 4x4
level-of-detail (LOD) switching and hierarchical file formats such as VRML and
MultiGen.

To create a 3D scene, you build a scene graph that describes this scene. One of the p
functions of the WTK API (Application Programmer’s Interface) is to provide you with t
tools and methods to build scene graphs. This includes functions to create the core ele
(nodes), and functions to assemble, disassemble, rearrange and query the relations
between these elements.

Scene Graph Concepts in Detail

This section offers a detailed discussion of the scene graph and its concepts.

The Node

The node is the fundamental element of the scene graph; it is the basic building block
you use to construct scene graphs. A node is simply an element of content, or a
grouping/procedural element you use to maintain scene hierarchy.

CONTENT NODES

Content nodes are easy to understand. They are containers for the four basic elemen
scene: geometry, light, position, and fog. Geometry nodes contain geometry informa
light nodes contain light information, and fog nodes contain fog information. Position
information is contained in nodes called transform nodes.

Objects (geometry or lights) in 3D scenes can have both a position (X,Y,Z in cartesi
space), and an orientation about this position (pitch, yaw, roll). For example, you can
at some particular place in a room (position), and turn your body to face any directio
(orientation). Transform nodes store both a position and an orientation internally in a
matrix.
WorldToolKit Reference Manual 4-5

Chapter 4: Scene Graphs

ntial
ng

ulate a

 that
of-

hed
 to it
rneath
n they
re.
GROUPING NODES

Grouping (organizational) nodes contain no content directly, however they are the esse
structuring nodes used in building a scene graph. To understand the role that groupi
nodes play, it is important to understand the structure of the scene graph. (See The Scene
Graph Hierarchy below.) Briefly, organizational nodes, such as the group node, the
separator node and the transform separator node, let you group together and encaps
set of nodes that share common states, such as position or lighting effects.

Procedural nodes are like organizational nodes but they contain additional information
they use to activate one of their child nodes while deactivating the others. The level-
detail (LOD) node and the switch node are procedural nodes.

The Scene Graph Hierarchy

Nodes are ordered in a directed hierarchical fashion. In other words, nodes are attac
together from top to bottom, in a tree-like structure. A node that has nodes attached
from the bottom is a “parent” to those nodes. Those nodes attached immediately unde
another node are the “children” of that node. If two nodes share the same parent, the
are considered to be “siblings.” Figure 4-2 illustrates the parent, child, sibling structu

Figure 4-2: Parent, child, and sibling relationships

Parent

 Child #1 Child #2

Siblings
4-6 WorldToolKit Reference Manual

The Scene Graph Hierarchy

e root
ot node,
raphs,

s the

t

C

de

re
All scene graphs in WTK require a starting point. This starting point is called a root node.
Because the scene graph is hierarchical, or structured in a top to bottom manner, th
node represents the top point on the scene graph. Each scene graph has a single ro
and this node cannot be shared with other scene graphs. WTK allows multiple scene g
and these are uniquely identified by their individual root nodes.

SCENE GRAPH TERMINOLOGY

Figure 4-3 illustrates a number of terms that are used throughout this guide to discus
way WTK implements scene graphs.

Figure 4-3: A schematic diagram of a scene graph

Ancestor Since node A (in figure 4-3) has a sub-tree that includes
node E, it is an ancestor of node E. Note that node J is no
an ancestor of node I.

Child node A node’s direct descendant. In figure 4-3, nodes B and
are both children of node A. J is not a child of A.

Descendant Any node that is contained in the sub-tree of another no
is considered to be a descendant of that node. In figure 4-3,
node F is one of the descendants of node A.

Leaf node A node without children. Nodes B, D, F, G, H, I, and J a
all leaf nodes.

A

B C

D E J

F G H I
WorldToolKit Reference Manual 4-7

Chapter 4: Scene Graphs

 are

cal

ed

f the

node,
cified
Parent node A node’s direct ancestor. Node A is a parent of node C, but
not of node E. It is possible for a node to have several
parents.

Predecessor Since nodes B and C are processed before node J, they
its predecessors. A node’s predecessors can affect the
rendering of that node, even though they may not be
ancestors.

Root node Each scene graph has only one root node. The root node in
figure 4-3 is node A.

Scene graph tree All of the nodes in a scene graph, arranged in a hierarchi
order. The nodes in figure 4-3 are all in one scene graph
tree.

Sub-tree A node and all of its descendants. A sub-tree in figure 4-3
is shaded.

Sibling Children of the same parent node are siblings. Nodes F, G,
H, and I are siblings.

Traversal order The order in which nodes in a scene graph are process
while the simulation is running. The nodes in the scene
graph in figure 4-3 have been labeled so that their
alphabetical order indicates the proper traversal order. For
more information, see Traversing the Scene Graph Tree on
page 4-9.

Viewing your Scene Graph

It may help you visualize the scene graph(s) in your simulation by seeing a printout o
scene graph hierarchy (or any part of it). Use the WTnode_print function (see page 4-76) to
print the scene graph hierarchy, starting at the specified node. If you specify the root
the whole scene graph hierarchy is printed; if you specify any other node, only the spe
node and its sub-tree hierarchy are printed.
4-8 WorldToolKit Reference Manual

How WTK Draws the Scene Graph

l of the
oth a

ing
ertain

rts to
raph

 node
rs a
sing
anch.

. As
ending

e
How WTK Draws the Scene Graph

As previously discussed, the scene graph is the hierarchical structure that contains al
elements of a scene, and their relationships to each other. Every WTK window has b
scene graph (referenced via its root node) and a viewpoint associated with it, provid
WTK with everything necessary to draw a scene (the scene graph), as viewed from a c
position and orientation (the viewpoint), to some place on the screen (the window).

TRAVERSING THE SCENE GRAPH TREE

The root node is the entry point into the scene graph, and is the point where WTK sta
draw the scene. Once at the root node, WTK begins “walking” (traversing) the scene g
tree. This “walking” process is always the same. WTK traverses the tree, visiting each
of the tree in a top to bottom, left to right order. In other words, when WTK encounte
node with more than one child, it walks down the first child's branch, completely traver
this portion of the tree before returning back up and processing the second child’s br
Figure 4-4 illustrates this “walking” the scene graph tree process.

Figure 4-4: Walking the scene graph

It is during this process of traversing the scene graph tree that WTK draws the scene
WTK encounters nodes in the scene graph tree, it evaluates and processes them dep
on their type. Very simply, when WTK encounters a geometry node, it draws it (at th
current position and orientation, with the current lighting and current fog); when it

Root
Node

Xform
Sep

Light
Node

Sep
Node

Geom
Node

Xform
Node

Light
Node

Xform
Node

Node

Geom
Node

Start Finish

1

2
3

4

5

10

11

8

6

7

9

12

13

14

15

16
WorldToolKit Reference Manual 4-9

Chapter 4: Scene Graphs

tion;

pping
 graph
ltiple

ene
ter all

d fog)

TK

s that
ed by
nt
ters a
d

e
odes
dates
f the

nt
ntains
n.

e list
ry
etry
encounters a light node, it adds this light to the currently active set of lights; when it
encounters a transform node, it modifies the current orientation and position informa
and when it encounters a fog node, it sets the current fog.

WTK traverses the entire scene graph tree once per frame. Recall from the Universe
chapter, WTK runs in a simulation loop that includes six different stages: reading the
sensors, calling the universe action function, updating objects, performing tasks, ste
paths, and rendering the universe. It is in this last stage that WTK traverses the scene
(or multiple scene graphs) and draws the scene to a window (or multiple scenes to mu
windows).

ENCOUNTERING CONTENT NODES

WTK performs the actual act of drawing when it encounters a geometry node in a sc
graph. Since WTK traverses the entire scene graph tree once per frame, it will encoun
the active geometry nodes in that tree for that frame, and thus draw all of the active
geometries (objects) in the scene. The other three content nodes (light, transform, an
do not directly result in drawing by WTK, but they do affect how WTK draws the geometry.
All three node types contribute to, and/or modify, the current drawing “state” which W
maintains as it traverses the scene graph tree.

Every geometry in a 3D scene has a specific position, orientation, color, and brightnes
is affected by any active lights shining on the geometry. Also, the geometry is obscur
any surrounding fog. When WTK traverses the scene graph tree, it maintains a curre
transformation state, a current lighting state, and a current fog state. When it encoun
geometry node while traversing the tree, WTK draws this geometry at the position an
orientation defined by the current transformation state, lit by the lights of the current
lighting state, and obscured by the fog of the current fog state.

It is important to know that the current transformation, lighting, or fog state at any tim
during scene graph traversal is totally dependent on which transform, light and fog n
WTK has encountered up to that point. When WTK encounters a transform node, it up
the transformation state. Transformation update is a concatenation, or combination o
newly encountered transform node with the current transformation state. If the curre
transformation state contains a rotation and the newly encountered transform node co
a translation, the resulting transformation state will contain a translation and a rotatio

When WTK encounters a light node, it adds the light contained in the light node to th
of active lights maintained in the current light state. When WTK processes a geomet
node, all of the active lights in the current light state cumulatively affect how the geom
4-10 WorldToolKit Reference Manual

How WTK Draws the Scene Graph

lay

the
 has

 in the
f this

nd
h both
s the
is rendered. It is important to note that the current transformation state comes into p
when WTK encounters a light node. Though light nodes have their own position and
direction, these positions and directions are modified by the current transformation state.
When WTK encounters a directed light node, it modifies the direction of this light by
current transformation state. If the current transformation state is not set (that is, WTK
not encountered any transform nodes at this point), then the direction remains as set
light node. If there is a current transformation state, then WTK rotates the direction o
light by the orientation component of the current transformation state before it adds the
light to the current list of active lights. When WTK encounters a point light, the same
process occurs, but with the positional component (point lights only have position), a
when WTK encounters a spot light in the scene graph, this same process occurs wit
the position and direction components. When WTK encounters a fog node, it replace
current fog state based on the values of the current fog node.

Table 4-1 summarizes the content node types, and indicates where you can find
descriptions of them in this manual.

Table 4-1: Content Nodes

Node What it does
Can have
children?

Affects
state?

Where
described

Geometry Displays a set of
polygons, together with
a WTK material.

No No Page 4-2

Fog Simulates fog, smoke,
murkiness.

No Yes Page 4-3

Light Specifies a WTK light. No Yes Page 4-2

Transform Provides position and
orientation information.

No Yes Page 4-24

Movable
light

Specifies a movable
light node. There are
three types of movable
light nodes.

No Yes See the
Movables
chapter, starting
on page 5-1.

Movable
geometry

Specifies a movable
geometry node.

No No See the
Movables
chapter, starting
on page 5-1.
WorldToolKit Reference Manual 4-11

Chapter 4: Scene Graphs

odes,
g the
of the
alled
le of
es

ction
ode, as
nodes.
ENCOUNTERING GROUPING NODES

The four content-specific nodes discussed so far can only exist as children of other n
they cannot have children themselves. The content nodes are not involved in formin
actual hierarchical structure of the scene graph tree because they are all leaf nodes
tree. The hierarchy of the scene graph tree is provided by a general class of nodes c
grouping nodes. The grouping node class is made up of all the WTK node types capab
having children attached to them, and in general, this includes all the other node typ
available in WTK beyond the four content-specific nodes.

The grouping nodes include the following:

• group node

• separator node

• transform separator node

• procedural nodes (the level-of-detail node and the switch node)

• specialized nodes (the root node, the inline node, and the anchor node)

• movable separator

The group node itself is a grouping node with no other special properties; its only fun
in the scene graph is to serve as a parent to one or more nodes in the tree. A group n
shown in figure 4-5, can serve as a parent to both content nodes and other grouping

Figure 4-5: Group node

Group
Node

Group
Node

Fog
Node

Light
Node

Xform
Node
4-12 WorldToolKit Reference Manual

How WTK Draws the Scene Graph
Table 4-2 summarizes the grouping node types, and indicates where you can find
descriptions of them in this manual.

Table 4-2: Grouping Nodes

Node What it does
Can have
children?

Affects
state?

Where
described

Anchor Contains a string
property (URL) that
references a data file.

Yes No Page 4-28

Group Has child nodes, but no
other properties.

Yes No Page 4-40

Inline Contains a string
property (URL) that
references a data file
which can be
automatically read in.

Yes No Page 4-28

Level-of-
detail (LOD)

Swaps in objects as a
function of viewpoint
distance.

Yes No Page 4-26

Root Acts as the top node in
a scene graph.

Each scene graph has
only one root node,
which is not shared with
any other scene graph.
As the top node in its
hierarchy, this node has
no parent node.

Yes No Page 4-7

Separator Prevents state
information from
propagating from its
descendant nodes to
its sibling nodes.

Yes No Page 4-21

Switch Controls which of its
children are traversed.

Yes No Page 4-25
WorldToolKit Reference Manual 4-13

Chapter 4: Scene Graphs

at it is
 in a
s and
ene if
metry
es you

ould
ually
archy,
metric
e to
THE IMPORTANCE OF A SCENE GRAPH TREE HIERARCHY

One of the main reasons why you would want to use the scene graph hierarchy is th
often very desirable to group several objects (such as geometries) together spatially
scene. A good example of this is a car object that is composed of four tire geometrie
a car body geometry. It is much easier to deal with this composite car object in the sc
you can group all of its parts together under one node, rather than five disparate geo
nodes. Remember, these geometries have positions and orientations too, so that giv
(potentially) another five transform nodes that you need to maintain as well.

Imagine if you wanted to move this five piece car around the scene as a whole, you w
have to figure out a position and orientation to move the car body to, and then individ
move each wheel to its proper location. The scene graph allows you to set up a hier
under a grouping node, which creates a composite car object, which holds all the geo
information for the car, as well as the position and orientation of all the wheels relativ
the car body.

Transform
separator

Prevents just the
transformation state
from propagating from
its descendant nodes
to its sibling nodes. All
other states are allowed
to propagate.

Yes No Page 4-24

Movable
separator

Specifies a movable
separator node.

Yes No See the
Movables
chapter,
starting on
page 5-1.

Table 4-2: Grouping Nodes (continued)

Node What it does
Can have
children?

Affects
state?

Where
described
4-14 WorldToolKit Reference Manual

Why the Ordering of Children is Important

node,
one
ping

anch

 node
de’s
light

group
esses

 the
ate.
was

s not
Why the Ordering of Children is Important

Recall the order in which WTK traverses the scene graph tree. Starting from the root
WTK walks down the tree to the first child node of the root node. If this child node is
of the four content nodes, then WTK processes this node. If this child node is a grou
node, then the traversal continues down to this node's first child node, and so on.

Because WTK processes the children of a grouping node in fixed order (first child br
first, second child branch second, etc.), the ordering of children is important. Suppose, for
example, you have a simple case of a scene graph with five nodes, wherein the root
has one child, being a group node, as shown in Case #1 of figure 4-6. The group no
three children are a transform node, a light node and a geometry node. Assume the
node is child #1, the transform node is child #2, and the geometry node is child #3 of the
group node.

Figure 4-6: The importance of child order in the scene graph

WTK starts the tree traversal at the root node, and goes to its first (and only) child, the
node. When WTK encounters a group node, it does not do anything special, it just proc
all the group node's children in order. The first child of the group node in this case is
light node. Encountering the light node, WTK adds this light to the current lighting st
After processing this node, the current lighting state contains one light, the light that
set by this node. (Recall the current lighting state defines the lights that will affect the
drawing of any future geometry encountered in the tree.) Because the light node doe

Root
Node

Group
Node

Geom
 G

Light
 L

Xform
 T

1 2 3

CASE 1

Geometry G is drawn with
Light state = L, Transform state = T

Root
Node

Group
Node

Xform
 T

Light
 L

Geom
 G

1 2 3

CASE 2

Geometry G is drawn with
Light state = L, Transform state = 0

Light state = 0
Transform state = 0

Light state = L

Transform state = T

Light state = L

Transform state = 0
WorldToolKit Reference Manual 4-15

Chapter 4: Scene Graphs

es its

 and
efines
ition
ince
 up to

rent
 in the
ld
is

e, so

 second
node

 light
metry
tate.

 affects
been
) with

ot

things
sed
y are

nent,
hts’
ere no
ildren
(and cannot) have any children, WTK moves back up to the group node and process
second child.

The second child is a transform node, so WTK updates its current transform (position
orientation) state. Since there is no current transformation state set, this node now d
the current transformation state. (Recall that the transformation state defines the pos
and orientation where any geometry encountered on the tree will be drawn. Again, s
the transform node does not (and cannot) have any children, WTK now moves back
the group node and processes the third and final child.

The third child is a geometry node, so WTK draws this geometry node, using the cur
transform state to position and orient the geometry in the scene, and using the lights
current lighting state to illuminate the geometry. Note that the transform node has to
WTK where to draw this geometry, so you can say the geometry was “affected” by th
transform node. Note that the light node has told WTK how to light this geometry nod
you can say the geometry was “affected” by this light node.

Suppose you take exactly the same case as above, but make the geometry node the
child of the group node, the transform the third child of the group node, and the light
remains the first child (see Case #2 of figure 4-6). When WTK walks this tree, and
processes the children of the group node, it encounters the light node first, adding the
to the current light state, just like before. The second child of the group node is the geo
node, so WTK draws it with the current lighting state and the current transformation s
Just like last time, the light node has been processed before the geometry node, so it
the illumination of the geometry. The current transformation state, however, has not
set yet, so the geometry is drawn in the default position in the scene, the origin (0,0,0
the default orientation. Because the transform node is the third child, it has not been
processed yet, so it has not altered the current transformation state, and thus, has n
affected the drawing of the geometry.

So you can see that the ordering of children, even in very simple cases, affects how
are drawn. Make sure transform nodes that you want to affect a geometry are proces
prior to that geometry node, and make sure light nodes you want to affect a geometr
processed before that geometry node. Remember that directed light nodes, point light
nodes and spot light nodes have either an orientation component or a position compo
or both, and are affected by the current transformation state. If you don’t want your lig
positions and/or orientations changed, they must be at a place in the scene graph wh
transform nodes can affect them (usually, this is at the top of the scene graph, as ch
of the root node).
4-16 WorldToolKit Reference Manual

State Accumulation and State Propagation

ese
 are

ting
n say
hown

. That
 by this
 scene

de are
d long
State Accumulation and State Propagation

As discussed previously, WTK has a concept of “state” (that is, the current
transformation, lighting and fog state) for any particular place in the scene graph. Th
states affect the way any geometry nodes at that particular place in the scene graph
drawn. Because the current transformation state at some point in a scene graph is a
concatenation of the transform nodes processed up to that point, and the current ligh
state includes all the lights activated by processing light nodes up to that point, you ca
that transform and light state “accumulate” as the scene graph tree is traversed, as s
in figure 4-7.

Figure 4-7: State accumulation

WTK also uses the concept of state “propagation” when traversing a scene graph tree
is, should it encounter and process a transform node, the transformation state created
node propagates, or moves along, as WTK continues to process the remainder of the
graph. Geometry nodes that are drawn after encountering a transform, light or fog no
affected by these transform, light, and fog nodes, even if these nodes were processe
before, or farther up the tree than the current geometry.

Root
Node

Group Light
 L1

Xform
 T1

Light
 L2

Light state = L1
Transform state = T1

GeomGroup

GeomLight
 L3

Xform
 T2 G1

 G2

Light state = L1 + L2
Transform state = T2 T1

Light state = L1 + L2 + L3

Transform state = T3 T2 T1

Xform
 T3
WorldToolKit Reference Manual 4-17

Chapter 4: Scene Graphs

sform
ou
the
scene
figure

s you
 in the
mation
 dog),
d this
 to
ren of
econd
 be
ce the
sition).

e dog
dog
e.

hould

 You
ydrant

 third
 two
It is important to be aware of the state propagation because, if you are not careful, tran
nodes can affect geometries that you did not want affected. For example, suppose y
wanted to build a scene with two geometrical objects, each independently placed in
scene, and both lit by a scenewide directed light source. To do this, you would build a
graph piece by piece. The following example describes the scene graph illustrated in
4-8 in detail.

Example: Building a Simple Scene Graph Piece by Piece

First, consider the case of a geometry independently placed in the scene. This mean
need a geometry, say a model of a dog, and a method to place this dog somewhere
scene. The method you need to place this dog somewhere in the scene is a transfor
(which is contained in a transform node). Thus, you need both a geometry node (the
and a transform node (the dog’s position in the scene). Since this geometry node an
transform node conceptually go together (that is, you don’t want this transform node
affect anything else but the dog), you would group these two nodes together as child
a group node, making the transform node the first child and the geometry node the s
child of the group node. Now, the dog and its position are grouped together, and can
added to the scene. The scene is currently empty (i.e., it contains just a root node). On
group node is attached to the root node, you have a scene containing a dog (and its po

Suppose you want to add light to the scene. Assuming you want the light to affect th
geometry, put it in a place where it will be processed in the scene graph prior to the
geometry. You accomplish this by making the light node the first child of the root nod
Since that is the very first node processed in the scene graph after the root node, every
geometry in the scene will be affected by it. This means the dog object group node s
be the second child of the root node. If you wanted, you could now create a second
geometry/transformation pair for your second object in the scene, say a fire hydrant.
create the fire hydrant object the same way you created the dog object. Create a fire h
geometry node, a transform node for its position, and a group node to group the two
together. Then, you add your new fire hydrant group node to the scene graph as the
child of the root node. The scene graph now contains all the content to fulfill the goal,
geometries independently placed in the scene, both lit by scenewide light.
4-18 WorldToolKit Reference Manual

State Accumulation and State Propagation

e able
e
here

cene
ur
cted it
ight

e
t to
Figure 4-8: State propagation

Since you independently placed your geometries in the scene, you should expect to b
to move them in the scene independently of each other. To do this, simply modify th
information contained in the transform nodes which affect the individual geometries. T
are a number of WTK functions that allow you to do this, such as WTnode_settranslation
(see page 4-59) and WTnode_setrotation (see page 4-60).

Assuming that you have set the dog’s transform node to position it at the left of your s
and that you have set the fire hydrant’s transform node to position it at the right of yo
scene, you can take a walk through the scene graph to make sure you have constru
properly. The root node’s first child is the light node, so now there is a single active l
that will affect all succeeding geometry nodes.

The root node’s second child is the dog object group node, so now walk down into th
children of the group node. The first child is the dog’s transform node, which you wan

Geom

Hydrant”

“Fire
Hydrant”

Root
Node

Group Light
 L1

Group
“Dog”

Xform
 T1

Transform state = T1

Xform

Geom
 Dog

Transform state = T2 T1

 T2 “Fire

How transform T1
propagates from the
left branch to the right

Dog is drawn with
transform state T1

Fire Hydrant is drawn with
transform state T2 T1
WorldToolKit Reference Manual 4-19

Chapter 4: Scene Graphs

he
d, the
fined

ore
ntinue

s the
ber

d
tate

 of
s)

d by
form

his
d, but

 as
metry,

exists

se
tor
e
use to place the dog somewhere in the scene. The current transform state is set to t
information in the dog’s transform node, as you move to the group node’s second chil
dog’s geometry node. This geometry of the dog itself is now drawn at the position de
by the dog’s transform node, and lit by your one light. So far, so good. Their are no m
children in the dog group node, so you move back up the tree to the root node and co
to process the root node’s children.

The root node’s next and last child is the fire hydrant object’s group node. You proces
first child of this group node, the fire hydrant’s transform node. It is important to remem
that when WTK encounters a transform node, it takes the information in the node an
concatenates it with the current transform state. In this case, the current transform s
previously set by the dog’s transform node has “propagated,” so the resulting
transformation state after processing the fire hydrant’s transform node is an accumulation
of both the dog’s transform node and the fire hydrant’s transform node. A discussion
how transforms are combined is given in Using Frames of Reference (Coordinate Frame
on page 4-32.

Assume, however, that you do not want the fire hydrant’s transformation to be affecte
the dog’s transformation. The following section describes how you can prevent a trans
node from affecting the remaining nodes in the scene graph.

When WTK processes the fire hydrant’s second child, the geometry node, it draws t
geometry not at the place defined by the fire hydrant’s transform node as you intende
instead at the place defined by the combination of the dog’s transform and the fire hydrant’s
transform. Your scene graph containing objects with independent positions behaves
expected, because the first transform “propagates” and affects both the intended geo
the dog, as well as succeeding geometries in the scene graph, the fire hydrant. The
transform state at the point in the scene graph tree where the fire hydrant geometry
is an “accumulation” of all the transform nodes before it.

How do you remedy this situation? Very simply. Instead of using group nodes, you can u
a different type of node, the separator node. Replacing the group nodes with separa
nodes solves the problem, because the separator node “encapsulates” all of the stat
changes underneath itself.
4-20 WorldToolKit Reference Manual

State Encapsulation

ph tree
sform

.

e
ed
cene
hat

sform
State Encapsulation

SEPARATOR NODE

As you have seen, transform nodes combine with the current states in the scene gra
to set new values for the states. There are often times when you want to have a tran
node affect only certain geometries in the scene graph. In order to do this, you must
“encapsulate” the effects of a transform node to just one part of the scene graph tree
Continuing the example in the previous section, let’s say you wish to encapsulate th
effects of the dog’s transform node so that it only affects the dog’s geometry. You ne
some way to prevent the transform state changes in the dog object’s branch of the s
graph tree from propagating over to the fire hydrant object’s branch. This is exactly w
you use the separator node for.

The separator node is a grouping node that encapsulates all of the effects of the tran
nodes, light nodes, and fog nodes beneath it, as shown in figure 4-9.

Figure 4-9: Separator nodes

Separator
Node

Geom
 G1

Light
 L1

Xform
 T1

The effects of L1 and T1 are seen when drawing G1.
They have been encapsulated by the separator node
WorldToolKit Reference Manual 4-21

Chapter 4: Scene Graphs

d fog
 were
t and
rneath

ou want
ll use
e

m
ly, you
t only
ensive
Internally, the separator node makes copies of the current transformation, lighting an
state, processes it and all of its children, and then restores those states to what they
prior to processing this portion of the scene graph. In other words, the transform, ligh
fog state changes which occur underneath the separator only affect the nodes unde
the separator, as shown in figure 4-10.

Figure 4-10: Separator diagram

As stated, you can use the separator node instead of the group node in cases where y
to prevent states from propagating across branches of the scene graph tree. You wi
separators often to encapsulate transform nodes, but when would you want to encapsulat
light and fog nodes?

If a separator node sits above a light node or fog node, it prevents this light or fog fro
affecting any other part of the tree beyond the nodes underneath the separator. Usual
use a separator to constrain a light to only a certain group of geometries, having it ligh
those geometries and no others. Because lighting geometry is a computationally exp

Geom

Root
Node

Separator
 S1

Xform
 T1

Transform state = 0

Xform

Geom
 G1

Transform state = T2

 T2 G2

T1 does NOT propagate
out of S1, so it does not
affect the transform state
anywhere except below S1

Encapsulated by S1 Encapsulated by S2

Separator
 S2Transform state = T1
4-22 WorldToolKit Reference Manual

State Encapsulation

ible,
ding,
 spot
oom
om

s as
ber
task, you are able to improve application performance by using as few lights as poss
and only having lights affect the specific geometries you need affected. Imagine a buil
where each room may have several local lights, say point lights simulating lamps, or
lights simulating track lighting. Because you only need and want lights in a particular r
to light the geometry in that room, you can use a separator to group the lights and ro
geometry together, as shown in figure 4-11.

Figure 4-11: Light encapsulation

This results in both the desired effect of having lights localized to their respective room
well as improved performance since WTK only needs to apply a light to a specific num
of polygons, rather than every polygon in the scene.

Geom

Root
Node

Light
point

Light

Geom
Room2 spot Room3

Separator

 “Room1”

Light
 point

Light
spot

 “Room2”

Separator
 “Room3”

Geom
Room1

“lamp 1” “track 1” “lamp 2” “track 2”

Separator
WorldToolKit Reference Manual 4-23

Chapter 4: Scene Graphs

ulates
es
sform

 you
want
rm

ne. A
ulate

is to
ition/
ure
TRANSFORM SEPARATOR NODE

The transform separator node is exactly like the separator node, except it only encaps
the transformation state, not the light or fog state. In other words, the effects of light nod
and fog nodes propagate out through the transform separator node, and only the tran
node’s effects are blocked by it. Generally, you use the transform separator node in
conjunction with the pairing of a light node and transform node. For example, assume
want to have a light whose position/direction are controlled by a transform node. You
to have this light illuminate the whole scene, but you want to encapsulate the transfo
node, so it only affects the light’s position/direction, and no other elements of the sce
plain separator node would encapsulate the transformation, but it would also encaps
the light, thus preventing the light from affecting any part of the scene. The solution
use a transform separator node instead, allowing the encapsulation of the light’s pos
direction, but still allowing the light itself to add to the current light state, as shown in fig
4-12.

Figure 4-12: Transform (Xform) Separator

Geom

Root
Node

Separator

Xform
 T1

Transform state = 0

Xform

Light
 L1

Transform state = T2

 T2 G1

G1 is affected by L1,
but not by T1

Separator

Transform state = T1

Light state =L1

Xform

Light state = L1
4-24 WorldToolKit Reference Manual

Other Node Types

.

e, as

unters

the

 and
rally
Other Node Types

This section describes the other scene graph node types that have yet to be defined

SWITCH NODES

A switch node is a grouping node that enables only one of its child branches at a tim
shown in figure 4-13. The switch node can have multiple children, but only one of the
children is active at any one time. When WTK traverses the scene graph tree and enco
a switch node, the switch node informs WTK which child branch to process. After
processing this child branch, WTK traverses back out of the switch node, leaving all
other children unprocessed. You control which child is active via the call to
WTswitchnode_setwhichchild (see page 4-57).

Figure 4-13: Switch node

Although you can duplicate the functionality of a switch node by using a group node
manually adding the active child and removing the previously active child, this is gene

Child
 1

ChildChild
 3

Switch
 node

Child
 2 n

....

Only one of the switch
node’s child branches is
processed when
traversing the scene
graph tree.
In this case, it’s child #3
WorldToolKit Reference Manual 4-25

Chapter 4: Scene Graphs

 there
n

aving
y one

troyed.

le as

uence
You
uman
 you
lking
fferent
man

lking

other

p, and
the
 that
ene
es are

ctive
 You
ach of
train
n LOD
tation
both more work and results in poorer performance than using a switch node. Because
can be a significant amount of internal work involved in adding and removing childre
from the scene graph tree, it is best to use a switch node whenever it is applicable.

A switch node is useful in a number of situations, including multiple representations,
geometry animations, and portalling, to name a few. Multiple representations means h
several representations for a particular object, only one of which you want drawn at an
time. Take the simple example of a tank simulator which might have three different
geometrical representations for an enemy tank, either undamaged, damaged or des
You could use a switch node, having each geometry as its child. Changing the
representation of the tank based on whether its been hit and/or destroyed is as simp
calling WTswitchnode_setwhichchild to choose the proper geometry.

Switch nodes are useful in any case where you might wish to do animation using a seq
of geometries rather than dynamically altering a single geometry at the vertex level.
can simulate a human walking by having multiple geometries, each being the same h
geometrical model, but in a different sequential position of walking forward. Together,
can play the models back in sequence, like a flipbook animation, showing a human wa
in place. You can define the sequence of geometries representing the human in the di
walking positions as children of a switch node. Using a transform node to move the hu
forward in space, you can use the switch node to sequence through the different wa
position models, simulating a human walking forward.

Portalling refers to jumping from one scene to another, or one part of the scene to an
part. In a walkthrough environment, taking an elevator to another floor would be an
example of portalling. You can build a scene graph that has a switch node near the to
each floor of the building is a child branch of the switch node. When someone rides
elevator to a new floor, the proper child branch of the switch node is activated to draw
floor of the building. In cases like this, you definitely want to turn off any parts of the sc
graph that you know are not visible, as this vastly increases performance. Switch nod
a good way to disable the portions of a scene graph you know will not be visible.

LOD NODES

The level-of-detail (LOD) node is a specialized switch node that selects its currently a
child automatically based on its distance from the viewpoint, as shown in figure 4-14.
use an LOD node to dynamically select between a set of different representations, e
which is a different level of detail. For example, suppose your application involves a
that passes close to the viewer and then recedes into the distance. After you create a
node, you would add several children to it — each of which is a less-detailed represen
4-26 WorldToolKit Reference Manual

Other Node Types

uld
ls
ed in,

r the

OD
etail
ore
er

tween

of the
of the same train. WTK allows you to specify the distance at which the LOD node co
“swap in” a new representation. As the train recedes into the distance, simpler mode
(which require less and less computational effort to process) are progressively swapp
freeing up memory and system resources.

Figure 4-14: LOD nodes

Of course, your object doesn’t have to be moving — LOD nodes are useful wheneve
distance varies between the viewpoint and a geometric object.

The LOD node allows you to specify the same object with varying level of detail. An L
node’s children are arranged from highest level of detail (closest) to lowest level of d
(furthest away). In general you build geometries with a larger number of polygons (m
detail) for the highest level of detail representation and you build geometries with few
polygons for the lowest level of detail representation.

An LOD node automatically chooses among its child nodes based on the distance be
the user’s viewpoint and the position you have designated as the center of your (LOD)
representation. WTK computes the distance between the viewpoint and the position

 Group
“Medium”

 Group
“Close”

 Geom
“Car 1

LOD
Node

Group
“Far”

“Train”

 Close”

 Geom
“Car 2
 Close”

 Geom
“Car 3
 Close”

 Geom
“Car 1
Medium”

 Geom
“Car 2
Medium”

 Geom
“Car 3
Medium”

 Geom
 “All cars
 Far”
WorldToolKit Reference Manual 4-27

Chapter 4: Scene Graphs

s the

r the

number
 nodes
es that
hild

 and
oes

n
ion

ator)

r
s,

tion.
 file
ding

ated

ene
ne
center, compares that distance with the ranges that you have specified, and choose
appropriate representation.

The range for an LOD node is an array of floats specifying the switch-out distances fo
children of the LOD node. The input parameter num is the number of ranges passed in.
There does not have to be a one-to-one correspondence between range values and
of child nodes. If there are more child nodes than range values, then the excess child
are never traversed. If there are more range values than child nodes, then range valu
have no corresponding child nodes are not entered into the determination of which c
node to traverse.

ANCHOR NODES

An anchor node is a group node which contains a string property indicating the path
filename of a VRML file that is associated with the node. However, an anchor node d
not retrieve the file automatically. In order to retrieve the file, some sort of user actio
(e.g., a mouse click) is required to trigger the execution of a programmer defined act
function which causes the file to be read.

The string property is a character string representing a URL (Uniform Resource Loc
and can be set using the functions WTanchornode_setlocation and
WTinlinenode_setlocation. The default URL of an anchor node is NULL. You can set o
retrieve the anchor string (URL) corresponding to the anchor node using the function
starting page 4-63.

INLINE NODES

An inline node is a group node whose children are read from a file without user interac
An inline node contains a string property indicating the path and filename of a VRML
that is associated with the node. You set or retrieve the inline string (URL) correspon
to the inline node using the functions starting on page 4-63.

Note that an inline node’s children are only read into WTK when inline nodes are cre
by reading VRML (.wrl) files. If you manually create an inline node by calling
WTinlinenode_new (see page 4-40), and then call WTinlinenode_setlocation (see page 4-63)
to set the node’s string property, WTK will not read the inline node’s children into the sc
graph. Therefore, you would have to manually create the nodes representing the inli
node’s children.
4-28 WorldToolKit Reference Manual

Building a Scene Graph

line

everal

ussed

and

K

at are

 be

 unique
not be
rent to
g the

ycles
WTK
oing
a
When a scene graph is written out to a VRML file using WTnode_save (see page 4-48),
WTK outputs the inline node along with the string property but does not write out the in
node’s children.

Building a Scene Graph

This section offers a general discussion on how to build a scene graph, and explains s
important concepts related to building scene graphs.

How to Create the Scene Graph Tree

There are several ways to build a scene graph. You can build it dynamically, as disc
in the example on page 4-18, you can load it directly from a file, or you can use a
combination of both methods. The hierarchical file formats that WTK reads are VRML
MultiGen. You can use WTnode_load (see page 4-46) on a VRML .wrl file or MultiGen .flt
file to load in the entire scene graph sub-tree stored in the file and attach it to the WT
scene graph tree at the point specified by the “parent” argument field. Inline nodes th
part of a VRML file will also be loaded in and added to the scene graph tree.

When you build and modify a scene graph tree, there are several issues you need to
aware of.

As discussed on page 4-7, every scene graph requires a starting point, a node that is
to its specific scene graph tree, the root node. The root node is the only node that can
shared between multiple scene graphs; its only purpose is to serve as the unique pa
all the top nodes of a particular scene graph. Once you have a root node, either usin
default root node created by WTK (accessed by calling WTuniverse_getrootnodes) or
creating a new root node via the function call WTrootnode_new (see page 4-39), you are
ready to begin building your scene graph tree.

It is important to keep in mind that the scene graph tree must be acyclic, that is, no c
are allowed in the tree structure. A cycle occurs when a node is an ancestor of itself.
disallows this because it becomes impossible for it to traverse a cyclic tree without g
into an infinite loop, as shown in figure 4-15. In fact, WTK prevents you from adding
child node if it causes a cycle in the scene graph tree.
WorldToolKit Reference Manual 4-29

Chapter 4: Scene Graphs

 graph
rsal

able to
in the

ns to
Figure 4-15: Cyclic scene graph tree

Building a Composite Object in the Scene –
Composite Transformations

Accumulated transformation occurs when the current transformation state in a scene
tree is an accumulation of all the transform nodes processed before the current trave
position in the tree. By using separator nodes or transform separator nodes, you are
prevent accumulated state from propagating from sibling branch to sibling branch, as
case of the dog and fire hydrant example (see page 4-19).

In general however, you do want the transformation state to accumulate as WTK walks
down any particular branch of the scene graph tree. One of the most important reaso

Root
Node

Separator
 Node

Group
Node

Xform
Node

Separator
 Node

Xform
Node

Geom
Node

This causes a cycle in
the scene graph,
which is illegal

This is allowed in
the scene graph
4-30 WorldToolKit Reference Manual

Building a Composite Object in the Scene – Composite Transformations

osite
vidual
bject.
rts:

 rear
rts
of the
e of
 the
ve

, there
 well
mes
oves
e
e

es
have a hierarchical structure to hold your scene data is to help define the composite
positional and orientational relationships between objects in the scene.

It is often the case that you want to build a composite object in the scene. This comp
object is treated as a single object in relation to the rest of the scene, however its indi
parts are considered to be a collection of distinct objects in relation to the composite o
A common example of this would be a composite car, which would be built from five pa
the car body, the left front wheel, the right front wheel, the left rear wheel, and the right
wheel, as shown in figure 4-16. When the composite car moves forward, all of its pa
move forward together as a whole (i.e., as the car moves forward 20 feet, each part
car moves forward exactly the same amount, 20 feet.) You can think of this as a fram
reference. All of the parts of the car are in a composite car frame of reference. When
composite car frame of reference moves forward, all the sub-parts of the car also mo
forward.

The composite car can also be thought of as having sub-frames of reference, that is
are parts of the composite car which move individually in relation to the whole car, as
as moving in conjunction with the whole car. The wheels are an example of a sub-fra
of reference for the composite car. Although they move forward when the whole car m
forward, they also rotate around the axles individually when the car rolls forward. Th
orientation and position of a wheel is a combination of its individual frame of referenc
(which rotates about the axle) and the composite car frame of reference (which mov
forward, backward, etc., in the scene).
WorldToolKit Reference Manual 4-31

Chapter 4: Scene Graphs

ncept
ore

 frame
 nodes,
Figure 4-16: Composite car

USING FRAMES OF REFERENCE (COORDINATE FRAMES)

In building scene graphs and composite objects, it is important to understand the co
of frames of reference (or coordinate frames). This section discusses this concept in m
detail.

Since the current transformation state at any place in the scene graph defines a unique
of reference, as WTK traverses down the scene graph tree and encounters transform

Root
Node

Xform

Geom
wheel

Separator
 “left front”

Separator
 “right rear”

 Separator
“composite

 car”

Separator
 “left rear”

Separator
 “right front”

Xform

Xform

Xform

Geom
wheel

Geom
wheel

Geom
wheel

Geom
car body

Xform

The composite car’s position
4-32 WorldToolKit Reference Manual

Building a Composite Object in the Scene – Composite Transformations

me of
fines

es of
ou

inate

ly

ody,
gether

 are in
e car.
ne’s

roll as

ate
 is
ntire

e
these nodes change the current transformation state and thus change the current fra
reference in which WTK draws the ensuing geometry. A transform node essentially de
a relationship between the frame of reference (transformation state) prior to it being
processed and the frame of reference after it is processed.

Just as transformations accumulate as you traverse down the scene graph tree, fram
reference accumulate as you walk up the tree. From any point in the scene graph, when y
walk up the tree (opposite from how WTK actually traverses the scene graph), you
encounter transform nodes in the reverse order as you would encounter in a normal
traversal. You can view each transform node in a reverse walk as a change in coord
systems.

This may seem complicated, however, the concept is important. The purpose of a
transformation is to place and orient an object (geometry or light) in the scene or to place
and orient an object in the scene relative to another object. Usually, you do not care exact
where an object is in the scene, only where it is in relationship to some other object.

Consider the previous example of the composite car made from four wheels and a b
and suppose you break down the transformations you use to place the components to
and then move them as a whole. Assume you do not care exactly where the wheels
the scene, only that they are placed in their proper positions relative to the body of th
In other words, you don’t want to specify the wheels’ position relative to the whole sce
frame of reference, but only their position relative to the composite car’s frame of
reference. In this case, you would want to use another transformation to specify the
composite car’s frame of reference to the scene.

Assume you want your composite car to move around the scene, and the wheels to
your car drives along.

What are all the coordinate frames involved here?

From the scene’s point of view, there is only one coordinate frame, the base coordin
frame that exists when no transformations have been applied. This coordinate frame
WTK’s world coordinate frame, and defines the three dimensional space in which the e
scene exists. With no transformations applied, geometries are drawn in the world
coordinate frame. Move down the scene graph to your first encapsulated object, the
composite car. The transformation associated with the composite car defines how th
composite car will be placed into its parent’s coordinate system.
WorldToolKit Reference Manual 4-33

Chapter 4: Scene Graphs

ng the

ate
 node.

al
e, you

er of
, such
o the
 in
eed to
ystem
posite
three
 world

te
n

e an
What is the composite car’s parent coordinate system?

It is the coordinate system defined by the current transformation state before processi
composite car’s transform node, the world coordinate system. So from the composite car’s
point of view, there are two coordinate systems, its own (local) coordinate system, which
is the coordinate system all of its parts will be placed into, and its parent’s coordinate
system, where it will be placed after its transform node is processed. So why is this useful?
You can assemble all of the car’s parts together in the composite car’s local coordin
system, and then move them together as a whole using the composite car’s transform

So, you can use a transform node to move all the parts assembled in an object’s loc
coordinate system to some place in the object’s parent coordinate system. In this cas
have placed (drawn) the car body in the composite car’s coordinate system.

Assume you modeled the car body in a way such that the origin (0,0,0) is at the cent
the car body. Also assume that you have modeled the wheel geometries at the origin
that the center axis point on the wheel is at (0,0,0). Obviously if you put the wheels int
composite car’s coordinate frame without transforming them first, they will all end up
the same place, at the center of the car body, not where you want them. What you n
do is add a transform node for each wheel that translates it from its local coordinate s
(where 0,0,0 is its center) to the proper place in its parent coordinate system (the com
car, where 0,0,0 is in the middle of the car). So from a wheel’s point of view, there are
coordinate systems, its local coordinate system, its parent coordinate system, and the
coordinate system. In general, you will only be concerned with the first two coordina
systems. However, there will be cases when you are interested in an object’s positio
relative to the scene as a whole (world coordinate system), particularly when you are
interested in positional relationships between two independent objects. You now hav
assembled car in its coordinate system, as shown in figure 4-17.
4-34 WorldToolKit Reference Manual

Building a Composite Object in the Scene – Composite Transformations
Figure 4-17: Car’s frames of reference

Xform Xform

Composite car’s
coordinate system.The
transform node places
the car into its parent
coordinate system (the WCS)

Root
Node

Geom
wheel

Separator
 “left front”

 Separator
“composite
 car”

 Geom
car bodyXform

Rotated wheel
geometry’s coordinate
system. The transform
rotates the wheel in place

Wheel
geometry’s
local
coordinate
systemLeft wheel’s coordinate system.

The transform node places the
wheel into the proper place in the
composite car’s coordinate system

World
coordinate
system
(WCS)
WorldToolKit Reference Manual 4-35

Chapter 4: Scene Graphs

ve the

te
.
t
to
tion
sert

cross
tion
long.
ternal
nt
You can move the car about the scene using its transform node. Now, you want to ha
wheels roll (rotate) when you move the car along. Rolling is simply rotation about the
wheel’s center axis, and since you have built this car using several different coordina
systems, it will be very easy to make these wheels rotate as you move the car about
Remembering that you have modeled the wheels with their center axis point being a
(0,0,0), all you have to do is rotate the wheel within its local coordinate system prior
transforming it into its parent coordinate system. Although you can combine this rota
with the transformation into the composite car coordinate system, for simplicity, just in
another transform node to hold this rotation.

Assuming you rotate each wheel slightly about its local center axis each frame, then a
multiple frames, you will see the wheels rotating in place. Mixing this with the transla
of the composite car along a single direction, you are able to simulate a car rolling a
As WTK traverses down the scene graph, it preconcatinates each transform node’s in
4x4 matrix with the current transform state’s internal 4x4 matrix, forming a new curre
transform state, as shown in figure 4-18.

Figure 4-18: Internal matrix

Root
Node

Xform
 T1

Separator

 Geom
 G2

Xform
 T2

Separator

Xform
 T3

 Geom
 G1

Transform state = T1

Transform state = T2 T1

Transform state = T3 T2 T1

Transform state = identity
4-36 WorldToolKit Reference Manual

Building a Composite Object in the Scene – Composite Transformations

ph.
the
es not
nce

e. For
in are

having
only a
 shown

ph) to

e

e
ADDING A NODE TO YOUR SCENE MULTIPLE TIMES – INSTANCING

You can add a single node to a scene graph multiple times; this is known as instancing.
Instancing is another important concept to understand when building your scene gra
When you add a node to a scene graph multiple times, WTK creates a reference to
original node and then adds that reference to the node at the point of insertion. It do
copy this node internally, thus significantly saving memory for every additional refere
to a node in a scene graph(s).

There are a number of cases where instancing can significantly improve performanc
example, suppose you have a terrain with trees on it. Assuming the trees on this terra
identical in shape and size, then this is an ideal situation to use instancing. Instead of
a separate transformation and a separate geometry for each tree, you instead have
separate transformation for each tree and a single instance of the tree geometry, as
in figure 4-19.

Each instance has a unique position in the scene graph. The route (in the scene gra
that position is called a node path. See page 4-79 for a description of node paths.

Instancing obviously saves memory usage, particularly when you can instance a larg
number of geometries. Instancing also improves performance in such situations by
significantly improving data cache hit ratios, thereby decreasing memory usage
requirements. This can be critical when running on machines that do not have a larg
amount of physical RAM.
WorldToolKit Reference Manual 4-37

Chapter 4: Scene Graphs
Figure 4-19: Instancing

 Geom

“Terrain”

Root

Separator
 “tree4”

Node

Group
“Trees”

Separator
 “tree5”

Separator
 “tree3”

Separator
 “tree2”

Separator
 “tree1”

 Xform
position1

 Geom
 tree

 Xform
position2

 Xform
position3

 Xform
position5

 Xform
position4
4-38 WorldToolKit Reference Manual

WTK Scene Graph Functions

ctor

h
This

node
not
e top
t a

re

 this

ter

 using

WTK Scene Graph Functions

This section lists descriptions of all of the WTK scene graph functions.

Constructing Node Types

Each of the node types listed in table 4-1 and table 4-2 has a corresponding constru
function. For example, to create a new group node, you call WTgroupnode_new; to create
a new transform node, you call WTxformnode_new. The new node is attached to the grap
below the specified parent, after the last child already attached to this same parent.
section lists the WTK functions that you use to create node types.

WTrootnode_new

WTnode *WTrootnode_new(
void);

This function creates a new root node (and therefore a new scene graph). This root
constructor function is different from other node constructor functions in that it does
have an argument for specifying a parent node. This is because the root node, as th
node in the scene graph, has no parent node. The root node is the only node withou
parent.

Each scene graph has only one root node. When you create a new root node, you a
creating a new scene graph.

If your application requires only a single scene graph, then it is not necessary to call
function in your application. This is because WTuniverse_new, which is called at the
beginning of every WTK application, automatically creates an initial root node. A poin
to this root node can be obtained by calling WTuniverse_getrootnodes.

For a scene graph to be rendered into a WTK window (see the Windows chapter, starting
on page 17-1), the root node of the scene graph must be associated with the window
the function WTwindow_setrootnode. Note that WTuniverse_new automatically associates
the initial root node created by WTuniverse_new to each of the windows created by
WTuniverse_new.
WorldToolKit Reference Manual 4-39

Chapter 4: Scene Graphs

 via

ild of
eated

ve a
ieve
fined
ULL.

 of the
ed

. This
ated
See also WTwindow_setrootnode on page 17-8. Note that root nodes cannot be deleted
calls to WTnode_delete.

WTanchornode_new

WTnode *WTanchornode_new(
WTnode *parent);

This function creates an anchor node and adds it to the scene graph after the last ch
the specified parent. If NULL is specified for the parent argument, then the node is cr
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.

An anchor node is a group node which contains a string property (URL) used to retrie
file. However, an anchor node does not retrieve the file automatically. In order to retr
the file, some sort of user action (e.g., a mouse click) is required to trigger the user-de
action function that causes the file to be read. The default URL of an anchor node is N
See WTanchornode_setlocation on page 4-63 to set an anchor node’s URL.

WTgroupnode_new

WTnode *WTgroupnode_new(

WTnode *parent);

This function creates a group node and adds it to the scene graph after the last child
specified parent. If NULL is specified for the parent argument, then the node is creat
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.

A group node is a node which can have children but has no other special properties
would be useful if your application involved a set of geometries which needed to be tre
as a single entity.

WTinlinenode_new

WTnode *WTinlinenode_new(
WTnode *parent);
4-40 WorldToolKit Reference Manual

Constructing Node Types

 of the
ed

he

by

ore
When

tree.

er the
he
alling

of

hild of
eated
This function creates an inline node and adds it to the scene graph after the last child
specified parent. If NULL is specified for the parent argument, then the node is creat
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.

An inline node is a group node which contains a string property (URL) representing t
name of a file from which the inline node’s children are read without user interaction. Note
that an inline node’s children are only read into WTK when inline nodes are created
reading VRML (.wrl) files. If you manually create an inline node by calling
WTinlinenode_new, and then call WTinlinenode_setlocation to set the node’s string
property, WTK will not read in the inline node’s children into the scene graph. Theref
you would have to manually create the nodes representing the inline node’s children.
a scene graph is written out to a VRML file using WTnode_save, WTK will output the
inline node along with the string property but does not write out the inline node’s sub-
The default URL of an inline node is NULL. See WTinlinenode_setlocation on page 4-63
to set an inline node’s URL.

WTlodnode_new

WTnode *WTlodnode_new(
WTnode *parent);

This function creates an LOD (Level of Detail) node and adds it to the scene graph aft
last child of the specified parent. If NULL is specified for the parent argument, then t
node is created without a parent. Such nodes can be added to the scene graph by c
WTnode_addchild or WTnode_insertchild.

An LOD node is used to dynamically select between different representations, each
which is a different level of detail, as a function of viewpoint distance. See LOD Nodes on
page 4-26 for more information.

WTsepnode_new

WTnode *WTsepnode_new(

WTnode *parent);

This function creates a separator node and adds it to the scene graph after the last c
the specified parent. If NULL is specified for the parent argument, then the node is cr
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.
WorldToolKit Reference Manual 4-41

Chapter 4: Scene Graphs

nt

 of the
e area
r
y
test,

 of the
ed

ne of

hild of
eated
A separator node prevents the state information from propagating from its descende
nodes to its sibling nodes.

Separator nodes also allow for a quick-reject test to be performed on the extents box
separator node’s sub-tree. When the simulation is run, if an extents box lies outside th
that is being viewed, then the sub-tree is not visible and is therefore not traversed (o
rendered). Using separator nodes and their quick-reject test capability can drasticall
improve the performance of your simulation. For more information on the quick reject
see Separator Node Functions on page 4-56.

WTswitchnode_new

WTnode *WTswitchnode_new(
WTnode *parent);

This function creates a switch node and adds it to the scene graph after the last child
specified parent. If NULL is specified for the parent argument, then the node is creat
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.

A switch node controls which of its several children is to be processed. By default, no
the children of a switch node is processed. See WTswitchnode_setwhichchild on page 4-57
to select which child of a switch node gets processed.

WTxformnode_new

WTnode *WTxformnode_new(

WTnode *parent);

This function creates a transform node and adds it to the scene graph after the last c
the specified parent. If NULL is specified for the parent argument, then the node is cr
without a parent. Such nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild.

A transform node provides position and orientation information which can affect
subsequent geometry and light nodes.
4-42 WorldToolKit Reference Manual

Constructing Light Nodes

for

the last
ode

 to
By default, a transform node’s matrix is set to the identity matrix. An identity matrix (
the purpose of matrix multiplication) is identical to the number 1 (one) for numeric
multiplication. An identity matrix is shown below.

[1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0]

Note that by default, WTK ignores scaling factors (if any) within a Transform (and
Movable) node’s transformation. If you want WTK to use the scaling factors of
transformations within transform and movable nodes, you can do so by setting the
WTOPTION_XFORMSCALE option in WTuniverse_setoption. However, by doing so, it is
likely that intersection tests and math functions pertaining to matrices will operate
incorrectly.

WTxformsepnode_new

WTnode *WTxformsepnode_new(

WTnode *parent);

This function creates a transform separator node and adds it to the scene graph after
child of the specified parent. If NULL is specified for the parent argument, then the n
is created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild.

A transform separator node prevents just the transformation state information from
propagating from its descendent nodes to its sibling nodes. All other state is allowed
propagate.

Constructing Light Nodes

This section lists the functions you use to create light nodes.

WTlightnode_newdirected

See WTlightnode_newdirected on page 12-6.
WorldToolKit Reference Manual 4-43

Chapter 4: Scene Graphs

scene

 scene

 does
, you
nd you
o the
WTlightnode_newspot

See WTlightnode_newspot on page 12-8.

WTlightnode_newpoint

See WTlightnode_newpoint on page 12-7.

WTlightnode_newambient

See WTlightnode_newambient on page 12-5.

Constructing Geometry Nodes

This section gives descriptions of the functions you use to create geometry nodes.

WTgeometrynode_new

WTnode *WTgeometrynode_new(
WTnode *parent,

WTgeometry *geom);

This function creates a geometry node with the specified geometry and adds it to the
graph after the last child of the specified parent. If NULL is specified for the parent
argument, then the node is created without a parent. You can add such nodes to the
graph by calling WTnode_addchild or WTnode_insertchild.

Note that you can only create one geometry node for a particular geometry, i.e., WTK
not allow multiple geometry nodes to be created from the same geometry. Of course
can instance (see page 4-37) the geometry node multiple times in the scene graph a
can also create movable instances of a geometry node. For more information refer t
Geometries chapter and/or the Movable Nodes chapter.
4-44 WorldToolKit Reference Manual

Constructing Movable Nodes

 the
ed

 in
WTnode_getgeometry

WTgeometry *WTnode_getgeometry(
WTnode *node);

This function returns a pointer to the WTgeometry referenced by the specified geometry
node.

Constructing Movable Nodes

This topic is discussed in the Movable Nodes chapter (starting on page 5-1).

Constructing Fog Nodes

WTfognode_new

WTnode *WTfognode_new(
WTnode *parent);

This function creates a fog node and adds it to the scene graph after the last child of
specified parent. If NULL is specified for the parent argument, then the node is creat
without a parent. These nodes can be added to the scene graph by calling WTnode_addchild
or WTnode_insertchild. Also see Fog Node Functions on page 4-64.

Loading a File into a Scene Graph

In addition to providing low-level functions to create individual nodes and manually
assembling a scene graph, WTK also provides high-level automatic methods to load
hierarchical data from a file directly into WTK’s scene graph structure.
WorldToolKit Reference Manual 4-45

Chapter 4: Scene Graphs

 nodes
he file
 types.

tes a
 of the
s the
is
st child
ed.

ecified

signed
 file.

the
 path
uld

erver
WTnode_load

WTnode *WTnode_load(
WTnode *parent,
char *filename,

float scale);

This function creates one or more nodes from data read in from a file, and adds these
to the scene graph after the last child of the specified parent. The data read in from t
may contain geometry data or data which corresponds to any of the supported node

If the specified data file is organized in a hierarchical fashion, then this function crea
node that corresponds to each data construct in the file, and adds the top-most node
hierarchy to the WTK scene graph after the last child of the specified parent and return
top-most node created. If the data is in a “flat” (non-hierarchical) file, each node that
created to correspond to each data construct is added to the scene graph after the la
of the specified parent. In this case, the function returns the first node that was creat

The scale parameter is used to scale the coordinates of geometries contained in the sp
file. If you do not wish to scale the file’s geometries, pass in 1.0 as the scale value.

A geometry node is created for each geometry contained in the file; the node name as
to each geometry node is taken from the name of the corresponding geometry in the

Note: The argument filename is a string that specifies the name of the file from which
data is read. This file could be on your local system (in which case you specify the
to it), or it could be a URL. If you are using a URL to read in data, the file name sho
contain the full http address (e.g., http://www.sense8.com/models/oplan.wrl).

WTK supports http URLs to VRML files only. The WTnode_load function does not
support any other file type by way of a URL. Make sure your system has an http s
if you intend on using URLs in the filename argument.

WTgeometrynode_load

WTnode *WTgeometrynode_load(

WTnode *parent,
char *filename,
float scale);
4-46 WorldToolKit Reference Manual

Loading a File into a Scene Graph

 the

hich

to a
etries

n 1.0

nd

 in
ath
 is
This function creates a single geometry node from data read in from a file, and adds
newly created node to the scene graph after the last child of the specified parent.

The data read in from the file must contain only geometry data; the only file formats w
can be processed by this function are the following:

• 3DS (3D Studio)

• BFF (SENSE8)

• DXF (AutoCAD)

• GEO (VideoScape)

• NFF (SENSE8)

• OBJ (Wavefront)

• SLP (ProEngineer “RENDER”)

These formats may contain one or more geometric objects which are incorporated in
single geometry node. The scale parameter is used to scale the coordinates of geom
contained in the specified file. If you do not wish to scale the file’s geometries, pass i
as the scale value. You cannot use WTgeometrynode_load to read file formats such as FLT
(MultiGen) or WRL (VRML) because those file formats are hierarchically organized a
contain non-geometric information. Use WTnode_load to read FLT and WRL files.

WTurl_download

char *WTurl_download(
char *url,

char *localfile);

This function copies a file from an http server to a file on the local machine. The url
argument takes the form “http://...”, or “file://...”. The localfile argument is the full path and
file name of the file to be copied onto the local machine. If this function is successful
copying the file to the local machine, the return value of this function will be the full p
and file name of the copied file. If this function fails to successfully copy the file, NULL
returned.
WorldToolKit Reference Manual 4-47

Chapter 4: Scene Graphs

rl
 the

tree,

erties
r node
etail

node
Saving a Scene Graph

WTnode_save

FLAG WTnode_save(

WTnode *node,
char *filename,
WTviewpoint *view,

int filetype,
int options);

This function saves the specified node to a file. If you save it to the VRML format (.w
files) the node and its sub-tree are saved. The filename and filetype are specified by
parameters filename and filetype. Valid filetypes are:

• WTFILETYPE_NFF

• WTFILETYPE_BFF

• WTFILETYPE_DXF

• WTFILETYPE_WRL

The options parameter must be set to 0 (zero) for all filetypes. You can also specify a
viewpoint (with the view parameter) to be saved with the node.

Note: Only geometry nodes can be saved to NFF, BFF, and DXF files. To save a sub-
use the WRL filetype.

This function returns FALSE if the filetype is not WTFILETYPE_WRL and the node is not
a geometry node.

Node Property Functions

Certain node properties are generic — they can pertain to all node types. These prop
include the name of the node, the node type, and any tasks assigned to nodes. Othe
properties are specific to the type of node being considered. For example, Level of D
switching information is stored only in LOD nodes, while position and orientation
information is stored only in transform nodes. This section gives descriptions for the
property functions.
4-48 WorldToolKit Reference Manual

Node Property Functions

t, a
e.

e
assed

is

the
g, and
WTnode_setname

FLAG WTnode_setname(
WTnode *node,
char *name);

This function sets the name of the specified node. All nodes have a name; by defaul
node’s name is “” (i.e., a NULL string). More than one node can have the same nam

WTnode_getname

char *WTnode_getname(
WTnode *node);

This function returns the name of the specified node.

WTuniverse_findnodebyname

WTnode *WTuniverse_findnodebyname(

char *name,
int num);

This function finds the numbered occurrence of a specified node. If no nodes have th
specified name, or if there are fewer nodes with the specified name than the number p
in as num, then NULL is returned. If more than one node has the same name, and num is 0,
then a pointer is returned to the most recently created node with that name. See How Do I
Get A Pointer To A Node Using Its Name? on page A-20 for an example of when to use th
function.

WTnode_enable

FLAG WTnode_enable(

WTnode *node,
FLAG flag);

This function enables or disables the specified node during rendering or traversal of
scene graph. Valid node types are geometry, separator, transform separator, light, fo
ambient.
WorldToolKit Reference Manual 4-49

Chapter 4: Scene Graphs

 flag

g nor

e

g and

rns
ut

cribed
t these
The default value of the enable flag for all nodes is enabled (TRUE). If a node’s enable
has been set to FALSE, the node is disabled, meaning that it will be ignored during a
rendering or picking traversal. The node enable flag does not affect intersection testin
the values returned by any of the following functions: WTnode_getradius,
WTnode_getmidpoint, or WTnode_getextents. Active tasks associated with a disabled nod
are still active.

WTnode_isenabled

FLAG WTnode_isenabled(
WTnode *node);

This function indicates whether a specified node is enabled (or disabled) for renderin
picking traversals.

WTnode_ismovable

FLAG WTnode_ismovable(

WTnode *node);

This function returns TRUE if the specified node is a movable node, otherwise it retu
FALSE. See the Movable Nodes chapter (starting on page 5-1) for more information abo
movable nodes.

WTnode_gettype

int WTnode_gettype(
WTnode *node);

This function returns the type of the specified node. The node types supported are des
in table 4-1 on page 4-11 and table 4-2 on page 4-13. The functions used to construc
nodes are described under Constructing Node Types on page 4-39.

Possible return values are the following defined constants: WTNODE_ANCHOR,
WTNODE_FOG, WTNODE_GEOMETRY, WTNODE_GROUP, WTNODE_INLINE,
WTNODE_ILLEGAL, WTNODE_LOD, WTNODE_LIGHT, WTNODE_MGEOMETRY,
WTNODE_MLOD, WTNODE_MSEP, WTNODE_MSWT, WTNODE_ROOT,
WTNODE_SEP, WTNODE_SWT, WTNODE_WTK, WTNODE_XFORM,
WTNODE_XFORMSEP, WTNODE_GLNODE and WTNODE_WTOBJECT.
4-50 WorldToolKit Reference Manual

Geometrical Property Functions

be
ter to

urned

e child
UE if
de is
turns

pace
rs: the
If the node is illegal, it returns WTNODE_ILLEGAL.

WTnode_setdata

void WTnode_setdata(
WTnode *node,
void *data);

This function sets the user-defined data field in a node. Private application data can
stored in any structure. To store a pointer to a structure within a node, pass in a poin
the structure as the data argument, cast to a void*.

WTnode_getdata

void *WTnode_getdata(
WTnode *node);

This function retrieves private data stored within a node. You should cast the value ret
by this function to the data type of the data stored with the node using WTnode_setdata.

WTnode_canaddchild

FLAG WTnode_canaddchild(

WTnode *parent,
WTnode *child);

This function tests to see if the specified node can be added to the scene graph as th
of the specified parent node without creating a cycle in the scene graph. It returns TR
the specified child node can be added. If a cycle would be created or if the parent no
not one of the group nodes (meaning that it cannot have children) then this function re
FALSE.

Geometrical Property Functions

WorldToolKit functions provide access to three useful parameters that describe the s
occupied by the geometries in a scene graph. Figure 4-20 illustrates these paramete
extents box, the midpoint, and its radius.
WorldToolKit Reference Manual 4-51

Chapter 4: Scene Graphs

 of a
nd Z
 graph

ode

ctly
in the

de
The extents box is the smallest box that fits around the geometries. The extents box
node in a scene graph is relative to its position in the coordinate system (the X, Y, a
axes), which are defined by the transformations accumulated by traversing the scene
up until that node. A node’s extents box encloses the geometries beginning at that node and
including its sub-tree (the sub-tree is its children and grandchildren, etc.)

The midpoint is the midpoint of the extents box. The radius is the distance from the
midpoint of the extents box to one of its corners.

Since there is only one root node for each scene graph, the extents box of the root n
encloses all of the geometry in the scene graph.

Figure 4-20: Node geometrical parameters: extents, radius and midpoint

Note: Although these parameters can be retrieved with WTK calls, they cannot be dire
set. Their values are determined by the locations and extents of the geometries
simulation.

In the remainder of this section, all of the functions described return FALSE if the no
cannot have children (or if the node is not a geometry node).

Y axis

X axis

Z axis

radius

extents[0][X]

extents[0][Y]

extents[1][Y]

extents[1][Z]

extents[0][Z]

extents[1][X]

midpoint
4-52 WorldToolKit Reference Manual

Geometrical Property Functions

 The

ts box.

ght

e

s
igure
WTnode_getextents

FLAG WTnode_getextents(
WTnode *node,
WTp3 extents);

This function obtains the extents of a specified node (including the node’s sub-tree).
coordinates of the vector returned via the extents parameter represents the X, Y, and Z
distance between the midpoint of the node’s extents box and any corner of the exten

One use for this function is to restrict viewpoint motion. Your node action function mi
look to see whether the viewpoint is within the node’s extents, and if not, call
WTviewpoint_moveto to ensure that the viewpoint stays within the spatial extents of th
geometries contained in the node’s sub-tree.

To obtain the minimum and maximum world coordinate values of all graphical entitie
contained in the node and its sub-tree (i.e., the node's extents box, as illustrated in f
4-20), you can use the following code segment:

WTnode *node;
WTp3 midpoint;
WTp3 extents;

float extentsbox[2][3];

WTnode_getmidpoint(node, midpoint);
WTnode_getextents(node, extents);

extentsbox[0][X] = midpoint[0] - (extents[0]);
extentsbox[1][X] = midpoint[0] + (extents[0]);
extentsbox[0][Y] = midpoint[1] - (extents[1]);

extentsbox[1][Y] = midpoint[1] + (extents[1]);
extentsbox[0][Z] = midpoint[2] - (extents[2]);
extentsbox[1][Z] = midpoint[2] + (extents[2]);
WorldToolKit Reference Manual 4-53

Chapter 4: Scene Graphs

ox to

e of

ving

ge
WTnode_getradius

float WTnode_getradius(
WTnode *node);

This function obtains the distance from the midpoint of the specified node’s extents b
a corner of the box. This is the same as the length of the extents vector. See
WTnode_getextents page 4-53.

The node’s radius is the distance from the midpoint of the node’s “extents box” to on
its corners (see figure 4-20 on page 4-52).

It is often useful to scale distances in an application (for example, the velocities of mo
objects or the parallax of a viewpoint) according to the dimensions of a node and its
sub-tree. The node’s radius is convenient for this purpose.

WTsensor *sensor;

WTnode *node;

/* scale sensor sensitivity with the size of the geometries
contained in the node’s sub-tree */

WTsensor_setsensitivity(sensor, 0.01 * WTnode_getradius(node));

WTnode_getmidpoint

FLAG WTnode_getmidpoint(
WTnode *node,

WTp3 p);

This function obtains the midpoint of the specified node’s extents box.

The node’s midpoint is the midpoint of the node’s extents box (see figure 4-20 on pa
4-52). WTnode_getmidpoint places this three-dimensional point in p.
4-54 WorldToolKit Reference Manual

LOD Node Functions

en of
t

 first
 node
e
e first

 equal
ode’s

dren

ge as
LOD Node Functions

This section gives descriptions for LOD node functions.

WTlodnode_setrange

FLAG WTlodnode_setrange(

WTnode *node,
float *range,
int num);

This function sets an array of floats that specify the switch-out distances for the childr
the specified LOD node. The array of floats must be in increasing order, as each floa
represents a distance where WTK switches to a lower level of detail. An LOD node’s
child node represents the highest level of detail, while subsequent children of an LOD
represent decreasing levels of details. When an LOD node is processed, the distanc
between the viewpoint and the LOD center is computed. If it is less than or equal to th
range value, then WTK selects the first level of detail (i.e., the LOD node’s first child
node). If the computed distance is greater than the first range value, but less than or
to the second range value, then WTK selects the second level of detail (i.e., the LOD n
second child node). By default, an LOD node has no range values.

WTlodnode_getrange

FLAG WTlodnode_getrange(
WTnode *node,
float *range,

int num);

This function returns an array of floats specifying the switch-out distances for the chil
of the specified LOD node.

The parameter num indicates the size of the arrays of floats, and must be at least as lar
the number of range entries in the LOD node. Use WTlodnode_numranges to obtain the
number of range values contained in an LOD node.
WorldToolKit Reference Manual 4-55

Chapter 4: Scene Graphs

point.
se.

s
n the
ode’s

and is
st
WTlodnode_numranges

int WTlodnode_numranges(
WTnode *node);

This function returns the number of range entries in the LOD node.

WTlodnode_setcenter

FLAG WTlodnode_setcenter(

WTnode *node,
WTp3 center);

This function sets the center used by an LOD node to compute distance from the view
This distance is then used to determine which child node (of the LOD node) to traver

The default center of an LOD node is (0.0, 0.0, 0.0) in world coordinates.

WTlodnode_getcenter

FLAG WTlodnode_getcenter(

WTnode *node,
WTp3 center);

This function returns the center position of an LOD node.

Separator Node Functions

Separator nodes, in addition to preventing state information from propagating from it
descendent nodes to its sibling nodes, allow for a quick-reject test to be performed o
extents box of a separator node’s sub-tree. When the simulation is run, if a separator n
extents box lies outside the area that is being viewed, then the sub-tree is not visible
therefore not traversed (or rendered). Using separator nodes and their quick-reject te
capability can drastically improve the performance of your simulation. Use the
WTsepnode_setcullmode function to perform a quick-reject test.

This section gives descriptions for separator node functions.
4-56 WorldToolKit Reference Manual

Switch Node Functions

x of
e sub-

be

fault
WTsepnode_setcullmode

FLAG WTsepnode_setcullmode(
WTnode *node,
int mode);

This function sets the specified separator node’s culling mode. Valid modes are
WTNODE_CULLON and WTNODE_CULLOFF. The default is on.

WTNODE_CULLON means that a quick-reject test will be performed on the extents bo
the separator node’s sub-tree. If the extents box lies outside the viewing area, then th
tree is not visible and is therefore not traversed. If the cull mode is set to
WTNODE_CULLOFF, the quick-reject test is not applied, and the node’s sub-tree will
traversed.

WTsepnode_getcullmode

int WTsepnode_getcullmode(
WTnode *node);

This function returns the specified separator node’s culling mode.

Switch Node Functions

This section gives descriptions for switch node functions.

WTswitchnode_setwhichchild

FLAG WTswitchnode_setwhichchild(
WTnode *node,
int which);

This function allows you to specify which child of a switch node is processed (the de
is none). Valid values for which are: 0, 1, 2, etc. You can also use WTnode_numchildren-1,
WTSWITCH_ALL, and WTSWITCH_NONE.
WorldToolKit Reference Manual 4-57

Chapter 4: Scene Graphs

e

al

TK
ion.

th
By default, the value is WTSWITCH_NONE, which means that none of the children of th
switch node will be processed.

WTswitchnode_getwhichchild

int WTswitchnode_getwhichchild(
WTnode *node);

This function returns the index of the current child being processed. Note that
WTSWITCH_ALL and WTSWITCH_NONE are defined as negative numbers so that actu
child numbers will not conflict with these two settings.

Transform Node Functions

This section gives descriptions for transform node functions. Note that by default, W
ignores scaling factors (if any) within a Transform (and Movable) node’s transformat
If you want WTK to use the scaling factors of transformations within transform and
movable nodes, you can do so by setting the WTOPTION_XFORMSCALE option in
WTuniverse_setoption. However, by doing so, it is likely that intersection tests and ma
functions pertaining to matrices will operate incorrectly.

WTnode_settransform

FLAG WTnode_settransform(
WTnode *node,
WTm4 m);

This function replaces the transformation matrix of the specified node.

WTnode_gettransform

FLAG WTnode_gettransform(
WTnode *node,
WTm4 m);

This function returns the transformation matrix of the specified node.
4-58 WorldToolKit Reference Manual

Transform Node Functions

ion

n

 local
WTnode_settranslation

FLAG WTnode_settranslation(
WTnode *node,
WTp3 p);

This function replaces the translation component of the specified node’s transformat
matrix.

WTnode_gettranslation

FLAG WTnode_gettranslation(
WTnode *node,
WTp3 p);

This function returns the translation component of the specified node’s transformatio
matrix.

WTnode_translate

FLAG WTnode_translate(
WTnode *node,
WTp3 pos,

int frame);

This function creates an incremental translation to the existing transform either in the
frame or in the parent frame – as opposed to WTnode_settranslation, which replaces the
translation value.

Valid frames are WTFRAME_LOCAL and WTFRAME_PARENT.
WorldToolKit Reference Manual 4-59

Chapter 4: Scene Graphs

n

n

WTnode_setrotation

FLAG WTnode_setrotation(
WTnode *node,
WTm3 m);

This function replaces the rotational component of the specified node’s transformatio
matrix.

WTnode_getrotation

FLAG WTnode_getrotation(
WTnode *node,
WTm3 m);

This function returns the rotational component of the specified node’s transformation
matrix.

WTnode_setorientation

FLAG WTnode_setorientation(
WTnode *node,
WTq q);

This function replaces the rotational component of the specified node’s transformatio
matrix using a quaternion as an output parameter, unlike WTnode_setrotation, which uses
a 3x3 matrix as an output parameter.

WTnode_getorientation

FLAG WTnode_getorientation(
WTnode *node,
WTq q);

This function returns the rotational component of the specified node's transformation
matrix using a quaternion as an input parameter, unlike WTnode_getrotation, which uses a
3x3 matrix as an input parameter.
4-60 WorldToolKit Reference Manual

Transform Node Functions

cal

es
 that
ist of

cal
 are

cal
 are
WTnode_rotation

FLAG WTnode_rotation(
WTnode *node,
float y,

float x,
float z,
int frame);

This function creates an incremental rotation to the existing transform either in the lo
frame or in the parent frame — as opposed to WTnode_setrotation, which replaces the
rotation value. The incremental transformation matrix is the product of the 4x4 matric
formed by the rotational angles (in radians) specified in the y, x, and z parameter (in
order). Note that the order of rotation is also reflected in the order of the parameter l
this function.

Valid frames are WTFRAME_LOCAL and WTFRAME_PARENT.

WTnode_rotateq

FLAG WTnode_rotateq(
WTnode *node,
WTq q,

int frame);

This function creates an incremental rotation to the existing transform either in the lo
frame or in the parent frame by the amount specified by the quaternion. Valid frames
WTFRAME_LOCAL and WTFRAME_PARENT.

WTnode_rotatem3

FLAG WTnode_rotatem3(
WTnode *node,

WTm3 m3,
int frame);

This function creates an incremental rotation to the existing transform either in the lo
frame or in the parent frame by the amount specified by the 3x3 matrix. Valid frames
WTFRAME_LOCAL and WTFRAME_PARENT.
WorldToolKit Reference Manual 4-61

Chapter 4: Scene Graphs

cal
are

cal

.

sing

nction
e
se
WTnode_rotatem4

FLAG WTnode_rotatem4(
WTnode *node,
WTm4 m4,

int frame);

This function creates an incremental rotation to the existing transform either in the lo
frame or in the parent frame by the amount specified by the 4x4 matrix.Valid frames
WTFRAME_LOCAL and WTFRAME_PARENT.

WTnode_axisrotation

FLAG WTnode_axisrotation(
WTnode *node,

int axis,
float angle,
int frame)

This function creates an incremental rotation to the existing transform either in the lo
frame or in the parent frame around the specified axis.Valid frames are WTFRAME_LOCAL
and WTFRAME_PARENT. The axis can by X, Y, or Z. The angle is specified in radians

URL for Anchor and Inline Nodes

WTvrml_seturl

void WTvrml_seturl(
char *basepath);

This function sets the URL base path, so that relative pathnames can be specified u
WTanchornode_setlocation and WTinlinenode_setlocation.

Since it may be desirable to use relative pathnames in anchor and inline nodes, this fu
allows you to set the base path (location), so that files with relative pathnames can b
located. Note that if WTvrml_seturl is used to set the base path, it is still acceptable to u
full pathnames in the WTanchornode_setlocation and WTinlinenode_setlocation functions.
4-62 WorldToolKit Reference Manual

Anchor Node Functions

 with

.

ith
Anchor Node Functions

This section gives descriptions for anchor node functions.

WTanchornode_setlocation

FLAG WTanchornode_setlocation(

WTnode *node,
char *url);

This function replaces the anchor string (URL) reference of the specified anchor node
the new character string (the char string given in url).

WTanchornode_getlocation

char *WTanchornode_getlocation(

WTnode *node);

This function returns the anchor string (URL) reference of the specified anchor node

Inline Node Functions

This section gives descriptions for inline node functions.

WTinlinenode_setlocation

FLAG WTinlinenode_setlocation(

WTnode *node,
char *url);

This function replaces the inline string (URL) reference of the specified inline node w
the new character string (the char string given in url).
WorldToolKit Reference Manual 4-63

Chapter 4: Scene Graphs

,
of

s
ce.

-

or.

d”
ect is
WTinlinenode_getlocation

char *WTinlinenode_getlocation(
WTnode *node);

This function returns the inline string (URL) reference of the specified inline node.

Fog Node Functions

You can control fog effects by setting the following attributes of a fog node:

fogcolor The color to which objects in the scene are blended to.
Default fog color is black (0.0, 0.0, 0.0). For best results
the color of the fog should match the background color
the simulation. A light grey fog color works well.

range The distance upon which all objects will blend
(completely) into the fogcolor. Default is 0.0 which mean
that the range will be set to the window yon plane distan

mode The fog blending ramp (linear, exponential, exponential
squared). The default is WTFOG_LINEAR.

linearstart The distance at which objects are affected by the fog col
(Only applicable if the fog mode is linear.) The default is
0.0.

Note: If you have two or more fog nodes in the same state (that is, not “state-separate
using a separator), only the most recently traversed one will be used. The fog eff
not cumulative.

This section gives descriptions for fog node functions.
4-64 WorldToolKit Reference Manual

Fog Node Functions

 the

e fog.
o
de
the
t you
WTfognode_setcolor

FLAG WTfognode_setcolor(
WTnode *node,
float red,

float green,
float blue,
float alpha);

This function sets the fog color of a fog node. The default fog color is black. Objects in
scene will be blended to this color as a function of the distance between it and the
viewpoint.

WTfognode_getcolor

FLAG WTfognode_getcolor(
WTnode *node,
float *red,

float *green,
float *blue,
float *alpha);

This function retrieves the fog color of a fog node.

WTfognode_setrange

FLAG WTfognode_setrange(
WTnode *node,
float range);

This function specifies the distance at which all objects are completely blended into th
For example, if you wish to model a scene where visibility is limited to 500 feet due t
heavy fog, you would call this function with a range value of 500.0f. The specified no
must be a fog node. If a range value of 0.0 is specified, then the range will be set to
window yon plane distance. The default range value is 0.0 so it is recommended tha
use WTfognode_setrange to set the range to an appropriate value.
WorldToolKit Reference Manual 4-65

Chapter 4: Scene Graphs

ance
de's
WTfognode_getrange

float WTfognode_getrange(
WTnode *node);

This function returns the range (distance) of the specified fog node.

WTfognode_setmode

FLAG WTfognode_setmode(

WTnode *node,
int mode);

This function sets the mode of the specified fog node. Valid values for the mode argument
are: WTFOG_LINEAR, WTFOG_EXP, WTFOG_EXPSQUARED, and WTFOG_NONE. The
mode of a fog node specifies the fog blending ramp to be used. The default mode is
WTFOG_LINEAR.

WTfognode_getmode

int WTfognode_getmode(

WTnode *node);

This function returns the mode of the specified fog node.

WTfognode_setlinearstart

FLAG WTfognode_setlinearstart(
WTnode *node,

float start);

This function specifies the starting distance where the fog color will affect the appear
of objects. The default value is 0.0. This start distance is only applicable if the fog no
mode is WTFOG_LINEAR.
4-66 WorldToolKit Reference Manual

Open GL Callback Node Functions

. This
cene
lKit

tion/
rmal

ry
ntain
mply

 all
e.

ulate
u so
r

WTfognode_getlinearstart

float WTfognode_getlinearstart(
WTnode *node);

This function returns the linear start distance of the specified fog node.

Open GL Callback Node Functions

OpenGL callback nodes (WTglnode) are nodes intended for use by advanced users
node type allows a developer the flexibility to make custom Open GL calls during the s
graph's traversal. This functionality supplants that offered via the use of the WorldToo
3D drawing function WTwindow_setdrawfn (this was previously the only way to
accomplish custom GL calls without fear of interfering with WorldToolKit's normal
operation.)

The glnode functions are all prefixed with WTglnode_ and exist only to allow the inser
creation of a callback function and to get/set the culling/boundingbox of the node. No
node manipulation can be accomplished via the standard WTnode_ functions.

How to use glnodes

OpenGL callback nodes in WorldToolKit are used in a similar fashion as are geomet
nodes; however, instead of containing a pointer to a WTgeometry, your glnode will co
a pointer to your own custom function that makes OpenGL calls. This requires not si
calling WTglnode_new, but also having defined a separate function that contains the
OpenGL calls you wish to make. As WorldToolKit traverses the scene graph to draw
of the objects contained therein, it will call your custom function at the appropriate tim
The benefit of doing your custom OpenGL code in this manner is that you can accum
the transformation state of the scene graph and apply it to your custom function if yo
wish (you may also choose to ignore this by simply loading the identity matrix in you
callback function.)

Shown below is a simple example of how to implement an OpenGL callback node in
WorldToolKit:

(Note: Sample files may be found in the directory \wtkinstall\demo\glnode)
WorldToolKit Reference Manual 4-67

Chapter 4: Scene Graphs
#ifdef WIN32
#include <windows.h>
#endif

#include <gl\gl.h>
#include "wt.h"

static void actionfn(void);
void MyGLCallback(void);

void main(int argc, char *argv[])
{

WTnode *rootnode;

WTnode *node;
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
rootnode = WTuniverse_getrootnodes();

WTlightnode_load(rootnode, "lights");
/* Create OpenGL callback node */
node = WTglnode_new(rootnode, MyGLCallback, 0);

WTnode_setname(node, "MyOpenGLNode");
WTuniverse_setactions((void *) actionfn);
WTkeyboard_open();

WTuniverse_ready();
WTuniverse_go();
WTuniverse_delete();

}

static void actionfn()

{
short key;
key = WTkeyboard_getlastkey();

if ('q' == key)
WTuniverse_stop();

}

4-68 WorldToolKit Reference Manual

Open GL Callback Node Functions

ode
: i.e.
g is
h this
se

er for
void MyGLCallback(void)
{

/*

It is critical that we save the current GL attributes,
You only need to save attributes/states that you will
be changing; but, if you use glaux or glu functions,

attributes and/or states may be changed that you are
not aware of so if you are unsure, simply use the
GL_ALL_ATTRIB_BITS flag to save everything ; however,

this can an unnecessary computational expense if you only
actually need to save very few states.

*/

/* Save state(s) */
glPushMatrix();
glPushAttrib(GL_ALL_ATTRIB_BITS);

/* WTK uses these states, so you may wish to disable them to have a clean state */
glDisable(GL_CULL_FACE);
glDisable(GL_LIGHTING);

glDisable(GL_TEXTURE_2D);
glDisable(GL_ALPHA_TEST);
glDisable(GL_COLOR_MATERIAL);

glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);

/* We now have a clean state, your OpenGL code goes here */

/* Done with our custom code, restore WTK state(s) */

glPopAttrib();
glPopMatrix();
glFlush();

}

It is very important that you manage the state of OpenGL properly when using this n
type. Indications of improper state/attribute management can be diverse and subtle
textures are not lit properly, line widths are incorrect, anti-aliasing is incorrect, lightin
wrong, colors and/or material are incorrect, et cetera. The simplest way to accomplis
management properly is to use the call glPushAttrib(GL_ALL_ATTRIB_BITS) becau
this simply pushes the entire current state on the GL attributes stack. This is far bett
WorldToolKit Reference Manual 4-69

Chapter 4: Scene Graphs

rring
rk
ushed
ving

 actual

ck
if

ston

ing

how

 as

ould
s the
tly 3
performance reasons than calling glQuery or Set/Get repeatedly as (1) you are incu
excessive function call overhead and more significantly (2) you may be taking netwo
delay penalties if you are remotely rendering because the state information must be p
and pulled across the network each time by the client. glPushAttrib avoids this by sa
the current attributes on the server's attribute stack, therefore restricting delays to the
client's calls of glPushAttrib and glPopAttrib. Note: The use of the method
WTtexture_cache can cause unusual problems with texturing in your OpenGL callba
function. We highly recommend caching all textures prior to calling WTuniverse_go
possible. This problem rarely surfaces; however, it has been noted to occur when
incorporating 3rd party OpenGL calls such as those found in the DiGuy API from Bo
Dynamics Inc.

WTglnodes are not allowed to make any WorldToolKit calls since your function is be
processed in the middle of what WorldToolKit considers a 'known state'. It is highly
recommended that you limit your callback function to OpenGL usage. Examples of
to implement OpenGL callback nodes can be found in the wtkinstall\demo\glnode
directory. An example on how to implement 3rd party OpenGL based products such
DiGuy has been included in the wtkinstall\demo\DiGuy directory.

WTglnode_new

WTnode *WTglnode_new(
WTnode *parent,
void *GLCallbackFunction,

int flags);

This function is used to create a new OpenGL callback node. GLCallbackFunction sh
be a void pointer to a function that takes an argument list of type void. flags determine
behavioral state of the OpenGL callback node in the scene graph. There are curren
flags you can pass:

WTGLNODE_ENABLED Allows WorldToolKit to process this node
during scene graph traversal.

WTGLNODE_BBOXENABLED Allows WorldToolKit to process a user-
defined bounding box for this node.

WTGLNODE_DEFAULTS Bitwise OR of the previous two flags.
4-70 WorldToolKit Reference Manual

Open GL Callback Node Functions

e.

pply
 was

de.

ise
WTglnode_replacecallback

FLAG WTglnode_replacecallback(
WTnode *node,
void *GLCallbackFunction);

This function simply replaces the currently assigned callback function with a new on

WTglnode_setcullingbox

FLAG WTglnode_setcullingbox(
WTnode *node,
WTp3 midpoint,

WTp3 extents);

In order for a culling and bounding box to be processed by WorldToolKit you must su
the midpoint and dimensions of the 'box' you wish to use for this purpose. If the node
created with the flag WTGLNODE_BBOXENABLED or WTGLNODE_DEFAULTS,
you should use this method immediately following creation of the OpenGL callback no
If the flag(s) were not set prior to this call, WorldToolKit will not use the node's
boundingbox for culling purposes.

WTglnode_setflags

FLAG WTglnode_setflags(
WTnode *node,

int flags);

This function replaces the currently set flags with flags. It does not perform any bitw
operations on the current flag settings.
WorldToolKit Reference Manual 4-71

Chapter 4: Scene Graphs

w's

o
 the
 after
e local
e that

where
ewing

for the
res
e for
ts
der's

lished

ition
es
WTglnode_getflags

int WTglnode_getflags(
WTnode *node);

This function returns the status of a particular node's flags.

Possible uses of the OpenGL callback node

The OpenGL callback node has many uses. Most notably it allows a developer the
freedom to introduce custom OpenGL calls into their WTK simulations without the
expensive, laborious and 'hacky' method of tracking and maintaining state in a windo
3D drawing function.

For example, if a user developed a flight simulator for helicopters he/she may want t
include smoke trails and shadows for their missiles as well as a special effect during
launch. As a helicopter launched a missile, the application would add 3 glnodes just
or before the geometry in the scene graph (so that all of these effects occur in the sam
frame as the missile moves.) The node for the shadows could construct a basic cub
was roughly the same dimensions as the missile. The function would then determine
the 'sun' is in relation to the missile's position and the surface and then change the vi
transform to 'collapse' the cube's geometry onto a plane, and use that information to
construct the shadow which would then need to be placed on the surface. The node
launch affect could construct a simple alpha blended and textured cone whose textu
could be modified via the 2D image functions in OpenGL and then applied. The nod
the missile trails could construct of cylinders described by curves whose control poin
were described by the missile's frame by frame 3D position. Each segment of the cylin
geometry could be filled with a volumetric fog at an intensity determined over time.

Now, none of these examples are simple; however, they are now more easily accomp
by the new OpenGL callback node's functionality, and they are possible.

Bounding Boxes

A bounding box represents the maximum spatial extent of an object, in its current pos
and orientation. You can use bounding boxes for collision detection. This section giv
descriptions of bounding box functions.
4-72 WorldToolKit Reference Manual

Bounding Boxes

ting
ave
g box.

xtents
y
e

e
ing

 have
ed.

de’s

SE
You can also make bounding boxes visible in your simulation; this is a way of highligh
some of the scene’s geometric entities. Any geometry node or any node which can h
children (see table 4-1 on page 4-11 and table 4-2 on page 4-13) can have a boundin
No other nodes can have bounding boxes.

When a node’s bounding box is enabled, a white wireframe box is drawn at the node e
when the scene graph is rendered. These extents are the same as those obtained b
WTnode_getextents, i.e., the extents of the node and its entire sub-tree. If you want th
wire-frame box to be drawn in a color other than white, use WTuniverse_setbboxrgb.

WTnode_boundingbox

FLAG WTnode_boundingbox(
WTnode *node,
FLAG onoff);

This function enables a bounding box for the specified node. Use TRUE to enable th
bounding box (which makes it visible) and FALSE to disable it. By default, the bound
box of a node is disabled.

Note that a bounding box can be enabled only for geometry nodes or nodes that can
children. If any other type of node is passed in to this function, then FALSE is return

WTnode_hasboundingbox

FLAG WTnode_hasboundingbox(
WTnode *node);

This function allows you to see if the specified node’s bounding box is enabled. If a no
bounding box has been enabled by calling WTnode_boundingbox with a value of TRUE,
then WTnode_hasboundingbox returns TRUE. If WTnode_boundingbox has not been
called for the particular node, or if it has been called with a value of FALSE, then FAL
is returned.
WorldToolKit Reference Manual 4-73

Chapter 4: Scene Graphs

on, you
gives

cified
alled.
node

e that

node,
ated
e.,
Scene Graph Assembly

Note that you can add a node to the same parent node more than once. For this reas
must refer to child nodes by number (0,1,2, etc.,) rather than by pointer. This section
descriptions for functions you use in assembling the scene graph.

WTnode_addchild

FLAG WTnode_addchild(

WTnode *parentnode,
WTnode *child);

This function adds the specified child to the scene graph after the last child of the spe
parent. Note that the node may already be in the scene graph when this function is c
This function does not replace any existing child nodes, it merely adds another child
to the parent node.

WTnode_insertchild

FLAG WTnode_insertchild(

WTnode *parentnode,
WTnode *child,
int childnum);

This function adds the child node as the numbered node of the specified parent. Not
the node may already be in the scene graph when this function is called.

WTnode_removechild

FLAG WTnode_removechild(
WTnode *parentnode,
int childnum);

This function removes the numbered child and its sub-tree from the specified parent
possibly leaving the node with no parents (an “orphan”). If any task has been associ
with the node by a call to WTtask_new and the node is removed from the scene graph (i.
the node no longer has any parents), the task is no longer performed.
4-74 WorldToolKit Reference Manual

Scene Graph Assembly

 from

ecified
 to be

 node.
her

odes.

cannot
d
WTnode_remove

FLAG WTnode_remove(
WTnode *node);

This function removes the specified node from all of its parent nodes, disconnecting it
the scene graph. If the specified node is a WTgeometry node, then it is no longer rendered
because it is not encountered in any scene graph traversal during rendering. If the sp
node is one of the container-type nodes, it is still possible for the children of this node
rendered, if they have other parents that are still connected to the scene graph.

If any task has been associated with this node by a call to WTtask_new and the node is
removed from the scene graph, the task is no longer performed.

WTnode_deletechild

FLAG WTnode_deletechild(

WTnode *parent,
int childnum);

This function detaches the numbered occurrence of the specified node from its parent
All nodes in the sub-tree beginning with the this node are deleted (if they have no ot
children in the scene graph).

Tasks associated with deleted nodes will no longer be performed.

WTnode_delete

FLAG WTnode_delete(

WTnode *node);

This function detaches all occurrences of the specified node from all of their parent n
All nodes in the sub-tree beginning with this node will have the specified child nodes
deleted (if they have no other parent in the scene graph).

Tasks associated with deleted nodes are no longer performed. Note that root nodes
be deleted; if a root node is specified as the parameter, this function does nothing an
returns FALSE.
WorldToolKit Reference Manual 4-75

Chapter 4: Scene Graphs

f a

 node.
ode,
epth
rsal of
s
e, use:

t

WTnode_vacuum

void WTnode_vacuum(
void);

This function deletes all non-root nodes from all the scene graphs in the universe.

Utility Functions

This section gives a description for the function used to obtain a formatted printout o
hierarchical scene graph.

WTnode_print

void WTnode_print(
WTnode *node);

This function generates a formatted printout of a scene graph, starting at the specified
If you specify the root node, the whole scene graph is printed; if you specify any other n
only the specified node and its sub-tree are printed. Information printed is depth (with d
0 assigned to the node passed in to the function), node type, and node name. Trave
the tree is depth first. Each node of the printout is on a separate line, and each line i
indented according to depth. For example, to print the first scene graph in the univers

WTnode_print(WTuniverse_getrootnodes());

Internally WTnode_print is implemented using WTmessage so that you can redirect the tex
output of WTnode_print to a file if you wish. This is especially useful for non-console
Windows applications. See WTmessage_sendto for more information on how text output
can be redirected to a file or elsewhere.

Scene Graph Structure Inquiry

This section gives descriptions for functions you use to query the scene graph.
4-76 WorldToolKit Reference Manual

Scene Graph Structure Inquiry

o the

 is 0
WTuniverse_getrootnodes

See WTuniverse_getrootnodes on page 2-17 for a description.

WTrootnode_next

WTnode *WTrootnode_next(
WTnode *rootnode);

This function returns the next root node in the universe’s list of root nodes. A pointer t
first root node is obtained with a call to WTuniverse_getrootnodes. You can then iterate
through the list of existing root nodes using WTrootnode_next.

WTnode_numchildren

int WTnode_numchildren(

WTnode *node);

This function returns the number of children of the specified node.

WTnode_getchild

WTnode *WTnode_getchild(
WTnode *parentnode,

int childnum);

Returns the numbered child of the specified parent node. Valid values for childnum are 0,
1, 2, etc. up to the value returned by WTnode_numchildren minus 1.

WTnode_numparents

int WTnode_numparents(
WTnode *node);

This function returns the number of parents of the specified node. If the return value
(i.e., the node has no parents), the node is inactive in the simulation.
WorldToolKit Reference Manual 4-77

Chapter 4: Scene Graphs

ree.

n a
 graph
vided

hich
WTnode_getparent

WTnode *WTnode_getparent(
WTnode *node,
int num);

This function returns the numbered parent of the specified node. Valid values for num are
0, 1, 2, etc. up through the value returned by WTnode_numparents minus 1.

WTnode_numpolys

int WTnode_numpolys(
WTnode *node);

This function returns the number of polygons contained in the specified node’s sub-t

Scene Graph Traversal

Occasionally, you may need to find and perhaps modify certain types of nodes withi
scene graph. In order to perform such a task, you are required to traverse the scene
and then process each node as it is encountered. The following code segment is pro
as a template so that you are able to easily write a scene graph traversal function w
caters to your specific needs.
4-78 WorldToolKit Reference Manual

Additional Topics Related to the Scene Graph

e

 paths,

y one
 The
The following example prints out the name of all light nodes within the specified scen
graph:

void traverse_node(WTnode *node)
{
 int nChildren, nAttachments;

 /* Put your node manipulation code here */
 if (WTNODE_LIGHT == WTnode_gettype(node)) {
 WTmessage("Light Name is %s\n", WTnode_getname(node));

 }
 nChildren = WTnode_numchildren(node);
 if (nChildren > 0) {

 for(i=0; i<nChildren; i++) {
 traverse_node(WTnode_getchild(node,i));
 }

 }
 nAttachments = WTmovnode_numattachments(node);
 if(nAttachments > 0) {

 for(i=0; i<nAttachments; i++) {
 traverse_node(WTmovnode_getattachment(node,i));
 }

 }
}

Additional Topics Related to the Scene Graph

This section contains some additional topics related to the scene graph, such as node
intersection testing, picking polygons, and sensor attachment.

Node Paths

One of the advantages of a scene graph is the ability to instance a node (see page 4-37). An
instance is a reference to the original node. Instancing means that you can have onl
object loaded into memory, but you can make as many references to it as you need.
WorldToolKit Reference Manual 4-79

Chapter 4: Scene Graphs

uely

path”
 node

lation,
e. In
odel.

the
ject

ns

delete
cene

etry is
scene
e, the
at

the
ability to have multiple instances of a node requires that WTK have a mechanism to
uniquely identify a specific instance of a node. The mechanism that WTK uses to uniq
identify a node or node instance is called a node path.

A node path is actually a mathematical entity that allows you to distinguish between
multiple instances of a node. A specific instance can be uniquely defined by the “node
through the scene graph from the root node to the node instance, and hence the term
path is used.

For example, say you have one car model that is instanced several places in the simu
which gives you several cars on the road at the same time, all of which look the sam
this simulation, you would use a node path to refer to a specific instance of the car m

There are two things you can do with node paths:

• Perform intersection tests between a specific node path and other nodes in
scene graph — this allows intersection testing between an instance of an ob
and another object in the universe.

• Pick graphical entities rendered into WTK windows. The WTK picking functio
generate the node path of the picked geometry node.

Note that you must create each node path that your simulation needs and you must
it when you no longer need it (to free up the memory that it uses). If you change your s
graph after creating a node path, the node path may no longer be valid.

LOCATING NODES IN THE SCENE GRAPH

If you create a geometry node and attach it to the scene graph’s root node, the geom
drawn at the universe origin. If you then create a transform node and attach it to the
graph’s root, then attach the same geometry to the root node after the transform nod
geometry is drawn a second time, wherever the transform dictates. The location of th
instance of the geometry (remember, there is only one actual geometry) depends on
path (node path) you take through the scene graph tree to reach it.
4-80 WorldToolKit Reference Manual

Node Paths

wn in

e), and
the
y the

three
Figure 4-21: Node path to an instance of a geometry

For example, if you want a node path to the second instance of the geometry (as sho
figure 4-21), you can create it by calling WTnodepath_new and specifying the following
three parameters: the geometry node, the ancestor node (the scene graph’s root nod
the instance number 1 (since 0 refers to the first instance, and you are interested in
second instance). This newly created node path can then be used to uniquely specif
second instance of the geometry.

WTnodepath_new

WTnodepath *WTnodepath_new(
WTnode *node,

WTnode *ancestor,
int which);

This function creates a new node path. A node path must be fully specified by giving
arguments to this function:

• the node that the instance references

• the ancestor of that node (in figure 4-21, the ancestor is the root node)

• and the occurrence number which. The which parameter is the number of that
instance of the node

Root Node

Geometry

Transform Node

Node Path

Group Node

Geometry

G

Group Node

Geometry
G

WorldToolKit Reference Manual 4-81

Chapter 4: Scene Graphs

us 1)
se,

ber of
of the

 path

a child
th is

st
The which parameter must be an integer between 0 and the total number of ways (min
of traversing the scene graph to go from the ancestor to the specified node. Otherwi
NULL is returned.

WTnodepath_delete

FLAG WTnodepath_delete(
WTnodepath *nodepath);

This function deletes a node path.

WTnodepath_numnodes

int WTnodepath_numnodes(

WTnodepath *nodepath);

This function obtains the number of nodes in the specified node path. This is the num
nodes in the path from (but not including) the ancestor node to the bottom-most node
node path. In the example in figure 4-21 on page 4-81, the number of nodes is two.

WTnodepath_getnode

WTnode *WTnodepath_getnode(
WTnodepath *nodepath,

int num);

This function obtains the specified node in the specified node path. Think of the node
as a specific path through the scene graph. Pass in 0 for num to obtain a pointer to the first
node in the node path. The first node in the node path is not the ancestor node that was
specified when the node path was created. The first node in the node path is actually
node of that ancestor node. In figure 4-21 on page 4-81, the first node in the node pa
the (second) group node.

Pass in:

WTnodepath_numnodes(nodepath) - 1

for num to obtain a pointer to the bottom-most node in the node path. The bottom-mo
node in figure 4-21 on page 4-81 is the instance of the geometry.
4-82 WorldToolKit Reference Manual

Node Paths

f the

raph
ere

e

bers
Pass in a value for num between these two extremes to obtain a pointer to the nodes o
node path between the child of the ancestor and the bottom-most nodes.

WTnodepath_gettraversal

int WTnodepath_gettraversal(
WTnodepath *nodepath,
int *numarray,

int maxsize);

This function obtains a description of the specified node path in terms of the scene g
traversal order. This function will return a number for each node in the node path, wh
the number indicates which child number the node represents.

Your application must declare the integer array called numarray, and pass it in to this
function. The size of numarray must be at least as big as the value returned by
WTnodepath_numnodes for this node path. You must also specify the size of the array
passed in.

The meaning of the values returned in numarray are as follows.

numarray[0] the number of the first child of the ancestor
node along this node path.

numarray[1] the number of the grandchild (the child of the
first child) of the ancestor node along the
node path. And so on, up to:

numarray[WTnodepath_numnodes()-1] which is the number of the bottom-most nod
along the node path.

Note: The numbers returned by this function are relative to each parent node. The num
tell you which child of each parent node is along the specified node path.

WTnodepath_getextents

FLAG WTnodepath_getextents(
WTnodepath *nodepath,
float ext[2][3]);
WorldToolKit Reference Manual 4-83

Chapter 4: Scene Graphs

 point
at
inate

oth

estor

 since
alid if
 node

f the

ould
This function places the center and extents of the node path in the specified floating
array (given by ext). The extents box of a node path is the smallest rectangular box th
encloses all the geometries of the node path and which is aligned with the world coord
axes. Use this function to test for collisions anywhere on the node path.

OBTAINING AN ACCUMULATED TRANSFORMATION

The functions in this section enable you to obtain the accumulated transformation (b
position and orientation) of the node path. This takes into account all transformations
accumulated by traversing down and then to the right (“depth first”) between the anc
and bottom-most node of the node path.

If the node path passed in to any of the functions in this section have become invalid
the node path was created, then FALSE is returned. The node path can become inv
parts of the scene graph associated with the node path have been modified after the
path was created.

WTnodepath_gettransform

FLAG WTnodepath_gettransform(
WTnodepath *nodepath,

WTm4 m4);

This function returns the transformation matrix that would be applied to the leaf node o
node path.

WTnodepath_gettranslation

FLAG WTnodepath_gettranslation(
WTnodepath *nodepath,

WTp3 p);

This function returns the translational component of the transformation matrix that w
be applied to the leaf node of the node path.
4-84 WorldToolKit Reference Manual

Intersection Testing

d be

etries.
h to

ecific
ion of
o find
oat

e
mple, if

.
 the
e can
which
 paths
WTnodepath_getorientation

FLAG WTnodepath_getorientation(
WTnodepath *nodepath,
WTq q);

This function returns the rotational component of the transformation matrix that woul
applied to the leaf node of the node path. The rotational component is returned in
quaternion form.

Intersection Testing

Node paths can be used to test for intersections between specific instances of geom
Because a node may be referenced more than once in a scene graph, it is not enoug
simply ask whether two nodes in your scene graph intersect. You must specify the sp
node paths you are interested in. For example, suppose your application is a simulat
a sailboat race, with several sailboats navigating a course defined by several buoys. T
out whether a sailboat has collided with a buoy, you must specify exactly which sailb
and which buoy. To do so, node paths are used.

The intersection functions provided in this section are meaningful only if the two nod
paths passed in as arguments have the same ancestor node. This is the case, for exa
both node paths are created by calling WTnodepath_new with the same second argument
By having a common ancestor node, there is a common frame of reference in which
proximity of the node paths can be determined. Note that this common ancestor nod
be the root node. Therefore it is always possible to test for intersections of node paths
are in the same scene graph. However it is not possible to test for intersections of node
which are in completely disjoint scene graphs.

WTpoly_intersectpolygon

FLAG WTpoly_intersectpolygon(
 WTpoly *poly1,

 WTnodepath *nodepath1,
 WTpoly *poly2,
 WTnodepath *nodepath2);
WorldToolKit Reference Manual 4-85

Chapter 4: Scene Graphs

t and
 and
specify
 the

he
 node

 of the
se.
pecify
This function tests whether two polygons intersect and returns TRUE if they intersec
FALSE if they do not intersect. Since polygons are contained within geometry nodes
nodes may be referenced more than once in a scene graph, it is not enough to simply
the two polygons. In addition to the two polygons, you must specify the node path of
specific polygon instance for each polygon.

WTpoly_intersectnode

FLAG WTpoly_intersectnode(
 WTpoly *poly1,
 WTnodepath *nodepath1,

 WTnodepath *nodepath2);

This function tests whether a polygon instance (nodepath1) intersects any polygons in the
scene graph’s sub-tree whose start node is the bottom-most node of the node path
(nodepath2). It returns TRUE if there is an intersection and FALSE otherwise. Since t
polygon may be referenced more than once in the scene graph, you must specify the
path of the specific polygon instance (nodepath1).

WTpoly_intersectbbox

FLAG WTpoly_intersectbbox(
 WTpoly *poly1,

 WTnodepath *nodepath1,
 WTnodepath *nodepath2);

This function tests whether a polygon instance (nodepath1) intersects any part of the
bounding box of the scene graph sub-tree whose start node is the bottom-most node
node path (nodepath2) and returns TRUE if there is an intersection and FALSE otherwi
Since the polygon may be referenced more than once in the scene graph, you must s
the node path of the specific polygon instance (nodepath1).

WTnodepath_intersectpoly

FLAG WTnodepath_intersectpoly(

 WTnodepath *nodepoly1,
 WTnodepath *nodepath2);
4-86 WorldToolKit Reference Manual

Intersection Testing

 and

 entire

 n2
hs are
e node
er, then

path

extents
to that

veral
box
box as
elt, and
This function tests for the intersection of any polygons in two node paths (nodepath1
nodepath2) and their sub-trees. It returns TRUE if there is an intersection, FALSE
otherwise.

WTnodepath_intersectbbox

FLAG WTnodepath_intersectbbox(
WTnodepath *n1,
WTnodepath *n2);

This function tests for the intersection of two node paths, n1 and n2, based on their
bounding boxes. Remember that these bounding boxes are the bounding boxes of the
sub-tree of the scene graph beginning at the bottom-most node of the node path.

This function returns TRUE if an intersection is found and FALSE otherwise. If n1 and
weren't constructed with a common ancestor, then FALSE is returned. If the node pat
equivalent, i.e., represent the same exact path through the scene graph, or if one of th
paths represents a subset of the path through the scene graph represented by the oth
FALSE is returned.

WTnodepath_intersectnode

WTnodepath *WTnodepath_intersectnode(
WTnodepath *nodepath,
WTnode *node,

int which);

This function performs a bounding box intersection test between the specified node
and the numbered occurrence of the specified node (and its sub-tree). If they do not
intersect, it returns NULL. If they do intersect, then this function traverses down the
specified node’s sub-tree in search of the node whose bounding box has the smallest
and yet still intersects the bounding box of the specified node path. Then a node path
node is created and a pointer to it is returned.

For example, suppose your simulation contains multiple conveyor belts, each with se
links, onto which a box is dropped. You want to know which link of a specific belt the
intersects as it lands. To do this, pass in the node path corresponding to the specific
the first argument, pass in a pointer to the group or separator node representing the b
as the last argument pass in the number to specify the specific belt to test.
WorldToolKit Reference Manual 4-87

Chapter 4: Scene Graphs

ed in

te
ons
n the

es
begins

cts a
tes.
WTnode_rayintersect

WTpoly *WTnode_rayintersect(
WTnode *node,
WTp3 dir,

WTp3 origin,
float *distance,
WTnodepath **nodepath);

This function obtains the frontmost intersected polygon along a specified ray contain
any geometry node in the specified nodes sub-tree. The ray is defined by the dir and origin
arguments (specifying the direction and the origin respectively) in the same coordina
system as the specified node. This function only tests visible (i.e., front-facing) polyg
that are beyond the hither clipping plane. Back-facing polygons and polygons betwee
viewpoint and the hither clipping plane are not tested for intersection.

If the distance argument is non-NULL, then this memory location is set to the distance
along the ray from the origin to the intersection point.

If you supply a non-NULL nodepath argument, then a node path is created which defin
the path to the geometry containing the polygon that was intersected. This node path
at the specified node. You are responsible for deleting the node path created by this
function. Call WTnodepath_delete to do so, once you are through using the node path.

See What Is Terrain Following? on page A-31.

WTpoly_rayintersect

 FLAG WTpoly_rayintersect(
WTpoly *poly,
WTnodepath *npath,

WTp3 direction,
WTp3 origin,
float *dist);

This function tests whether a ray specified by an origin and a direction vector interse
given polygon, poly. The origin and the direction should be specified in world coordina
4-88 WorldToolKit Reference Manual

Intersection Testing

e ray

ate a

t
h to
ot end

th
n and

t
lygon

e

ch that
 have
If the ray intersects the polygon, TRUE is returned. In this case, the distance along th
from its origin to the intersection point is returned in dist. If the ray does not intersect the
polygon, FALSE is returned and dist is not updated.

This function takes a pointer to a node path as one of its arguments. You should cre
node path from the root node to the geometry node that contains the polygon poly. Note that
it is possible that your scene graph has multiple instances of the geometry node tha
references poly. The node path indicates the instance of the geometry node with whic
perform the intersection test. If the node path does not start at the root node or does n
at the geometry node that contains poly, FALSE is returned.

WTpoly_rayintersect takes into account the accumulated transform along the node pa
from the root node to the geometry node. That is why you need to specify the ray origi
direction in world coordinates.

This function is similar to WTnode_rayintersect, though in certain cases, it is more efficien
than the latter. For example, if you need to determine whether a ray intersects any po
of a particular geometry, you could loop through the geometry's polygons calling
WTpoly_rayintersect for each one.

Now consider implementing this using WTnode_rayintersect. You would simply test
whether the polygon returned by WTnode_rayintersect belongs to the relevant geometry.
This is less efficient, however, because WTnode_rayintersect tests for an intersection with
every polygon in every geometry that is below the specified node, before it returns th
closest polygon. Remember that since WTnode_rayintersect takes the origin and ray in the
node's local coordinates, the node has to be sufficiently high up in the scene graph su
all relevant transform nodes are considered. This might prove to be expensive if you
your scene graph organized such that WTnode_rayintersect is forced to check for
intersections with irrelevant geometries. There are circumstances of course, where
WTnode_rayintersect is the better suited function.

See What Is Terrain Following? on page A-31.

WTviewpoint_intersectpoly

FLAG WTviewpoint_intersectpoly(
WTviewpoint *vpoint,
WTpoly *poly,

WTnodepath *npath,
float distance);
WorldToolKit Reference Manual 4-89

Chapter 4: Scene Graphs

he
try

t start

nce is
ose as
 You

t

 into

e

tes
one,
n

e

 in the

s in
This function tests whether the viewpoint vpoint intersected the polygon poly as a result of
the viewpoint's motion in the current frame.

npath should be a node path from the root node to the geometry node that contains t
polygon poly. It is possible that your scene graph has multiple instances of the geome
node that contains the polygon poly. The node path npath indicates exactly which instance
you want the intersection test to be performed with. If the node path specified does no
at the root node and end at the geometry node, FALSE is returned.

Use the argument distance to specify how close you want the viewpoint to get to the
polygon before it is detected as an intersection. The value usually specified for dista
0.0. In some cases, however, you might want to detect whether the viewpoint is as cl
the hither clipping distance to the polygon, even if it has not intersected the polygon.
should then pass in the hither clipping value as distance. (See WTwindow_gethithervalue on
page 17-18). Negative values for distance are invalid and will result in this function
returning FALSE.

WTviewpoint_intersectpoly returns TRUE if the motion of the viewpoint during the curren
frame resulted in an intersection with the polygon, or if the distance between the new
position of the viewpoint and the polygon is less than the distance parameter passed
this function.

Since you would usually want to test to see whether the viewpoint has intersected th
polygon each and every frame, you should call this function from within the universe
actions function. Also, the universe event order is critical to the functioning of
WTviewpoint_intersectpoly. If the viewpoint is being controlled by a sensor, sensor upda
have to be done before this function is called. If the sensor updates have not been d
WTviewpoint_intersectpoly will find no difference between the position of the viewpoint i
the last frame and that in the current frame. That is why you have to call
WTuniverse_seteventorder (see page 2-9) such that the sensors are updated before th
actions function is called. Then, with a call to WTviewpoint_intersectpoly in your actions
function, you can determine whether the sensor updates in the current frame resulted
viewpoint intersecting a given polygon.

One application for WTviewpoint_intersectpoly is portals. Your code can call this function
every frame to check whether the viewpoint intersected a portal polygon. If
WTviewpoint_intersectpoly returns TRUE, you should have code that appropriately load
a new world or switches to a different root node.
4-90 WorldToolKit Reference Manual

Picking Polygons

ygon
gon,
s the

creen
alues,
er of

 was

s in
Refer to the portal.c demonstration (located in the demos directory on your WTK
distribution) for a detailed example of how to use this function. Also see How Do I Handle
Portals In This Release? on page A-22.

Picking Polygons

The functions described in this section enable you to pick the top-most rendered pol
in the specified window. These functions provide you with not just the intersected poly
but also with the coordinate of the point at which the polygon is intersected, as well a
WTnodepath indicating to which node occurrence in the scene graph the intersected
polygon belongs.

WTscreen_pickpoly

WTpoly *WTscreen_pickpoly(
int screennum,

WTp2 pt,
WTnodepath **nodepath,
WTp3 p);

This function obtains a pointer to the frontmost polygon rendered at the specified 2D s
point on the specified screen. Screen coordinates are specified as 2D floating point v
with (0.0, 0.0) representing the top-left corner of the screen, and the bottom-right corn
the screen represented by (screen width, screen height). If there is no WTwindow at the
specified screen coordinate of the specified screen, or if there is no polygon at that
coordinate, then NULL is returned.

The WTp3 obtained is the 3D point in world coordinates at which the selected polygon
intersected.

This function also fills in the value of the WTnodepath pointer, indicating the node path to
which the selected polygon belongs. If the polygon selected is in a WTgeometry node which
is referenced more than once in the scene graph, it may be useful to know for which
occurrence of the WTgeometry node the polygon was selected. You are allowed to pas
NULL for the nodepath argument. If you do pass in NULL, then the function does not
provide the WTnodepath pointer information to you and does not create a WTnodepath for
you.
WorldToolKit Reference Manual 4-91

Chapter 4: Scene Graphs

-most

nsors

node

dates

n
eir
If you do pass in a non-NULL value for nodepath, then a node path is created. You are
responsible for deleting this WTnodepath, when you no longer need it. To do so, call
WTnodepath_delete.

WTwindow_pickpoly

See WTwindow_pickpoly on page 17-20 for a description.

Sensor Attachment

Sensors can be attached to transform nodes or to node paths, as long as the bottom
node of the node path is a transform node. Motion links, which are described in the Motion
Links chapter, are a more powerful and general-purpose mechanism for attaching se
to various objects than using transform nodes.

WTnode_addsensor

WTmotionlink *WTnode_addsensor(
WTnode *node,

WTsensor *sensor);

This function attaches a sensor to a transform node. You can only pass a transform
into this function.

Transform nodes have a property — a list of attached sensors — that automatically up
position and orientation stored in the node, in the local frame.

Some sensors, like the FASTRAK, ISOTRAK, InsideTRAK, and Flock of Birds, retur
absolute records. To get the expected results with these sensors, you have to set th
reference frame to their parent node’s reference frame using the WTmotionlink_new
function.

WTnode_removesensor

void WTnode_removesensor(
WTnode *node,

WTsensor *sensor);
4-92 WorldToolKit Reference Manual

Sensor Attachment

f the

e.
This function detaches the specified sensor from the specified node.

WTnodepath_addsensor

WTmotionlink *WTnodepath_addsensor(
WTnodepath *nodepath,
WTsensor *sensor,

int frame);

This function allows you to attach a sensor to a node path (if the bottom-most node o
node path is a transform node).

The sensor input is applied relative to the top-most node of the node path (this is the
ancestor node argument to WTnodepath_new).

WTnodepath_removesensor

void WTnodepath_removesensor(
WTnodepath *nodepath,

WTsensor *sensor);

This function detaches the specified sensor from the specified node paths’s leaf nod
WorldToolKit Reference Manual 4-93

Chapter 4: Scene Graphs
4-94 WorldToolKit Reference Manual

cting
,
de. In

tor, a
5
Movable Nodes

Introduction

Movable nodes are self-contained entities that save you time and effort when constru
a scene graph. Because movable nodes contain position and orientation information
movable nodes make it easier to position the object corresponding to the movable no
this manual, movable nodes are also referred to as “movables.”

What Makes Up a Movable Node?

As shown in figure 5-1, the three basic components of a movable node are a separa
transform, and a content.

Figure 5-1: The basic structure of a movable node

Separator

Transform Content

(to parent)

Chapter 5: Movable Nodes

roup”

Table 5-1 describes each component in a movable and what it accomplishes.

The last three types of content components — Separator, Switch, and LOD — are “g
types. Group movable nodes can have children under them in the scene graph. SeeGroup
Movable Node Creation on page 5-4.

Table 5-1: The three basic components in a movable node

Node What it controls Remarks

Separator Keeps the transformation
within this movable from
affecting sibling nodes.

Movable light nodes have a transform
separator instead of a separator.

Transform How the content is
positioned.

Each movable node has a
transformation component which
allows you to control the position and
orientation of a movable node. See
Movable Node Position and
Orientation on page 5-7.

Content What the movable displays
or accomplishes.

The five types of content components
are the following:

Geometry (a series of vertex
positions and surface definitions).

Light (a defined source of
illumination).

Separator (prevents state
information from propagating from its
descendant nodes to its sibling
nodes).

Switch (a group that allows the user
to control which of its children is in the
simulation at any given time).

Level of Detail (LOD) (a switch that
chooses the active child
automatically, based on the range to
the viewpoint). Use LOD to improve
rendering speed by displaying simpler
objects at a distance and switching to
more complex objects as you
approach them in the simulation.
5-2 WorldToolKit Reference Manual

Movable Node Creation Functions

s it to

rned.
le to

he last

Movable Node Creation Functions

This section lists the functions you use to create movable nodes.

Geometry and Light Movable Node Creation

These movable nodes (like geometry and light nodes) cannot have children.

WTmovgeometrynode_new

WTnode *WTmovgeometrynode_new(
WTnode *parent,

WTgeometry *geom);

This function creates a movable geometry node from the existing geometry and add
the scene graph after the last child of the specified parent. If the parent is NULL, the
movable geometry node is created without a parent. If there is an error, NULL is retu
Any of the WTnode functions that are applicable to geometry nodes are also applicab
movable geometry nodes.

WTmovlightnode_newpoint

WTnode *WTmovlightnode_newpoint(
WTnode *parent);

This function creates a movable point light node and adds it to the scene graph after t
child of the specified parent. If the parent is NULL, the movable light node is created
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable point light’s attributes. See the Lights
chapter (starting on page 12-1).
WorldToolKit Reference Manual 5-3

Chapter 5: Movable Nodes

ter the
ated

e

he last

the last
ated
WTmovlightnode_newdirected

WTnode *WTmovlightnode_newdirected(
WTnode *parent);

This function creates a movable directed light node and adds it to the scene graph af
last child of the specified parent. If the parent is NULL, the movable light node is cre
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable directed light’s attributes. See th
Lights chapter (starting on page 12-1).

WTmovlightnode_newspot

WTnode *WTmovlightnode_newspot(

WTnode *parent);

This function creates a movable spot light node and adds it to the scene graph after t
child of the specified parent. If the parent is NULL, the movable light node is created
without a parent. If there is an error, NULL is returned. You can use the regular
WTlightnode functions to set and retrieve a movable spot light’s attributes. See the Lights
chapter (starting on page 12-1).

Group Movable Node Creation

Group movable nodes can have children.

WTmovsepnode_new

WTnode *WTmovsepnode_new(

WTnode *parent);

This function creates a movable separator node and adds it to the scene graph after
child of the specified parent. If the parent is NULL, the movable separator node is cre
without a parent. If there is an error, NULL is returned. A separator prevents state
information from propagating from its descendant nodes to its sibling nodes.

You can use the regular WTsepnode functions with movable separator nodes. See
Separator Node Functions on page 4-56.
5-4 WorldToolKit Reference Manual

Group Movable Node Creation

 last
ed
 the

raph
 child
ally
when
er is
ent is
 is

, and
t. The
WTmovswitchnode_new

WTnode *WTmovswitchnode_new(
WTnode *parent);

This function creates a movable switch node and adds it to the scene graph after the
child of the specified parent. If the parent is NULL, the movable switch node is creat
without a parent. If there is an error, NULL is returned. A switch is a group that allows
user to control which of its children should be in the simulation at any given time.

You can use the regular WTswitchnode functions with movable switch nodes. See Switch
Node Functions on page 4-57.

WTmovlodnode_new

WTnode *WTmovlodnode_new(

WTnode *parent);

This function creates a movable Level of Detail (LOD) node and adds it to the scene g
after the last child of the specified parent. An LOD is a switch that chooses the active
automatically, based on the range to the viewpoint. The children of an LOD are typic
the same object with differing numbers of polygons. High-detail models are selected
the viewer is close for better realism. Low-detail models are selected when the view
farther away, which increases the frame rate by rendering fewer polygons. If the par
NULL, the movable LOD node is created without a parent. If there is an error, NULL
returned.

You can use the regular WTlodnode functions with movable LOD nodes. See LOD Node
Functions on page 4-55.

WTmovnode_load

WTnode *WTmovnode_load(
WTnode *parent,

char *filename,
float scale);

This function creates a movable node (or node hierarchy) from data read in from a file
adds the movable node to the scene graph after the last child of the specified paren
WorldToolKit Reference Manual 5-5

Chapter 5: Movable Nodes

ny of
ned to
tries

hts,

the
 path
uld

erver

ntical
ht
ular
data read in from the file may contain geometry data or data which corresponds to a
the supported node types. If the file contains a single geometry then the name assig
the movable node will be the name of the geometry. If the file contains multiple geome
then the movable node’s name will be set to NULL.

This function can read data from light files (see the Lights chapter, starting on page 12-1)
to create a movable (point, directed, or spot) light. If the light file contains multiple lig
then a single movable containing all of the lights is created. So, if you need to create
individual movables for each light in a light file, you should break the file down into
“single-light” files.

See What Is The Difference Between WTmovnode_load and WTnode_load? on page A-4.

Note: The argument filename is a string that specifies the name of the file from which
data is read. This file could be on your local system (in which case you specify the
to it), or it could be a URL. If you are using a URL to read in data, the file name sho
contain the full http address (e.g., http://www.sense8.com/models/oplan.wrl).

WTK supports http URLs to VRML files only. The WTmovnode_load function does not
support any other file type by way of a URL. Make sure your system has an http s
if you intend on using URLs in the filename argument.

Movable Nodes Compared to ‘Regular’ Nodes

Aside from the fact that the transformation functions such as WTnode_setrotation can be
used with the class of movable nodes, each type of movable node is identical to the
corresponding regular (non-movable) node.

Each of the movable nodes created by the functions in the left column below are ide
to the corresponding regular (non-movable) nodes created by the functions in the rig
column. Their functionality is identical and the functions that are applicable to the reg
(non-movable) nodes are also applicable to the movable version.

WTmovgeometrynode_new WTgeometrynode_new

WTmovlightnode_newpoint WTlightnode_newpoint

WTmovlightnode_newdirected WTlightnode_newdirected

WTmovlightnode_newspot WTlightnode_newspot

WTmovsepnode_new WTsepnode_new
5-6 WorldToolKit Reference Manual

Movable Node Position and Orientation

tion
ve to

ition

 also
cene

in to

 node
WTmovswitchnode_new WTswitchnode_new

WTmovlodnode_new WTlodnode_new

Movable Node Position and Orientation

As illustrated in figure 5-1 on page 5-1, each movable node has a built-in transforma
component that allows you to control its position and orientation. Thus, you do not ha
create a transformation node for the movable node.

To set the position and/or orientation of a movable node, you can use any of the pos
and orientation WTnode functions that are applicable to transform nodes, such as
WTnode_settransform, WTnode_setrotation, etc. (see Transform Node Functions on page
4-58). It is important to remember that a movable node’s position and orientation may
be affected by transformation nodes or movable nodes that are its ancestors in the s
graph.

When positioning an object, WTK functions use the geometry’s origin when moving a
geometry to the specified position. For example, when WTnode_settranslation is called, the
geometry is translated so that its origin is placed at the 3D world coordinate passed
that function.

The following example shows how you can create and position a movable geometry
at the world coordinates 100.0, 0.0, 0.0 (given that the corresponding WTgeometry has
already been created):

WTgeometry *geo;

WTnode *root;
WTnode *movgeo;
WTp3 position;

root = WTuniverse_getrootnodes();
movgeo = WTmovgeometrynode_new(root, geo);
position[0] = 100.0;

position[1] = 0.0;
position[2] = 0.0;
WTnode_settranslation(movgeo, position);
WorldToolKit Reference Manual 5-7

Chapter 5: Movable Nodes

xis).

ntal
ode;

cified
ctor

igned
r

that
WTmovnode_axisrotation

FLAG WTmovnode_axisrotation(
WTnode *movnode,
int axis,

float angle);

This function rotates a movable node in its local frame (i.e., it rotates around its own a
The specified movable is rotated by the number of radians in the angle parameter about the
specified (X, Y, or Z) axis. Note that the rotation angle specified here has an increme
effect, i.e., it is combined with the existing transformation component of the movable n
it does not “replace” the transformation component.

If the specified node movnode is NULL, or if it’s not a movable node, then this function
returns FALSE.

WTmovnode_alignaxis

FLAG WTmovnode_alignaxis(
WTnode *movnode,

int axis,
WTp3 dir);

This function rotates the movable node about its midpoint in such a way that the spe
axis of the movable aligns with (i.e., points in the same direction) as the direction ve
dir. This function “replaces” the WTK V2.1 function WTobject_alignaxis.

The argument movnode should point to a movable node. axis should be one of the defined
constants X, Y or Z, and it identifies the axis of the movable node that needs to be al
with the direction vector dir. This function is not available for regular transform nodes o
geometry nodes.

The following example aligns a graphical object (flashlight) with a light. It is assumed
“flashlight” is a movable created with WTmovnode_load, and “lightnode” is a directional
light node.
5-8 WorldToolKit Reference Manual

Movable Node Hierarchies

. It

arts

arm
{
WTp3 dir;

 WTlightnode_getdirection(lightnode, dir);

/* X axis assumed to point along flashlight length */
 WTmovnode_alignaxis(flashlight, X, dir);

}

WTmovnode_alignaxis returns TRUE if it succeeds in aligning the movable as required
returns FALSE if movnode is not a movable, or if axis is not one of the constants X, Y, or
Z, or if dir is a zero vector (a vector whose magnitude is 0).

Movable Node Hierarchies

A movable hierarchy is a group of nodes that move together as a whole but whose p

can move independently. For example, consider the hierarchically assembled robot
illustrated in figure 5-2.

Figure 5-2: Hierarchically assembled robot arm

lower arm

middle arm

effector

base
WorldToolKit Reference Manual 5-9

Chapter 5: Movable Nodes

 the

ow it,
etries

, this
n the
the

he
 you

control
ld use
Each part of the robot arm — the base, the lower segment, the middle segment, and
effector — must be created as a separate node, using, for example, the function
WTmovnode_load. The pointers to these four movable nodes are called base, lower, middle,
and effector. To assemble the robot arm as shown in figure 5-2, you would make the
following calls to WTmovnode_attach (see page 5-11):

WTmovnode_attach(base, lower, 0);
WTmovnode_attach(lower, middle, 0);
WTmovnode_attach(middle, effector, 0);

These calls result in a geometry hierarchy in which base is the root, and moving down
through the hierarchy is lower, then middle, then effector. (Don’t be confused by the fact
that “down” in the hierarchy corresponds to “up” in figure 5-2.)

When a geometry in the hierarchy moves, it moves all of the geometries that are bel
as if the geometries were rigidly attached. Geometries that are above the moved geom
are not affected by the geometry’s motion. For example, when the lower arm moves
causes the middle arm and effector to move with it, while the base is unaffected. Whe
effector moves, none of the other geometries are affected because the effector is at
bottom of the hierarchy. Since sub-geometries move automatically with their parent
geometries, if you wish to move an entire geometry hierarchy, you need only move t
topmost geometry in the hierarchy. In the robot arm example, to move the entire arm
would simply move the base.

Keyboard input, mouse button presses, or other sensor device input could be used to
the robot arm. For example, to rotate the effector using the left mouse button, you cou
the following effector task function (assigned with WTtask_new). Note that the following
code fragment assumes the existence of a global WTK sensor object pointer called mouse.

void effector_task(WTnode *mnode)
{
float w; /* amount of rotation (radians) */

/* return if the left mouse button isn’t pressed. */
if (! (WTsensor_getmiscdata(mouse) & WTMOUSE_LEFTBUTTON))

return;

/* Rotate the movable.
Rotation about the effector’s Y or Z axis will cause the
arm to pitch or yaw, rather than to twist about its length. */
5-10 WorldToolKit Reference Manual

Movable Node Hierarchies

e
 the
de

arent

een
ing
vable
ced

n the

 of
h
 want
detail
w = WTsensor_getangularrate(mouse);
WTnode_rotate(mnode, Y, w, WTFRAME_LOCAL);
}

WTmovnode_attach

FLAG WTmovnode_attach(
WTnode *parent,
WTnode *child,

int attachmentnum);

This function attaches the child node to the parent node as the attachmentnum’th
attachment. The parent node must be a movable node (a node created by
WTmovgeometrynode_new, WTmovlodnode_new, etc.), while the child node can be a
movable or a regular (non-movable) node.

The parameter attachmentnum must be an integer between the range of 0 (zero) and th
total number of attachments. (You can find the total number of attachments by using
WTmovnode_numattachments (see page 5-13) function. For example, if the movable no
specified by the parent has two attachments, then calling WTmovnode_attach with an
attachmentnum value of 2, will attach the child node as the third attachment of the p
node. You can also set attachmentnum to the constant WTNODE_APPEND, which
attaches the child node to the end of all the attachments.

Note that if the specified child node is already contained in the scene graph or has b
previously attached to another movable node, then this function will not detach exist
connections but instead will create an additional connection. Attaching a node to a mo
node is similar to adding a child node to a parent; the child node may already be pla
somewhere in the scene graph so WTmovnode_attach, like WTnode_addchild, will not alter
the child node’s existing connections within the scene graph.

Note: This function creates a new instance of the child node in the specified location i
hierarchy. It does not move an existing node from one location to another.

Use this function when the child you are attaching is different from the other children
the parent node. For example, if you have a movable Level of Detail (LOD) node wit
several children (representing the different levels of detail of a single object), and you
to add a node that is unrelated to LOD (i.e., it does not represent one of the level of
objects of the LOD), you would attach it with this function rather than adding it with
WTnode_addchild.
WorldToolKit Reference Manual 5-11

Chapter 5: Movable Nodes

E,

ents
de

r of

 with
.

nd
If the specified parent node is not a movable node, or if parent is NULL, or if child is
NULL, or if attachmentnum is outside the valid range, then this function returns FALS
otherwise it returns TRUE.

WTmovnode_detach

FLAG WTmovnode_detach(
WTnode *parent,
int attachmentnum);

This function detaches the child node, whose attachment number is specified by
attachmentnum, from the parent node, possibly leaving the detached node with no par
(i.e., the node becomes an orphan). The parent node must be a movable node (a no
created by WTmovgeometrynode_new, WTmovlodnode_new, etc.).

Attachmentnum must be an integer between the range of 0 (zero) and the total numbe
attachments minus one (the number returned by the function
WTmovnode_numattachments (see page 5-13) minus one).

If the specified parent node is not a movable node, or if attachmentnum is outside the valid
range, then this function returns FALSE, otherwise it returns TRUE.

WTmovnode_deleteattachment

FLAG WTmovnode_deleteattachment(
WTnode *parent,
int attachmentnum);

This function detaches the child node, whose attachment number is specified by
attachmentnum, from the parent node, and deletes all nodes of the sub-tree beginning
that attachment node (if they have no parents in other branches of any scene graph)

The parent node must be a movable node (a node created by WTmovgeometrynode_new,
WTmovlodnode_new, etc.). Attachmentnum must be an integer between the range of 0 a
the total number of attachments minus one (the number returned by the function
WTmovnode_numattachments (see below) minus one).

If the specified parent node is not a movable node, or if attachmentnum is outside the valid
range, then this function returns FALSE, otherwise it returns TRUE.
5-12 WorldToolKit Reference Manual

Movable Node Instancing

ot have

al

es of a
ssible
WTmovnode_numattachments

int WTmovnode_numattachments(
WTnode *node);

This function returns the movable node's number of attachments. For example, if the
specified parent node has a single attachment, then WTmovnode_numattachments returns
1 (one). If the specified parent node is not a movable node, then the parent node cann
any attachments and this function returns 0 (zero).

WTmovnode_getattachment

WTnode *WTmovnode_getattachment(

WTnode *node,
int attachmentnum);

This function returns a pointer to the node whose attachment number is specified by
attachmentnum. Attachmentnum must be an integer between the range of 0 and the tot
number of attachments minus one (the number returned by the function
WTmovnode_numattachments (see above) minus one).

If the specified parent node is not a movable node or if attachmentnum is outside the valid
range then this function returns NULL.

Movable Node Instancing

WTmovnode_instance

WTnode *WTmovnode_instance(

WTnode *parent,
WTnode *movable);

This function creates a separate instance of a movable node. When multiple instanc
movable node are desired, this function allows you to create them as efficiently as po
because all of the information stored in the movable node (except transformation
information) is shared by every instance of that particular movable node.
WorldToolKit Reference Manual 5-13

Chapter 5: Movable Nodes

cene
ot be
ion and

egular

t child
.

nherit
So if
eed to
Use this function when you want multiple instances of a particular movable node in a s
graph. Since every movable node has a built-in transformation component, it would n
possible to have instances of a movable node where each instance has its own posit
orientation, unless a function such as WTmovnode_instance were available to create
separate instances of the movable node.

The specified source node must be a movable node. If the specified source node is a r
(non-movable) node, then this function does nothing and returns NULL. If parent is not
NULL, then the newly created movable node is added to the scene graph after the las
of the specified parent, and a pointer to the newly created movable node is returned

See How Do I Display Multiple Instances Of An Object? on page A-5.

Note: When you create an instance of a movable node, the instanced node does not i
the name from the movable node, instead, the instanced node’s name is NULL.
you want the instanced node to have the same name as the movable node, you n
explicitly set its name using WTnode_setname (see page 4-49).
5-14 WorldToolKit Reference Manual

ny
ical
eans
oints

t any

e three-
 actual
ph
drawn
h as

th

ee

 as

6
Geometries

Introduction

Geometries are the three-dimensional (3D) objects that form the building blocks for a
real-time simulation; they are what you see on your screen. Examples of these graph
objects might include balls, platforms, vehicles, houses, landscapes, but are by no m
limited to any particular shape or form. Because geometries are a composition of 3D p
(vertices) and the surfaces (polygons) formed from these points, along with material
properties (such as color) and texture, you have great freedom in creating just abou
shape or form you can imagine as a geometry.

As WTK traverses the scene graph and encounters geometry nodes, it renders thes
dimensional graphical objects to the screen. Geometry nodes contain a pointer to the
geometry (or WTgeometry structure). Geometry nodes are the content in the scene gra
that you see drawn to the screen. Light and fog nodes affect the way geometries are
(the way they look), but are not visible themselves. Likewise, procedural nodes (suc
switches, LOD's) have no visual representation; rather, they choose an appropriate
geometry node to draw at the given time.

You can use the following resources to create WTK geometries:

• A CAD or modeling program such as AutoCAD or the World Up Modeler, wi
the 3D geometry written out in one of the formats supported by WTK.

• WTK’s neutral file format (NFF) import facility.

• Importing a geometry defined in one of the file formats supported by WTK (s
page 6-2).

• WTK’s functions for dynamically constructing predefined geometry types such
cylinders, blocks, and cones.

• WTK’s polygon and vertex constructor functions for dynamically constructing
custom graphical objects.

• WTK's functions for creating 3D text objects.

Chapter 6: Geometries

ng
g,

e run-
ortant

.

ties

n
ud
only
BJ

or
lues
• Copying an existing geometry with WTgeometry_copy (see page 6-26), with the
option of modifying this copy by using WTK's polygon and vertex editing
functions.

This chapter discusses some important factors you should consider when constructi
geometries for your simulations. It also includes WTK functions for creating, importin
modifying, and optimizing geometries.

Modeling Considerations

The way in which you model geometrical entities affects the appearance as well as th
time performance of a simulation. This section describes considerations that are imp
when you are modeling geometries for use in a WTK application. It discusses the file
formats that WTK supports, and some techniques for constructing a virtual world
consisting of multiple geometrical entities using a CAD or other 3D modeling program

File Formats Supported by WTK

WTK supports the following 3D geometry and attribute file formats. Geometrical enti
are constructed when you call WTgeometrynode_load, which is described on page 4-46 in
the Scene Graphs chapter.

1. Autodesk DXF format. Many 3D modeling programs generate this common
format. WTK can also output files in DXF format (see WTgeometry_save on page
6-26).

2. Wavefront OBJ format . The Wavefront modeling tool generates this format.
WTK imports the 3D polygonal geometry and curved surfaces that have bee
polygonalized. Vertex normals and texture vertices are supported for Goura
shading and texture draping. WTK reads map files and material files, but the
supported properties are diffuse color (Kd) and diffuse texture (map_Kd). An O
file describes a single geometry.

3. Autodesk 3D Studio mesh format. WTK reads polygonal information from a
3DS file including color and texture information. WTK uses the “ambient” col
material value as the color for each polygon, and supports 3DS texture uv va
6-2 WorldToolKit Reference Manual

File Formats Supported by WTK

in

s

s

ry. It
wise

ify

ion

to allow correct reproduction of the 3D Studio texture application methods.
Smoothing groups are supported for Gouraud shading. A 3DS file can conta
multiple geometries. See Notes on the Autodesk 3DStudio Mesh reader on page
6-5 for more information on 3DS files.

4. Pro/Engineer RENDER SLP format. WTK reads the facets in an SLP file as
colored polygons with vertex normals for smooth shading. A SLP file contain
only one geometry.

5. MultiGen/ModelGen Flight format. WTK supports textures, subfaces, external
references, transforms, LODs, instances and replicas. A FLT file can contain
multiple objects. See Notes on the MultiGen OpenFlight File Reader on page 6-5
for more information on MultiGen/ModelGen files.

6. VideoScape GEO format. This is a simple 16-color format in which all polygon
are back face rejected. A GEO file describes a single geometry.

7. WorldToolKit Neutral File Format (NFF) and Binary NFF format (see Appendix
F). The NFF format is an efficient and readable representation of 3D geomet
is also useful as an intermediary format between WTK and formats not other
supported. NFF files can be written directly by WTK functions (see
WTnode_save on page 4-48). An NFF or binary NFF file can contain multiple
geometries.

8. Virtual Reality Modeling Language (VRML) format. WTK can read and write
VRML 1.0 (.wrl) files. If you are using a URL to read in data, you should spec
an http link in your call to the WTnode_load function (see page 4-46). Note that
WTK supports http URLs to VRML files only.

WTK supports the VRML files output by CATIA version 4.1.7.

You can load in many other file formats into WTK using third-party geometry convers
programs capable of writing formats that WTK can read. A program such as KANDU
software’s CADMOVER reads and writes most popular 3D file formats.
WorldToolKit Reference Manual 6-3

Chapter 6: Geometries

s

r, and

ed
es the

sure
ot

 will
is
der
WTK VRML 1.0 Limitations

WTK supports most of the VRML 1.0 specification. The VRML 1.0 limitations of WTK
include:

• No support for AsciiText, FontStyle, IndexedLineSet, and PointSet nodes.

• The crease angle field within ShapeHints nodes is ignored.

• By default, WTK ignores scaling factors (if any) within a Transform node’s
transformation. If you want WTK to use the scaling factors of transformation
within transform nodes, you can do so by setting the WTOPTION_XFORMSCALE
option in WTuniverse_setoption. However, by doing so, it is likely that
intersection tests and math functions pertaining to matrices will operate
incorrectly.

• WTK can read and process geometric primitives (such as cone, cube, cylinde
sphere), but they are internally decomposed into polygons (i.e., they are not
internally retained as cone, cube, cylinder and sphere primitives).

• WTK uses its own convention to apply textures to faces without texture
coordinates (see How WTK Applies a Texture to a Polygon on page 10-5).

• WTK’s support for instancing (USE/DEF scheme) does not include all node
types. The Coordinate3, Material, and Normal node types cannot be instanc
unless they are in the same scope (ie., there is no separator that differentiat
state of one instance from that of the other).

Exporting a File in the VRML Format

If you are planning to export your scene graph in the VRML format, you will need to en
that all of your textures are stored as JPEG files. This is because web browsers do n
support *.rgb or *.tga files. They require JPEG or GIF image files (GIF images are
currently unsupported by WTK.).

When WTK exports a scene graph in the VRML format, the color of textured polygons
be white if texture blending is off. Textured polygons retain their color (i.e., the color
saved in the output file) only if the blending attribute is on. WTK works this way in or
to conform with the VRML specifications. (See WTpoly_settexturestyle on page 10-23 for
information about texture blending).
6-4 WorldToolKit Reference Manual

Notes on the Autodesk 3DStudio Mesh reader

lKit

at

es,
ltiple
 you
from
cal

9
API.
ew

ing

h
be

e
int,

 the
ult
Notes on the Autodesk 3DStudio Mesh reader

WorldToolKit supports the Autodesk 3DStudio format for Releases 3 and 4. WorldToo
does not currently support the 3DStudioMAX file format; however, 3DStudioMAX
supplies an exporting tool that allows you to save your files in the *.3ds file format th
WorldToolKit can utilize. It is important to note that in the original release of
3DStudioMAX there were numerous bugs in the *.3ds exporter that made these files
unreadable. A patch for this shortcoming is available on the Kinetex website
(www.ktx.com) and has been implemented in the later releases of 3DStudioMAX.

WTK supports the 3DStudio R3/R4 specification except for the following: Points, Lin
Splines, Curves, Face mapping of textures, Box Mapping of textures, and Masks. Mu
geometries in a *.3ds file will be treated by WTK as a single geometry when loaded. If
need to maintain hierarchy in respect to your geometries, you should export your file
3DStudio/3DStudioMAX as VRML1.0 or VRML2.0 because WTK retains the hierarchi
information from these file formats.

Notes on the MultiGen OpenFlight File Reader

In an effort to read newer versions of OpenFlight (.flt) files with greater fidelity, WTK R
introduces a new OpenFlight reader based upon MultiGen's OpenFlight Read/Write
The new reader supports MultiGen files greater than V14.2. To gain access to the n
reader, WTuniverse_setoption now has a new option: WTOPTION_NEWMGENREAD.
This option must be set to TRUE in order to utilize the new reader. See
WTuniverse_setoption on page 2-24 for a description. The following are notes pertain
to the use of the new reader.

• At the time of this writing, due to limitations in MultiGen’s OpenFlight Read/
Write API library on UNIX platforms, this reader currently only works with the
Microsoft Windows NT/98/95 operating systems.

• WTK supports MultiGen OpenFlight files from (but not including) 14.2 throug
15.5. By replacing the reader DLLs distributed by MultiGen, the reader can
updated to take advantage of new versions as they become available.

• The new reader reads the following MultiGen nodes: material palette, textur
palette, object, group, group with animation 1, light source records (infinite, po
spot), level of detail, subfaces, switch 2, and external reference. Note 1: A
MultiGen animation record is translated to a WTK switch node. Each frame of
animation sequence is a child object of the switch. The first frame is the defa
WorldToolKit Reference Manual 6-5

Chapter 6: Geometries

uce
in a

will

t,

the

red
e by
 of

ront
flt"

r

tion

terial
active child. The WTK user must explicitly activate successive frames to prod
an animation effect. Note 2: Translated MultiGen switch nodes do not mainta
list of masks. The default active node under the resulting WTK switch node
be the first child of the switch node.

• The reader does not support the following MultiGen nodes: header, eye poin
light point, binary space partition, curve, DOF, sound, text, road, and path.

• Using the new reader requires the distribution of API libraries along with the
WTK executable. See the “Installation and Hardware Guide” for details.

• Primary colors are applied to polygons only if there is no material applied to
polygon. Secondary colors are unsupported.

• Material properties are always blended with textures.

• If a texture specified in the MultiGen file is missing, a texture representing a
'X' on a white field will be applied in its place. The user can change this textur
replacing the existing "notex.tga" image in the WTK images directory with one
their own creation.

• A separate material table is created for the MultiGen file and each external
reference.

• The name of the table is the name of the file with an "MT" appended to the f
and missing the ".flt" suffix. For example, the externally referenced file: "test.
will have a corresponding material table called: "MTtest".

• Material table indices in WTK will be one greater than the same entry in the
MultiGen material palette. This is to allow the addition of a default material fo
those polygons without a material or color.

The following are some notes on the old MultiGen OpenFlight file reader. This is the
default reader unless you’ve set the WTOPTION_NEWMGENREAD option to TRUE
using WTuniverse_setoption:

• The old reader supports MultiGen OpenFlight files V14.2.

• The old reader reads the following MultiGen nodes: group, object, polygon,
subface polygon, LOD, instance, and transformation.

• The old reader does not support the following MultiGen nodes: switch, anima
sequences, paths, roads, sounds, and other specialty nodes.

• The old reader supports any hardware platform that WTK runs on.

• The old reader supports the scene graph hierarchy information and color, ma
and texture information.
6-6 WorldToolKit Reference Manual

Subfaces in MultiGen/ModelGen

nd
s

lygon.

aces

y a
re

 of
 as its
rent

tion
nique

 into a
lti-
Subfaces in MultiGen/ModelGen

Another issue that commonly arises in the OpenFlight file format is that ModelGen a
MultiGen permit “subfaces,” polygons that generally are oriented in the same plane a
another polygon, but that are intended to appear as if they are on top of the other po
When polygons with subfaces are translated literally into the WTK viewing format,
Z-buffer roundoff becomes pronounced, resulting in flickering between the coplanar f
as the object is rendered.

Therefore, when WTK encounters subfaces in an OpenFlight file, it translates them b
constant amount in the direction of the parent polygon’s normal vector. When there a
multiple levels of subfaces, WTK multiplies the translation magnitude by the number
levels of subfacing. (For example, the subface of a subface is translated twice as far
parent is.) This moves the polygons so that they no longer lie in the plane of their pa
polygon.

Depending on the details of the application, different models may require a different
magnitude translation. The following WTK functions are available for accessing and
changing this value:

WTuniverse_setsubfaceoffset

See WTuniverse_setsubfaceoffset on page 2-22 for a description.

WTuniverse_getsubfaceoffset

See WTuniverse_getsubfaceoffset on page 2-22 for a description.

Constructing a World with Multiple Objects

Using a CAD program, you can create a graphical environment for your WTK applica
in which the various graphical entities have the desired spatial relationships. One tech
for accomplishing this is to initially build all of the geometries into one CAD file,
positioning the various entities as desired, and then to save out each graphical entity
separate file. Alternatively, you can save them out as separate objects in a single mu
object file. File Formats Supported by WTK on page 6-2 indicates which file formats
support multiple objects.
WorldToolKit Reference Manual 6-7

Chapter 6: Geometries

s, a
ble

be
ir,
a file.

ave

ted.

ou
l, you
n and

ng is
uraud

or
For example, suppose you want to create an office model that consists of office wall
desk, a chair, and a book on the desk, and that only the chair and the book are mova
(dynamic) objects. You might use the following approach:

1. Construct the model containing all of these components and save the file.

2. To create the file that contains the stationary universe geometry (which will
passed to WTnode_load), start from the original file, erase the book and the cha
and save the resulting model, which contains just the walls and the desk, to

3. Similarly, to create the file for the chair (which will be passed in to
WTnode_save), load in the original file, erase the walls, desk, and book, and s
the result to a separate file.

4. Similarly, you can create the file from which the book object will be construc

If you are using AutoCAD, another approach is to create each graphical object that y
wish to load in separately to WTK on a separate layer. Once you construct your mode
can successively, for each object, turn off all layers except the one that the object is o
save the model to a file.

Vertex Normals and Gouraud Shading

A significant improvement can be made in the shading of continuous surfaces if lighti
calculated at each vertex, instead of at the center of each polygon. This is called Go
shading, and results in smooth surfaces when used correctly.

A few points about this type of shading:

• It is intended for curved, continuous surfaces, not structures like boxes.

• It requires you to define a normal vector at each vertex.

• It incurs a (usually small) speed penalty since it requires more computation.

WTK automatically uses Gouraud shading to render universes and shaded objects f
which vertex normals are present.
6-8 WorldToolKit Reference Manual

Vertex Colors and Radiosity

e

 with

F file
ne).

ly,
 be
ors.

ors to

iosity
adows
-time.
You can generate vertex normals in a variety of ways:

• Create them with a modeling program. WTK reads in vertex normals from
Wavefront .obj files, 3D Studio .3ds files (using shading groups), MultiGen/
ModelGen .flt files, Pro/Engineer RENDER .slp files, and VRML .wrl files.

• Enter them yourself in an NFF file (this is difficult).

• Use the NFF automatic-normal-generation feature to make them for you (se
Appendix F).

• Call a geometry constructor such as WTgeometry_newsphere (see page 6-16) or
WTgeometry_newcylinder (see page 6-15) with the gouraud argument TRUE.

• Create your own geometries in your application code and set vertex normals
WTgeometry_setvertexnormal (see page 6-45).

• Create your geometries and use the function WTgeometry_computevertexnormal
(see page 6-46). This is the simpliest way of generating vertex normals.

The vertex normals generated by WTK, when either the auto-normal feature of the NF
is used or in the geometry constructor functions, have a unit magnitude equal to 1 (o
However, if you specify your own vertex normals (either by using
WTgeometry_setvertexnormal or by specifying them in an NFF file), the normal you
specify is not required to have unit magnitude.

When using vertex normals, you should keep the following in mind:

• WTK does not normalize vertex normals for you.

• The magnitude of vertex normals should be no greater than 1 (one). Typical
vertex normals have unit magnitude. However, for special applications it can
useful to vary the lighting effect by varying the magnitudes of the normal vect

Vertex Colors and Radiosity

As with Gouraud shading (described in the preceding section), you can use vertex col
increase the visual realism of your virtual scene.

For example, vertex color support enables you to render models that have been rad
preprocessed. A radiosity-preprocessed model stores lighting information such as sh
and reflections as vertex colors—this lighting doesn't then have to be computed at run
The result is complex lighting with real-time performance.
WorldToolKit Reference Manual 6-9

Chapter 6: Geometries

ion as

iled
TK
es to

wo

72

lease

es
 need
 WTK.

is a

ou

re
The
A radiosity preprocessor is a program that takes a model and a light source specificat
input and generates a new model with lighting information (such as for shadows or
reflections) built into it. This involves meshing the original model to contain more deta
color information. This color information is stored at the vertices of the mesh, and W
(or the hardware that WTK is running on) interpolates between these vertex color valu
produce a smooth effect.

The price of better rendering quality is greater polygon complexity, as illustrated by t
models in the models directory of the WTK distribution. The oplan.nff office model has
only 157 polygons. By contrast, oplanrad.nff — generated from oplan.nff by the National
Computer Board of Singapore using their radiosity preprocessing program — has 13
polygons.

A number of radiosity-preprocessed models are provided with this release of WTK. P
see the README file in the models subdirectory on your WTK distribution.

In addition to storing lighting information, vertex colors can also represent other valu
such as the temperature or pressure throughout an object. As with radiosity, you would
to have a program that computes the appropriate vertex colors, and then pass them to

You can set vertex colors for geometries in the following ways:

• In an NFF file (see Appendix F).

• Using a radiosity preprocessing program. ATMA's program called Real Light
radiosity preprocessor that reads and writes NFF files.

• With the function WTgeometry_setvertexmatid, described in Vertex-level
Geometry Editing on page 6-42.

Back Face Rejection

Using back face rejection is another important technique you should consider when
modeling. By eliminating the rendering of polygons that face away from the viewer, y
can significantly increase frame rates.

In WTK, the front face of a polygon is the side of the polygon for which the vertices a
ordered counter-clockwise. It is also the side from which the polygon normal points.
order of vertices in a polygon is the order in which they are returned using
WTpoly_getvertex (see page 7-8). For geometries constructed from an NFF file, a
6-10 WorldToolKit Reference Manual

Back Face Rejection

is

ns,
e of a

u

o be

om
g

they

is, you
or
 the

both

odels
or
d
rt the

tained
polygon’s vertex order is the order specified in the line of the file where the polygon
defined.

WTK’s NFF format is very flexible for specifying the back face and front face of polygo
and whether the back faces should be rejected. To switch the back face and front fac
polygon in this format, simply reverse the vertex order in the line of the file where yo
define the polygon. In addition, you can use the keyword “both” in the polygon definition
if both sides of the polygon are to be visible, or omitted if the polygon’s back face is t
rejected. (See Appendix F for a complete specification of the NFF file format.)

Most geometrical entities in the AutoCAD DXF standard are 2 1/2D entities—planar
curves with extrusions. When these curves are “closed,” it is possible for WTK to
unambiguously interpret them in 3D as solids, and know which polygons are seen fr
their “inside” and which from their “outside.” In such cases, in the interest of renderin
efficiency, the inside surfaces—the back faces—are rejected at an early stage of the
rendering pipeline. The result is that when you go inside these closed solid objects,
disappear, because you are looking at the back faces.

If you wish to have the inside of AutoCAD-modeled geometry appear, you have two
choices. You can construct the models so back faces are not rejected. To guarantee th
should construct a geometry of individual 3D polygons, and extrude open polylines,
polyface meshes, which are not closed in both directions. Alternatively, you can use
WTpoly_setbothsides function to change the back face rejection status of polygons.

When using 3D studio, set the two-sided property of the material to TRUE if you want
sides of the polygons with this material to be rendered.

Because of the convenience of the NFF format, it can be advantageous to convert m
in other formats (such as DXF) to NFF for greater control over back face rejection. F
example, to reverse the front face and back face of an AutoCAD polyline entity woul
require defining the polyline in the reverse order. It may be more convenient to conve
file to NFF and reverse the order there.

For geometries constructed with WTK’s geometry-constructor functions such as
WTgeometry_newsphere (see page 6-16), polygon back faces are on the inside of the
object. Their visibility is specified with the argument bothsides passed to these functions.
Similarly, WTK’s functions for constructing individual polygons take an argument
specifying the visibility of back faces.

The function WTpoly_setbothsides (see page 7-4) enables you to specify whether both
sides of a polygon are visible. The polygons that are passed to this function can be ob
WorldToolKit Reference Manual 6-11

Chapter 6: Geometries

 that
 is a
w
fered
 they

r

r is in
st be
tions

s
f
bface

 you
 has

 angle.

nd

s also
interactively, using WTwindow_pickpoly (see page 17-20) or, programmatically with the
functions WTgeometry_getpolys (see page 6-32), WTgeometry_id2poly (see page 6-33), or
WTgeometry_beginpoly (see page 6-23).

Overlapping Polygons

When building models it is best to avoid the use of coplanar polygons or surfaces —
is, surfaces that overlap and lie in the same plane. An example of coplanar polygons
building facade with a door in it. If this model is loaded into WTK, WTK would not kno
which surface is to appear in front, which can produce unexpected results. On Z-buf
systems, Z-buffer roundoff results in image flashing between coplanar surfaces where
overlap. On non-Z-buffered systems, it is possible for the order in which the coplana
polygons are drawn to change as the simulation runs, for example, if you were to
interactively texture or change the color of these surfaces.

To avoid this problem, you should construct your model either:

1. So that the surfaces are not in the same plane, or

2. So that they do not overlap.

In the first approach, you would construct the wall and door surfaces so that the doo
a plane in front of the plane of the wall. On Z-buffered systems, how far the planes mu
separated to avoid flashing depends on the resolution of the Z-buffer and on the loca
of the window’s hither and yon clipping planes (see WTwindow_sethithervalue on page
17-18 and WTwindow_setyonvalue on page 17-19). On non Z-buffered systems, the plane
must be separated by at least the value of WTFUZZ (a defined constant equal to 0.004). I
you are using MultiGen or ModelGen as your modeler, see also the discussion of su
offsets under Notes on the MultiGen OpenFlight File Reader on page 6-5.

In the second approach (constructing the model so that the surfaces do not overlap)
would create a hole in the wall and fit the door rectangle into the hole. This approach
the advantage that the surfaces would appear exactly coplanar when viewed from an
A disadvantage of this approach is that creating the hole in the wall generates extra
polygons, either in the modeling program, or when the surface is loaded into WTK a
rendered there.

Because models are stored with finite precision, coplanarity problems may sometime
arise when reading in a DXF or NFF file that was previously written out with
6-12 WorldToolKit Reference Manual

Roundoff and Scaling

ors
, and

n

le-
e
iately

gons
t are
 are
 These

 than
cale

r
e also

red
 the
WTgeometry_save. This problem is particularly severe when scaling models up by fact
of 10 or more. The solution is to load the model into a CAD program, scale it up there
then load it into WTK.

Roundoff and Scaling

On a digital computer, floating-point quantities are usually represented imprecisely. I
traditional hardware Z-buffered rendering, this finite resolution frequently results in
undesirable “flashing,” as distant surfaces that are parallel and close to one another
alternately obstruct one another.

For performance and memory efficiency reasons, WTK stores all coordinates as sing
precision, floating-point values. Since roundoff can occur in a number of places in th
rendering pipeline, it is important that the geometry that is read in be scaled appropr
to avoid mistaking vertices that are close to one another for identical vertices.

For this purpose, a scale factor is supplied as one of the parameters to the WTnode_load
(see page 4-46) function. This factor should be specified so that distinct vertices, once
scaled, are separated by a distance of at least the defined constant WTFUZZ (equal to
0.004), a value used in many WTK comparisons.

When passing in a scale factor to WTnode_load, the factor should be no smaller than
necessary. If you load in tiny models, or if you scale down models by supplying an
extremely small scale factor, vertices in the model may not cleanly connect and poly
in the model may disappear. This is because WTK merges vertices in a polygon tha
separated by less than the floating-point fuzz value in all dimensions. When vertices
merged, a small polygon can end up with fewer than three vertices and is discarded.
discarded polygons do not reappear even if WTgeometry_scale is later called for the object.
An example of a model that might exhibit these problems is one that is very small (less
one unit) and contains many polygons. To fix this, simply load the model with a larger s
value. This should make rendering problems disappear.

It is also important not to use a scale factor that is larger than necessary. As the scale facto
increases, the number of distances within the model that are larger than the fuzz valu
increases. When scaled up, polygons that abut also tend to overlap. On non Z-buffe
systems, this results in an increase in the number of polygons that are used to draw
scene, so that as the scale factor increases, the frame rate decreases.
WorldToolKit Reference Manual 6-13

Chapter 6: Geometries

ould
.01. If
g
l,

e
o

ects

,
g

ing
es are

Scaling your model up or down too much is not desirable. As a rule of thumb, you sh
not scale by more than 2 orders of magnitude, i.e., by more than 100.0 or less than 0
you need to scale by more than this, it is best to perform the scaling in your modelin
program prior to saving out the geometry file. Then load the file into WTK. In genera
model your objects so that you can use a scale factor of 1.0 for WTnode_load.

In addition, WTK expects the vertices in each polygon to lie approximately in the sam
plane. If they do not, then calculations involving polygon normals will be inaccurate t
whatever degree the surface is non-planar. If this is the case, WTK automatically
subdivides each non-planar polygon into two or more planar polygons. WTK also exp
all polygons to be convex. If a non-convex polygon is detected, WTK automatically
subdivides it into a number of convex polygons.

Creating Predefined Geometries

WTK provides functions for dynamically creating a variety of basic geometry types:
cylinders, blocks (boxes), cones, spheres, hemispheres, rectangles, truncated cones
extrusions, and 3D text objects. These functions provide an alternative to constructin
graphical objects by loading them in from a geometry file, as is done with WTnode_load or
by creating custom geometries using WTgeometry_begin.

Each of the functions in this section takes an argument, bothsides, which specifies whether
both sides of each polygon in the geometry are to be visible. If FALSE, then back-fac
polygons are rejected (not rendered). Polygon back faces for these geometrical entiti
their inside surfaces. See Back Face Rejection on page 6-10 for more information on this
subject.

All the geometries constructed with the functions in this section are colored white by
default.
6-14 WorldToolKit Reference Manual

Creating Predefined Geometries

 world
iven
f

d

-

n

 is

n

WTgeometry_newcylinder

WTgeometry * WTgeometry_newcylinder(
float height,
float radius,

int tess,
FLAG bothsides,
FLAG gouraud);

This function creates and returns a pointer to a new cylinder geometry centered at the
coordinate frame origin and oriented vertically. The cylinder’s height and radius are g
by the height and radius arguments. The tess (tessellation) argument gives the number o
polygons to use in approximating the cylinder. For example, a tess value of 4 creates a
rectangular block-shaped cylinder, tess=3 creates a triangular prism-shaped cylinder, an
tess=20 creates a cylinder with 20-sides along its curved surface.

If the gouraud flag is TRUE, then on systems that support Gouraud shading, outward
pointing vertex normals parallel to the cylinder base are defined.

The parameter bothsides indicates whether polygon back faces are visible. This functio
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

The default name of a new geometry created with this function is “cylinder.”

WTgeometry_newblock

WTgeometry * WTgeometry_newblock(
float lx,
float ly,

float lz,
FLAG bothsides);

This function creates and returns a pointer to a new block (box) geometry. The block
created with X, Y, and Z dimensions given by the lx, ly, and lz arguments, and is centered
at the world origin.

The parameter bothsides indicates whether polygon back faces are visible. This functio
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.
WorldToolKit Reference Manual 6-15

Chapter 6: Geometries

m the

ne is
t and

g

n

For example, to construct a white cube that is 10.0 units on a side and visible only fro
exterior, you would call:

WTgeometry *cube;
cube = WTgeometry_newblock(10.0, 10.0, 10.0, FALSE);

The default name of a new geometry created with this function is “block.”

WTgeometry_newcone

WTgeometry * WTgeometry_newcone(

float height,
float radius,
int tess,

FLAG bothsides);

This function creates and returns a pointer to a new cone-shaped geometry. The co
centered at the world coordinate frame origin and oriented vertically. The cone’s heigh
radius are given by the height and radius arguments. The tess argument gives the number
of polygons to use in approximating the cone. For example, a tess value of 4 creates a 4-
sided pyramid, tess=3 creates a tetrahedron, and tess=20 creates a cone with 20-sides alon
its curved surface.

The parameter bothsides indicates whether polygon back faces are visible. This functio
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

The default name of a new geometry created with this function is “cone.”

WTgeometry_newsphere

WTgeometry * WTgeometry_newsphere(
float radius,

int nlat,
int nlong,
FLAG bothsides,

FLAG gouraud);
6-16 WorldToolKit Reference Manual

Creating Predefined Geometries

ntered

 use

n

-

ith
This function creates and returns a pointer to a new sphere geometry. The sphere is ce
at the world coordinate frame origin. The sphere’s radius is given by the radius parameter.
The nlat and nlong parameters give the number of latitude and longitude subdivisions to
in approximating the sphere. For example, nlat=2 and nlong=4 creates an octahedron, and
nlat=8 with nlong=16 creates a sphere with 128 polygons.

The parameter bothsides indicates whether polygon back faces are visible. This functio
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

If the gouraud flag is TRUE, then on systems that support Gouraud shading, outward
pointing vertex normals are defined.

The default name of a new geometry created with this function is “sphere.”

WTgeometry_newhemisphere

WTgeometry * WTgeometry_newhemisphere(
float radius,
int nlat,

int nlong,
FLAG bothsides,
FLAG gouraud);

This function creates and returns a pointer to a new hemisphere. It is exactly like
WTgeometry_newsphere except that only the top half of the sphere is created.

The default name of a new geometry created with this function is “hemisphere.”

WTgeometry_newrectangle

WTgeometry *WTgeometry_newrectangle(
float height,
float width,

FLAG bothsides);

This function constructs a new geometry composed of a single rectangle (height is the Y
dimension, width is the X dimension). The rectangle is created in an upright position w
its center at the world coordinate frame origin.
WorldToolKit Reference Manual 6-17

Chapter 6: Geometries

le
n

n

rigin.

e
e
 the

sful,
aller
ree.
When viewed from Z = -infinity its vertices run counterclockwise, so that the rectang
normal points in the -Z direction. In other words, a viewpoint facing in the +Z directio
would see the front face of the rectangle.

The parameter bothsides indicates whether polygon back faces are visible. This functio
returns a pointer to the constructed geometry if successful. If unsuccessful, NULL is
returned.

NULL is also returned if there is insufficient memory, or if the height or width parameter is
less than or equal to zero.

The default name of a new geometry created with this function is “rectangle.”

WTgeometry_newtruncone

WTgeometry *WTgeometry_newtruncone(
float height,
float toprad,

float baserad,
int tess,
FLAG bothsides,

FLAG gouraud);

This function constructs a new geometry consisting of a single truncated cone. The
truncated cone is in an upright position and centered at the world coordinate frame o

The cone's height is given by the height parameter, its top radius by toprad and bottom
radius by baserad. The baserad can be larger or smaller than toprad, i.e., the cone can point
up or down. The tessellation argument tess gives the number of polygons to use to
approximate the cone. The parameter bothsides indicates whether polygon back faces ar
visible. If the gouraud flag is TRUE, outward-pointing normals for the side polygons ar
defined on systems that support Gouraud shading. The normals are perpendicular to
edges along the sides of the geometry.

This function returns a pointer to the constructed geometry if successful. If unsucces
NULL is returned. NULL is also returned if the height, top radius or base radius is sm
than the WTK tolerance factor (WTFUZZ) or if the tessellation value is smaller than th

The default name of a new geometry created with this function is “trunc_cone.”
6-18 WorldToolKit Reference Manual

Creating Predefined Geometries

ified

 If

ed
s along

rld

f type

 by the

the
WTgeometry_newextrusion

WTgeometry *WTgeometry_newextrusion(
WTp2 points[],
int numpts,

float height,
FLAG bothsides,
FLAG gouraud);

This function makes a new geometry by extruding a given contour the distance spec
(in the parameter height). The parameter bothsides indicates whether polygon back faces
are visible. This function returns a pointer to the constructed geometry if successful.
unsuccessful, NULL is returned.

If the gouraud flag is TRUE, outward-pointing normals for the side polygons are defin
on systems that support Gouraud shading. The normals are perpendicular to the edge
the sides of the geometry.

The extruded geometry will be created in an upright position and centered at the wo
coordinate frame origin. The contour is extruded a distance of (height/2.0) above and below
the x-z plane.

The number of points must be between 3 and 256. Note that the input data array is o
WTp2, not WTp3. The point array is assumed to be a non-self-intersecting (does not
intersect with itself) contour in the X-Z plane. The contour can include concavities.

The input data array is scanned and points closer than WTFUZZ to another point are
discarded. For this reason and others, the contents of the data array may be changed
function. Therefore, a copy should be retained elsewhere if the data is needed after
function call.

If successful, the function returns a pointer to the new geometry, otherwise NULL is
returned. NULL is also returned if height is smaller than the WTK tolerance factor
(WTFUZZ) or if numpts is less than 3.

The default name of a new geometry created with this function is “extrusion.”
WorldToolKit Reference Manual 6-19

Chapter 6: Geometries

ter’s
laced
gure

of
try is

s

se
t, or if
WTgeometry_newtext3d

WTgeometry *WTgeometry_newtext3d(
WTfont3d *font,
char *string);

This function takes a character string (such as “Hello”) and creates a WTK geometry from
that string, using the specified 3D font. The geometry is created with the first charac
base point placed at the world coordinate frame origin (0, 0, 0). The characters are p
sequentially along the +X axis using the current font spacing. This is shown below in fi
6-1.

Figure 6-1: 3D text geometry creation

Once the geometry is constructed, you must use the function WTgeometrynode_new to
place the text in a geometry node in your scene graph.

You may also wish to use WTgeometry_scale or WTgeometry_stretch to scale the size or
stretch the height, width and/or depth of the text geometry. The color and/or texture
characters in a text geometry are specified in the NFF font file. Once the text geome
constructed, you can change the texture and color attributes using WTpoly_settexture or the
material functions such as WTgeometry_getmtable and WTmtable_setvalue.

Geometries constructed with WTgeometry_newtext3d are assigned the name “text.” This i
what is returned if you call WTgeometry_getname, to query the name of the geometry. If
the character string passed to WTgeometry_newtext3d has characters that are not
represented in the font, blank spaces are created in the text geometry in place of tho
characters. If none of the characters in the character string are represented in the fon

Y

X

World and font coordinate origin

Spacing
6-20 WorldToolKit Reference Manual

Creating Custom Geometries

aph.

ect
r-

:

the character string passed in is made up entirely of spaces, then WTgeometry_newtext3d
returns NULL. The function WTfont3d_charexists can be used to determine whether a
particular character is in a WTK 3D font (a WTfont3d).

This example uses WTK 3D text functions to add a virtual “Hello world” to a scene gr

WTnode *root
WTfont3d *font;
WTgeometry *geo;

WTnode *child;
font = WTfont3d_load(“alphabet.nff”);
if (!font)

WTwarning(“Couldn't load 3D font.\n”);
else {

/* create the text geometry from a character string */

geo = WTgeometry_newtext3d(font, “Hello world”);
child=WTgeometrynode_new(root,geo);

}

Creating Custom Geometries

In addition to loading geometries from files and creating them with the high-level obj
constructor functions, you can also define a geometry polygon-by-polygon with lowe
level calls.

To create a geometry with WTK’s geometry constructor functions, follow these steps

1. Initialize the geometry by calling WTgeometry_begin.

2. Add vertices to the geometry using WTgeometry_newvertex.

3. Add polygons to the geometry.

4. For each polygon, call WTgeometry_beginpoly.

5. Add vertices (that have already been added to the geometry with
WTgeometry_newvertex) to the polygons using WTpoly_addvertex or
WTpoly_addvertexptr (see page 7-10).
WorldToolKit Reference Manual 6-21

Chapter 6: Geometries

nition
gned
s

ew,
s and

ne

n to

if a
6. Call WTpoly_close for each polygon.

7. When you are done adding polygons, call WTgeometry_close.

Note that only one geometry can be constructed at a time. You must complete the defi
of one geometry before beginning the definition of a new one. The default color assi
to polygons contained in custom geometries is white and each back facing polygon i
rejected by default.

WTgeometry_begin

WTgeometry * WTgeometry_begin(

void);

This function begins the construction of a new geometry and obtains a pointer to a n
empty geometry. As described above, the geometry is then defined by adding vertice
polygons to it and then finishing the geometry with a call to WTgeometry_close. The
completed geometry is not part of the simulation until the geometry is added to a sce
graph with a call to WTgeometrynode_new.

Note that only one geometry can be constructed at a time. Before calling this functio
begin the definition of a new geometry, you must call WTgeometry_close for any geometry
currently under construction.

An example of using this function is provided under WTgeometry_close.

WTgeometry_newvertex

WTvertex *WTgeometry_newvertex(
WTgeometry *geom,

WTp3 p);

This function adds a vertex with coordinates (X, Y, Z) in the WTp3 structure to a geometry.
The return value is TRUE if successful, otherwise FALSE is returned. For example,
NULL geometry pointer is passed in, then FALSE is returned.

An example of using this function is provided under WTgeometry_close.
6-22 WorldToolKit Reference Manual

Creating Custom Geometries

ed

ter

be

 into
graph

s of
f less

ding
WTgeometry_beginpoly

WTpoly *WTgeometry_beginpoly(
WTgeometry *geom;

This function returns a new, empty polygon assigned to the specified geometry (the
geometry pointed to by the geom argument). The polygon should be subsequently defin
with WTpoly_addvertexptr (or WTpoly_addvertex) and finally completed with
WTpoly_close. See the example provided under WTgeometry_close (page 6-23) for the
usage of this function.

By default, the color of the polygon is white with its back face rejected. The function
WTpoly_setrgb can be used to change the polygon’s color and WTpoly_setbothsides can be
used to change its back face rejection status. See Back Face Rejection on page 6-10 for
more information about back face rejection.

NULL is returned if this function is unsuccessful; for example, if a NULL geometry poin
is passed in.

WTgeometry_close

FLAG WTgeometry_close(

WTgeometry *geom);

This function finishes the definition of a geometry (no more vertices or polygons can
added), and internally prepares the geometry for use in the simulation. WTK will
automatically subdivide each non-planar polygon as well as each non-convex polygon
two or more convex/planar polygons. The geometry is not, however, part of a scene
(and therefore is not rendered) until you call WTgeometrynode_new on page 4-44.

If you later decide to edit the geometry, use the function WTgeometry_beginedit (see page
6-42).

The default name of a new geometry created with this function is “untitled.”

This function returns FALSE if geom is not a valid pointer, or if the geometry consist
less than three vertices. Note that vertices which are too close together (a distance o
than WTFUZZ units apart), will be merged into one vertex. WTgeometry_close or
WTgeometry_closesmooth should be used in conjunction with WTgeometry_begin.
WTgeometry_begin creates a new 'open' geometry, which can then be contructed by ad
WorldToolKit Reference Manual 6-23

Chapter 6: Geometries

t

ate a
vertices and polygons. Use WTgeometry_close or WTgeometry_closesmooth to end the
construction of an open geometry. If WTgeometry_close is called on a geometry that is no
currently open, FALSE is returned.

The following example illustrates the use of the geometry constructor functions to cre
geometry consisting of a single rectangular polygon.

/* Construct a geometry consisting of a single rectangle in the
X-Y plane using the WTK geometry constructor functions. */
WTgeometry *make_rect(float lx, float ly, FLAG bothsides)

{
WTgeometry *geom;
WTpoly *poly;

WTp3 p;
int j, k;

/* initialize a new, empty geometry*/

geom = WTgeometry_begin();

/* add vertices to the geometry */
p[Z] = 0.0;

for (j = 0 ; j < 2 ; j++)
for (k = 0 ; k < 2 ; k++) {

p[X] = j ? -lx/2 : lx/2;

p[Y] = k ? -ly/2 : ly/2;
WTgeometry_newvertex(geom, p);

}

/* add an empty polygon to the geometry */
poly = WTgeometry_beginpoly (geom);

/* add the vertices to the polygon */
for (k = 0 ; k < 4 ; k++) WTpoly_addvertex(poly, k);

/* mark the end of the polygon’s construction */
WTpoly_close(poly);
6-24 WorldToolKit Reference Manual

Creating Custom Geometries

ally
ch
nar

s of
f less

ding
/* make both sides of the polygon visible
(polygons are by default back face rejected) */
if (bothsides) WTpoly_setbothsides(poly, TRUE);

/* finish the geometry definition */
WTgeometry_close(geom);
return geom;

}

WTgeometry_closesmooth

FLAG WTgeometry_closesmooth(
WTgeometry *geom);

This function is identical to WTgeometry_close except that it also computes the vertex
normals for each of the geometry’s vertices. Like WTgeometry_close this function finishes
the definition of a geometry (no more vertices or polygons can be added), and intern
prepares the geometry for use in the simulation. WTK will automatically subdivide ea
non-planar polygon as well as each non-convex polygon into two or more convex/pla
polygons. The geometry is not, however, part of a scene graph (and therefore is not
rendered) until you call WTgeometrynode_new on page 4-44.

If you later decide to edit the geometry, use the function WTgeometry_beginedit (see page
6-42).

The default name of a new geometry created with this function is “untitled.”

This function returns FALSE if geom is not a valid pointer, or if the geometry consist
less than three vertices. Note that vertices which are too close together (a distance o
than WTFUZZ units apart), will be merged into one vertex. WTgeometry_closesmooth or
WTgeometry_close should be used in conjunction with WTgeometry_begin.
WTgeometry_begin creates a new 'open' geometry, which can then be contructed by ad
vertices and polygons. Use WTgeometry_closesmooth or WTgeometry_close to end the
construction of an open geometry. If WTgeometry_closesmooth is called on a geometry
that is not currently open, FALSE is returned.
WorldToolKit Reference Manual 6-25

Chapter 6: Geometries

The

t uses

on-

ring
Other Geometry Functions

See the description of WTnode_load on page 4-46 and WTgeometrynode_load on page
4-46 in the Scene Graphs chapter for information about loading a new geometry.

WTgeometry_copy

WTgeometry *WTgeometry_copy(
WTgeometry *geom);

This function creates and returns a new geometry by copying an existing geometry.
name of the geometry is also copied.

WTgeometry_delete

int WTgeometry_delete(

WTgeometry *geom);

This function deletes a geometry and frees its memory. If there is a geometry node tha
this geometry, the geometry node is also deleted.

WTgeometry_save

FLAG *WTgeometry_save(
WTgeometry *geom,

char *filename,
WTpq *pq,
int filetype);

This function saves a geometry to file using the specified filename. If you pass in a n
NULL pq argument, then this position and orientation are also saved to the file.

If the geometry you are saving is textured and WTFILETYPE_DXF is specified, it is
important to keep in mind that any texture rotations, scale factors, translations, mirro
operations, and texture uv values are not saved out. When the object is read back in,
textures must be reapplied with WTpoly_settexture.
6-26 WorldToolKit Reference Manual

Other Geometry Functions

ote

ble,
etry1’s
etries’
n the
ch as

If WTFILETYPE_NFF or WTFILETYPE_BFF is specified, then information about these
texturing operations is saved out. Refer to the NFF format specification described in
Appendix F.

Refer to the Textures chapter (starting onpage 10-1) for geometry-texturing functions. N
that this function saves only individual geometries. If you want to save a group of
geometries, you have to first merge them together into a single one using
WTgeometry_merge described below.

WTgeometry_merge

WTpoly *WTgeometry_merge(
WTgeometry *geometry1,
WTgeometry *geometry2);

This function merges geometry2 into geometry1 and returns a pointer to the merged
geometry’s first polygon. In the process of merging the geometries, a new material ta
composed of geometry1 and geometry2’s materials, is created and assigned as geom
new material table. Please note that this function does not take into account the geom
relative positions in the scene when merging the geometries together. To properly alig
geometries, you must position and orient them using geometry transform functions su
WTgeometry_scale, WTgeometry_translate, and/or WTgeometry_transform.

The following is an example of how to merge two geometries maintaining the relative
positions of each (i.e., as they appear in a vitual world).

{
WTgeometry *g1, *g1_copy, *g2, *g2_copy;

 WTnodepath *np1, *np2;

 WTm4 m4;
 WTpq pq;

g1 = WTnode_getgeometry(node1);
g2 = WTnode_getgeometry(node2);

 /* copy the geometries so that we don't alter the ones being rendered

on the scene */
 WTgeometry_copy(g1, g1_copy);
 WTgeometry_copy(g2, g2_copy);

WorldToolKit Reference Manual 6-27

Chapter 6: Geometries

he
/* get the nodepath to each node and the transform matrix along that
 nodepath. The geometry must be transformed by this matrix */
 np1 = WTnodepath_new(node1, rootnode, 0);

 WTnodepath_gettransform(np1, m4);
 WTm4_2pq(m4, &pq);

 WTgeometry_transform(g1_copy, &pq);

 np2 = WTnodepath_new(node2, rootnode, 0);
 WTnodepath_gettransform(np2, m4);
 WTm4_2pq(m4, &pq);

 WTgeometry_transform(g2_copy, &pq);

WTgeometry_merge(g1_copy, g2_copy);

 /* we now have the merged geometry in g1_copy */
 /* Note that to merge other geometries into g1_copy now,

 we do not need to consider the transform along the nodepath

 to g1 any more. The geometry g1_copy has the world positions
 of g1 and g2 */
}

Geometry Properties

WTgeometry_getmidpoint

void WTgeometry_getmidpoint(
 WTgeometry *geom,
 WTp3 p);

This function obtains the midpoint of a geometry’s extents box in local coordinates. T
midpoint is returned in p.
6-28 WorldToolKit Reference Manual

Geometry Properties

ined
ding

tores
f

etry is

name

rlying
. If
d the
WTgeometry_getradius

float WTgeometry_getradius(
WTgeometry *geom);

This function returns the radius of the specified geometry. A geometry’s radius is def
as the distance from the midpoint of the geometry to a corner of the geometry’s boun
box.

WTgeometry_getextents

void WTgeometry_getextents(

WTgeometry *geom,
WTp3 extents);

This function retrieves the extents of the geometry’s axis-aligned bounding box and s
them in extents. The extents argument is a WTp3 containing the X, Y, and Z dimensions o
the geometry’s bounding box.

WTgeometry_setname

void WTgeometry_setname(

WTgeometry *geom,
char *name);

This function assigns a name to a geometry. The default name of a pre-defined geom
described in the corresponding WTgeometry_new* function description. The default name
for a custom geometry is “untitled”, and geometries read in from file are assigned the
of the corresponding geometry. Geometries read in from a file using WTmovnode_load
assign the geometry’s name to the movable node’s name, while the name of the unde
WTgeometry is NULL. Note that this is done only if the file contains a single geometry
the file has multiple geometries, the movable that is created is not given a name, an
individual geometries maintain their names.
WorldToolKit Reference Manual 6-29

Chapter 6: Geometries

ined

 is
e

y’s
from

. It
y one
erial
WTgeometry_getname

char *WTgeometry_getname(
 WTgeometry *geom);

This function returns the name of the specified geometry. A geometry may have obta
its name by a call to WTgeometry_setname or from a name read in from the file (if the
geometry was loaded from a file).

If no name has been assigned to a geometry, then the default name of the geometry
“untitled” unless the geometry is one of the predefined types, in which case the nam
corresponds to the type, i.e., WTgeometry_newcone has the default name “cone.”

Materials used with Geometries

As described in the Materials chapter (starting on page 8-1), you can define a geometr
material in its own material table. Each geometry references a single material table,
which the geometry’s material properties are obtained.

WTgeometry_setmtable

void WTgeometry_setmtable(

WTgeometry *geometry,
WTmtable *mtable);

This function causes the indicated geometry to reference the specified material table
overrides any previous setting; a geometry may only refer to one material table at an
time. By default, every geometry is associated with its own material table, i.e., a mat
table is created for every newly constructed geometry. You can use
WTgeometry_getmtable to retrieve the material table associated with any geometry.

Use the material table functions described in the Materials chapter (starting on page 8-1)
to add new entries to the material table, or to alter existing ones.

Note: If a material table is not referenced by any geometry in the scene graph, it is
automatically deleted. For example, suppose you load a material table using
WTmtable_load (see page 8-11) and associate it with a geometry using
6-30 WorldToolKit Reference Manual

Materials used with Geometries

ets
ciate

etry
e)
e if
etry.

you

 valid
llows
l
WTgeometry_setmtable. Now, if you delete this geometry, the material table also g
deleted (if it is not referenced by any other geometry). Hence, you could not asso
another geometry to this material table later using WTgeometry_setmtable.

See also the functions WTpoly_setmatid on page 7-3 and WTgeometry_setvertexmatid on
page 6-48.

WTgeometry_getmtable

WTmtable *WTgeometry_getmtable(
WTgeometry *geom);

This function returns a pointer to the material table referenced by the geometry.

WTgeometry_setmatid

FLAG WTgeometry_setmatid(

WTgeometry *geom,
int id);

This function changes the material table index of all the polygons in the specified geom
to the index value specified by the id argument. The indices remain static (do not chang
if the material table is changed or deleted. A modulus operation will occur at render tim
id is greater than the number of materials in the material table referenced by the geom

A negative material index is not allowed, and therefore this function returns FALSE if
pass in a negative value for id.

WTgeometry_setrgb

void WTgeometry_setrgb(

WTgeometry *geom,
unsigned char red,
unsigned char green,

unsigned char blue);

This function specifies the 24-bit color value of a geometry (red, green, and blue). The
range for each of red, green, and blue is from 0 to 255. Note that even though WTK a
the user to specify color using red, green, and blue color components, WTK’s interna
WorldToolKit Reference Manual 6-31

Chapter 6: Geometries

l table
by

 are

 Use
try.
representation makes use of the geometry’s material table by either finding a materia
entry whose color (red, green, and blue) matches the color specified by the user, or
creating a new entry in the material table.

In the following example, a geometry's color is set to yellow.

WTgeometry *geom;
WTgeometry_setrgb(geom,255,255,0);

Geometry Polygons and Vertices

The first two functions in this section can be used to obtain WTpoly pointers which can then
be passed to other WTK functions. Other WTK functions that return polygon pointers
WTwindow_pickpoly, WTgeometry_beginpoly, WTpoly_next and WTgeometry_id2poly.

WTgeometry_getpolys

WTpoly *WTgeometry_getpolys(

WTgeometry *geom);

This function returns a pointer to the first polygon contained in the specified geometry.
the function WTpoly_next to iterate through the list of polygons contained in the geome

WTgeometry_numpolys

int WTgeometry_numpolys(
WTgeometry *geom);

This function returns the total number of polygons in the specified geometry.
6-32 WorldToolKit Reference Manual

Geometry Polygons and Vertices

re
n
WTgeometry_getvertices

WTvertex *WTgeometry_getvertices(
WTgeometry *geom);

This function returns a pointer to the first vertex in the geometry. Use the function
WTvertex_next to iterate through the list of vertices in the geometry.

WTvertex_next

WTvertex *WTvertex_next (

WTvertex *vertex);

This function returns the next vertex in a geometry’s list of vertices.

WTgeometry_id2poly

WTpoly * WTgeometry_id2poly(
WTgeometry *geom,

short id);

This function returns a pointer to the specified polygon in the specified geometry, wheid
is the polygon’s id number. See WTpoly_setid on page 7-6. A polygon can also be given a
id by editing the line in an NFF file that defines the polygon. See Appendix F, WTK Neutral
File Format.

WTgeometry_setrenderingstyle

FLAG WTgeometry_setrenderingstyle(
WTgeometry *geom,

int modes,
int style);

This function sets the rendering style for a geometry. The modes argument is a bitmask of
the rendering flags to change and the style argument is the value to which the rendering
flags are set. Valid values for the style argument are TRUE, FALSE, and
WTRENDER_DEFAULT. These are explained further in the discussion that follows.
WorldToolKit Reference Manual 6-33

Chapter 6: Geometries

is
)

)

g

wn in

or
,

h

er
.e.,
at

 to

The modes argument can be a combination of the following bits:

WTRENDER_ANTIALIAS enables anti-aliasing

WTRENDER_BEST enables all of these modes

WTRENDER_GOURAUD enables Gouraud shading and lighting (this
an outdated WTK 2.1 mode, see note below

WTRENDER_LIGHTING turns on lighting

WTRENDER_PERSPECTIVE enables perspective texture

WTRENDER_SMOOTH enables smooth shading (Gouraud shading

WTRENDER_TEXTURED enables texturing

Mode can also be set to WTRENDER_WIREFRAME or WTRENDER_NOSHADE. The
actual rendering used to render the geometry will be a combination of the universe's
rendering style (see WTuniverse_setrendering on page 2-18) and the geometry's renderin
style. You can combine different modes by using the bitwise OR operator (|), as sho
the examples in this section.

The return value is TRUE or FALSE, depending on whether the function succeeds. F
example, WTgeometry_setrenderingstyle returns FALSE if called on a prebuilt geometry
since you cannot change the rendering style of prebuilt geometry.

Note: WTRENDER_GOURAUD is an outdated WTK 2.1 style that has been replaced wit
WTRENDER_LIGHTING and WTRENDER_SMOOTH.

WTgeometry_setrenderingstyle lets you modify some or all of the rendering modes on a p
geometry basis. By default, a geometry takes its rendering style from the universe (i
WTuniverse_setrendering. The difference between the syntax of the two functions is th
WTuniverse_setrendering takes an absolute group of bitfields while
WTgeometry_setrenderingstyle takes a list of bitfields to change and the value to which
change them).

The value of style can be TRUE (turn on), FALSE (turn off), or WTRENDER_DEFAULT
(sets the mode to its default).

For example:

WTgeometry_setrenderingstyle(mygeom,WTRENDER_PERSPECTIVE|
WTRENDER_TEXTURED,TRUE);
6-34 WorldToolKit Reference Manual

Geometry Polygons and Vertices

r

may
 by

s, you

. With
tells WTK to turn on perspective correction and texturing for this geometry. The othe
rendering modes (i.e., WTRENDER_LIGHTING, WTRENDER_SMOOTH, etc.) will
continue to be taken from the universe rendering mode.

Once you've modified a geometry rendering mode (setting it to TRUE or FALSE), you
want to tell WTK to revert to using universe rendering mode again. This can be done
passing the WTRENDER_DEFAULT value into the style argument.

For example:

/* this forces wtk to turn off lighting for this geometry despite the universe rendering
mode for lighting */
WTgeometry_setrenderingstyle(mygeom, WTRENDER_LIGHTING, FALSE);

/* this tells wtk to go back to using the universe rendering mode for
 lighting for this geometry */
WTgeometry_setrenderingstyle(mygeom, WTRENDER_LIGHTING,

WTRENDER_DEFAULT);

To revert all the rendering modes of a geometry back to the universe rendering mode
can use WTRENDER_ALLMODES in the modes argument. You must use it with
WTRENDER_DEFAULT.

For example:

WTgeometry_setrenderingstyle(mygeom, WTRENDER_ALLMODES,
WTRENDER_DEFAULT).

This renders the geometry using the universe rendering modes.

WTgeometry_getrenderingstyle

int WTgeometry_getrenderingstyle(
WTgeometry *geom);

This function returns the current rendering style of the specified geometry. See
WTgeometry_setrenderingstyle, above. This style is the composite effect of both the
universe’s rendering style and the geometry's rendering style.

By default, a geometry’s rendering style is the same as the universe’s rendering style
WTgeometry_setrenderingstyle you can “customize” the geometry’s rendering style by
WorldToolKit Reference Manual 6-35

Chapter 6: Geometries

een

on

e
overriding some or all of the universe style with different values. The composite betw
the universe style and the customizing you have done with WTgeometry_setrenderingstyle
is what WTgeometry_getrenderingstyle returns. For example, if you set the universe
rendering:

WTuniverse_setrendering(WTRENDER_SMOOTH|WTRENDER_LIGHTING|
WTRENDER_TEXTURED);

then WTgeometry_getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_LIGHTING|WTRENDER_TEXTURED

If you then turn off the geometry’s lighting with this command:

WTgeometry_setrenderingstyle(mygeom, WTRENDER_LIGHTING, FALSE);

WTgeometry_getrenderingstyle(mygeom) will now return:

WTRENDER_SMOOTH|WTRENDER_TEXTURED

Note that the universe style is still SMOOTH|LIGHTING|TEXTURED. If you then turn
perspective texturing and anti-aliasing for the geometry with this command:

WTgeometry_setrenderingstyle(mygeom,

WTRENDER_PERSPECTIVE|
WTRENDER_ANTIALIAS, TRUE);

then WTgeometry_getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_TEXTURED|WTRENDER_PERSPECTIVE|

WTRENDER_ANTIALIAS

If you then set the lighting and perspective correction for the geometry to the univers
default values with this command:

WTgeometry_setrenderingstyle(mygeom,
WTRENDER_LIGHTING|

WTRENDER_PERSPECTIVE,
WTRENDER_DEFAULT);
6-36 WorldToolKit Reference Manual

Geometry Modification

 two
e style

on

nt

 Keep
akes

out
then WTgeometry_getrenderingstyle(mygeom) will return:

WTRENDER_SMOOTH|WTRENDER_LIGHTING|WTRENDER_TEXTURED|
WTRENDER_ANTIALIAS

Although you previously turned lighting off and perspective correction on for this
geometry, you are now telling WTK to use the default (the universe values) for these
rendering style components. Thus, the geometry’s rendering style adopts the univers
for these two components again, (i.e., lighting is on, perspective correction is off).

Geometry Modification

The following WTK functions are available for modifying geometries. For information
modifying geometries by editing vertices, see Vertex-level Geometry Editing on page 6-42.

WTgeometry_stretch

void WTgeometry_stretch(

WTgeometry *geom,
WTp3 factors,
WTp3 center);

This function stretches a geometry in its local coordinate frame by applying a differe
scale factor in each of the three coordinate dimensions. The factors argument contains the
three scale factors (for X, Y and Z) by which the geometry is to be stretched. The center
argument is the world coordinate point about which the object is stretched.

This function can be compared to the function WTgeometry_scale (shown below), which
scales the geometry uniformly by applying the same scale factor in each dimension.
in mind that stretching an object changes its shape, while scaling does not (it simply m
the geometry larger or smaller).

This example shows how to stretch a geometry by a factor of two along its X axis (ab
its midpoint):

WTgeometry *geometry;
WTp3 p, factors;
WorldToolKit Reference Manual 6-37

Chapter 6: Geometries

al

fied

e
/* set factors for stretch */
factors[X] = 2.0;
factors[Y] = factors[Z] = 1.0;

/* stretch geometry along its X axis by factor of 2 about its midpoint */
WTgeometry_getmidpoint(geometry, p);
WTgeometry_stretch(geometry, factors, p);

WTgeometry_scale

void WTgeometry_scale(
WTgeometry *geom,
float factor,

WTp3 center);

This function scales a geometry by a specified factor about a specified point in its loc
coordinate frame. If the scale factor equals 1.0, then this function has no effect.

In the following example, a geometry is scaled by a factor of two about its midpoint.

WTgeometry *geometry;
WTp3 p;

/* scale geometry by factor of 2 about its midpoint. */
WTgeometry_getmidpoint(geometry, p);
WTgeometry_scale(geometry, 2.0, p);

WTgeometry_translate

void WTgeometry_translate(
WTgeometry *geom,
WTp3 offset);

This function translates a geometry in its local coordinate frame by adding the speci
offset to each of the geometry’s vertices.

Note: Remember that WTgeometry_translate alters the vertex positions in the geometry. Th
geometry does not retain the original positions.
6-38 WorldToolKit Reference Manual

Geometry Optimization

 an

e

gons
er to
d

is

their
s, the

 be
ing
al
that
 even
WTgeometry_transform

void WTgeometry_transform(
WTgeometry *geom,
WTpq *pq);

This function transforms a geometry in its local coordinate frame by the position and
orientation specified by the pq argument. The offset contained in the p field of the WTpq
structure is added to each of the geometry's vertices. Also, each vertex is rotated by
amount specified by the q field of the WTpq structure.

Note: Remember that WTgeometry_transform alters the vertex positions in the geometry. Th
geometry does not retain the original positions.

Geometry Optimization

The WTgeometry_prebuild function optimizes a specific geometry for rendering speed.
This optimization (or prebuilding) takes place before rendering and converts the poly
in a geometry into triangle strips, which can then be rendered more efficiently. In ord
make use of WTgeometry_prebuild, it’s important to understand what this function can an
cannot do.

The following must be true of two adjacent polygons in order to take advantage of th
optimization function:

• The polygons must share an edge.

• If the polygons are textured, they must have the same texture, and the uv
coordinates at their common vertices must be the same.

• If texturing is off and vertices have material properties, material properties at
common vertices must be the same. If vertices do not have material propertie
polygons’ material IDs must match.

• Vertices must have a vertex normal. Vertices without a vertex normal will not
converted into triangle strips. If you first turn off smooth-shaded rendering us
the WTuniverse_setrendering function, then even vertices without a vertex norm
will be optimized by being converted into triangle strips. Remember however
those vertices that do not have vertex normals will be rendered as flat-shaded
if you turn smooth-shading back on.
WorldToolKit Reference Manual 6-39

Chapter 6: Geometries

etry
ut in
ands

s
h as an

n’t

. To

 Also

ted.
Also note that there is an upper limit to the number of polygons that an individual geom
can have for optimization to be effective. This depends on your hardware platform, b
general, geometries composed of more than 32000 vertices will make excessive dem
on memory. You are better off organizing your geometries into logical, localized unit
(such as pieces of furniture in a room), rather than creating massive geometries (suc
entire roomful of furniture), which are difficult to optimize.

Once you have optimized a particular geometry, you can’t edit it. Specifically, you ca
scale or stretch the geometry, change the colors or textures of its surfaces, or call
WTpoly_delete or any of the functions described in Vertex-level Geometry Editing on page
6-42. If you want to edit an optimized object, you must undo the optimization with
WTgeometry_deleteprebuild before you can call any of the editing functions. Once you
have edited the object, you can optimize it again with WTgeometry_prebuild.

Note: You can, however, move and rotate the geometry.

WTgeometry_prebuild

FLAG WTgeometry_prebuild(
 WTgeometry *geom);

This function optimizes geometry data structures so they render faster.

Once it is optimized, the geometry can be moved and rotated, but it cannot be edited
edit it, undo the optimization with WTgeometry_deleteprebuild, call any of the editing
functions, and then optimize it again. Refer to the detailed description on page 6-39.
see How Do I Measure Performance On My Machine? on page A-38.

WTgeometry_deleteprebuild

FLAG WTgeometry_deleteprebuild(
 WTgeometry *geom);

This function deletes the optimized data structures created when WTgeometry_prebuild was
called. Use this function to remove the optimization, so that the geometry can be edi
6-40 WorldToolKit Reference Manual

Creating Reflection Mapped Optimized Geometries

ed
rface
very
t this
s of
e for
at the

 Note
 map

t map:

n
ary to

ould
uld

, will

e

mply

le (or
Creating Reflection Mapped Optimized Geometries

WTgeometry_prebuildreflectmap allows you to optimize the geometry (like
WTgeometry_prebuild) and to also simulate highly reflective surfaces such as polish
metal or mirror finished surfaces. By applying a spherically mapped image to the su
of a geometry, the UV's of which change in relation to the viewer's position, an effect
similar in appearance to true environmental reflection is achieved. Note, however, tha
is not a true reflection of the 3D environment in which the geometry exists. Reflection
other objects will not appear in the reflection map. In fact, since you provide the imag
the map, it can represent an environment that is completely different from the scene th
geometry exists in. Material properties are always blended with the reflection map.
that the reflection map is a texture map. Consequently, you may not apply a texture
and a reflection map to the same geometry.

There are several ways to build an image that will provide an acceptable environmen

• Using a 3D-rendering application such as 3D Studio Max or POVray, you ca
render the map image. The scene can be modeled and arranged as necess
represent the reflected environment. A sphere that is small relative to the
environment should then be place in the center of the scene. The sphere sh
have a highly reflective, ray-traceable material applied to it. The viewpoint sho
then be set up to simulate a camera with an infinite or very great focal length
centered on the sphere. A close up image, where the sphere fills the frame
provide you with a good reflection map for use with this function.

• You can use a configuration similar to the setup above to create a scannabl
photograph for use as a reflection map. You need to take a photo of a large
silvered sphere using a camera with a lens that has an infinite focal length. Si
take a photograph of the sphere from as far away as possible.

• Another way to create a usable photograph is to use an extremely wide-ang
fisheye) lens to photograph the scene.

WTgeometry_prebuildreflectmap

FLAG WTgeometry_prebuildreflectmap(
WTgeometry *geom,

char* texmap);
WorldToolKit Reference Manual 6-41

Chapter 6: Geometries

rtices

ls
e

 to

ined

s
This function optimizes geometry data structures so they render faster (similar to
WTgeometry_prebuild) and it also applies a reflection map to the specified geometry
using the image specified by texmap as the reflection map.

Vertex-level Geometry Editing

The functions in this section let you edit geometry at the vertex level. To access the ve
in a geometry, use WTgeometry_getvertices on page 6-33 and WTvertex_next on page 6-33.
Additional information about vertex normals and colors is provided in Modeling
Considerations on page 6-2.

You must call WTgeometry_beginedit before you can edit a geometry with any of the
following functions:

• WTgeometry_setvertexposition

• WTgeometry_setvertexrgb

• WTgeometry_setvertexnormal (if your geometry is already Gouraud-shaded, cal
to WTgeometry_setvertexnormal can be made at any time and do not need to b
sandwiched between WTgeometry_beginedit and WTgeometry_endedit calls. See
WTgeometry_setvertexnormal on page 6-46 for more information.)

• WTgeometry_setvertexmatid (if your geometry is already vertex-colored, then
calls to WTgeometry_setvertexmatid can be made at any time, and do not need
be sandwiched between WTgeometry_beginedit and WTgeometry_endedit calls.
See WTgeometry_setvertexmatid on page 6-48 for more information.)

When you have finished editing, you must call WTgeometry_endedit. This ensures that
WTK properly updates the internal state of the geometry and all of the polygons conta
in the geometry.

WTgeometry_beginedit

FLAG WTgeometry_beginedit(
WTgeometry *geom);

This function lets WTK know that you are going to edit a geometry. You must call thi
function before you can edit a geometry with any of the following functions:
6-42 WorldToolKit Reference Manual

Vertex-level Geometry Editing

e X

lling
l of
lude
more
 such
ore
• WTgeometry_setvertexposition

• WTgeometry_setvertexnormal

• WTgeometry_setvertexmatid

• WTgeometry_setvertexrgb

You must also call WTgeometry_endedit immediately after you have finished editing so
that WTK can properly update the internal state of the geometry.

In the following example, the first vertex in a geometry is moved 100.0 units along th
axis:

WTgeometry *geom;
WTvertex *vertex;

WTp3 pos;

WTgeometry_beginedit(geom);
vertex= WTgeometry_getvertices(geom);

WTgeometry_getvertexposition(geom, vertex, pos);
pos[X] += 100.0; /* Move the vertex to the right in world coordinates */
WTgeometry_setvertexposition(geom, vertex, pos);

WTgeometry_endedit(geom);

WTgeometry_endedit

FLAG WTgeometry_endedit(
WTgeometry *geom);

You must call this function when you have finished editing the specified geometry. Ca
this function allows WTK to properly update the internal state of the geometry and al
the polygons contained in the geometry. The internal state modified by WTK can inc
the polygon normals, geometric extents, etc. If geometry editing has caused one or
polygons to become non-convex or non-planar, WTK automatically detects and splits
polygons because they may render in a confusing or unintended manner. It is theref
possible for a geometry to contain more polygons than originally expected.
WorldToolKit Reference Manual 6-43

Chapter 6: Geometries

f the
dius,

 the

iting

 the
WTgeometry_recomputestats

FLAG WTgeometry_recomputestats(
WTgeometry *geom
FLAG clearverts);

This function recomputes the specified geometry’s statistics based on the locations o
geometry’s vertices. The statistics computed are the geometry’s extents, midpoint, ra
and bounding box. If the clearverts flag is TRUE, this function will also remove unused
vertices (i.e., vertices that aren’t referenced by any of the geometry’s polygons) from
geometry. This function should be called whenever one or more polygons have been
deleted from a geometry via calls to WTpoly_delete.

WTgeometry_setvertexposition

FLAG WTgeometry_setvertexposition(
WTgeometry *geom,
WTvertex *vertex,

WTp3 pos);

This function sets a vertex position specified in world coordinates. Before calling this
function, you must call WTgeometry_beginedit to put the geometry into geometry editing
mode. Once the geometry is in edit mode, you can call this function (and the other ed
functions) multiple times.

WTgeometry_getvertexposition

void WTgeometry_getvertexposition(
WTgeometry *geom,

 WTvertex *vertex,
 WTp3 pos);

This function obtains the specified vertex’s position in the local coordinate system of
geometry and places it in the pos argument.
6-44 WorldToolKit Reference Manual

Vertex-level Geometry Editing

raud
 with

 time
lls
WTgeometry_setvertexnormal

FLAG WTgeometry_setvertexnormal(
WTgeometry *geom,
WTvertex *vertex,

WTp3 normal);

This function sets a vertex normal for a geometry. The vertex normal is used for Gou
shading of polygons when all of the vertices in the polygon have normals associated
them.

Gouraud shading of polygons is enabled in three ways:

1. Either the polygon has vertex normals specified for each of its vertices at the
the polygon is first constructed (either with a WTK file reader, or with direct ca
to the WTK geometry constructor functions), or

2. Calls to WTgeometry_setvertexnormal are sandwiched between
WTgeometry_beginedit and WTgeometry_endedit, so that by the time
WTgeometry_endedit is called, all of the vertices for the polygon have had
normals set for them, or

3. You call WTgeometry_computevertexnormal and WTK automatically calculates
normals for all vertices in the geometry.

Therefore, to enable Gouraud shading of polygons that weren’t previously Gouraud
shaded, you must call WTgeometry_beginedit to put the geometry into geometry editing
mode before calling WTgeometry_setvertexnormal.

Once the geometry is in edit mode, you can call this function (and the other editing
functions) multiple times. When you are done editing, WTgeometry_endedit must be
called.

Performance Tip

If you are simply changing the value of a vertex normal for a vertex that already has a
normal, and no change to the polygon’s Gouraud-shading status is required, then you

can call WTgeometry_setvertexnormal without calling WTgeometry_beginedit and
WTgeometry_endedit. This will give you increased performance. You can determine
WorldToolKit Reference Manual 6-45

Chapter 6: Geometries

al has
ame,
for

dio,
al

.”
. This
 not.
whether a vertex already has a normal by checking whether
WTgeometry_getvertexnormal (see below) returns TRUE.

For additional information about Gouraud shading, see Modeling Considerations on page
6-2. Also see WTgeometry_computevertexnormal on page 6-46.

WTgeometry_getvertexnormal

FLAG WTgeometry_getvertexnormal(

WTgeometry *geom,
WTvertex *vertex,
WTp3 normal);

This function tests the specified vertex to see if a normal has been set for it. If a norm
been set for the specified vertex, then its value, in the geometry’s local coordinate fr
is copied into the argument normal, and TRUE is returned. If a normal has not been set
this vertex, then the argument normal is zeroed and FALSE is returned.

A normal can be set for a vertex either by using the function call
WTgeometry_setvertexnormal, or WTgeometry_computevertexnormal, or through one of
the file formats supported by WTK which support vertex normals (such as NFF, 3D Stu
Wavefront, and MultiGen/ModelGen). The NFF format also supports automatic norm
generation, as described in Automatic Normal Generation on page F-8.

WTgeometry_computevertexnormal

FLAG WTgeometry_computevertexnormal(
WTgeometry *geom,
WTvertex *v);

This function automatically computes the normal of the vertex “v” in geometry “geom
The vertex's normal is computed as the average of the surrounding polygon normals
function returns TRUE if the vertex normal could be computed, and FALSE if it could

Note: You must call WTgeometry_beginedit prior to using this function and
WTgeometry_endedit afterwards.

The following example computes all of the vertex normals in the geometry:
6-46 WorldToolKit Reference Manual

Vertex-level Geometry Editing

ents.
 color
le by
olor
WTvertex *norm_vertex;
WTgeometry_beginedit(geom);
norm_vertex = WTgeometry_getvertices(geom);

while (norm_vertex)
{

WTgeometry_computevertexnormal(

geom, norm_vertex);
norm_vertex = WTvertex_next(norm_vertex);

}

WTgeometry_endedit(geom);

WTgeometry_setvertexrgb

FLAG WTgeometry_setvertexrgb(
WTgeometry *geom,

WTvertex *vertex,
unsigned character red,
unsigned character green,

unsigned character blue);

This function sets the vertex’s color to the specified red, green, and blue color compon
Note that even though WTK allows the user to specify color using red, green, and blue
components, WTK’s internal representation makes use of the geometry’s material tab
either finding a material table entry whose color (red, green, and blue) matches the c
specified by the user, or by creating a new entry in the material table.

You must call WTgeometry _beginedit before you call WTgeometry_setvertexrgb, and you
must call WTgeomtery_endedit after calling WTgeometry_setvertexrgb.

WTgeometry_getvertexrgb

FLAG WTgeometry_getvertexrgb(
WTgeometry *geom,

WTvertex *vertex,
unsigned character *red
unsigned character *green,

unsigned character *blue);
WorldToolKit Reference Manual 6-47

Chapter 6: Geometries

e

. The

ial

you

 next
metry
x
of

e in

.

This function retrieves the specified vertex’s color. The individual red, green, and blu
components of the 24-bit color are stored in red, green, and blue respectively.

WTgeometry_setvertexmatid

FLAG WTgeometry_setvertexmatid(
WTgeometry *geom,
WTvertex *vertex

int id);

This function changes the material table index of the specified vertex of the geometry
indices remain static if the material table is changed or deleted. Note that a modulus
operation occurs at render time if id is greater than the number of materials in the mater
table referenced by this geometry.

A negative material index is not allowed, and therefore this function returns FALSE if
pass in a negative value for id.

In order for vertex colors to take effect, the first time a given polygon is to be vertex
colored, call WTgeometry_beginedit, then change the vertex material ids, and then call
WTgeometry_endedit. At the time of the endedit call, those polygons whose member
vertices all have color/id information specified are rendered with the vertex colors the
time they are rendered. If this has happened once during the simulation, or if the geo
file was loaded with vertex color/id specified, the polygon is rendered using the verte
colors for the remainder of the running time of the application. Subsequent changes
vertex color/id do not require you to make another set of calls to WTgeometry_beginedit
and WTgeometry_endedit. These calls were only necessary in order to trigger the chang
the rendering style (to vertex-coloring) of the polygon.

WTgeometry_getvertexmatid

int WTgeometry_getvertexmatid(
WTgeometry *geom,

WTvertex *vertex);

This function returns the material table index of the specified vertex of the geometry

It returns -1 if the WTgeometry_setvertexmatid function was never called, or if the vertex
does not have a color associated with it.
6-48 WorldToolKit Reference Manual

on is
 a
TK

.

ons

ns

terial

can
7
Polygons

Introduction

Polygons provide the three-dimensional shapes of the objects in your scene. A polyg
a planar surface defined by a set of three or more vertices. For example, a triangle is
polygon with 3 vertices, and a rectangle is a polygon with 4 vertices. Geometries in W
are made up of polygons (polygonal surfaces) that you can color, shade, and texture

You can create polygons in several different ways. WTK automatically creates polyg
when you construct geometries with functions such as WTgeometry_newcone and
WTgeometry_newtext3d. You can also construct polygons vertex by vertex, with functio
described in this chapter.

WTK provides polygon functions that let you do the following:

• Set, get, and change polygon attributes, such as color, normals, and the ma
table index. (Polygon texturing is described in Chapter 10, Textures.)

• Define and assign polygon ID numbers.

• Access geometrical properties and vertices of a polygon.

• Iterate through a list of polygons.

• Dynamically construct geometries from vertices and polygons.

• Delete polygons.

• Test for intersections of polygons with other polygons.

Most of the functions in this chapter take a pointer to a WTK polygon structure. You
obtain polygon pointers in a variety of ways. You can get them interactively, using
WTwindow_pickpoly; through polygon ID values using WTuniverse_id2poly or
WTgeometry_id2poly; using the polygon access functions WTgeometry_getpolys, and
WTpoly_next, or with the dynamic constructor function WTgeometry_beginpoly.

Chapter 7: Polygons

efault

e
Polygon Attributes

WTpoly_setrgb

void WTpoly_setrgb(
WTpoly *poly,
unsigned char r,

unsigned char g,
unsigned char b);

This function specifies the 24-bit color value of a polygon. The arguments r, g, and b are
the red, green, and blue color components, each with a valid range of 0 to 255. The d
color of a polygon is white (255, 255, 255).

In the following example, a polygon’s color is set to bright purple:

WTpoly *poly;

WTpoly_setrgb (poly, 255, 0, 255);

Another example of usage is provided under WTpoly_getrgb.

WTpoly_getrgb

void WTpoly_getrgb(
WTpoly *poly,

unsigned char *r,
unsigned char *g,
unsigned char *b);

This function retrieves the values of the r, g, and b (red, green, and blue) components of th
polygon’s color.
7-2 WorldToolKit Reference Manual

Polygon Attributes

s the
h

ou
gon.

he
In the following example, the blue component of a polygon’s color is increased:

WTpoly *poly;
unsigned char r, g, b;

/* get current polygon color components */

WTpoly_getrgb (poly, &r, &g, &b);
/* increase blue component by 1 if it is not already maximum value */
if (b<255) {

b++;
WTpoly_setrgb (poly, r, g, b);

}

WTpoly_setmatid

FLAG WTpoly_setmatid(
WTpoly *poly,
int id);

This function changes the polygon’s material table index. You use this index to acces
material properties contained in the material table associated with the geometry whic
contains the specified polygon. The polygon’s material index remains static even if y
change or delete the material table associated with the geometry containing the poly
Note that a modulus operation will occur at render time if id is greater than the number of
materials in the material table referenced by this polygon’s geometry.

A negative material index is not allowed, therefore this function will return FALSE if t
user passes in a negative value for id.

WTpoly_getmatid

int WTpoly_getmatid(
WTpoly *poly);

This function retrieves the specified polygon's index into the material table.
WorldToolKit Reference Manual 7-3

Chapter 7: Polygons

e

en is
wise
lygon
 face,
,

see

n the
e of
WTpoly_setbothsides

void WTpoly_setbothsides(
WTpoly *poly,
FLAG flag);

This function specifies whether both sides of a polygon are visible.

If the flag argument is TRUE, then both sides of the polygon are visible. If the flag argument
is FALSE, then polygon back faces are not drawn. By default, polygon back faces ar
rejected, i.e., they are not drawn.

In WTK, a polygon face whose vertices appear in counter-clockwise order on the scre
considered to be the front face, while a polygon face whose vertices appear in clock
order is the back face. The front face is also the side of the polygon from which the po
normal points. When the viewpoint is on the other side of the polygon (that is, its back
and the flag argument in WTpoly_setbothsides is FALSE), then the polygon is not drawn
and hence invisible to the user.

You can also set polygon back face rejection in NFF files using the keyword “both” (
Appendix F). For more information about back face rejection, see Back Face Rejection on
page 6-10 of the Geometries chapter.

WTpoly_getbothsides

FLAG WTpoly_getbothsides(
 WTpoly *poly);

This function returns the polygon’s back face rejection status. If TRUE is returned, the
polygon can be viewed from both sides. If FALSE is returned, then only the front fac
the polygon is visible and its back face is not drawn.

WTpoly_getnormal

void WTpoly_getnormal(

WTpoly *poly,
WTp3 normal);
7-4 WorldToolKit Reference Manual

Polygon Attributes

0)
 that

ple

e
e

d to
the
This function retrieves the normal vector of the specified polygon and places it in the
normal argument. The polygon normal is a unit vector (a vector with length equal to 1.
perpendicular to the plane of the polygon pointing from the polygon’s front face. Note
WTK computes the polygon normal; you cannot directly set it. The polygon normal
together with the polygon’s center of gravity define the plane of the polygon. An exam
of how this is used is provided under WTpoly_getcg. See also WTnormal_2slope on page
25-33.

WTpoly_getcg

void WTpoly_getcg(
WTpoly *poly,
WTp3 cg);

This function retrieves the center of gravity for the specified polygon and places it in thcg
argument. The center of gravity of a polygon is defined as the average position of th
polygon’s vertices. (See the example on page 7-9 following WTpoly_numvertices.)

The following example shows the use of the functions WTpoly_getnormal and
WTpoly_getcg to determine the distance of a 3D point from the plane of a polygon, an
determine which side of the polygon the point is on. The example uses the fact that
polygon normal points from its front face.

WTp3 pos; /* position set elsewhere in application */
WTp3 cg, normal, vector;
WTpoly *poly;

float distance;

/* compute the vector from the polygon to pos. */
WTpoly_getcg (poly, cg);

WTp3_subtract (pos, cg, vector);

/* If the vector from the polygon to pos points in the same direction
as the polygon’s normal, pos is on the side of the polygon’s front face.

The value of the dot product is the distance from pos to the plane
of the polygon. */
WTpoly_getnormal (poly, normal);

distance = WTp3_dot(vector, normal);
WTmessage(“pos is distance %f from plane of polygon “, ABS(distance));
WorldToolKit Reference Manual 7-5

Chapter 7: Polygons

d

 other

 To
 the

lygon

ntirely

gain
 to
g a
if (distance > 0.0)
WTmessage(“on front-facing side\n”);

else

WTmessage(“on back-facing side\n”);

Polygon ID’s

You can assign individual identifying numbers (IDs) to polygons. Polygon IDs are rea
from and written to NFF files, and are set with the function WTpoly_setid. Polygon IDs
provide a handy way of obtaining pointers to polygons, which can then be passed in to
functions.

You can use the function WTgeometry_id2poly to obtain a pointer to a polygon with a
specified ID value. This function returns the first polygon in the geometry with that ID.
obtain a pointer to a specific polygon, the polygon must have an ID that is unique for
geometry to which it belongs.

For example, consider an application that requires access to the normal vector of a po
in a rotating object. Suppose further that it isn’t convenient within this application to
interactively select the polygon, and thus a pointer to the polygon must be accessed e
under application control. Here’s how to do this:

1. Denote the polygon with a unique ID in the NFF file.

2. Call WTgeometry_id2poly to obtain a pointer to the polygon.

3. Call WTpoly_getnormal for the polygon, as required by the application.

WTpoly_setid

void WTpoly_setid(

WTpoly *poly,
short id);

This function sets the value of a polygon’s id. The default polygon id value is 0 (zero). This
function is useful if you have a pointer to a polygon that you would like to reference a
by id rather than pointer. For example, your application might assign certain meaningid
values or group polygons by id, which is not as readily done using pointer values. Settin
7-6 WorldToolKit Reference Manual

Geometry that Contains a Polygon

ch

nd
etry

ID
polygon id is also useful for identifying a polygon in an NFF file, if the geometry to whi
the polygon belongs is written out.

For a very large database, you may want to distinguish between a larger number of
polygons than is possible with a single short id value. To get around this issue, you can
create multiple geometries, using distinct polygon IDs within individual geometries, a
then differentiate the polygons in the database using the unique combination of geom
name and polygon ID (see WTgeometry_setname on page 6-29). Additionally, to optimize
performance when you have a large database, it is advantageous to have multiple
geometries in the simulation rather than a single monolithic geometry.

WTpoly_getid

short WTpoly_getid (
WTpoly *poly);

This function returns the value of the specified polygon’s ID. By default, a polygon’s
value is 0. Polygon IDs are set either with WTpoly_setid or in an NFF file.

Geometry that Contains a Polygon

WTpoly_getgeometry

WTgeometry *WTpoly_getgeometry(
WTpoly *poly)

This function returns the geometry that contains the specified polygon.
WorldToolKit Reference Manual 7-7

Chapter 7: Polygons

Polygon Access

WTpoly_next

WTpoly *WTpoly_next(
WTpoly *poly);

This function returns the next polygon in the linked list of polygons associated with
geometries. These lists are returned by WTgeometry_getpolys. If the poly argument is
NULL, or if poly is the last polygon in the list, NULL is returned.

The following is an example of using WTpoly_next:

/* print out the number of vertices in each polygon of a geometry*/

WTpoly *poly;
for (poly = WTgeometry_getpolys(geometry); poly;

poly = WTpoly_next(poly)) {

WTmessage(“poly %p has %d vertices\n”, poly, WTpoly_numvertices(poly));
}

Vertex Access

WTpoly_getvertex

WTvertex *WTpoly_getvertex(

WTpoly *poly,
short index);

This function returns the specified vertex pointer (indicated by the index argument) for the
specified polygon. For instance, pass in index=0 to obtain the polygon’s first vertex pointer,
index=1 to retrieve the second, and so on. Use this function in conjunction with
WTpoly_numvertices to find all vertices referenced by a polygon. An example is given
below under WTpoly_numvertices.

A NULL pointer is returned if this function fails (for example, if index is greater than the
actual number of vertices in the polygon minus one).
7-8 WorldToolKit Reference Manual

Vertex Access

with

.

e is
y
WTpoly_numvertices

short WTpoly_numvertices(
WTpoly *poly);

This function returns the number of vertices in a polygon. You can use this function
WTpoly_getvertex to access a polygon’s vertex list. For example, if WTpoly_numvertices
returns 3, then 0, 1, or 2 can be passed to WTpoly_getvertex to access the polygon’s vertices

The following example shows the use of the functions WTpoly_numvertices and
WTpoly_getvertex to compute the center of gravity of a polygon. Note that this exampl
just for illustration, since the polygon center of gravity can also be obtained by simpl
calling WTpoly_getcg.

WTgeometry *geom;

WTpoly *poly;
WTvertex *v;
WTp3 cg, p;

short i, n;
float inverse;

/* initialize center-of-gravity */

WTp3_init(cg);

/* go through polygon vertices, accumulating vertex positions in cg */
n = WTpoly_numvertices(poly);

for (i=0 ; i<n ; i++) {
v = WTpoly_getvertex(poly, i);
WTgeometry_getvertexposition(geom, v, p);

WTp3_add(cg, p, cg);
}

/* finish calculation of average vertex position */

inverse = 1.0/n;
WTp3_mults(cg, inverse);

/* print out result */

WTp3_print(cg, “Center of gravity: “);
WorldToolKit Reference Manual 7-9

Chapter 7: Polygons

t are

n the
. The

ple,

 in a
ex
Dynamic Polygon Creation

WTK enables you to construct geometries dynamically from vertices and polygons tha
defined with WTK function calls. This section describes the functions used to define
polygons and create new graphical objects.

WTgeometry_beginpoly

See WTgeometry_beginpoly on page 6-23 for a description.

WTgeometry_newvertex

See WTgeometry_newvertex on page 6-22 for a description.

WTpoly_addvertex

FLAG WTpoly_addvertex(
WTpoly *poly,
int vindex);

This function adds a vertex to a polygon under construction by referencing a vertex i
geometry to which the polygon belongs. The return value indicates success or failure
vindex argument is the index of the vertex in the geometry’s list of vertices, which is
determined by the order in which the vertices were added to the geometry. For exam
vindex=3 refers to the fourth vertex added to the geometry. WTpoly_addvertex can only be
called after WTgeometry_beginpoly has been called for this polygon and before
WTpoly_close has been called for this polygon.

WTpoly_addvertexptr

FLAG WTpoly_addvertexptr(
WTpoly *p,
WTvertex *v);

This function enables you to add vertices to a polygon under construction by passing
pointer to a vertex. In some situations, this is more convenient than specifying a vert
index, as is required by the function WTpoly_addvertex. WTpoly_addvertexptr can only be
7-10 WorldToolKit Reference Manual

Dynamic Polygon Creation

 or

ctions
called after WTgeometry_beginpoly has been called for this polygon and before
WTpoly_close has been called for this polygon. It returns FALSE if either the polygon
vertex pointer is NULL, otherwise it returns TRUE.

Please note that, when using WTpoly_addvertexptr, it is your responsibility to ensure that
the vertex belongs to the same geometry to which the polygon belongs. See the fun
WTgeometry_newvertex on page 6-22 and WTpoly_getgeometry on page 7-7.

The following code sample illustrates the use of this function:

/*
* This function adds a triangular polygon to a geometry that is
* under construction, i.e., a geometry for which WTgeometry_close has

* not yet been called.
*/
void makepoly(WTgeometry *geom)

{
WTpoly *poly;
WTp3 pos;

/* Get pointer to a new polygon structure */
poly = WTgeometry_beginpoly(geom);

/* Add vertices to geometry and polygon */

pos[X] = 0.0; pos[Y] = 1.0; pos[Z] = 0.0;
addnewvertex(geom, poly, pos);
pos[X] = 1.0; pos[Y] = 0.5; pos[Z] = 0.0;

addnewvertex(geom, poly, pos);
pos[X] = 0.0; pos[Y] = 0.0; pos[Z] = 0.0;
addnewvertex(geom, poly, pos);

WTpoly_close(poly);
}

void addnewvertex(WTgeometry *geom, WTpoly *poly, WTp3 pos)

{
WTvertex *vertex;
vertex = WTgeometry_newvertex(geom, pos);

WTpoly_addvertexptr(poly, vertex);
}

WorldToolKit Reference Manual 7-11

Chapter 7: Polygons

ou

g

eleted

s the
oved

etry
ay
WTpoly_close

FLAG WTpoly_close(
WTpoly *poly);

This function finishes the definition of a polygon. Once you have called this function, y
cannot add any more vertices to the polygon.

Deleting Polygons

WTpoly_delete

FLAG WTpoly_delete(

WTpoly *poly);

This function deletes the specified polygon. If successful, TRUE is returned.

You can delete polygons from existing geometries and also while the polygon is bein
dynamically created (see Dynamic Polygon Creation on page 7-10).

If the polygon is in a geometry that has been optimized, then the polygon cannot be d
and FALSE is returned. See Geometry Optimization on page 6-39.

WTpoly_delete does not delete the polygon's vertices from the geometry when it delete
polygon. The polygon's vertices are left in the geometry. Unused vertices can be rem
from the object by calling WTgeometry_recomputestats, although this is not necessary.

Also, WTpoly_delete does not recompute the overall geometrical parameters of the
geometry (such as, position, bounding box). The function WTgeometry_recomputestats
can be used to recompute these parameters. You may want to perform several geom
editing functions before recomputing the geometry's geometrical properties, or you m
want to recompute them each time.

Also see the function WTgeometry_beginedit on page 6-42 which is required for certain
geometry editing functions. You do not have to call WTgeometry_beginedit in order to call
WTpoly_delete.
7-12 WorldToolKit Reference Manual

Polygon Intersection Testing

l the

 file

ng-

. See
While constructing a polygon, you can call the WTpoly_delete function to free the memory
used by the polygon before it has been completely defined. Specifically, you can cal
WTpoly_delete function for a polygon created with the WTgeometry_beginpoly function, as
long as you have not called the WTpoly_close function yet for that polygon. The ability to
delete a partially-defined polygon is useful, for example, if you are writing a custom 3D
reader and encounter an error in parsing the file.

Polygon Intersection Testing

Keep in mind that polygon-level intersection testing, while more precise than boundi
box intersection tests, is also more computationally intensive. You should use these
functions only as often as needed and only when bounding box tests are insufficient
Intersection Testing on page 4-85 for more details.

WTpoly_rayintersect

See WTpoly_rayintersect on page 4-88 of the Scene Graphs chapter.
WorldToolKit Reference Manual 7-13

Chapter 7: Polygons
7-14 WorldToolKit Reference Manual

 edit,

sing

hen

8
Materials

Introduction

A material is a combination of light and color attributes that you use to define the
appearance of a geometry or collection of geometries. WTK functions let you create,
and save material information.

This chapter includes information on the properties of materials, color determination u
material tables, material table functions, and some advanced topics on materials.

Material Properties

Geometries either emit light, reflect light, or both. This light is manifested as color. W
designing a geometry (such as, a car), there are two kinds of color to consider:

• The colors used in the car itself.

• The colors of the light playing on the car

A realistic image of a geometry includes many colors, and potentially many ways, of
reflecting light. You use a separate material to specify each of these differences in
appearance. The Lights chapter (starting on page 12-1) describes the kinds of lights
available for WTK simulations. This chapter describes how you can design different
materials to reflect that light differently.

Chapter 8: Materials

t

t,
d

t
d

e”

gh
d

ty
,

s

d
t
Each material has the following properties:

Ambient The color reflected from the material in ambient white ligh
without regard to light direction. Specified in red, green,
and blue floats in a range from 0.0 – 1.0.

Diffuse The color reflected from the material in diffuse white ligh
as a function of light direction. Specified in red, green, an
blue floats in a range from 0.0 – 1.0.

Specular The color reflected from the material in specular white
light. The specular material property is what makes a
geometry appear to be “shiny” with highlights appearing
on its surface. Usually, the specular highlight is white,
which means that it reflects the color of the specular ligh
(which is also usually white). Specified in red, green, an
blue floats in a range from 0.0 – 1.0.

Shininess The narrowness of focus of the specular highlights. This
has no meaning if the specular color is black (lighting of
geometry rendered with material properties is an “additiv
process; a black specular highlight will not darken the
geometry; it simply won't contribute to a light highlight on
the geometry). Its mathematical meaning is “specular
exponent” in the lighting equations. The lower the
shininess value, the more “spread out” the highlight; the
higher the shininess value, the sharper the highlight. A hi
value for shininess makes an object look shiny. Specifie
as a floating point value in a range from 0.0 – 128.0.

Emissive The color of light produced (not reflected) by the material
even when there is no light. A geometry with this proper
can be seen even when there are no lights in the scene
however, the emissive light does not illuminate other
geometry in the area. This material property is used les
often than the others. Specified in red, green, and blue
floats in a range from 0.0 – 1.0.

Opacity The extent to which the color value of a pixel is combine
with the color value behind it. Specified as a floating poin
value in a range from 0.0 – 1.0, where 0 is completely
invisible and 1 is completely opaque.
8-2 WorldToolKit Reference Manual

Calculations Made to Determine Color

etting
cify
ve

and
s

l
.

at

cure
age

rtex
nt to
There’s also an ambient-diffuse property (a combination of the ambient and diffuse
properties) that defines the color of the geometry in ambient or diffuse white light,
specified in red, green, and blue floats in a range from 0.0 – 1.0. This is equivalent to s
the RGB color in version 2.1 (and previous versions) of WTK. You can continue to spe
a geometry’s color with this property, while using the new properties of WTK to impro
the realism of individual geometries as needed.

You can obtain materials by reading in files from a modeler which specifies material
properties in its export file format. WTK supports Wavefront’s .obj, 3D Studio’s .3ds,
VRML’s .wrl file formats, which all have material information in them. When WTK read
in the file, it automatically renders the geometry using the modeler-specified materia
properties. For example, it will look shiny in WTK if it looked that way in the modeler

Note that some modelers (including 3D Studio) have advanced material properties th
WTK does not support; for example, properties specifying refractive properties of a
transparent substance are not supported by WTK.

Note: Texture is not a property of WTK materials; it is a bitmap which may actually obs
some elements of a material, as described in the Textures chapter (starting on p
10-1).

Calculations Made to Determine Color

Figure 8-1 illustrates how WTK resolves your instructions into RGB values at each ve
in a geometry. After Gouraud shading (if enabled), the final value for each pixel is se
the Z-buffer, if one is being used.
WorldToolKit Reference Manual 8-3

Chapter 8: Materials
Figure 8-1: How WTK determines the color of each pixel it displays

Determine
ambient color

Ambient property

Ambient light

Diffuse property

Diffuse light
Determine
diffuse color

Shininess property

“In” vector

Specular property

Specular light
Determine
specular color

Emissive property

Ambient color

Determine
emissive color

Calculate
combined
pixel color

Diffuse color

Specular color

Emissive color

Pixel color

Opaque property

Color of pixel behind

Determine
opacity Z-buffer

“Out” vector

“In” vector

Gouraud
shading

Surf. normal vector
8-4 WorldToolKit Reference Manual

About “In” and “Out” Vectors

ertex
t.

ause

h
lygon
try in

 point

ed later

 may
ted
About “In” and “Out” Vectors

The “in” vector mentioned in figure 8-1 is the vector between the light source and the v
being lit. The “out” vector is the vector between the vertex being lit and the viewpoin
Pixels between vertices have their color and opacity values determined by Gouraud
shading, if enabled.

Using Material Tables

The values for all of the materials used with a geometry are contained in its material table.
A material table is a collection of “robust” colors. These colors are termed robust bec
they include more reflectance information than the “ambientdiffuse” color reflectance
available in previous versions of WTK.

Material tables are indexed from 0 (zero) to the number of materials in the table. Eac
polygon or vertex contains an index into the material table. This means that each po
or vertex has a number — not a color — attached to it. This number references an en
the material table.

More than one geometry may point to the same material table, and a geometry may
to different tables depending on the effect you need. See WTgeometry_setmtable on page
8-18.

Once a geometry file has been loaded into a scene, you can use the functions describ
in this chapter to modify the settings in this table. For example, you can use
WTmtable_setvalue to change an existing material table entry. Since the same material
be applied to several polygons, more than one polygon in your scene could be affec
when you modify a material.

To create a new material and then modify the copy, use WTmtable_copyentry and then
WTmtable_setvalue.
WorldToolKit Reference Manual 8-5

Chapter 8: Materials

in the
rties

gh set

on
Here’s a sample WTK material file describing a material table:

mat
version 3.00
valid ambient diffuse specular shininess

matdef // id 0
ambient 0.345098 0.325490 0.254902
diffuse 0.376471 0.345098 0.227451

specular 0.597882 0.538353 0.225176
shininess 58.879997

matdef // id 1

ambient 0.650980 0.000000 0.000000
diffuse 0.650980 0.000000 0.000000
specular 0.890000 0.890000 0.890000

shininess 89.599998
matdef // id 2
ambient 0.200000 0.200000 0.200000

diffuse 0.600000 0.600000 0.600000
specular 0.000000 0.000000 0.000000
shininess 10.000000

An object does not need to have all of its material properties specified. For example,
material file listing shown above, neither the emissive nor the opacity material prope
are specified. Using fewer properties can generate a moderate improvement in
performance. Properties not specified in a geometry’s material table behave as thou
to 0 (zero).

To alter the number of fields that are defined in a given material table, use the functi
WTmtable_setproperties, as described on page 8-9. To find out what properties are
currently defined for a given material table, use WTmtable_getproperties as described on
page 8-11.

See How Do I Use Material Tables for Colors? on page A-11.
8-6 WorldToolKit Reference Manual

Material Table Functions

g to

l
alty

n used
s

ins
Material Table Functions

WTmtable_new

WTmtable *WTmtable_new(
int definedprops,
int estimatedentries

char *name);

This function creates a new material table, which must have a unique name. The argument
definedprops is a bitwise combination of the material property constants correspondin
the material properties you want to define for this material table. These are:

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE

WTMAT_DIFFUSE

WTMAT_EMISSION

WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

It is not permitted for WTMAT_AMBIENTDIFFUSE to be a defined entry of the material
table at the same time as WTMAT_AMBIENT or WTMAT_DIFFUSE. If you attempt to do
this, only the WTMAT_AMBIENTDIFFUSE field will be defined, but the
WTMAT_AMBIENT and WTMAT_DIFFUSE fields will not be defined. Attempts to set the
values of undefined fields of a WTmtable will have no effect. (See WTmtable_setvalue on
page 8-15.)

Providing an accurate value for estimatedentries can be valuable for making sure materia
creation is quick and memory-efficient; in most cases, however, you will incur no pen
for passing in zero.

Material tables must have unique names. If you assign a name which has already bee
for a material table, table creation fails and NULL is returned. However, you may pas
NULL in as the name argument; in this case a unique material table whose name beg
with mt and ends with a number will be created.
WorldToolKit Reference Manual 8-7

Chapter 8: Materials

erial
 that

ns the

inal
 of

 the

WTmtable_delete

FLAG WTmtable_delete(
WTmtable *mtable)

This function deletes the specified material table. All geometry which refers to this mat
table will be updated to reflect its NULL status, and will appear black. If any geometry
refers to this table has been optimized using WTgeometry_prebuild, these geometries will
not be updated, table deletion will fail, and the function will return FALSE. Otherwise
TRUE is returned.

WTmtable_merge

WTmtable *WTmtable_merge(

WTmtable *table1,
WTmtable *table2)

This function merges two material tables and returns a new material table that contai
materials from both tables. It's the equivalent of copying table1 into a new table and then
appending table2 onto the end of it.

The materials in table1 are indexed in the new material table just as they were in the orig
material table. The materials in table2 have the number of entries in tables added to each
their indices. No action is taken to invalidate the original table1 and table2; it is up to you
to delete them. When the result is returned from this function, no geometry will refer to
new material table.

WTmtable_getnumentries

int WTmtable_getnumentries(

WTmtable *mtable)

This function returns the number of table entries in the material table specified by the
mtable argument.
8-8 WorldToolKit Reference Manual

Material Table Functions

o the

. Any
fined

e old
ies are
WTmtable_setproperties

WTmtable *WTmtable_setproperties(
WTmtable *mtable,
int definedprops)

This function adds or removes properties defined in a material table. The definedprops
argument is a bitwise combination of the material property constants corresponding t
material properties you want to define for this material table. These are:

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE

WTMAT_DIFFUSE

WTMAT_EMISSION

WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

Note: When you use this function, the old table is invalidated and a new table is created
attempt to execute operations on the invalidated (freed) table can produce unde
results, including termination of your application

WTK returns a pointer to this new table you have created; geometries which used th
table are updated to refer to the new one. Table 8-1, describes how material propert
affected by the creation of a new material table.

Table 8-1: Results of creating a new material table

Condition Result

A property in the old material table is also
defined in the table that replaces it.

The value for the property is copied from
the old table to the new one.

A property not defined in the old table is
defined in the table that replaces it.

A value of opaque black is set for
materials in the new table that use that
property. The settings used to create this
value are listed on page 8-14.
WorldToolKit Reference Manual 8-9

Chapter 8: Materials

uses

ith

d

 a

 step
.
 you
If a material property for a geometry is not defined in its material table, the geometry
the default value for that property.

Example: Adding Shininess to a Multi-colored Geometry

Imagine that you load an old NFF file of a multi-colored geometry that was created w
WTK V2.1 and you want to make it look shiny. When you load the file using
WTgeometrynode_load, a material table is created for the geometry whose only define
field is ambientdiffuse. It will initially look just like it did under WTK V2.1.

Suppose you want to make this object uniformly shiny, and that you are starting with
material table with only WTMAT_AMBIENTDIFFUSE property defined.

You would use the following function call:

WTmtable_setproperties(table,
WTMAT_AMBIENTDIFFUSE | WTMAT_SPECULAR | WTMAT_SHININESS);

This permits each material to specify its own specular color and shininess. You then
through the material table, using WTmtable_setvalue to set its specular color and shininess
Note that the second argument to this function is a bitwise “OR” of the properties that
want defined for this material table.

The old table had
WTMAT_AMBIENTDIFFUSE
defined and the new table has
WTMAT_AMBIENT
and/or WTMAT_DIFFUSE
present.

The values for this property
(for each material) are copied from the
WTMAT_AMBIENTDIFFUSE
field in the old table to the
WTMAT_AMBIENT
and/or WTMATL_DIFFUSE
fields in the new table.

A property defined in the old table is not
defined in the table that replaces it.

The property no longer has any effect on
the geometry.

Table 8-1: Results of creating a new material table (continued)

Condition Result
8-10 WorldToolKit Reference Manual

Example: Adding Shininess to a Multi-colored Geometry

le

ified

For example:

WTgeometry *geom;
WTnode *root, *node;
WTmtable *tableold, *tablenew;

node = WTgeometrynode_load(root, “car.nff”,1.0);
geom = WTnode_getgeometry(node);
tableold = WTgeometry_getmtable(geom);

tablenew = WTmtable_setproperties(tableold,
WTMAT_AMBIENTDIFFUSE | WTMAT_SPECULAR | WTMAT_SHININESS);

WTmtable_getproperties

int WTmtable_getproperties(

WTmtable *mtable)

This function returns a bitwise combination of defined properties for the material tab
specified by the mtable argument. These are:

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE

WTMAT_DIFFUSE

WTMAT_EMISSION

WTMAT_OPACITY

WTMAT_SHININESS
WTMAT_SPECULAR

WTmtable_load

WTmtable *WTmtable_load(

char *filename)

This function reads a material table from the specified filename. If a file with the spec
filename is not found in the current directory, the extension .mat is added to the filename
and the current directory is searched again. If the specified file is not found, NULL is
returned.
WorldToolKit Reference Manual 8-11

Chapter 8: Materials

(if it
er

 file

start at

l files
from
s end

 for a
Note: If a material table is not referenced by any geometry in the scene graph, it is
automatically deleted. For example, suppose you load a material table using
WTmtable_load and associate it with a geometry using WTgeometry_setmtable (see
page 6-30). Now, if you delete this geometry, the material table also gets deleted
is not referenced by any other geometry). Hence, you could not associate anoth
geometry to this material table later.

WTmtable_save

FLAG WTmtable_save(
WTmtable *mtable)

This function writes a material table to a file in the current directory. The name of the
will be the material table name with a .mat extension added. Any existing file with the same
name will be overwritten.

If you have not set the name using WTmtable_new or WTmtable_setname, the name will
be an automatically generated name; automatically generated material table names
mt1 (“m-t-one”) and increment numerically for each new material table created.

If you plan to save out material tables, it’s a good idea to give them unique names.
Otherwise, material tables with automatically generated names written in the current
session could overwrite similarly generated files from an earlier session. Since mode
refer to the material tables by name, this means that when you load a model written
the earlier session, the old model would end up using the new material table and thu
up with unexpected colors.

WTmtable_setname

FLAG WTmtable_setname(

WTmtable *mtable,
char *name)

This function sets the name of the material table specified by mtable to name. Material
tables must have unique names. If you assign a name which has already been used
material table, this function returns FALSE.
8-12 WorldToolKit Reference Manual

Example: Adding Shininess to a Multi-colored Geometry

a can
ass in

st the
WTmtable_getname

char *WTmtable_getname(
WTmtable *mtable)

This function returns the name of the material table specified by the mtable argument.

WTmtable_getbyname

WTmtable *WTmtable_getbyname(
char *name)

This function returns a pointer to the material table having the name specified by the name
argument. It returns NULL if the material table with the given name does not exist.

WTmtable_setdata

void WTmtable_setdata(

WTmtable *mtable
void *data)

This function sets a user-defined data field in a material table. Private application dat
be stored in any structure. To store a pointer to the structure within a material table, p
a pointer to the structure, cast to a void*, as the data argument.

WTmtable_getdata

void *WTmtable_getdata(

WTmtable *mtable)

This function retrieves user-defined data stored within a material table. You should ca
value returned by this function to the same type used to store the data with the
WTmtable_setdata function.
WorldToolKit Reference Manual 8-13

Chapter 8: Materials

 the
 the

 new
Material Table Entry Functions

WTmtable_newentry

int WTmtable_newentry(

WTmtable *mtable);

This function creates a new entry in the material table given by the table argument. The new
material-table entry will have all defined fields set to these default values:

Ambient 0.0, 0.0, 0.0

Diffuse 0.0, 0.0, 0.0

Emissive 0.0, 0.0, 0.0

Specular 0.0, 0.0, 0.0

Shininess 0.0

Opacity 1.0

Name NULL

The value returned is the index into the material table which corresponds to the new
material.

WTmtable_copyentry

int WTmtable_copyentry (
WTmtable *from,

int matid,
WTmtable *to)

This function copies an entry whose index is specified by the matid argument from one
material table to another. This results in the creation of a new material table entry. Iffrom
and to are the same table, the material is duplicated so that there’s a second copy of
material in the same table. Fields defined for the destination which weren’t defined in
source table are filled in with the default values listed above for WTmtable_newentry. The
value returned is the index into the destination material table that corresponds to the
copy of the material.
8-14 WorldToolKit Reference Manual

Material Table Entry Functions

ity is

ltiple
ntry.
WTmtable_setvalue

FLAG WTmtable_setvalue(
WTmtable *mtable,
int matid,

float *value,
int propertybit);

This function alters the characteristics of an entry whose index is specified by the matid
argument in the material table specified by the mtable argument. The propertybit argument
is one of the following:

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE

WTMAT_DIFFUSE

WTMAT_EMISSION

WTMAT_OPACITY

WTMAT_SHININESS

WTMAT_SPECULAR

The value argument is an array of three floats when setting the ambientdiffuse, ambient,
diffuse, specular, or emission properties, or an array of one float when setting the shininess
or opacity properties. Passing an array of three floats when setting shininess or opac
permitted, but only the value [0] argument is read from.

FALSE is returned if the specified propertybit is not defined for the given material table.
Note that a single call to this command can cause changes in multiple polygons in mu
geometries, because more than one polygon may refer to the same material table e

WTmtable_getvalue

FLAG WTmtable_getvalue(

WTmtable *mtable,
int matid,
float *value,

int propertybit);
WorldToolKit Reference Manual 8-15

Chapter 8: Materials

niness

This function queries the characteristics of an entry whose index is specified by the matid
argument in the material table specified by the mtable argument. The propertybit argument
is one of the following:

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE

WTMAT_DIFFUSE

WTMAT_EMISSION

WTMAT_OPACITY

WTMAT_SHININESS

WTMAT_SPECULAR

The value argument must be an array of three floats when querying the ambientdiffuse,
ambient, diffuse, specular, or emission properties, or an array of one float when querying
the shininess or opacity properties. Passing an array of three floats when querying shi
or opacity is permitted, but only the value[0] argument is written into.

FALSE is returned if the specified propertybit is not defined for the given material table.

WTmtable_setentryname

FLAG WTmtable_setentryname(
WTmtable *mtable,

int matid
char *name)

This function assigns a name specified by the name argument to an entry whose index is
specified by the matid argument in the material table specified by the mtable argument. The
default name of a material table entry is NULL.

WTmtable_getentryname

char* WTmtable_getentryname(

WTmtable *mtable,
int matid)

This function returns the name of an entry whose index is specified by the matid argument
in the material table specified by the mtable agrument.
8-16 WorldToolKit Reference Manual

Advanced Topics

able

e
ex
k

es
dices
re only

 this
ctual

in the
WTmtable_getentrybyname

int WTmtable_getentrybyname(
WTmtable *mtable,
char *name)

This function returns the index of an entry whose name is specified by the name argument
in the material table specified by the mtable argument.

-1 is returned if no entry in the material table matches name.

Advanced Topics

How WTK Deals With Out-Of-Range Indices

When rendering, WTK assigns color to the polygon (or vertex) by using the material t
index specified by the polygon (or vertex) to a material in the material table.

If the polygons and vertices in a geometry have material table indices higher than th
number of materials in the material table, a modulus operation is executed on the ind at
the time the polygon is rendered. For example, if a material table has two colors in it (blac
and white), and the geometry consists of four polygons, with material index referenc
0,1,2,3, the polygons would be rendered as black, white, black, white. The material in
remain as they were: 0,1,2,3, but are rendered as if they were 0,1,0,1, because there a
two entries in the material table. If a new entry, red, is added to the material table at
point, in the next frame the geometry will be rendered as black, white, red, black. The a
indices 0,1,2,3 are rendered as if they were 0,1,2,0 because there are three entries
material table.

A negative material index is not allowed.
WorldToolKit Reference Manual 8-17

Chapter 8: Materials

table.
al
Using Material Index Table Entries

WTpoly_setmatid

See WTpoly_setmatid on page 7-3 of the Polygons chapter.

WTpoly_getmatid

See WTpoly_getmatid on page 7-3 of the Polygons chapter.

WTgeometry_setmatid

See WTgeometry_setmatid on page 6-31 of the Geometry chapter.

WTgeometry_setvertexmatid

See WTgeometry_setvertexmatid on page 6-48 of the Geometry chapter.

WTgeometry_getvertexmatid

See WTgeometry_getvertexmatid on page 6-48 of the Geometry chapter.

Using Materials Tables With Geometries

As described in this chapter, you can define a geometry’s material in its own material
Each geometry references a single material table, from which the geometry’s materi
properties are obtained.

WTgeometry_setmtable

See WTgeometry_setmtable on page 6-30 of the Geometry chapter.

WTgeometry_getmtable

See WTgeometry_getmtable on page 6-31 of the Geometry chapter.
8-18 WorldToolKit Reference Manual

Notes on Specific File Formats

gon

bject.
FF

erial
ce to a

fuse,
es not
 .mtl
 those

d
d in
.mtl

nt
bient,

ences

els
d,
Notes on Specific File Formats

WTK now has an expanded NFF file format which records material ID’s for each poly
or vertex, instead of RGB color, as was done in WTK V2.1 and earlier (see Changes in
Reading/Writing NFF Files on page G-24 for more information).

When an NFF 2.1 (an NFF file saved with version 2.1 of WTK) or earlier object file is
loaded, a material table is created that has one material for each unique color in the o
The material table in this case has only the AMBIENTDIFFUSE field defined, so the N
2.1 geometry will look the same in this release as it did in WTK V2.1. The created mat
table has an automatically generated name. In each NFF file, there is also a referen
material file. The new NFF file format is described in Appendix F.

The same is true for files read from MultiGen .flt files, ProEngineer RENDER format,
AutoCad DXF, and Videoscape 3D .geo file formats.

Wavefront .obj files have material properties defined in externally referenced .mtl files; for
these files all of the following material properties are read in and defined: ambient, dif
specular, specular exponent (shininess), and transparency (alpha). The .mtl format do
have an “emissive” material property. When a Wavefront file is loaded, any referenced
file is parsed, and a new material table is created; the new material table is defined for
fields that are specified in the Wavefront .mtl file. If for example, “ambient” color is not
defined for any of the materials in the .mtl file, then the new material table will be create
without the “ambient” field defined. Each Wavefront material has a name as specifie
the .mtl file; each WTmaterial defined has its name set to match the one specified in the
file.

3D Studio .3ds files have material properties defined within the file. Like the Wavefro
files, a material table is created and material properties are read in and defined for am
diffuse, specular, specular exponent (shininess), and transparency (opacity).

NFF 3.0 (the new format for WTK Release 6 and this release) files have external refer
to the new WTK .mat material file format. This is an easy-to-edit ASCII format.

OpenGL Compatibility

The OpenGL specification is a powerful, cross-platform definition of how lighting mod
are to be implemented. By providing material properties that conform to this standar
WTK preserves all of the control that users of previous versions of WTK had for
WorldToolKit Reference Manual 8-19

Chapter 8: Materials

determining the coloring of geometries and polygons, but adds additional features —
notably specular highlights. WTK takes full advantage of the features available with
OpenGL.
8-20 WorldToolKit Reference Manual

ply

based
aces.
ou are
acter
g

h

eters
 using
n
9
3D Text

Creating Three-dimensional Text in WTK

WTK allows you to create 3D text for your virtual world. These 3D text strings are sim
WTK geometries, which can be used as described in the Geometries chapter. 3D text
geometries are assembled from individual characters that can either be polygonally
or represented using bit-mapped pictures of the characters applied to polygonal surf
The size, shape, and style of each individual character depends on the 3D font that y
using. A 3D font is specified by an NFF file that contains one NFF object for each char
in the font. You can use several different 3D fonts simultaneously to create text strin
geometries at any time.

Creating 3D text in WTK is a two-step process. First you load in a 3D font by calling
WTfont3d_load. This loads a font from an NFF file (i.e., creates an NFF object for eac
character in the font and stores it in memory). Then the function WTgeometry_newtext3d
is used to construct geometries from character strings. Figure 9-1 illustrates the param
associated with a WTK 3D font. For purposes of clarity, these parameters are shown
a projection of the font onto a 2D plane. The extents of the font in 3D are illustrated i
figure 9-2 on page 9-4.

Chapter 9: 3D Text

le

ile is

Figure 9-1: Basic font properties

WTfont3d_load

WTfont3d *WTfont3d_load(
char *filename);

This function loads a 3D font file into memory and returns a pointer to a WTfont3d structure
used to refer to the font. The filename argument should be the name of an NFF 3D font fi
such as the sample font file provided with WTK. Like the functions WTgeometrynode_load
and WTnode_load, the WTMODELS path is searched for the filename, if it is not found in
the current directory.

WTK comes with at least one sample 3D font file. With this release, the sample font f
rcfont3d.nff, located in the modeler directory in the WTK product distribution. A
description of the format of the 3D font file is provided at the end of this chapter as a
reference in case you want to define your own 3D fonts.

Baseline

Spacing

Extents box

Origin
X axis
9-2 WorldToolKit Reference Manual

Creating Three-dimensional Text in WTK

d

 base-
his
fects

nd
WTfont3d_delete

void WTfont3d_delete(
WTfont3d *font);

This function frees the memory used by a WTfont3d structure. Once you have constructe
all of the text strings required for your application which use this font (using
WTgeometry_newtext3d), you can call WTfont3d_delete at any time.

WTgeometry_newtext3d

See WTgeometry_newtext3d on page 6-20 for a description.

WTfont3d_setspacing

void WTfont3d_setspacing(

WTfont3d *font,
float spacing);

This function sets the spacing for a font by setting the horizontal spacing between the
points of the characters in a 3D text string (see figure 9-1 on page 9-2). By default, t
spacing is 10% greater than the width of the widest character. Using this function af
the spacing of all subsequently created geometries.

In the following example, the font spacing is increased by 20 percent:

WTfont3d_setspacing(font, 1.2 * WTfont3d_getspacing(font));

See also WTfont3d_getextents, on page 9-4.

WTfont3d_getspacing

float WTfont3d_getspacing(
WTfont3d *font);

This function returns the current spacing value for the specified 3D font. Figure 9-1 a
figure 6-1 illustrate “spacing” of a font.

Figure 9-2 illustrates the extents of a WTK 3D font.
WorldToolKit Reference Manual 9-3

Chapter 9: 3D Text

font

inate

Figure 9-2: The 3D font’s extents box

WTfont3d_getextents

void WTfont3d_getextents(
WTfont3d *font,

WTp3 extents[2]);

This functions gets the 3D extents box for the specified 3D font. WTfont3d_getextents
places the minimum and maximum spatial extents of the characters of the specified
into the extents[0] and extents[1] vectors respectively.

For example, for characters oriented to be read in the X-Y plane, the largest X coord
value of any character in the font is placed in extents[1][X], and the smallest value is placed
in extents[0][X]. Therefore, the maximum width of any character in the font is extents[1][X]
- extents[0][X].

Font y axis

Font x axis

Font z axis

extents[0][X]

extents[0][Y]

extents[1][Y]

extents[1][Z]

extents[0][Z]

extents[1][X]
9-4 WorldToolKit Reference Manual

NFF 3D Font Files

er in

ximum

 font.
ed.

se:

e
t.

ter.
 the
apital

o on
-1
Correspondingly, for the Y value, the maximum vertical extent (height) of any charact
the font is extents[1][Y] - extents[0][Y] and for the Z value, the maximum depth extent of
any character in the font is extents[1][Z] - extents[0][Z].

The default spacing between characters in the font is ten percent greater than the ma
character width (i.e., ten percent greater than (extents[1][X] - extents[0][X])). You can
determine the spacing by calling WTfont3d_getspacing after WTfont3d_load is called.

WTfont3d_charexists

FLAG WTfont3d_charexists(
WTfont3d *font,
char character);

This function determines whether a particular character is defined in the specified 3D
If the specified character is in the font, TRUE is returned, otherwise FALSE is return

For example, to find out whether the font includes an exclamation mark, you could u

WTfont3d *font;
if (WTfont3D_charexists(font, ’!’))

WTmessage(“Font %p contains ’!’ \n”, font);

else
WTwarning(“Font %p does not contain ’!’ \n”, font);

NFF 3D Font Files

This section describes the structure of the NFF file from which a WTK 3D font can b
constructed. Also see Appendix F for a complete description of the WTK NFF forma

A 3D font file is a multi-geometry NFF file that contains one geometry for each charac
The names of the character geometries are the string “char” followed immediately by
ASCII value of the character. For example, the name of the geometry representing a c
“A” would be “char65” since the ASCII code for “A” is 65. A 3D font file containing all
of the capital letters would have geometries named “char65”, “char66”, “char67” and s
up to “char90” (capital “Z”). Lower-case letters are “char97” through “char122.” Table 9
lists ASCII character values.
WorldToolKit Reference Manual 9-5

Chapter 9: 3D Text

ers
t to
g on

 any
ocation

ch
The function WTgeometry_newtext3d constructs text geometries by assembling charact
along the +X direction. Therefore, characters in your font file should read so that “lef
right” corresponds to increasing X coordinate values. With this convention, dependin
the way in which the characters in the font file are modeled, WTgeometry_newtext3d might
return text geometries that are readable in the X-Y plane or in the X-Z plane (or with
angle in between). Of course, the text geometries once created can be placed at any l
using the geometry move functions.

When a text string is assembled with WTgeometry_newtext3d, the characters are lined up
based on the location of their base points. The point (0, 0, 0) is the base point for ea
character. You should define characters in the NFF 3D font file relative to this point.

Table 9-1: The ASCII character set

char64 @ char96 `

char33 ! char65 A char97 a

char34 “ char66 B char98 b

char35 # char67 C char99 c

char36 $ char68 D char100 d

char37 % char69 E char101 e

char36 & char70 F char102 f

char39 ' char71 G char103 g

char40 (char72 H char104 h

char41) char73 I char105 i

char42 * char74 J char106 j

char43 + char75 K char107 k

char44 , char76 L char108 l

char45 - char77 M char109 m

char46 . char78 N char110 n

char47 / char79 O char111 o

char48 0 char80 P char112 p
9-6 WorldToolKit Reference Manual

NFF 3D Font Files
char49 1 char81 Q char113 q

char50 2 char82 R char114 r

char51 3 char83 S char115 s

char52 4 char84 T char116 t

char53 5 char85 U char117 u

char54 6 char86 V char118 v

char55 7 char87 W char119 w

char56 8 char88 X char120 x

char57 9 char89 Y char121 y

char58 : char90 Z char122 z

char59 ; char91 [char123 {

char60 < char92 \ char124 |

char61 = char93] char125 }

char62 > char94 ^ char126 ~

char63 ? char95 _

Table 9-1: The ASCII character set (continued)
WorldToolKit Reference Manual 9-7

Chapter 9: 3D Text
9-8 WorldToolKit Reference Manual

bjects,
hapter

nd

cy,

fset

TK
10
Textures

This chapter describes the textures that can be applied to the surfaces of graphical o
and the functions to apply, manipulate, and animate them. The main sections of this c
are as follows:

• Introduction – provides a general discussion on the use of textures in WTK a
lists the texture file formats supported by WTK. (see page 10-2)

• Applying Textures – describes how to apply textures to geometric surfaces in
WTK. (see page 10-4)

• Changing Texture Properties – describes how to access the shading, transparen
and blending values of a polygon’s texture. (see page 10-23)

• FilteringTextures – describes how to specify and retrieve the filter values for a
texture already applied to a polygon. (see page 10-24)

• Manipulating Textures – describes how to change the orientation, scale, and of
of applied texture. (see page 10-27)

• Screen Loading – describes how to load an image to and get an image from a W
window. (see page 10-33)

Chapter 10: Textures

ttern,
s

aded

s.
 a

nts,
e
f the
gle

e been
Introduction

Surfaces of objects in the real world are not smooth and featureless — they have pa
grain, and detail. To emulate this, you can give WTK polygons a surface texture. Thi
texture is a bit-mapped image, which is applied to the surface of the polygon and
transformed with it. For example, you can create a table top from a uniform brown-sh
polygon with an actual wood-grain image mapped onto it.

You can create textures with a bitmap image editor or derive them from video image
Basically, anything that can find its way onto a computer screen can be converted to
texture format. Figure 10-1 shows a WTK virtual world with textures applied to it.

Figure 10-1: WTK virtual world with textures applied

Judicious use of textures can increase the complexity and realism of your environme
allowing you to avoid both the initial work of modeling surface details and the run-tim
overhead of transforming them. For example, instead of modeling as 3D details all o
windows of a distant building, you can apply a digital image of a real building to a sin
polygon, which then serves as an entire side of the building. Your modeling labor is
conserved and rendering speed increases dramatically compared to what would hav
10-2 WorldToolKit Reference Manual

Supported Texture File Formats

ion is
tails,
exture

le,

n the

ities

t
necessary to model all of these details in 3D. However, the frame rate of the simulat
still affected by texturing — although it is better to use textures than to model all the de
textures do slow performance compared to just rendering polygons that have neither t
nor modeling details.

Textures are automatically transformed with the polygons to which they are applied,
displaying perspective shift and scaling appropriate for the viewing parameters (see
Applying Textures on page 10-4). WTK has functions for changing the orientation, sca
and offset of applied textures (see Manipulating Textures on page 10-27).

You can dynamically replace a texture on a polygon, which gives the impression of
animation. For example, you can use WTtexture_replace to sequentially load images from
a video file to a polygon in the shape of a TV screen. Or you can map images from a
viewpoint to a polygon to create a rear-view mirror in your simulation. See Animating
Textures on page 10-18.

You can also make part of a texture transparent, which allows whatever is behind it i
simulation to show through. See Changing Texture Properties on page 10-23. Also refer to
your Hardware Guide for information about system-specific texture-mapping capabil
and limitations.

Supported Texture File Formats

WorldToolKit supports the following texture file formats.

Targa .tga extension

RGB format .rgb and .rgba extensions

JPEG - JFIF compliant .jpg extension

These formats are supported on all platforms. Note that 8 bit TGA format files are no
supported.
WorldToolKit Reference Manual 10-3

Chapter 10: Textures

he
ME

aces
Applying Textures

Use the functions in this section to apply textures to geometric surfaces. Several of t
demos provided with WorldToolKit illustrate the use of these functions. See the READ
files in the demos and images subdirectories that were installed with WTK.

Table 10-1 below, lists the methods provided in WTK for applying textures to the surf
of geometries.

Table 10-1: Methods for applying textures to geometry surfaces

Method Functions used Remarks

Automatic WTpoly_settexture
WTgeometry_settexture

The texture is applied to each polygon so
that it is oriented upright on the polygon
and reads from left to right when looking
at the polygon's front face.
WTgeometry_settexture calls
WTpoly_settexture to apply a texture in
this manner to each polygon in the
geometry. The precise method of texture
application is described under How WTK
Applies a Texture to a Polygon on
page 10-5.

Explicit uv
specification

WTpoly_settextureuv
WTgeometry_settextureuv

The texture is applied using the specified
uv texture coordinates. The function
WTgeometry_settextureuv calls
WTpoly_settextureuv to apply a texture to
each polygon in the geometry so that the
texture appears draped or wrapped over
the geometry.

Use 3D
model
file format

n/a The file itself contains texturing
information.
10-4 WorldToolKit Reference Manual

How WTK Applies a Texture to a Polygon

nent

s
e
ins

ide-
 of
How WTK Applies a Texture to a Polygon

Here’s how WTK applies a texture to a polygon:

1. The edge of the polygon with the largest upward (i.e., negative) y-axis compo
is found.

2. Texture is applied so that (a) the vertical edge of the texture is parallel to thi
polygon edge, and (b) from a viewpoint looking at the polygon’s front face, th
texture reads from left-to-right (the texture example in figure 10-2 below, conta
text to illustrate this).

3. Given two solutions to (a) and (b), the texture is applied so it appears right-s
up rather than upside-down (with respect to a viewpoint that is right-side-up,
course).

Figure 10-2: Texture application on rectangular polygons.

d

cb

a

u

v

Texture space

x

z

y

Prior to application Projected Scaled

Texture space

Edge with largest upward
y-axis component

a

c

d

b d

cb

a

Note: Texture “E” placed on rectangular
polygons is stretched to fit the polygon.

World space Polygon

Front face
WorldToolKit Reference Manual 10-5

Chapter 10: Textures

t
ted

10-2
 (or
s
-

d
actly

 used

und
, the
In the case of the rectangular polygon shown in figure 10-2, the edge with the larges
upward (i.e., negative y-axis) component is c-d. (Even though edge d-a is also orien
upward and is longer than c-d, the y-axis component of d-a is less.)

Assuming the polygon vertices are stored in the polygon in the order a-b-c-d, figure
shows the front face of the polygon. The texture is applied so that if we tilt our heads
equivalently rotate the polygon) so that the edge c-d is vertical, then the texture read
correctly from left-to-right, that is, the E looks like an E — not backwards and not upside
down.

Furthermore, on a rectangular polygon, the texture corners (in u,v space) are mappe
exactly to the corners of the rectangle. In other words, the texture is stretched to fit ex
onto the rectangle. None of the texture image is cropped when applied.

Figure 10-3: Texture application on non-rectangular polygons.

When a texture is applied to a non-rectangular polygon, the same basic technique is
as with rectangular polygons.

In figure 10-3, we start with a five-sided polygon. Since the vertices a-b-c-d-e go aro
counter-clockwise, we are again looking at the front face of the polygon. In this case

world space
x

z

y

Prior to application Projected Scaled

polygon

edge with largest upward
y-axis component

be

d

a

c

b

a
d

c

e

b

ad

c

e

Note: portions of the texture
will be clipped.

u

v

texture space

Front
face
10-6 WorldToolKit Reference Manual

Texture Size

is

 map
ote

ased
e
 the
nce
dge is
tation
ing the

 the

on
map
 the

f the

o do

m
 and
ur
 is

width
e
polygon is simply rotated so that the edge a-b (the edge with the largest upward y-ax
component) is correctly aligned with the texture.

Then, the texture is applied so that the minimum and maximum u and v texture values
to the minimum and maximum horizontal and vertical extents of this rotated polygon. N
that portions of the texture are cropped or clipped. You can use WTpoly_scaletexture or
WTpoly_stretchtexture if cropping is not desired.

The important thing to remember is that textures are aligned to polygonal surfaces b
on the surface’s orientation in the world reference frame and on the order in which th
polygon vertices are specified. These two factors determine which polygon edge has
largest upward y-axis component. If you tried applying a texture to a moving object o
per frame (as you do when using texture animation), you would see that the texture e
sometimes aligned to different polygonal edges based on the polygon’s current orien
with respect to the world. In some cases, this causes problems that must be fixed us
texture rotation feature (see Manipulating Textures on page 10-27).

For a polygon that is oriented horizontally, the edge to which the texture is aligned is
first polygon edge. Specifically, for a horizontal polygon, the right edge of the texture
bitmap is made to lie along the first polygon edge, where moving from the first polyg
vertex to the second moves you in the direction from the bottom right corner of the bit
toward the top right corner of the bitmap. In addition, the texture may be stretched in
same way as shown in figure 10-3 for the polygon with a vertical component.

After application through this default mapping, textures may be modified using any o
texture manipulation functions described beginning on page 10-27.

Texture Size

You can also set the maximum texture size that will be loaded by your application. T
this, use the WTMAXTEXSIZE environment variable (see the Environment Variables
Appendix for details on setting this environment variable). When you set the maximu
texture size, the texture images will be shrunk, if necessary, so that the image width
height in pixels will not exceed this value. This is very valuable, as it ensures that yo
application does not exceed your hardware texture memory limits. The default value
1024 (this is also the maximum), but you can, for example, set it to 512 or 256.

Texture dimensions must be a power of two (e.g. 16, 32, 64, etc.). If a texture whose
and height is not a power of two, WTK will automatically size the texture image to th
WorldToolKit Reference Manual 10-7

Chapter 10: Textures

 256.

 By

e
TK
g).
re

 and

 is
ence
gb,

a
acity.

lue of
 alpha
ng
nearest power of two. For example, a 65 x 190 resolution image will be resized to 64 x
If the environment variable WTKSQRTEX is enabled (set to 1), WTK will automatically
shrink texture images, if necessary, so that the texture’s width and height are equal.
default, WTKSQRTEX is disabled (set to 0), and so texture images are not shrunk into
square images.

Texture Naming Conventions

When using functions WTgeometry_settexture, WTgeometry_settextureuv,
WTpoly_settexture, and WTpoly_settextureuv, one of the parameters you must supply is th
filename of the texture being applied. If you don’t specify the filename’s extension, W
will look for a file whose extension is recognized as a texture file (.tga, .rgb, .rgba, .jp
By leaving off the extension, you can port your WTK application to a different hardwa
platform without having to change all the extension names in your source code.

Texture files specified in a WTK function call are searched for in the current directory,
along the path given by the WTIMAGES environment variable. If multiple files with the
same filename but different extensions exist in the same directory and your file
specification doesn’t include the file extension, the precedence of texture file formats
dependent upon the platform you are running on. On Windows platforms, the preced
order is .tga, .rgb, .rgba, and .jpg while on UNIX platforms the precedence order is .r
.rgba, .tga, and .jpg.

Texture filenames are case sensitive within WTK. For example, if you were to load a
‘flag.tga’ texture into WTK via WTgeometry_settexture and then wanted to modify the
texture’s filtering via a call to WTtexture_setfilter, the filename you would need to specify
in WTtexture_setfilter is ‘flag.tga’. If you tried to refer to the texture as ‘FLAG.TGA’, WTK
would not recognize it as the ‘flag.tga’ texture.

Transparent Textures

WTK textures can be transparent. A texture consists of a rectangular array of texels
composed of a color component and possibly an alpha component as well. The alph
component of each texel can range from 0 to 255 and indicates the texel’s degree of op
An alpha value of 0 means that the texel is completely transparent while an alpha va
255 means that the texel is completely opaque. When a texture file does not contain
values, WTK automatically computes the alpha value for each texel using the followi
10-8 WorldToolKit Reference Manual

Transparent Textures

igned
B is

e

n

ribed

t be

, you
g. If
re not
can be
 0
ms,
n the
xture

done

as an
 into

nent
a
 the
schema. Texels whose color component is black, i.e. whose R = G = B = 0, will be ass
an alpha value of 0. Texels whose color component is non-black, i.e. either R, G, or
non-zero, will be assigned an alpha value of 255. If you do not wish to have WTK
automatically compute the alpha values for textures in this manner, you must use th
WTOPTION_NOAUTOALPHA option of the WTuniverse_setoption function. If the
universe’s WTOPTION_NOAUTOALPHA option is set, then WTK will assign an alpha
value of 255 (opaque) to the texels of all textures which do not contain alpha values

From the above discussion, it follows that there are two ways in which you can obtai
transparencies in textures.

• Using a texture file that has an alpha component

• Using a texture file that does not have an alpha component and letting WTK
automatically add the alpha values to the texels, following the process desc
above.

USING A TEXTURE FILE THAT HAS AN ALPHA COMPONENT

Not many texture file formats support a built in alpha component. The texture file mus
in the ‘rgba’ format, where the ‘rgb’ is the color component and the ‘a’ is the alpha
component. When the texture is applied to a polygon (using say, WTpoly_settexture)
can specify whether the texture should be transparent or not via the "transparent" fla
this flag is set to TRUE, the texels whose alpha values fall below a certain threshold a
drawn on the screen. This threshold is called the alpha-threshold (range 0-255) and
controlled using the environment variable WTKALPHATEST. By default, this value is
on Windows platforms and 78 on UNIX platforms. So for example, on Windows platfor
the texels which have alpha values 0 will be transparent since they won’t be drawn o
screen. An alpha value greater than 0 will not be transparent. If however, when the te
is applied, the "transparent" flag is set to FALSE, the alpha-threshold test will not be
and all texels will be drawn on the screen.

USING A TEXTURE FILE THAT DOES NOT HAVE AN ALPHA COMPONENT

Most common texture files do not have an in built alpha component. The texture file h
‘rgb’ format, i.e., only the color component is present. When the texture file is loaded
WTK, WTK automatically inserts alpha values for each texel. If the texel’s color
component is black, (r=g=b=0), the alpha value inserted is 0. If the texel’s color compo
is non-black, the alpha value inserted is 255. You can now use the newly added alph
component to obtain transparency. (This is called the "cookie-cutter" method). When
WorldToolKit Reference Manual 10-9

Chapter 10: Textures

r the
UE,
the
vior is

o not
olored
when
d

than

ture

may

’

f the
). If
. Any
l
pha
ixel.

 the
e

closer

 By
as of
cy. For
 is
texture is applied to a polygon (using say, WTpoly_settexture), you can specify whethe
texture should be transparent or not via the "transparent" flag. If this flag is set to TR
the texels whose alpha values are 0, will be transparent. (They will not be drawn on
screen.) The texels whose alpha values are 255 will appear on the screen. This beha
the result of the alpha-threshold test that is performed on all texels.

The "cookie-cutter" method is a simple way to obtain transparencies in textures that d
have alpha values. First, the areas of the texture that you want transparent must be c
black. Second, the texture must be tagged ‘transparent’ using the "transparent" flag
you use WTpoly_settexture (or marking the polygon with ‘_t_’ when you read texture
polygons from an NFF file. See Appendix F, for the NFF file format). This method
sometimes leaves a "black halo" around the cut out part when texture filtering other
linear is used. This effect can be avoided by using point texture filtering
(WTFILTER_NEAREST). (See Texture Filtering for more information). When using
texture filtering methods other than point, it is possible to improve the quality of the pic
by raising the value of the alpha threshold.

If you do not wish to have WTK automatically calculate the alpha values for you, you
set the universe option WTOPTION_NOAUTOALPHA to TRUE. (Use the function
WTuniverse_setoption to do this.) If this option is set, all the alpha values (for an ‘rgb
texture file) will default to 255.

TRANSPARENCY AFFECTED BY THE POLYGON’S MATERIAL PROPERTIES

In actuality, there is a third way to achieve transparencies. This method makes use o
object’s material properties - in specific, the value of the "opacity" property (range 0-1
a polygon’s opacity value is less than 0.996, it is treated as one having translucency
value greater than 0.996 causes WTK to treat the polygon as opaque for all practica
purposes. If a polygon is translucent, it’s opacity value is multiplied with the texel’s al
value before that pixel is rendered. The resultant alpha affects the final color of that p
The color of the pixel will be a mixture of the texel’s color component and the color of
background at that pixel. (This is the color that already exists in the color buffer). If th
resultant alpha is closer to 1, more of the texel’s color is used. If the resultant alpha is
to 0, more of the background color is used.

This procedure can be used to enhance (or even, create) transparencies in textures.
controlling the product of the texel’s alpha and the polygon’s opacity, you can set are
a texture to use more of the background color, and hence create/enhance transparen
example, if a texel’s alpha value is 10, and the polygon’s opacity is 0.95, the product
10-10 WorldToolKit Reference Manual

Transparent Textures

 a very

LAG

cted.
p

s a

re
closer to 0 on a scale of 0-255. This causes that texel to be nearly transparent, since
small fraction of the texel’s color contributes to the final color.

WTpoly_settexture

FLAG WTpoly_settexture(
WTpoly *poly,
char * bitmap,

FLAG shaded,
FLAG transparent);

This function applies a texture bitmap stored in the file to the specified polygon. The
argument bitmap refers to the bitmap file; the argument poly refers to the polygon. If the
polygon already had a texture applied, the new texture replaces the old texture. The F
arguments indicate whether the texture is to be shaded and/or transparent.

If a texture is shaded (shaded=TRUE), the intensity of the texture elements (texels) are
affected by lighting. If colored lights are used, the color of texture elements is also affe
If the texture is not shaded (shaded=FALSE), the texture appears as in the source bitma
file.

The transparent parameter is used to indicate whether the texture should be treated a
transparent texture. See Transparent Textures on page 10-8 for more information about
transparent textures.

If the specified file is not found in the current working directory, the WTIMAGES path is
searched. See the Environment Variables Appendix for information about setting the
WTIMAGES environment variable and see Texture Naming Conventions on page 10-8
about texture filename extensions.

The function WTpoly_settexture returns TRUE if the texture could be applied. If the textu
could not be found, it returns FALSE.

See also WTpoly_deletetexture on page 10-23.
WorldToolKit Reference Manual 10-11

Chapter 10: Textures

the

laced
he

cted.
p

s a

WTgeometry_settexture

FLAG WTgeometry_settexture(
WTgeometry *geom,
char * bitmap,

FLAG shaded,
FLAG transparent);

This function applies a texture bitmap to each polygon surface of a geometry (using
WTpoly_settexture function). It returns TRUE if successful and FALSE otherwise.

If any of the geometry’s polygons already have a texture applied, the old texture is rep
by the new texture. The bitmap argument refers to the filename of the texture bitmap. T
FLAG arguments indicate whether the texture is to be shaded and/or transparent.

If a texture is shaded (shaded=TRUE), the intensity of the texture elements (texels) are
affected by lighting. If colored lights are used, the color of texture elements is also affe
If the texture is not shaded (shaded=FALSE), the texture appears as in the source bitma
file.

The transparent parameter is used to indicate whether the texture should be treated a
transparent texture. See Transparent Textures on page 10-8 for more information about
transparent textures.

If the specified file is not found in the current working directory, the WTIMAGES path is
searched. See the Environment Variables Appendix for information about setting the
WTIMAGES environment variable and see Texture Naming Conventions on page 10-8
about texture filename extensions.

In the following example, a shaded texture in a file wood is applied to every polygonal
surface of a sphere geometry.

WTgeometry *geometry;

geometry = WTgeometry_newsphere(5.0, 10, 10, FALSE, TRUE);
if (WTgeometry_settexture(geometry, “wood”, TRUE, FALSE))

WTmessage(“Applied shaded wood texture.\n”);

else
WTwarning(“Unable to apply shaded wood texture.\n”);

See also WTgeometry_deletetexture on page 10-23.
10-12 WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

ng

etry
ioned
 so,

v

rent
and
 NFF
ither

gon
Applying Textures with Explicit uv Values

WTK supports several methods of applying textures with explicit uv information: calli
WTpoly_settextureuv, WTgeometry_settextureuv, and through file readers that support
texture uv specification. These file readers include the Neutral File Format (NFF), 3D
Studio, Wavefront, and MultiGen/ModelGen.

If you wish to preserve the precise texture application information when writing a geom
out to NFF (or binary NFF) when textures have been applied in any of the above-ment
ways, then you must first instruct WTK to write out the NFF file using uv values. To do
before saving out the file, you must call this function:

WTuniverse_setoption(WTOPTION_NFFWRITEUV, TRUE);

or set the resource value writeuv to TRUE. See Appendix F for information about how u
values are stored in the NFF format.

Note: When writing out NFF files with uv values: If two polygons share a vertex, but diffe
uv values are used for the polygons at that vertex, then a new vertex is created
appended to the geometry's vertex list. In this way, each vertex written out in the
file has a unique uv value. This will not occur if the geometry was textured using e
of the texture draping functions WTgeometry_settextureuv or WTgeometry_setuv,
because these functions ensure that shared vertices have the same texture uv
coordinates.

WTpoly_settextureuv

FLAG WTpoly_settextureuv(
WTpoly *poly,

char *bitmap,
float *uarray,
float *varray,

FLAG shaded,
FLAG transparent);

This function applies a texture bitmap stored in the specified file to the specified poly
and allows you to choose the way the texture is mapped onto the polygon.
WorldToolKit Reference Manual 10-13

Chapter 10: Textures

o

s

s

The

sing

and
Like the function WTpoly_settexture, this function allows you to apply a bitmap texture t
a polygon, passing in a pointer to the polygon poly, the name of the bitmap file, and the
values shaded and transparent. (See the function WTpoly_settexture on page 10-11 for
more information about the parameters bitmap, shaded, and transparent.)

The function WTpoly_settextureuv enables you to specify the way in which the texture i
mapped onto the polygon, by passing in to this function the arrays uarray and varray. These
two arrays must be allocated by the application and must have at least as many elements a
there are vertices in the polygon (which can be obtained using the function
WTpoly_numvertices). The elements of uarray and varray specify, respectively, the texture
u and v coordinates to use when mapping the texture to the vertices of the polygon.
polygon’s vertices (and corresponding elements of uarray and varray) are taken in the order
in which the vertices are stored with the polygon. The vertex order can be obtained u
WTpoly_getvertex.

The value u=0.0 corresponds to the left edge of the source bitmap, and u=1.0 corresponds
to the right edge. The value v=0.0 corresponds to the bottom edge of the source bitmap,
v=1.0 corresponds to the top edge.

In the following code fragment, the bottom half of a texture called fish is applied
transparently to a polygon:

WTpoly *poly;
float u[4],v[4];
u[0] = 0.0; v[0] = 0.0;

u[1] = 1.0; v[1] = 0.0;
u[2] = 1.0; v[2] = 0.5;
u[3] = 0.0; v[3] = 0.5;

WTpoly_settextureuv(poly, “fish”, u, v, FALSE, TRUE);
10-14 WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

itmap

WTgeometry_settextureuv

FLAG WTgeometry_settextureuv(
WTgeometry *geom,
char *bitmap,

float (*fu)(WTp3),
float (*fv)(WTp3),
FLAG shaded,

FLAG transparent);

This function drapes or wraps a texture around a geometry. It applies the specified b
texture to every polygon of the geometry, using the specified functions fu and fv to
determine exactly how the texture is mapped onto the geometry. The two functions fu and
fv take a 3D point (a WTp3) as an argument and return a floating point value. These
functions must be specified in your application. They define the mapping from vertex
positions to texture u and v coordinates, respectively. (See the function
WTgeometry_settexture on page 10-12 for more information about the parameters bitmap,
shaded, and transparent.)

For example, to specify the functions fu and fv, you might use the following:

/* fu computes the texture “u” coordinate from a vertex position */
float fu(WTp3 v) {

return 0.01 * (v[X] + v[Y] + v[Z]);
}
/* fu computes the texture “v” coordinate from a vertex position */

float fv(WTp3 v) {
return 0.01 * (v[X] + v[Y] - v[Z]);

}

Then, in your WTK application, you might call WTgeometry_settextureuv as shown below
(where it is assumed that g is a WTgeometry* declared in your application):

/* apply shaded texture using specified fu and fv functions */
WTgeometry_settextureuv(g, “myimage”, fu, fv, TRUE, FALSE);
WorldToolKit Reference Manual 10-15

Chapter 10: Textures

for
d.

g the
aying
ny
y this
gon

sed by
me
WTgeometry_changetexture

FLAG WTgeometry_changetexture(
WTgeometry *geom,
char *bitmap,

FLAG shaded,
FLAG transparent);

This function changes all textured polygons of the specified geometry to use the new
texture bitmap instead of their current texture. The new bitmap is specified by the bitmap
argument. The shading and transparent flags are applied in a fashion similar to
WTgeometry_settexture.

If this function fails, FALSE is returned and no changes are made (for example, if the
texture bitmap specified by bitmap is not found or if you specified an invalid geometry).

WTtexture_replace

FLAG WTtexture_replace(

char *bitmap,
int format,
int width,

int height,
unsigned char *image);

This function dynamically replaces the image associated with a texture bitmap used
texturing polygons. This function works even if the bitmap hasn't already been loade

All polygons that reference the texture bitmap will display the new texture image, usin
polygon's settings for shaded or transparent display. This allows special effects like pl
real-time video on a polygon or performing interactive pixel-level edits to a texture. A
subsequent reference to the texture bitmap name will use the texture image defined b
function, even if a texture bitmap exists with the same filename. If you remove all poly
references to the bitmap's name, the bitmap will be deleted.

The first parameter is the name of the texture bitmap. This must be the same name u
WTpoly_settexture or referenced in the appropriate geometry file. It should be the filena
of the texture you want to replace. It must follow the same naming restrictions as
WTpoly_settexture.
10-16 WorldToolKit Reference Manual

Applying Textures with Explicit uv Values

lpha

ot
. These
o and
's

. This
ap
lues

re

rior

e file
 used

cified
 the
The second parameter defines the format of the information in the array of color or A
values. It must be set to WTIMAGE_RGBA.

The width and height parameters define the size of the new texture bitmap. These do n
need to be the same as the original texture bitmap, and they can change every frame
parameters are restricted to certain values. The bitmap’s size must be a power of tw
can be no larger than the graphics hardware allows (for example, on the Integraph it
512x512; on UNIX it's 1024x1024).

The image parameter points to an unsigned character array of RGB and Alpha values
array is defined in row order with the first value being the lower-left corner of the bitm
image and the final value being the upper-right corner of the bitmap image. Alpha va
can only be 0 or 255. The function returns TRUE if it successfully replaces the textu
image within the specified texture and no parameter values were violated.

Note: The image array must not be modified after calling WTtexture_replace and before
rendering the current frame. You must ensure that all array modifications occur p
to making this call.

See also WTtexture_load and WTtexture_cache, below.

WTtexture_load

unsigned char *WTtexture_load(
char *bitmap,

int *width,
int *height);

This function reads in a texture bitmap named bitmap and returns a pointer to the imag
and the width and height of the texture. The return values of this function can then be
as parameters to the WTtexture_replace function.

WTtexture_cache

FLAG WTtexture_cache(

char *bitmap,
FLAG enable);

This function controls the caching of a texture. When the enable flag is TRUE, the spe
texture bitmap (bitmap) is loaded (if not already loaded), then marked as cached. When
WorldToolKit Reference Manual 10-17

Chapter 10: Textures

ns
 does

y the

ue
 Once

rtain
 your
s
at
ight

t
enable flag is FALSE the texture is marked as not cached and is deleted if no polygo
reference this texture. This function is useful for texture animations so that the texture
not have to be reloaded from disk during every pass of the animation.

WTtexture_iscached

FLAG WTtexture_iscached(
char *bitmap);

This function returns the caching state of a texture. If the texture bitmap referenced b
bitmap argument is not cached, then the function returns FALSE.

WTtexture_getmemory

int WTtexture_getmemory(

void);

This function returns the amount of texture memory used by the application. The val
returned is in bytes and takes into account whether a texture is filtered (mipmapped).
the texture is downloaded onto the hardware texture memory, WTK frees the space
occupied by the texture in the system memory (RAM). However, when running on ce
graphics boards, WTK maintains a copy of the textures in system memory. (Refer to
hardware guide for more information about this). This may also happen if the graphic
board is not capable of storing sufficient texture information on the hardware. Note th
WTtexture_getmemory does not take into account any additional copies that WTK m
store in the system memory.

Animating Textures

There are two primary ways of animating textures on a polygon or geometry. Since
performance is usually a key factor in texture animation, you want to choose the bes
method for your particular situation.

The first method of texture animation involves using WTtexture_cache to load and cache a
finite number of textures, and using WTgeometry_changetexture to switch between them.
For example:

WTtexture_cache(texture1,TRUE)
10-18 WorldToolKit Reference Manual

Animating Textures

ry (if
e a
ll into

metry

od is
ware

his

 have
, all
e kept

ene.

ce or
here

 the

o

ed to

 of a
 to

odify
od to
causes WTK to load this texture to memory and transfer it to hardware texture memo
you are running WTK on a machine capable of doing hardware texturing). If you hav
sequence of textures that you wish to play back on a geometry, you can load them a
WTK (and the hardware) by calling WTtexture_cache for each texture. To play back the
textures onto a geometry you need to apply the first texture of the sequence to the geo
using WTgeometry_settexture.

Then, to play the remaining sequence of textures, you can use:

WTgeometry_changetexture(geometry,next_texture,...)

to optimally put the next texture onto the geometry. The advantage to using this meth
purely performance. Since all of the textures are loaded into the optimal location (hard
texture memory if available) beforehand by WTtexture_cache, there is almost no work for
WTgeometry_changetexture to do when changing the active texture on the geometry. T
results in the fastest possible animation.

The disadvantage of this method is that it can really only be applied in cases where you
a small number of textures that are going to be played back. With hardware caching
these textures must be loaded into texture memory, so the number of textures must b
small enough to fit into texture memory along with all of the other textures in your sc

This method is a good solution for special effects animations like an explosion sequen
any short repeating texture sequence. This method does not work well in situations w
procedural texturing is needed or where the next texture animation is unknown as in
case of streamed video or a whiteboard application.

The second method of texture animation involves using WTtexture_replace to replace a
currently active texture with an image that is in memory. Once a texture is loaded int
WTK, it can be replaced with the image data passed into WTtexture_replace. All polygons
that had the original texture image applied to them will now have the new image appli
them. This allows the application to animate a texture by continually calling
WTtexture_replace on the same texture with different image data.

The advantage of this method is that it allows the application to specify the contents
texture image from application memory, rather than a file. This allows the application
modify or create a texture image in place, or pass image data that is coming into the
application in real time.

This method is a good solution for procedural texturing needs. The application can m
the image data in place and pass it off to WTK when ready. This is also a good meth
WorldToolKit Reference Manual 10-19

Chapter 10: Textures

g used

tion

 the
 if

ized
he
he
ich

e is

int
TK

ow.

 the

use when applying streamed video to a geometry or if scene image feedback is bein
(like simulating a mirror). See the next section, A Rear-view Mirror example using
WTtexture_replace.

The disadvantage of this method is that it can result in some performance degradata
versus the first method. Every time WTtexture_replace is called (each new frame), WTK
must pass this texture data to the rendering engine on which it sits.

Although this does not require a memory copy on the WTK side, it may require one in
rendering pipeline, and will require a bus transfer of texture data into texture memory
WTK is running with hardware acceleration. This performance penalty can be minim
by making the texture passed to WTtexture_replace as small as possible. In some cases t
call to WTtexture_replace can be very expensive, for example, with WTK Direct, where t
incoming image data must be quantized down to an 8-bit color space, something wh
can’t be done in real-time in software.

In summary, this method is not the best solution in cases where optimal performanc
needed for animating a small, fixed number of known image frames.

A REAR-VIEW MIRROR EXAMPLE USING WTTEXTURE_REPLACE

One common need in simulations is to create a rear-view mirror for a car or truck
simulation. You can use a second viewpoint facing to the rear of your primary viewpo
to get a view of the scene behind you. Attaching this second viewpoint to a second W
window essentially gives you a rear-view mirror, which is displayed in the second wind

You can incorporate this rear-view image back into your forward looking scene. Grab
image from the second window with WTwindow_getimage and texture it back into the
forward looking scene using the WTtexture_replace function. A very simple code fragment
is given below.

/* Initialize the "mirror" object in forward looking scene */
mirrorobj = WTgeometrynode_load(mirrorparentnode, "mirror.nff", 1.0f);

/* place a dummy texture onto the mirror object, this will be
replaced with the rear view image once we obtain it,
we'll assume there is just a single front facing poly in the geometry */

mirrorpoly = WTgeometry_getpolys(mirrorobj);
WTpoly_settexture(mirrorpoly,"mirrortex",FALSE,FALSE);
10-20 WorldToolKit Reference Manual

Animating Textures

ow

ieve
/* Initialize the window from which the rearview image will be taken */
mirrorwin = WTwindow_new(0,0, mwidth, mheight, WTWINDOW_DEFAULT);

/* allocate space for the image */

mirrorimage = (unsigned char *) malloc(mwidth*mheight*4);

/* create backward facing viewpoint from forward looking viewpoint*/
viewbackward = WTviewpoint_copy(viewforward);

/* obviously a true rear view would originate from the mirror object's
location in the scene and the rear looking viewpoint's direction would
be coming from the angle of reflection based on the forward looking viewpoint */

/* rotate rear viewpoint 180 degrees backwards from forward view */
WTviewpoint_rotate(viewbackward,Y,PI,WTFRAME_VPOINT);

/* if there are sensors attached to the forward looking viewpoint,

you should attach them to the rear looking viewpoint here */

/* draw the scene from the rear view viewport */
WTwindow_setviewpoint(mirrorwin, viewbackward);

/* grab the image of the rear view scene */
WTwindow_getimage(mirrorwin,0,0,mwidth,mheight,mirrorimage)

/* put the rear view image back into the forward looking scene */

WTtexture_replace("mirrortex",0,mwidth,mheight,mirrorimage);

It is also possible to have a rear-view mirror effect by using multiple viewports in a wind
instead of using multiple windows. See Viewports on page 17-30 for more information
about viewports and refer to the Rv_mirror.c example program in the examples sub-
directory of the WTK distribution for an example of how viewports can be used to ach
a rear-view mirror effect.
WorldToolKit Reference Manual 10-21

Chapter 10: Textures

or
nt

yer
re file
 the

erely

string
 on a
ied

ext
mes
e

rted.
at.

nd

s
Assigning Textures in 3D File Formats

You can implicitly assign a texture to a polygon by applying it in the 3D model file pri
to loading the file into WTK. The conventions for such annotation differ for the differe
file formats read by WTK.

For AutoCAD DXF files, the layer name is overloaded with texture information. Any la
name beginning with the underscore character “_” is taken to be the name of the textu
to be applied to all polygons in that layer. The next character following a leading “_” in
texture name must be “V”, “S”, or “T” to signify a plain vanilla, shaded, or transparent
texture.

Note: “Shading” does not involve the addition of shadow effects to textures. The term m
refers to the total effect of all of the lights that illuminate a texture.

The third character in the layer name must be another “_”, and the remainder of the
is the name of the file containing the bitmap for the texture. For instance, all polygons
layer “_T_TREE23” will have the transparent texture found in the file “TREE23” appl
when the DXF file containing the layer is loaded into WTK.

For the WTK NFF format, polygons to be textured are specified by the addition of a t
string with similar connotation to the AutoCAD layer name just described. Texture na
indicate the file containing the bitmap to be used as a texture, and specify whether th
texture is to be shaded and/or transparent.

In addition, texture placement with either keywords or uv coordinate values is suppo
See Appendix F for complete information about texture specification in the NFF form

WTK also reads texture information from file formats including 3D Studio, Wavefront, a
MultiGen/ModelGen.

See Texture Naming Conventions on page 10-8 for usage of texture filename extension
and the Environment Variables Appendix for usage of the WTIMAGES environment
variable.
10-22 WorldToolKit Reference Manual

Deleting Textures

 way

 the
not

 in

 of a
Deleting Textures

The following functions delete a texture from a polygon or geometry, regardless of the
in which the texture was applied.

 WTpoly_deletetexture

void WTpoly_deletetexture(

WTpoly *poly);

This function removes a texture from a polygon that has previously been textured. If
polygon is not currently textured, this function has no effect. This function also does
have any effect if the corresponding geometry has been optimized using
WTgeometry_prebuild (see page 6-40),

WTgeometry_deletetexture

void WTgeometry_deletetexture(
WTgeometry *geom);

This function removes all textures from a geometry’s surfaces, regardless of the way
which the textures were applied.This function also does not have any effect if the
corresponding geometry has been optimized using WTgeometry_prebuild (see page 6-40),

Changing Texture Properties

The functions in this section access the shading, transparency, and blending values
polygon’s texture.

WTpoly_settexturestyle

FLAG WTpoly_settexturestyle(
WTpoly *poly,
FLAG shaded,

FLAG transparent,
WorldToolKit Reference Manual 10-23

Chapter 10: Textures

at has

uld
ld
he
e

rns

y.

at has

rns

 the
age of
n
arying
FLAG blended);

This function changes the shading, transparency, and blending values of a texture th
already been applied to a polygon.

The shaded flag indicates whether the texture will be shaded, i.e., whether lighting sho
affect the texture. The transparent flag indicates whether black pixels in the texture shou
be rendered; if black pixels are not rendered, then they are effectively transparent. T
blended flag indicates whether the polygon’s material color should be blended with th
texture.

If this function is called for a polygon that does not have a texture applied to it, it retu
FALSE and has no effect.

See Transparent Textures on page 10-8 for more information about texture transparenc

WTpoly_gettexturestyle

FLAG WTpoly_gettexturestyle(
WTpoly *poly,

FLAG *shaded,
FLAG *transparent,
FLAG *blended);

This function retrieves the shading, transparency, and blending settings of a texture th
been applied to a polygon.

If this function is called for a polygon that does not have a texture applied to it, it retu
FALSE and has no effect.

FilteringTextures

Polygons in your simulation appear at different sizes depending on their distance from
viewpoint. Each texture, on the other hand, comes in at a specific size to take advant
hardware capabilities. Since a large texture carelessly applied to a small polygon ca
produce unwanted results, WTK automatically processes each texture to match the v
size of the polygon to which it has been applied.
10-24 WorldToolKit Reference Manual

Setting the Default Texture Filter

s

ture

ng

r to
ver

sed

h is
ll

hese
During this processing, called filtering or mipmapping, the texture is scaled to a size that i
appropriate for the polygon's display size.

The two functions listed below let you specify and retrieve the filter values for the tex
already applied to a polygon. Use the function WTtexture_setfilter to specify the quality of
the filtering desired. (Note that higher quality requires more computation and renderi
time.)

Setting the Default Texture Filter

The default texture filtering mode for all Unix versions of WTK (and on Integraph
computers) is bilinear (WTFILTER_LINEAR). For all other Windows 32-bit systems, the
default texture filtering mode is point (WTFILTER_NEAREST).

Although you can change the texture filtering on a per polygon basis, it is often easie
set the default texture filtering mode at the beginning of your WTK application and ne
change it.

Passing NULL into WTtexture_setfilter() as the first argument will set the default texture
filter mode. For example:

WTtexture_setfilter(NULL, WTFILTER_LINEAR, WTFILTER_LINEAR)

sets the default magfilter and minfilter to bilinear. The minfilter and magfilter are discus
in the description of WTtexture_setfilter below.

WTtexture_setfilter

FLAG WTtexture_setfilter(

char *bitmap,
int magfilter,
int minfilter);

This function sets the magnification and minification filters of the texture bitmap, whic
specified by the bitmap argument. If the specified bitmap is NULL, then this function wi
set the default magnification and minification filters to the values specified in the magfilter
and minfilter arguments, so that all subsequently loaded texture bitmaps will take on t
filter values automatically.
WorldToolKit Reference Manual 10-25

Chapter 10: Textures

 the
on

oint,
ture
 are

er or

. The
.

The texture magnification filter affects the appearance of textured polygons when the
polygon occupies a portion of the screen that is larger than the texture bitmap, while
texture minification filter affects the appearance of textured polygons when the polyg
occupies a portion of the screen that is smaller than the texture bitmap.

In your simulation, as a textured polygon moves closer or further away from the viewp
the texture filters affect the image quality of the textured polygon. In essence, the tex
filters are quality/performance knobs, i.e., you can obtain the best performance if you
unconcerned about the appearance of textured polygons as the polygon moves clos
farther away from the viewpoint. At the other end of the spectrum, you can obtain the
highest image quality — at the risk of incurring a significant performance penalty.

Here are the possible choices for the magfilter and minfilter arguments to this function
choices are listed in order of increasing image quality (and decreasing performance)

Choices for the Magfilter Argument

WTFILTER_NEAREST
WTFILTER_LINEAR

Choices for the Minfilter Argument

WTFILTER_NEAREST

WTFILTER_LINEAR
WTFILTER_NEARESTMIPMAPNEAREST
WTFILTER_LINEARMIPMAPNEAREST

WTFILTER_NEARESTMIPMAPLINEAR
WTFILTER_LINEARMIPMAPLINEAR

The default value for minfilter and magfilter is WTFILTER_LINEAR, except on low end NT
and WIN95 systems where the default minfilter and magfilter is WTFILTER_NEAREST.
This function will cause the specified texture to be loaded if it is not already loaded.
10-26 WorldToolKit Reference Manual

Manipulating Textures

ale,
e

of the

 the
WTtexture_getfilter

FLAG WTtexture_getfilter(
char *bitmap,
int *magfilter,

int *minfilter);

This function returns the magnification and minification filter values of the specified
texture bitmap. If the specified bitmap is NULL, then this function returns the default
magnification and minification filter values. See WTtexture_setfilter above, for more
information.

Manipulating Textures

Once you apply a texture, you can modify it using the functions in this section.

The first group of functions, Texture Rotation, Scaling, and Other Operations, allows you
to modify the texture that is applied to a polygon by using calls to translate, rotate, sc
etc. WTK internally modifies the polygon's texture uv values when these functions ar
called.

The second group of functions, Manipulating Texture uv Values Directly, allows you to
modify the texture application by accessing the texture uv information directly.

Texture Rotation, Scaling, and Other Operations

WTpoly_rotatetexture

void WTpoly_rotatetexture(

WTpoly *poly,
float angle);

This function rotates the texture on a polygon in 2D (in texture space) on the surface
polygon to which the texture is applied. The angle parameter specifies the amount of
relative texture rotation in radians, around the “center of gravity” (arithmetic mean) of
WorldToolKit Reference Manual 10-27

Chapter 10: Textures

when

d with
ap

d
0-4
vertices of the polygon. Positive angles are counterclockwise rotations of the texture
the front face of the polygon is viewed.

WTpoly_scaletexture

void WTpoly_scaletexture(
WTpoly *poly,
float factor);

This function scales textures that are applied to a polygon. The factor argument specifies
the scale factor applied homogeneously to the u and v texture coordinates associate
the polygon vertices. If factor >1.0, the u,v coordinates are scaled up, and the texture bitm
is reduced on the surface of the polygon. When factor <1.0, texture coordinates are scale
down, and the texture bitmap becomes larger on the surface of the polygon. Figure 1
shows a scaled texture.

Figure 10-4: A texture after scaling
10-28 WorldToolKit Reference Manual

Texture Rotation, Scaling, and Other Operations

the
re

ish
WTpoly_translatetexture

void WTpoly_translatetexture(
WTpoly *poly,
WTp2 displacement);

This function shifts the origin of the texture bitmap on the polygon surface, to “slide”
texture around. The displacement argument is a vector indicating how the applied textu
is to be translated in u,v space. Figure 10-5 shows a translated texture.

Figure 10-5: A texture after translation.

WTpoly_mirrortexture

void WTpoly_mirrortexture(

WTpoly *poly);

This function “flips” an applied texture in 3D about the v axis of texture space. If you w
to mirror a texture about the u axis, use WTpoly_mirrortexture to mirror it about the v axis,
and then rotate the texture through PI using WTpoly_rotatetexture. Figure 10-6 shows a
“mirrored” texture.
WorldToolKit Reference Manual 10-29

Chapter 10: Textures

ce)

urface

gon.
it

e
Figure 10-6: A “mirrored” texture.

WTpoly_stretchtexture

void WTpoly_stretchtexture(
WTpoly *poly,

float u,
float v);

This function stretches a polygon’s texture, with separate scale factors u and v applied to
the u and v (horizontal and vertical) texture coordinates associated with the polygon
vertices. If u>1.0, then the texture u coordinates (horizontal coordinates in texture spa
are scaled up, and the texture bitmap is reduced in the horizontal dimension on the s
of the polygon. When u<1.0, horizontal texture coordinates are scaled down, and the
texture bitmap becomes larger in the horizontal dimension on the surface of the poly
Similarly, values of v>1.0 and v<1.0 scale the texture vertically in texture space so that
appears reduced or enlarged respectively.

If you wish to save out to NFF the precise texture application obtained using
WTpoly_stretchtexture, you must write out the file using uv texture coordinates. (See th
section Applying Textures with Explicit uv Values on page 10-13.) There is no NFF
parameter analogous to rot, scale, trans, and mirror for texture stretching.
10-30 WorldToolKit Reference Manual

Texture Rotation, Scaling, and Other Operations

ether
lls to

rned.
WTpoly_gettextureinfo

FLAG WTpoly_gettextureinfo(
WTpoly *poly,
WTtextureinfo *info);

This function retrieves texture information for a specified polygon and places it in the
specified WTtextureinfo structure. Specifically, it obtains the texture’s name (e.g., the
filename passed to WTpoly_settexture), and whether it is shaded and/or transparent, the
cumulative amounts of rotation, scaling, and translation applied to the texture, and wh
the texture is mirrored. If a texture has been mirrored an even number of times (by ca
WTpoly_mirrortexture), it is considered to be not mirrored.

The info argument must be a pointer to a declared WTtextureinfo structure. The return value
TRUE indicates success. If the specified polygon has no texture, then FALSE is retu
The following example demonstrates how to use this function:

WTtextureinfo info;
WTpoly *poly;
FLAG success;

WTmessage(“poly %p “, poly);
success = WTpoly_gettextureinfo(poly, &info);
if (success) {

WTmessage(“has texture %s, rotation %f scale %f mirrored %d\n”,
info.name, info.rotation, info.scale, info.mirrored);

WTmessage(“translation %f %f\n”, info.translation[X], info.translation[Y]);

WTmessage(“shaded %d transparent %d\n”, info.shaded, info.transparent);
}
else {

WTwarning(“has no texture.\n”);
}

WorldToolKit Reference Manual 10-31

Chapter 10: Textures

s that

. The
s

d

t does
alues
Manipulating Texture uv Values Directly

WTpoly_setuv

FLAG WTpoly_setuv(

WTpoly *poly,
float *uarray,
float *varray);

This function changes the way a texture is mapped to a polygon’s vertices (on polygon
already have a texture applied). The arrays uarray and varray are described under
WTpoly_settextureuv on page 10-13.

WTpoly_getuv

FLAG WTpoly_getuv(
WTpoly *poly,
float *uarray,

float *varray);

This function places the uv coordinates of a polygon's texture into the specified arrays
arrays uarray and varray must be allocated by the application, and must have at least a
many elements as there are vertices in the polygon (which can be obtained using
WTpoly_numvertices).

This function returns FALSE if poly is NULL or if the polygon does not have a texture, an
otherwise returns TRUE.

WTgeometry_setuv

FLAG WTgeometry_setuv(
WTgeometry *geom,

float(*fu)(WTp3),
float(*fv)(WTp3));

This function changes the way textures are mapped to the polygons of a geometry. I
not apply a new texture to the geometry's polygons. Rather, it simply changes the uv v
10-32 WorldToolKit Reference Manual

Screen Loading

ely
 non-

e

the

for the polygons to which textures have already been applied. The arguments fu and fv are
described under WTgeometry_settextureuv on page 10-15.

Screen Loading

WTscreen_load

FLAG WTscreen_load(
char *filename);

This function loads an image file to each WTK window. The display occurs immediat
(i.e., doesn’t wait for the rendering loop). This function returns zero if successful, or a
zero value if it’s not successful.

WTwindow_getimage

FLAG WTwindow_getimage(

WTwindow *window,
int x,
int y,

int width,
int height,
unsigned char *image);

This function gets an image from the specified window. The image parameter returns a
pointer to the window image. The image data is in a format that can be used by the
WTtexture_replace function. The x and y values specify where to start retrieving the imag
in the window. The (0,0) coordinates specify the lower left corner of the window.

The width argument specifies how many pixels per scan line to retrieve and the height
argument specifies how many scan lines to retrieve. If the x, y coordinate is outside
window, the function returns FALSE. If either (x + width) or (y + height) are outside the
window, then the function returns FALSE. The image argument must be allocated before
this function is called and must have a size greater than or equal to four times the width
value times the height value. For an example of how to use this function, see A Rear-view
Mirror example using WTtexture_replace on page 10-20.
WorldToolKit Reference Manual 10-33

Chapter 10: Textures
10-34 WorldToolKit Reference Manual

tivity

cifies

 task
11
Tasks

Introduction

Usually, you use the user-defined universe action function to describe the overall ac
of your WTK application. However, you can also use tasks to assign behaviors to individual
objects. You can specify the behavior of any WTK data structure (or, in fact, any C
structure) by assigning tasks to it.

Here are a few examples of the kinds of behavior you can specify:

• Movement

• Change in appearance

• Testing for intersections

• Triggering other behavior

• Attaching a sensor

A WTK “task object” (a WTtask) contains a user-defined task function, a pointer to the
structure or WTK object with which the task is associated, and a priority value that spe
the order in which the task is executed relative to other tasks as the simulation runs.

You can add, remove, and delete tasks from a simulation. This chapter lists the WTK
functions.

Chapter 11: Tasks

as
p as
Creation and Deletion Functions

WTtask_new

WTtask *WTtask_new(
void *objptr,
WTtask_function fptr,

float priority);

This function creates a new WTtask and activates it, so that it is automatically executed
the simulation runs. Tasks created by this function are executed in the simulation loo
shown in figure 11-1.

Figure 11-1: The default simulation loop

Sensors are read.

 The universe’s action function is called.

 Objects are updated with sensor input.

 Objects perform tasks.

The universe is rendered.

WTuniverse_go()
to enter simulation loop

WTuniverse_stop()
to exit simulation loop

The order in
which these
items are
executed is user-
definable.

Paths in record or playback mode are stepped.
11-2 WorldToolKit Reference Manual

Creation and Deletion Functions

s
 by

t

s slot
ore

he
The argument objptr is a pointer to the WTK object or C structure with which the task i
associated. The same object can perform more than one task. This can be achieved
calling WTtask_new for each task that you wish to associate with objptr.

The argument fptr is the task function (WTtask_function) that is executed as the WTK
simulation runs. A WTtask_function is typedefined as a function taking a void* argumen
and returning a void. You must define the function fptr within the WTK application. As the
WTK simulation runs, WTK passes in the specified void* pointer objptr to the specified
WTtask_function fptr.

The priority argument specifies the order in which tasks are executed within the task
in the simulation loop shown in figure 11-1. Lower-numbered tasks are executed bef
higher-numbered ones.

If you call the “delete” function for any of these WTK object types: WTnode, WTpath,
WTsensor, WTviewpoint, or WTwindow, the task for this WTK object is automatically
deleted.

For example, to add a task to a light, your application would include code similar to t
following:

WTnode *light;
WTtask_new(light, light_task,2.5f);

where light_task is defined as follows:

void light_task(WTnode *light) {

 /* code that changes the light */
}

In the following example, a C structure is assigned a task that operates on itself:

typedef struct mydata {

/* data declarations */
} mydata;

void mytask(mydata *myptr) {

/* do something to myptr */
}

WorldToolKit Reference Manual 11-3

Chapter 11: Tasks

s. A

task

task

emory
this
/* in your main program: */
mydata *myptr;
WTtask_new(myptr, mytask,1.0f);

See How Do I Associate A Task With a Particular Object? on page A-21 for an example of
how to associate a task with a particular object.

WTtask_remove

FLAG WTtask_remove(
WTtask *task);

This function removes a task from the simulation (deactivates it) without deleting the
WTtask. A task which has been deactivated is no long executed as the simulation run
task that has been deactivated can be reactivated by calling WTtask_add (see below).

If this function is called from a task function, it affects the current frame, provided the
for which the function is called has not already been executed that frame.

WTtask_add

 FLAG WTtask_add(

WTtask *task);

This function adds a task back to the simulation (activates it).

If this function is called from a task function, it affects the current frame, provided the
for which the function is called has not already been executed that frame.

WTtask_delete

FLAG WTtask_delete(
WTtask *task);

This function deletes a task (destroys it). Deleting a task both removes it from the
simulation so that it is no longer executed as the simulation runs, and also frees the m
associated with the WTtask object passed in. The task pointer passed in is invalid after
function is called.
11-4 WorldToolKit Reference Manual

Other WTtask Functions

task

 the

cuted

en
If this function is called from a task function, it affects the current frame, provided the
for which the function is called has not already been executed that frame.

Other WTtask Functions

WTtask_setpriority

FLAG WTtask_setpriority(
WTtask *task,
float priority);

This function sets the priority of a task. Tasks with lower-number priority values are
executed before tasks with higher values.

If this function is called from a task function, so that the priority of a task (possibly
including itself) is changed during execution, the global effect will not take place until
next frame. However, calling WTtask_add, WTtask_remove, or WTtask_delete does affect
the current frame, (if the task for which the function is called has not already been exe
that frame).

WTtask_getpriority

float WTtask_getpriority(
WTtask *task);

This function returns the priority of a task. The task priority is the value set either wh
WTtask_new is called, or by a call to WTtask_setpriority.

WTtask_getfunction

WTtask_function WTtask_getfunction(

WTtask *task);

This function returns a task’s function.
WorldToolKit Reference Manual 11-5

Chapter 11: Tasks

o
inter,
o
’s
WTuniverse_gettaskbypointer

WTtask *WTuniverse_gettaskbypointer(
void *pointer,
int numtask);

This function obtains the WTtask associated with an object pointer. The argument numtask
is the number of the task associated with this particular object pointer.

For example, to get the first task assigned to the specified object pointer with WTtask_new,
pass in 0 (zero) for numtask. Pass in 1 (one) for numtask to get the second task assigned t
the specified object pointer, etc. If three tasks were originally assigned to an object po
but the second task was deleted with WTtask_delete, then to get the third task assigned t
this object pointer, pass in 1 for numtask, because the original third task is now the object
second task.
11-6 WorldToolKit Reference Manual

u
tries
 Each
K

nt,

t.

n.

t.

e
s
e
12
Lights

Introduction

Lights include the lights that may be part of a file you load into WTK and the lights yo
dynamically create in WTK. You can use lights to illuminate some or all of the geome
in a scene. WTK supports several types of lighting: ambient, directed, point, and spot.
type of light illuminates geometries in a different way. This chapter describes the WT
light nodes and lists their functions.

Light Nodes

A light node is a scene graph node that you use to specify a WTK light (ambient, poi
directional, or spot). WTK supports the following four types light nodes:

Ambient light node A scene graph node that you use to store ambient ligh
Ambient light is background light that illuminates all
surfaces equally regardless of their position or orientatio

Directed light node A scene graph node that you use to store directed ligh
Directed light is a light source that has direction but no
(finite) position. You can use directed light to emulate th
effects of sunlight. Directed light provides illumination a
a function of the angle between the light direction and th
polygon normal, or, in the case of Gouraud shading,
between the light direction and the vertex normals.

Chapter 12: Lights

oint
n

s
r

d

pot
f

ht

f
he

ient,
ibutes
ffuse
 in the

se

g

.
Point light node A scene graph node that you use to store point light. P
light is an omni-directional source of lighting that you ca
position. It emanates radially from the light position, and
may attenuate (drop-off) with distance. Point light provide
illumination as a function of the angle between the vecto
from the light position and the polygon normal, or, in the
case of Gouraud shading, between the light direction an
the vertex normals.

Spot light node A scene graph node that you use to store spot light. S
light is light that illuminates a small area, within a cone o
specified angle (e.g., an automobile headlight). Spot lig
intensity may fall off toward the edge of the light cone
(controlled by the exponent value), and attenuate with
distance. Spot light provides illumination as a function o
the angle between the vector from the light position and t
polygon normal, or, in the case of Gouraud shading,
between the light direction and the vertex normals.

Light Node Attributes

Other than ambient light nodes, all other light nodes exhibit three types of color: amb
diffuse, and specular. After you have created a light node, you can set these color attr
for it or accept the defaults. The easiest way of setting the light’s color is to specify a di
color value, leaving the other color attributes (the ambient and specular components)
light set to 0 (zero).

There are different attributes available for different types of lights. However, all of the
attributes aren’t applicable to all light nodes.

This is the full set of attributes available for modifying light nodes:

Position The location of the light in 3D space, as affected by any
existing transformation.

Direction The direction of the light rays, as affected by any existin
transformation.

Intensity The brightness of the light, with a maximum value of 1.0
See page 12-3 for more information.
12-2 WorldToolKit Reference Manual

Calculating Color

n.

t

the

ed

e
s

lues.
e
e

er to

each
 and

an
thing

ically
.

Ambient color The color of the portion of the light that illuminates all
surfaces equally regardless of their position or orientatio

Diffuse color The color of the portion of the light which illuminates
polygons as a function of the angle between the light
direction and the polygon (or vertex) normal.

Specular color The color of the portion of light that affects highlights tha
are reflected off a shiny surface.

Attenuation The degree to which a point or spot light’s intensity
decreases with increasing distance from the position of
light.

Angle The half-angle of the spot light cone. This attribute is us
only with spot lights.

Exponent Specifies how the intensity of a spot light falls off from th
center to the edge of the spot light cone. This attribute i
used only with spot lights.

Calculating Color

Both a light and the material it illuminates have ambient, diffuse, and specular color va
The precise method of calculating the final perceived material color is explained in th
Open GL Specification. Briefly, however, the ambient values for both the light and th
material are multiplied together to produce a term; similar calculations are also performed
to produce terms for diffuse and specular colors. These terms are then added togeth
achieve the perceived color.

Determining Intensity

The intensity of the color of a polygon is determined by adding the contributions from
of the light sources in the universe. If the result is 0.0, then the polygon will be black,
if the result is 1.0, then the polygon will be of maximum brightness. At maximum
brightness, an untextured polygon is rendered with the color assigned to it. At less th
maximum brightness, the polygon is rendered with a darker shade of that color. Any
greater than 1.0 is also considered to be maximum brightness. Geometries are dynam
lit, so that shading on a geometry’s surfaces is automatically recomputed each frame
WorldToolKit Reference Manual 12-3

Chapter 12: Lights

gons
wing
is
ation

d,

t.
hting

with

re

hts,
nce

t,

lt, a
Creating Shadows

Polygons do not cast shadows. Therefore, lighting on a polygon is not affected by poly
which might happen to be between it and a light source. However, the effects of shado
for a model can be precomputed with what is known as “radiosity preprocessing.” Th
turns the model surfaces into a mesh and stores shadowing and other lighting inform
as vertex colors in the new model. See the section Vertex Colors and Radiosity on page 6-9
in the Geometries chapter.

Using Light Files

WTK supports a keyword-driven light file format. Sample light files containing directe
spot, and point lights are provided in the WTK distribution in the directory called lightfiles.
You can save your simulation’s current lighting to a file using WTlightnode_save. Lights
are read in from file using WTlightnode_load.

Performance

The maximum number of (non-ambient) lights that can exist in the simulation is eigh
However, the greater the number of lights, the greater the performance impact of lig
computations. The time to compute the total effect of all of the lights playing on a
geometry’s surfaces is proportional to the number of lights in the simulation. For this
reason, if at any time you wish to turn a light off (that is, disable it), it’s better to do so
a call to WTnode_enable (with the enable flag set to FALSE), than to set the light’s
intensity to 0.0 using WTlightnode_setintensity. With WTnode_enable, the light is disabled
from the simulation and no longer enters into shading computations. With
WTlightnode_setintensity, however, the light remains part of the simulation and therefo
impacts the performance of the simulation. You can also remove a light node from a
simulation by detaching the node from the scene graph.

In general, spot lights have the greatest impact on performance, followed by point lig
then directed lights. In addition, attenuated lights have a greater impact on performa
than non-attenuated lights (see WTlightnode_setattenuation on page 12-17).

Your simulation may contain an unlimited number of ambient light nodes. Unlike spo
point, and directed lights, ambient lights do not significantly increase lighting
computations, and hence do not have a significant impact on performance. By defau
12-4 WorldToolKit Reference Manual

Constructing Light Nodes

nt

 last
 the
alling

 or
these

 see

, and
hange
simulation always contains a white ambient light whose intensity is 0.4. Although this
default ambient light is inaccessible to you, its effect can be neutralized by adding an
ambient light whose intensity is 0.0, so that your simulation effectively has no ambie
light.

See also Vertex Colors and Radiosity on page 6-9 in the Geometries chapter, and the
functions WTpoly_settexture on page 10-13 and WTpoly_settexturestyle on page 10-11 for
information about applying shaded textures.

Constructing Light Nodes

WTlightnode_newambient

WTnode *WTlightnode_newambient (
WTnode *parent);

This function creates an ambient light node, and adds it to the scene graph after the
child of the specified parent node. If NULL is specified for the parent argument, then
node is created without a parent. Such nodes can be added to the scene graph by c
WTnode_addchild or WTnode_insertchild. The default ambient light color is white.

Ambient light illuminates the surfaces of graphical objects regardless of their position
orientation. The intensity and color of the ambient light can be set and retrieved with
functions: WTlightnode_setintensity, WTlightnode_getintensity, WTlightnode_setambient,
and WTlightnode_getambient.

You can also set ambient light intensity and color using the WTK resource facility —
Resource Files on page 2-28. The intensity and color of the ambient light can also be
specified in a light file (see WTlightnode_load on page 12-9).

The light node you create will have the default values listed below for the red, green
blue components of its color. This chapter lists several functions that you can use to c
an ambient light’s properties.

Default values:

Ambient color 1.0, 1.0, 1.0 (white)
WorldToolKit Reference Manual 12-5

Chapter 12: Lights

ight
ffects
hite

le to
By
e

t child
de is

ties

bine
green,
Intensity 0.4

When there are multiple ambient light nodes in a scene graph, successive ambient l
nodes in the scene graph traversal replace the previous ambient light node, i.e. the e
of ambient light nodes are not cumulative. By default, a simulation always contains a w
ambient light whose intensity is 0.4. Although this default ambient light is inaccessib
you, its effect can be cancelled by adding an ambient light node to the scene graph.
adding an ambient light node whose intensity is 0.0, you can force your scene to hav
absolutely no ambient light.

WTlightnode_newdirected

WTnode*WTlightnode_newdirected (
WTnode *parent);

This function creates a directed light node, and adds it to the scene graph after the las
of the specified parent node. If NULL is specified for the parent argument, then the no
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild. Directed lighting can be thought of as parallel
rays emanating from a light source at infinity. Once created, a directed light’s proper
can be modified using the functions described in Light Properties on page 12-12.

One of the properties of a light node is color; ambient, diffuse and specular colors com
to create the light produced by a light node. Each of these colors has the default red,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient color 0.0, 0.0, 0.0

Diffuse color 1.0, 1.0, 1.0

Specular color 1.0, 1.0, 1.0

These are the defaults for the other properties of a directed light node:

Intensity 1.0

Direction 0.0, 0.0, 1.0
12-6 WorldToolKit Reference Manual

Constructing Light Nodes

hild of
e is

s

he
ions

le.

bine
green,
WTlightnode_newpoint

WTnode *WTlightnode_newpoint (
WTnode *parent);

This function creates a point light node, and adds it to the scene graph after the last c
the specified parent node. If NULL is specified for the parent argument, then the nod
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild. In contrast to a directed light node, whose ray
all point in a single direction, the rays of light from a point light are directed radially
outward from the light point source.

By default, a point light is a white light which does not attenuate with distance from t
light position. Once created, a point light’s properties can be modified using the funct
described in Light Properties on page 12-12.

See WTlightnode_load on page 12-9 for information about creating point lights from a fi

One of the properties of a light node is color; ambient, diffuse and specular colors com
to create the light produced by a light node. Each of these colors has the default red,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient 0.0, 0.0, 0.0

Diffuse 1.0, 1.0, 1.0

Specular 1.0, 1.0, 1.0

These are the defaults for the other properties of a point light node:

Intensity 1.0

Position 0.0, 0.0, 0.0

Attenuation 1.0, 0.0, 0.0
WorldToolKit Reference Manual 12-7

Chapter 12: Lights

hild of
e is

light
lights
rd
 equal
t

nes

ions
WTlightnode_newspot

WTnode *WTlightnode_newspot (
WTnode *parent);

This function creates a spot light node, and adds it to the scene graph after the last c
the specified parent node. If NULL is specified for the parent argument, then the nod
created without a parent. Such nodes can be added to the scene graph by calling
WTnode_addchild or WTnode_insertchild.

A spot light node allows you to provide spot light that emanates radially from the spot
source, within a cone of specified angle centered about the spot light direction. Spot
have an exponent value, which specifies how the intensity of the spot light falls off towa
the edge of the spot light cone. This value must be between 1.0 and 128.0, or it may be
to 0.0. The default exponent value is 0.0. If exponent is equal to 0.0, then the light does no
fall off at all from the center to the edge of the spotlight cone. Increasing values of exponent
represent sharper fall off toward the edge of the light cone.

A lights’s exponent value should not be confused with its attenuation, which determi
how light intensity falls off away from the position of the light. See figure 12-1.

Figure 12-1: A spot light’s exponent and attenuation values

By default, a spot light node is a white light that does not attenuate with distance from the
light position. Once created, a spot light’s properties can be modified using the funct
in Light Properties on page 12-12. Also see WTlightnode_setattenuation on page 12-17.

Exponent

Attenuation
12-8 WorldToolKit Reference Manual

Constructing Light Nodes

in

bine
green,

nt
 node.

TK
e
Spot lights have an angle value which is the half-angle of the spotlight cone, specified
radians, ranging between 0.0 and PI/2 (90 degrees).

One of the properties of a light node is color; ambient, diffuse and specular colors com
to create the light produced by a light node. Each of these colors has the default red,
and blue components listed below. (Values are listed in the order red, green, blue.)

Ambient 0.0, 0.0, 0.0

Diffuse 1.0, 1.0, 1.0

Specular 1.0, 1.0, 1.0

These are the defaults for the other properties of a spot light node:

Intensity 1.0

Direction 0.0, 0.0, 1.0

Position 0.0, 0.0, 0.0

Exponent 0.0

Angle pi/8.0 radians = 22.5 degrees

Attenuation 1.0, 0.0, 0.0

WTlightnode_load

FLAG WTlightnode_load(

WTnode *parent,
char *filename);

This function reads a WTK light format file and creates spot, point, directed or ambie
light nodes as indicated in the file. It attaches them as children to the specified parent

This function can read existing light files from this release of WTK, Release 6, and W
V2.1. The light format has also been extended to be keyword driven, tolerant of whit
space, and to support comments and multi-line light specifications.

Directed light parameters are specified as follows:

d[irected] [dir <X> <Y> <Z>] [int <V>]

[amb <R> <G>] [diff <R> <G>] [spec <R> <G>]
WorldToolKit Reference Manual 12-9

Chapter 12: Lights

tional
ents,

e all
type,

in
ther
0 and

8.0,

0.0
ified
Point light parameters are specified as follows:

p[oint] [pos <X> <Y> <Z>] [int <V>] [att <X> <Y> <Z>]
[amb <R> <G>] [diff <R> <G>] [spec <R> <G>]

Spot light parameters are specified as follows:

s[pot] [pos <X> <Y> <Z>] [dir <X> <Y> <Z>] [int <V>] [angle[rad] <V>] [exp <V>]

 [att <a0> <a1> <a2>] [amb <R> <G>] [diff <R> <G>] [spec <R> <G>]

Ambient light parameters are specified as follows:

a[mbient] [int <V>] [amb <R> <G>]

The square brackets [] represent optional parameters or text. If you leave off any op
parameters, default values are used. Extra white space is ignored. To allow for comm
any text on a line following “//” characters is ignored. Each light does not have to hav
its options on the same line. All parameters except the first, which specifies the light
can be given in any order.

The values in angle brackets <> can be any floating point value, within the following
ranges:

• The int parameter is the light intensity; it may range from 0.0 to 1.0. This
parameter is part of the light specification for all light node types.

• The angle parameter is used only for spot light nodes. It is an angular radius
degrees, so it may range from 0.0 to 90.0. If the keyword “anglerad” is used ra
than “angle”, the value is taken to be in radians, and so should be between 0.
PI/2, or 1.57.

• The exp parameter is an exponential factor which must be between 1.0 and 12
or be equal to 0.0. This parameter is used only for spot light nodes. See the
function WTlightnode_setexponent on page 12-19.

• The att parameter defines attenuation values. See the functions
WTlightnode_newspot on page 12-8 and WTlightnode_newpoint on page 12-7 for
definitions of appropriate values. The default attenuation values are 1.0 0.0
(representing no attenuation). The attenuation parameters can only be spec
for point and spot light nodes; directed and ambient light nodes may not be
attenuated.
12-10 WorldToolKit Reference Manual

Constructing Light Nodes

y for

sed

pport
olor.
lue

ond
ht
ght
0

e
• The dir parameter defines the direction of the light node. The dir direction vectors
are normalized if they are of non-zero magnitude. This parameter is used onl
directed and spot light nodes, not for point and ambient light nodes.

• The pos parameter defines the position of the light node. This parameter is u
only for point and spot light nodes, not for direct and ambient light nodes.

• Color can be specified by the parameters amb, diff, and spec, which represent
ambient, diffuse, and specular colors. Directed, point, and spot light nodes su
all the three colors, whereas ambient light nodes support only ambient light c
The <R>, <G>, and for each of the colors represents the red, green, and b
colors. Their values vary from 0.0 to 1.0.

Here’s an example file:

d dir 0 1 0 int 1.0 amb 0.0 0.0 0.0 diff 1.0 1.0 0.0 spec 1.0 1.0 1.0 // Light 1
p pos -30 0 0 int 0.3 amb 0.0 0.0 0.0 diff 0.0 0.0 1.0 spec 1.0 1.0 1.0 // Light 2

p pos 30 0 0 int 0.3 amb 0.0 0.0 0.0 diff 0.0 1.0 0.0 spec 1.0 1.0 1.0 // Light 3
s pos -20 20 -20 dir 1 1 1 int 0.8 angle 20 exp 1.0

amb 0.0 0.0 0.0 diff 1.0 1.0 1.0 spec 1.0 1.0 1.0 // Light 4

a int 0.4 amb 1.0 1.0 1.0 // Light 5

This file contains five lights. Note that the fourth light has some of its options on a sec
line. Light one is a yellow directional light pointing straight down with full intensity. Lig
two and three are dim blue and green point lights to the left and right of the origin. Li
four is a spotlight pointing diagonally down toward the origin, with a cone radius of 2
degrees. Light five is a dim white ambient light.

WTlightnode_save

FLAG WTlightnode_save(
WTnode *light,

char *filename);

This function saves out an ambient, directed, point or spot light node to a file with th
specified name. The file created has the format described above under WTlightnode_load.
WorldToolKit Reference Manual 12-11

Chapter 12: Lights

ity) of
 you

ular
ving

ents

ed in
en.

ts

ir
Light Properties

You can access and change the properties (e.g., position, direction, color, and intens
WTK ambient, directed, point, and spot lights with the functions in this section. When
make changes to lights, the shading on graphical entities is automatically updated.

If you’re not concerned about the ambient and specular color components of a partic
light, the easiest way of setting the light’s color is to specify a diffuse color value, lea
the other color components of the light set to their default values.

Note that a light illuminates a surface only if the light and surface have color compon
in common. For example, while a white light (which contains all color components)
illuminates a surface of any color, and a red light illuminates any surface containing r
it, a red light does not add to the illumination of a surface which is purely blue or gre

WTlightnode_setposition

FLAG WTlightnode_setposition(
WTnode *light,
WTp3 p);

This function sets the 3D position of a light to the point passed in (point and spot ligh
only). The default light position is (0,0,0).

Point and spot lights are affected by light position, as they emanate radially from the
source. Directed and ambient lights are unaffected by light position.

WTlightnode_getposition

FLAG WTlightnode_getposition(
WTnode *light,
WTp3 p);

This function gets the position of the light node and stores it in the p parameter. Use
WTlightnode_setposition to change a light’s position.
12-12 WorldToolKit Reference Manual

Light Properties

hts
nate

n.

ed
ctor

ied
WTlightnode_setdirection

void WTlightnode_setdirection(
WTnode *light.
WTp3 dir);

This function sets the direction of a light to the vector passed in (spot and directed lig
only). Spot and directed lights are affected by light direction as these light types ema
light in a particular direction. Point and ambient lights are unaffected by light directio

The direction vector passed in (dir) does not have to be normalized, that is, it is not requir
to have a length equal to one. (This function automatically normalizes the direction ve
for you.) However, if the three components of the direction vector are all 0 (zero), the
function returns without setting the light’s direction.

In the following example, a light’s direction is set to lie in the X-Z plane, with a specif
angle theta from the X axis.

void orient_light(WTnode *light, double theta)
{

WTp3 dir;

dir[Y] = 0.0;
dir[X] = cos(theta);
dir[Z] = sin(theta);

WTlightnode_setdirection(light, dir);
}

WTlightnode_getdirection

void WTlightnode_getdirection(

WTnode *light,
WTp3 dir);

This function gets the direction of a light and stores it in the dir parameter. This direction
vector is normalized to have length equal to 1.0.
WorldToolKit Reference Manual 12-13

Chapter 12: Lights

e
hich
 range

e
WTlightnode_setintensity

void WTlightnode_setintensity(
WTnode *light,
float x);

This function sets the intensity of a light to x, which should be between 0.0 and 1.0. Sinc
the computer can display colors only between a minimum and maximum intensity (w
correspond to 0.0 and 1.0), any intensity values that are requested below or above this
are set to 0.0 and 1.0 respectively.

Examples of using WTlightnode_setintensity are given below, under
WTlightnode_getintensity.

WTlightnode_getintensity

float WTlightnode_getintensity(
WTnode *light);

This function returns a light’s intensity value.

The following example uses the functions WTlightnode_getintensity and
WTlightnode_setintensity to increase the intensity of a light by five percent.

WTnode *light;

WTlightnode_setintensity(light, 1.05 * WTlight_getintensity(light));

WTlightnode_setambient

void WTlightnode_setambient(
WTnode *light,

float r,
float g,
float b);

This function sets the ambient component of a light’s color. The r,g,b values must be
between 0.0 and 1.0. By default, r, g, and b are each equal to 1.0 for ambient lights, whil
r, g, and b are each equal to 0.0 for directed, point, and spot lights.
12-14 WorldToolKit Reference Manual

Light Properties

ghts

ights

ch
ht is
WTlightnode_setdiffuse

void WTlightnode_setdiffuse(
WTnode *light,
float r,

float g,
float b);

This function sets the diffuse component of a light’s color (directed, point, and spot li
only). The r,g,b values must be between 0.0 and 1.0. By default, r,g,b are each equal to 1.0,
giving white light.

WTlightnode_setspecular

void WTlightnode_setspecular(

WTnode *light,
float r,
float g,

float b);

This function sets the specular component of a light’s color (directed, point, and spot l
only). The r,g,b values must be between 0.0 and 1.0. By default, r,g,b are each equal to 1.0,
giving white light.

WTlightnode_getambient

void WTlightnode_getambient(
WTnode *light,

float *r,
float *g,
float *b);

This function gets the ambient red, green, and blue components of a light’s color. Ea
component is in the range 0.0 and 1.0. When all three components equal 1.0, the lig
white.

Example of usage:
WorldToolKit Reference Manual 12-15

Chapter 12: Lights

h
ht is

 Each
ht is
WTnode *light;
float r, g, b;
WTlightnode_getambient(light, &r, &g, &b);

WTmessage(“light ambient color components are: red: %f green: %f blue: %f\n”,r,g,b);

WTlightnode_getdiffuse

void WTlightnode_getdiffuse(
WTnode *light,

float *r,
float *g,
float *b);

This function gets the diffuse red, green, and blue components of a light’s color. Eac
component is in the range 0.0 and 1.0. When all three components equal 1.0, the lig
white.

Example of usage:

WTnode *light;
float r, g, b;
WTlightnode_getdiffuse(light, &r, &g, &b);

WTmessage(“light diffuse color components are: red: %f green: %f blue: %f\n”,r,g,b);

WTlightnode_getspecular

void WTlightnode_getspecular(
WTnode *light,

float *r,
float *g,
float *b);

This function obtains the specular red, green, and blue components of a light’s color.
component is in the range 0.0 and 1.0. When all three components equal 1.0, the lig
white.
12-16 WorldToolKit Reference Manual

Light Properties

 light
 not

ghts

each

alue

tion,
es of

WTlightnode_setattenuation

void WTlightnode_setattenuation(
WTnode *light,
float atten0,

float atten1,
float atten2);

This function sets the attenuation value for point and spot lights (the rate at which the
falls off as the distance from the light increases). By default, point and spot lights are
attenuated: the default attenuation coefficients are atten0=1.0, atten1=0.0, atten2=0.0.

The light passed in to this function must be either a point light or a spot light. Ambient li
and directed lights (which are located at infinity) can not be attenuated.

This function sets the coefficients of the light attenuation factor, which is computed at
vertex as:

1.0/(atten0 + atten1*dist + atten2*dist*dist)

where dist is the distance between a light source and the vertex it is illuminating. The v
of the floating point number atten0 must be greater than WTFUZZ, while both atten1 and
atten2 must be greater than or equal to 0.0.

The value of atten0 must be greater than WTFUZZ. If it is not, then this function returns
with no effect. Passing in non-zero values for atten1 or atten2 (especially atten2) can cause
a very rapid decrease of light intensity with increasing distance from the light. This
decrease in intensity may be much greater than you might expect. If you call this func
and it seems that your light is no longer illuminating the scene, try decreasing the valu
atten1 and atten2.

Also note that using attenuated lights (that is, having non-zero values for atten1 or atten2)
may impact performance, with a non-zero value for atten2 having a greater impact than a
non-zero value for atten1.
WorldToolKit Reference Manual 12-17

Chapter 12: Lights

(i.e.,

 the
In the following example, light attenuation is set to fall off as 1.0/(1.0 + dist):

WTnode *light;
WTlight_setattenuation(light, 1.0, 1.0, 0.0);

See also WTlightnode_newpoint on page 12-7, WTlightnode_newspot on page 12-8, and
WTlightnode_gettype on page 12-18.

WTlightnode_getattenuation

void WTlightnode_getattenuation(

WTnode *light,
float *atten0,
float *atten1,

float *atten2);

This function obtains a point or spot light’s attenuation coefficients. For example:

WTnode *light;
float atten0, atten1, atten2;

WTlightnode_getattenuation(light, &atten0, &atten1, &atten2);

WTlightnode_gettype

int WTlightnode_gettype(
WTnode *light);

This function determines which light constructor function was used to create the light
tells you what type of light it is).

A light’s type is determined by which light constructor function was used to construct
light: WTlightnode_newdirected, WTlightnode_newspot, WTlightnode_newpoint, or
WTlightnode_newambient), or by the type specified in the light file if the light was
constructed by a call to WTlightnode_load.
12-18 WorldToolKit Reference Manual

Light Properties

ction
nts the
PI/8

ight

ht is

ne.
ls
, or it
This function returns one of these values

WTLIGHTTYPE_AMBIENT
WTLIGHTTYPE_DIRECTED
WTLIGHTTYPE_POINT

WTLIGHTTYPE_SPOT

WTlightnode_setangle

void WTlightnode_setangle(
WTnode *light,

float angle);

This function controls the size of the spot light’s cone. The angle passed in to this fun
is specified in radians and must be between 0.0 and PI/2. This radians value represe
half-angle of the spot light cone. The default value of the half-angle of a spot light is
radians (22.5 degrees).

This function is used only for spot lights, and returns with no effect if another type of l
is passed in.

WTlightnode_getangle

float WTlightnode_getangle(
WTnode *light);

This function returns the half-angle of a spot light's cone. If a light that is not a spot lig
passed in (see WTlightnode_gettype on page 12-18), then -1.0 is returned.

WTlightnode_setexponent

void WTlightnode_setexponent(
WTnode *light,
float val);

This function specifies how the intensity of a spot light falls off within the spot light co
Spot lights have an exponent value, which specifies how the intensity of the spot light fal
off toward the edge of the spot light cone. This value must be between 1.0 and 128.0
WorldToolKit Reference Manual 12-19

Chapter 12: Lights

g

nes

er

ssed
may be equal to 0.0. The default exponent value is 0.0. If exponent is equal to 0.0, then the
light does not fall off at all from the center to the edge of the spotlight cone. Increasin
values of exponent represent sharper fall off toward the edge of the light cone.

A lights’s exponent value should not be confused with its attenuation, which determi
how light intensity falls off away from the position of the light. See figure 12-1 on page
12-8.

By default, a spot light node is a white light that does not attenuate with distance from the
light position. See WTlightnode_setattenuation on page 12-17.

WTlightnode_setexponent is used only for spot lights, and returns with no effect if anoth
type of light is passed in.

WTlightnode_getexponent

float WTlightnode_getexponent(
WTnode *light);

This function returns the exponent of a spot light. If a light that is not a spot light is pa
in, then -1.0 is returned.
12-20 WorldToolKit Reference Manual

re
sors

d

 a
e

tly,
n

sor.

sor.

page

sor

uld
13-24)

able
d, and
13
Sensors

This chapter explains how most sensors work with WTK and shows which sensors a
supported (not all sensors work on every platform). Use this chapter to configure sen
with your application.

The sections at the beginning of this chapter apply to all sensors:

• Introduction to the Sensor Class – provides a general introduction to sensors an
lists the sensors that are currently supported by WTK. (see page 13-2)

• Sensor Lag and Frame-rate – describes concepts related to sensors that have
direct impact on the effectiveness of your application’s interactivity. (see pag
13-5)

• Sensor Construction and Destruction – describes how to create and remove a
sensor object. (see page 13-5)

• Accessing Sensor State – describes how to access a sensor’s information direc
so you can, for example, set the sensitivity for a sensor or retrieve its rotatio
information. (see page 13-11)

• Rotating Sensor Input – describes how to change the reference frame for a sen
(see page 13-16)

• Using Different Baud Rates – describes how to set a specific baud rate for a sen
(see page 13-22)

• Sensor Name – describes how to set and retrieve the name of a sensor. (see
13-23)

• User-specifiable Sensor Data – describes how to store or retrieve data in a sen
object. (see page 13-23)

• Custom Sensor Drivers – describes how to create your own sensor driver, sho
you wish to use a sensor that is not currently supported by WTK. (see page
See also Appendix E, Writing a Sensor Driver.

The remaining sections provide information on specific WTK-supported drivers. The t
on page 13-3 lists the WTK-supported sensors, on which platorms they are supporte
where the relevant information is located in this chapter.

Chapter 13: Sensors

ding
 other

e

d by
ors that
 is,
lute

metric
spond
irectly

ents
 ball

 can
ition

e

ed
reated,

ute
Introduction to the Sensor Class

Sensor objects in WTK generate position, orientation, and other kinds of data by rea
inputs that originate in the real world. These inputs can be used to control motion and
behavioral aspects of objects in the simulation. Sensors permit the user of a WTK
application to be directly coupled to the viewpoints, graphical objects, and lights in th
universe.

Many of the 3D and 6D (position/orientation) sensors that are available are supporte
WTK. There are two principal classes of such sensors: desk-based sensors and sens
are worn on the body. While most desk-based sensors generate relative inputs, that
changes in position and orientation, devices worn on the body typically generate abso
records, that is, values that correspond to their specific spatial location.

Desk-based sensors are conventional devices, like the Mouse, Serial Joystick and iso
balls. CIS Geometry Ball, Jr. and Spacetec IMC’s Spaceball are isometric balls that re
to forces and torques applied by the user. Using such devices, a 3D object can be d
manipulated, displaced or rotated — the object acts like it is directly connected to the
sensor. Ball sensors are also useful for moving the viewpoint; the applied displacem
and rotational forces move and rotate the viewpoint. In this mode of operation, with a
sensor attached to the viewpoint, the ball operates like a “fly-by-wire” helicopter.

Sensors worn on the body (sensors that generate absolute records) include electromagnetic
6D trackers such as the Polhemus FASTRAK and Ascension Bird. This type of sensor
be used for viewpoint tracking when it is attached to a head-mounted display. In add
to electromagnetic devices, a variety of ultrasonic ranging/triangulation devices and
optical devices exist for absolute position and orientation tracking. One example is th
ultrasonic Logitech 3D Mouse and Head Tracker.

Regardless of their underlying hardware technology, WTK’s sensor objects are treat
similarly and can be used interchangeably in an application. Once a sensor object is c
it is automatically maintained by the simulation manager, so you do not have to deal
directly with considerations such as whether the sensor is returning relative or absol
records, or whether it is polled or streaming its data.
13-2 WorldToolKit Reference Manual

Introduction to the Sensor Class

our
WTK provides drivers for the devices listed below, making them easy to connect to y
computer and use in your applications.

WTK Supported Sensor Devices

Sensor Device Windows UNIX
See
page...

Any Standard Mouse (two or three
buttons)

X X 13-26

Ascension Bird/Motionstar/6DOF
Mouse/Flock of Birds

X X 13-39

Ascension Extended Range Bird X X 13-51

CIS Graphics Geometry Ball, Jr. X X 13-53

Fakespace monochrome BOOM, two-
color BOOM2C, and full-color BOOM3C
(button models and joystick models)

X X 13-55

Fakespace Pinch Glove System X X 13-59

Fifth Dimension Technologies’ 5DT
Glove

X 13-63

Gameport Joystick X 13-67

Logitech 3D Mouse (Red Baron) X X 13-73

Logitech Head Tracker X X 13-77

Logitech Space Control Mouse
(Magellan)

X X 13-81

Polhemus ISOTRAK X X 13-85

Polhemus ISOTRAK II X X 13-88

Polhemus InsideTRAK X
(only NT 3.51)

13-90

Polhemus FASTRAK X X 13-92

Polhemus Stylus X X 13-93

Precision Navigation Wayfinder-VR X 13-96
WorldToolKit Reference Manual 13-3

Chapter 13: Sensors

al

orld

nput
Consult your Hardware Guide for platform-specific information on supported sensor
devices.

Check the README.1ST file, that was installed with WTK, to see if additional device
support became available after this book was printed. You can also contact Technic
Support for information about currently supported devices. If you have access to the W
Wide Web, check the Technical Support web pages, which show what devices are
supported and how to set up the devices correctly. See Technical Support on page L-1 for
more information.

In addition to the devices shown above, WTK provides functions for easily obtaining i
from the keyboard. The keyboard device, which is handled differently from the WTK
sensor objects, is described in Reading the Keyboard on page 24-1.

Spacetec IMC Spaceball – Model 2003
and Model 3003 (using only the pick
button)

X X 13-100

Spacetec IMC Spaceball
SpaceController

X
(only NT 3.51)

13-104

StereoGraphics CrystalEyes and
CrystalEyesVR LCD Shutter Glasses

X X 13-108

ThrustMaster Formula T2 Steering
Console

X
(only NT 3.51)

13-111

ThrustMaster Serial Joystick (Mark II
Flight Control/Weapons Control
Systems)

X X 13-113

VictorMaxx Technologies’ CyberMaxx2
HMD

X 13-119

Virtual i-O i-glasses! – monoscopic and
stereo (Intergraph only) with head
tracking

X X 13-121

Virtual Technologies Cyberglove X X 13-123

WTK Supported Sensor Devices (continued)

Sensor Device Windows UNIX
See
page...
13-4 WorldToolKit Reference Manual

Sensor Lag and Frame-rate

 For

in
 the

d

sor

 a
“+

lays.

e,
 For
tter

ros
WTK also has functions for interfacing with devices that are not currently supported.
information on creating your own sensor driver, see Custom Sensor Drivers on page 13-24
and the sensor driver specification in Writing a Sensor Driver on page E-1.

Sensor Lag and Frame-rate

WTK is designed so you can interact with computer-generated graphics flexibly and
“real-time.” Sensor objects provide a means of accomplishing this by directly coupling
user of an application to the geometry in the virtual world. The effectiveness of this
interaction depends on several factors:

Sensor lag The time from when the sensor’s state in the real worl
changes to when the sensor generates a record
corresponding to that state; inversely proportional to sen
speed.

Sensor accuracy The range of values that a sensor may return when in
given state. This is usually specified as something like:
or - 0.1 inches within a range of 8 feet.”

Frame-rate The number of frames per second that the system disp

Note: Even if your application runs with a high frame-rate, if the sensor lag is very larg
then the user’s impression of being able to interact in the virtual world may suffer.
very precise manipulations within the virtual world, the shorter the lag time, the be
the user control.

Sensor Construction and Destruction

WTsensor objects can be created with either the generic sensor constructor function
WTsensor_new (see page 13-7) or with one of WTK’s device-specific constructor mac
(WTmouse_new, WTspaceball_new, WTpolhemus_new, WTbird_new, etc.).
WorldToolKit Reference Manual 13-5

Chapter 13: Sensors

ll is a

).

TK
tion(s)
ould

 baud

ds to

sor
For example, the device-specific constructor function for the Spacetec IMC Spaceba
macro defined as follows:

#define WTspaceball_new(port) \
WTsensor_new(WTspaceball_open, WTspaceball_close,\

WTspaceball_update, WTserial_new(...), 1, \

WTSENSOR_DEFAULT)

(The arguments to WTserial_new vary according to the operating system.) To use this
macro, you would make the call:

WTsensor *spaceball;
spaceball = WTspaceball_new(SERIAL1);

where the constant SERIAL1 is already defined for all systems (this allows for portability

All of the device-specific constructors are simply macro calls to WTsensor_new. Its first
three arguments open, close, and update the particular device by using pointers to W
functions. See the table on page 13-7 for a listing of the open, close, and update func
for a sensor object. As you see, a device has only one open and close function but c
have multiple update functions.

If the update function specified in the device-specific constructor function macro is
appropriate for your application, just use the macro call. If you want to use an update
function other than the default, or if you want to create the sensor object at a different
rate than the default (see Using Different Baud Rates on page 13-22), use WTsensor_new.

For example, if you wanted to use your own update function myspaceball_update for the
Spaceball (consult the sensor driver specification in Appendix E to find out what nee
be in such a function), you would create the sensor object with the call:

WTsensor *ball;
ball = WTsensor_new(WTspaceball_open, WTspaceball_close,

myspaceball_update, WTserial_new(...), 1,

WTSENSOR_DEFAULT);

The next part of this chapter describes the functions that apply generally to WTK sen
objects. Following that, information about the specific devices supported in WTK is
provided.
13-6 WorldToolKit Reference Manual

Sensor Construction and Destruction

 opens
mple
ed.

 a
ions
ns for
 for
WTsensor_new

WTsensor *WTsensor_new(
int (*openfn)(WTsensor*),
void (*closefn)(WTsensor*),

void (*updatefn)(WTsensor*),
WTserial *serial,
short unit,

short location);

This function creates a new sensor object and adds it to the universe. If it successfully
the device, it returns a pointer to the sensor object created. If it’s unsuccessful, for exa
if the device is incorrectly cabled and the device cannot be initialized, NULL is return

The first three arguments are pointers to functions to initialize, terminate, and update
sensor. When a particular device is “supported in WorldToolKit”, it means these funct
are already provided for that device. The names of the open, close, and update functio
devices supported in WTK are as follows (more than one update function is provided
some devices):

Device Open, Close, and Update functions

Any Standard Mouse WTmouse_open; WTmouse_close; WTmouse_drawcursor,
WTmouse_moveview1, WTmouse_moveview2,
WTmouse_move2D

Ascension Bird, Flock
of Birds, Motionstar,
and 6DOF Mouse

WTbird_open; WTbird_close; WTbird_update

Ascension Extended
Range Bird

WTercbird_open; WTercbird_close; WTercbird_update

CIS Graphics
Geometry Ball, Jr.

WTgeoball_open; WTgeoball_close; WTgeoball_update

Fakespace BOOM (all
display types)

WTboom_open; WTboom_close; WTboom_update (for
BOOMs with buttons), WTboom_joystickupdate (for BOOMs
with joysticks).

Fakespace Pinch
Glove System

WTpinch_open; WTpinch_close; WTpinch_update
WorldToolKit Reference Manual 13-7

Chapter 13: Sensors
Fifth Dimension
Technologies’ 5DT
Glove

WTglove5dt_open; WTglove5dt_close;
WTglove5dt_update, WTglove5dt_updatefingers

Gameport Joystick WTjoystick_open; WTjoystick_close; WTjoystick_walk,
WTjoystick_walk2, WTjoystick_fly

Logitech 3D Mouse
(Red Baron)

WTbaron_open; WTbaron_close; WTbaron_update

Logitech Head Tracker WTlogitech_open; WTlogitech_close; WTlogitech_update.

 Logitech Space
Control Mouse
(Magellan)

WTspacecontrol_open; WTspacecontrol_close;
WTspacecontrol_update.

Polhemus ISOTRAK WTpolhemus_open; WTpolhemus_close;
WTpolhemus_update.

Polhemus ISOTRAK II WTisotrak2_open; WTisotrak2_close; WTisotrak2_update.

Polhemus InsideTRAK WTinsidetraknt_open; WTinsidetraknt_close;
WTinsidetraknt_update.

Polhemus FASTRAK WTfastrak_open; WTfastrak_close; WTfastrak_update

Precision Navigation
Wayfinder-VR

WTprecision_open; WTprecision_close;
WTprecision_update

Spacetec IMC
Spaceball

WTspaceball_open; WTspaceball_close;
WTspaceball_update, WTspaceball_dominant

Spacetec IMC
Spaceball
SpaceController

WTspaceballSC_open; WTspaceballSC_close;
WTspaceballSC_update, WTspaceballSC_dominant

StereoGraphics
CrystalEyes and
CrystalEyesVR LCD
Shutter Glasses

WTcrystaleyesVR_open; WTcrystaleyesVR_update;
(WTlogitech_close is used to close the device).

ThrustMaster Formula
T2 Steering Console

WTformula_open; WTformula_close; WTformula_drive.

Device Open, Close, and Update functions
13-8 WorldToolKit Reference Manual

Sensor Construction and Destruction

ate
 them

ers

nsor
 be

 the
t
To use a device that is not yet supported, you must provide the open, close, and upd
functions (see Appendix E). Once you have specified these three functions by passing
in as arguments to WTsensor_new, WTK takes care of calling these functions at the
appropriate times.

The openfn is called once when the sensor is created. All predefined WTK device driv
return a NULL or zero value if they couldn’t open or initiate communications with the
device.

The closefn is called once when the sensor is deleted by a call to WTsensor_delete (which
in turn is called by WTuniverse_delete for any sensors that still exist). The updatefn is
called by the WTK simulation manager once at the beginning of each frame.

The updatefn is called each time through the simulation loop and determines how the se
state (e.g., translational information, relational information, button presses, etc.) is to
updated.

The serial argument to WTsensor_new is a pointer to an initialized serial port object.
Typically a serial port object can be constructed by following the examples provided in
sensor macros in the file sensor.h. Also consult your Hardware Guide for information abou
using serial port devices with WTK on your hardware platform (see also WTserial_new on
page 23-1). If your device is not a serial port device, then serial should be NULL.

For multi-unit devices such as FASTRAK and Flock of Birds, the unit argument specifies
which unit to open. For all other sensors, unit should be 1 (one).

The location argument should be set to WTSENSOR_DEFAULT.

ThrustMaster Serial
Joystick

WTjoyserial_open; WTjoyserial_close; WTjoyserial_walk,
WTjoyserial_walk2, WTjoyserial_fly

VictorMaxx
Technologies’
CyberMaxx2 HMD

WTcybermaxx2_open; WTcybermaxx2_close;
WTcybermaxx2_update

Virtual i-O i-glasses! WTiglasses_open; WTiglasses_close; WTiglasses_update

Virtual Technologies
Cyberglove

Not Applicable.

Device Open, Close, and Update functions
WorldToolKit Reference Manual 13-9

Chapter 13: Sensors

he
he
bject.

verse.
list.

ate

e
K
WTsensor_delete

void WTsensor_delete(
WTsensor *sensor);

This function removes a sensor object from the universe’s list of sensors; detaches t
sensor from viewpoints, lights, or objects; calls the sensor’s close function; deletes t
sensor’s serial port object (if it has one); and frees the memory used by the sensor o

WTsensor_next

WTsensor *WTsensor_next(

WTsensor *sensor);

This function returns the next sensor object in the list of sensors maintained by the uni
Use WTuniverse_getsensors (see page 2-13) to obtain a pointer to the first sensor in the
An example of using this function is provided under WTsensor_setsensitivity on page
13-11).

WTsensor_setupdatefn

void WTsensor_setupdatefn(
WTsensor *sensor,

void (*updatefn)(WTsensor*));

This function allows you to change a sensor’s update function. A sensor object’s upd
function is initially set in the generic sensor constructor function WTsensor_new (see page
13-7), or the device-specific constructor macro (e.g., WTmouse_new).
WTsensor_setupdatefn should be called if you want to change the update function. Th
following example illustrates how to set a Mouse sensor’s update function to the WT
function WTmouse_move2D.

WTsensor *mouse;
/*Create a mouse sensor object using the device-specific macro. This uses the

WTmouse_moveview2 update function */
mouse = WTmouse_new()
/*Change the update function */

WTsensor_setupdatefn(mouse, WTmouse_move2D);
13-10 WorldToolKit Reference Manual

Accessing Sensor State

ject as

r all
, with

from
p the

l’s
ves

ne, or

This example assumes the Mouse was originally created as a pointer to a sensor ob
described in The Mouse on page 13-26.

Accessing Sensor State

WTsensor_setsensitivity

void WTsensor_setsensitivity(
WTsensor *sensor,
float sensitivity);

This function sets the sensitivity value for the sensor. The default sensitivity value fo
sensors is 1.0. Attempts to set a sensor’s sensitivity to a negative value are rejected
no change to the current sensitivity.

A sensor’s sensitivity value defines the maximum magnitude of the translational input
the sensor along each axis (in the same distance units as the 3D geometry making u
virtual world).

For example, suppose you have a Spaceball attached to a viewpoint. The Spacebal
sensitivity determines the maximum distance along each axis that your viewpoint mo
when you push on the ball. To move faster, call WTsensor_setsensitivity with a larger value
than is currently set for the device.

It is frequently desirable to have the sensor’s sensitivity scale with the size of the sce
with some other characteristic distance scale in the virtual world. The example below
shows how to accomplish this.

WTsensor *sensor;
float radius;

/* Iterate through all of the sensors in the universe,

scaling sensor sensitivity with the size of the scene */
radius = WTnode_getradius(WTuniverse_getrootnodes());
for (sensor=WTuniverse_getsensors() ; sensor ;

sensor=WTsensor_next(sensor)) {
WTsensor_setsensitivity(sensor, 0.01 * radius);
WorldToolKit Reference Manual 13-11

Chapter 13: Sensors

e

n the

 The

r

 the
gh the
grees.

 can
 as the
}

In this example, if the sensor is a Spaceball attached to your viewpoint, then each tim
through the simulation loop your viewpoint moves a distance equal to at most one
hundredth of the scene’s radius along each of X, Y, and Z axes. If you do not push o
Spaceball very hard, then you would move less than that.

Not all devices supported in WTK have their translational records scaled in this way.
sensor translational records scaled by WTsensor_setsensitivity are described in the
corresponding sections of this chapter for each device.

WTsensor_getsensitivity

float WTsensor_getsensitivity(
WTsensor *sensor);

This function returns the sensor’s sensitivity value. This value is defined above unde
WTsensor_setsensitivity. The following example uses the function
WTsensor_getsensitivity to increase a sensor’s sensitivity value by 10 percent.

WTsensor *sensor;
WTsensor_setsensitivity(sensor,

1.1 * WTsensor_getsensitivity(sensor));

WTsensor_setangularrate

void WTsensor_setangularrate(
WTsensor *sensor,
float s);

This function sets the scale factor for a sensor’s rotation records. The angular rate is
maximum rotation (in radians) around any axis that a sensor returns in any pass throu
simulation loop. The default angular rate for all sensors is 0.087266 radians, or 5 de
It may be convenient to specify the angular rate in terms of the defined constant PI, as in
the example below.

Not all devices supported in WTK have their rotation records scaled in this way. You
not set the rotational speed of absolute position and orientation sensing devices, such
FASTRAK or Bird devices. Some of the devices that are scaled in this way are the
13-12 WorldToolKit Reference Manual

Accessing Sensor State

by
or

en

the
le
Spaceball, Geometry Ball, Jr., and the Mouse. The sensor rotational records scaled
WTsensor_setangularrate are described in the corresponding sections of this chapter f
each device.

WTsensor *spaceball;

/* create the spaceball sensor object */
spaceball = WTspaceball_new(SERIAL1);

/* set the maximum rotation from the spaceball around any axis
to 22.5 degrees per tick. */
WTsensor_setangularrate(spaceball, PI/8.0);

/* scale translational inputs with the size of the scene */
WTsensor_setsensitivity(spaceball, 0.01 * WTnode_getradius(

(WTuniverse_getrootnodes()));

WTsensor_getangularrate

float WTsensor_getangularrate(
WTsensor *sensor);

This function returns the maximum angular rate of change around each axis for a giv
sensor. Not all devices have their rotation records scaled in this way. Angular rate is
specified in radians.

WTsensor_gettranslation

void WTsensor_gettranslation(

WTsensor *sensor,
WTp3 translation);

This function retrieves the current translation record from the sensor and stores it in
translation argument. The translation record is affected by the sensor’s sensitivity sca
factor. (See the function WTsensor_setsensitivity on page 13-11.)

If the device is an absolute sensor such as the Polhemus ISOTRAK, then translation is the
change in sensor position since the last time through the simulation loop.
WorldToolKit Reference Manual 13-13

Chapter 13: Sensors

metry
ecord
te lies
 values
dinate

mus

rd
The following is an example of using a desktop device such as the Spaceball or Geo
Ball, Jr. to interactively stretch a geometry. In this example, the sensor’s translation r
is obtained and then transformed so that the resulting scale factor for each coordina
between 0.0 and 2.0. Values less than 1.0 are used to make the object smaller, while
greater than 1.0 are used to make it larger. The geometry is stretched in its local coor
frame.

WTgeometry *geom;
WTsensor *ball;
WTp3 scalefactor; /* for WTgeometry_stretch */

WTp3 mid; /* object geometry */
float sensitivity;

WTsensor_gettranslation(ball, scalefactor);

sensitivity = WTsensor_getsensitivity(ball);

/* transform translation values to be between 0.0 and 2.0.
(each scalefactor[i] is between -sensitivity and +sensitivity.) */

for (i=0 ; i<3 ; i++) {
scalefactor[i] = 1.0 + scalefactor[i]/sensitivity;

}

/* stretch the geometry */
WTgeometry_getmidpoint(geom, mid);
WTgeometry_stretch(geom, scalefactor, mid);

WTsensor_getrotation

void WTsensor_getrotation(
WTsensor *sensor,
WTq rotation);

This function retrieves the current rotation record from the sensor and stores it as a
quaternion in the rotation argument. If the device is an absolute sensor such as the Polhe
ISOTRAK, then rotation is the change in orientation since the last time through the
simulation loop.

See Chapter 25, Math Library, for functions that can be used to convert the rotation reco
into either a matrix or direction vector.
13-14 WorldToolKit Reference Manual

Accessing Sensor State

nsor,
 value

-

ix C.

pecast

ion in

se
WTsensor_getmiscdata

int WTsensor_getmiscdata(
WTsensor *sensor);

This function returns an integer value in which miscellaneous data pertaining to the se
like button press events, are stored. Defined constants are used to interpret the return
of this function. For example, the following code fragment shows how to detect a left
button press on the Mouse:

WTsensor *mouse;

if (WTsensor_getmiscdata(mouse) & WTMOUSE_LEFTBUTTON)
WTmessage(“Left button press\n”);

The WTK defined constants used with WTsensor_getmiscdata are described in the
corresponding sections of this chapter for each device and are also listed in Append

WTsensor_getrawdata

void *WTsensor_getrawdata(

WTsensor *sensor);

This function returns the sensor-specific raw data structure. The return needs to be ty
appropriately before the contents of the structure are accessed.

For example, WTK’s Mouse raw data structure stores the current Mouse cursor posit
screen coordinates in a WTp2 (2D vector). This position might be passed in to a picking
function, as in the following example which selects a polygon located under the Mou
cursor.

WTpoly *mouse_pickpoly(WTsensor *mouse)
{

WTmouse_rawdata *raw;

/* get the mouse raw data struct (note typecasting)*/
raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);

/* return the polygon under the mouse cursor */
WorldToolKit Reference Manual 13-15

Chapter 13: Sensors

bject

ing

unit

 axes)
 X,Y,
vices
return WTscreen_pickpoly(screen,raw->pos, &nodepath, p3);
}

The sensor raw data structures accessed by WTsensor_getrawdata are described in the
corresponding sections of this chapter for each device. The WTscreen_pickpoly function is
described on page 4-91.

WTsensor_getserial

WTserial *WTsensor_getserial(

WTsensor *sensor);

This function returns the serial port object associated with a sensor. The serial port o
is the same as that supplied as the serial argument to the WTsensor_new (see page 13-7)
call. This function is used primarily by developers writing their own sensor drivers for
devices not already supported in WTK. See Appendix E for examples of using this
function. Also consult your Hardware Guide for platform-specific information about us
serial ports.

WTsensor_getunit

short WTsensor_getunit(
WTsensor *sensor);

This function retrieves the unit number of the specified sensor. This is useful for multi-
sensors.

Rotating Sensor Input

Each 6D sensor supported in WTK has a reference frame (that is, a set of coordinate
associated with it. This reference frame defines how input from the device generates
and Z translation and rotation sensor records. The reference frame convention for de
supported in WTK is described for each device in the corresponding sections of this
chapter. As shown in the example below, these conventions were chosen for their
convenience when controlling a viewpoint or object in the reference frame of the
13-16 WorldToolKit Reference Manual

Rotating Sensor Input

er than

 that
ou,
the
inate
metry

 the
he
e as

 with

 the

 Z
ich
 left
ith the
 be
viewpoint. In some cases, however, it may be necessary to use coordinate axes oth
the default ones. For this reason the WTsensor_rotate function is provided.

Consider the Geometry Ball, Jr. The coordinate axis convention for this device is such
if it is sitting on your desk with the cord running out the back of the device away from y
then the Z axis points straight back (in the direction of the cord), the X axis points to
right, and the Y axis points straight down (see Figure 13-1 on page 13-18). This coord
convention has been chosen for its convenience. Let’s say that you are using the Geo
Ball, Jr. to control a viewpoint, as set up with the following calls:

WTsensor *geoball;
geoball = WTgeoball_new(SERIAL1);
WTviewpoint_addsensor(WTuniverse_getviewpoint(), geoball);

Then when you apply force or torque to the ball, the viewpoint translates or rotates in
same direction. For example, if you push on the ball from the front (force applied in t
positive Z direction on the ball), the viewpoint moves straight ahead, which is the sam
the positive Z direction in the viewpoint frame.

Alternatively, the Geometry Ball, Jr. could be attached to a transform node associated
a geometry to control its motion, using this call:

WTnode *xform; /* transform node associated with the geometry*/
WTsensor *geoball;
WTnode_addsensor(xform, geoball);

By default the geometry is specified to move in the local frame. Twisting or pushing on
ball causes the geometry to move correspondingly in its local frame.

Now consider an application where coordinate axes other than the default sensor
coordinates are needed. We’ll use the Geometry Ball, Jr. to control the motion of a
graphical car. When we push on the front of the ball (generating input in the positive
direction), we want the car to drive forward in its local reference frame, no matter wh
way it is oriented. And twisting the ball about its vertical axis should generate right or
turns of the car. This means that we want to attach the sensor to the graphical car w
following call, where xform is the transform node that manipulates the car (which could
a group node):

WTnode_addsensor(xform, sensor);
WorldToolKit Reference Manual 13-17

Chapter 13: Sensors

e run
 up
-2 on

shing
 this
This, however, causes the sensor to act on the car in its local frame. The problem w
into is that the reference frame convention for the Geometry Ball, Jr. does not match
with that of the car model. Figure 13-1 illustrates these coordinate frames. Figure 13
page 13-19 further illustrates the concepts involved.

Figure 13-1: Reference frames for Geometry Ball, Jr. and graphical car.

Since the coordinate frames for the Geometry Ball, Jr. and the car do not line up, pu
and twisting the ball would generate inappropriate motion of the car. It is in a case like
that the function WTsensor_rotate is useful. This function effectively rotates a sensor’s
reference frame so that the desired coordinate values are returned.

To understand how to rotate the reference frames, first read the next section, Geometry
Motion Reference Frames, then read the description of WTsensor_rotate on page 13-20,
where this example is continued.

X axis

Y axis

Z axis

Z axis

X axis

Y axis

Graphical car and
its local reference

frame

Geometry Ball, Jr.
reference frame
13-18 WorldToolKit Reference Manual

Geometry Motion Reference Frames

n
es are

er
ith

rent

he
Geometry Motion Reference Frames

Many of the functions that let you move geometries within the virtual world take as a
argument the reference frame in which the motion is to occur. These reference fram
illustrated in figure 13-2 below.

• WTFRAME_WORLD is the world coordinate frame. It is independent of the
objects in the universe and is fixed in space.

• WTFRAME_LOCAL is the local coordinate frame of the geometry. This is eith
determined from the location of the geometry’s vertices or taken to coincide w
the world coordinate frame when the geometry is constructed.

• WTFRAME_PARENT is the parent coordinate frame of the geometry. This is
similar to the local coordinate frame, except that transforms applied in the pa
frame are pre-concatenated instead of post-concatenated.

• WTFRAME_VPOINT is the reference frame of a viewpoint (see
WTviewpoint_setposition on page 16-8). For example, to move a geometry in t
direction the viewpoint is looking, move it in the positive Z direction in
WTFRAME_VPOINT.

Figure 13-2: Reference frames for geometry motion

world x

world y

world z

view x

view y

view z

viewing plane (screen)

geometry x

geometry y

geometry z

WTFRAME_WORLD WTFRAME_VPOINT

WTFRAME_LOCAL
WorldToolKit Reference Manual 13-19

Chapter 13: Sensors

 reach
ct to

e
odel.
0
del’s
e

 this:

at
WTsensor_rotate

void WTsensor_rotate(
WTsensor *sensor,
WTq rotation);

This function rotates a sensor’s coordinate frame. The rotation argument is a quaternion
containing the rotation through which the sensor’s coordinate axes are to be rotated to
the desired coordinate axis orientation. Note that the rotations are always with respe
the world rather than to the local reference frame.

To continue with the example from Rotating Sensor Input on page 13-16, we need to rotat
the coordinate frame of the Geometry Ball, Jr. so that it coincides with that of the car m
To accomplish this, we first need to rotate the ball’s reference frame through minus 9
degrees about the world’s Y axis. This causes the ball’s X axis to align with the car mo
X axis. Then we rotate the ball’s reference frame through minus 90 degrees about th
world’s Z axis (so that the X axes continue to stay aligned). The result is that the two
coordinate frames are now aligned. The following example shows how to implement

WTq qy, qz, qtotal;
WTsensor *geoball;

/* generate quaternion for -90 degree rotation about Y */

WTeuler_2q(0.0, -0.5*PI, 0.0, qy);

/* generate quaternion for -90 degree rotation about Z */
WTeuler_2q(0.0, 0.0, -0.5*PI, qz);

/* obtain combined rotation (note right-to-left multiplication) */
WTq_mult(qy, qz, qtotal);

/* rotate the Geometry Ball Jr. reference frame */

WTsensor_rotate(geoball, qtotal);

Also see How Do I Use Orientation-Tracking Sensors (On A Head-Mount-Display) Th
Are Not Positioned Along The Central Axis Of The HMD? on page A-36.
13-20 WorldToolKit Reference Manual

Constraining Sensor Input

ssing
rator

d:

e
t's
strain
sor to

is
ed in
Constraining Sensor Input

WTsensor_setconstraints

void WTsensor_setconstraints(

WTsensor *sensor,
short c);

This function constrains the values returned by a sensor. This is accomplished by pa
in a combination of the following flags separated by the C language bit-wise OR ope
“|”.

WTCONSTRAIN_X constrains X axis translations

WTCONSTRAIN_Y constrains Y axis translations

WTCONSTRAIN_Z constrains Z axis translations

WTCONSTRAIN_XROT constrains rotations about the X axis

WTCONSTRAIN_YROT constrains rotations about the Y axis

WTCONSTRAIN_ZROT constrains rotations about the Z axis

For example, to constrain all rotational input so that only translational input is returne

WTsensor *sensor;
WTsensor_setconstraints(sensor, WTCONSTRAIN_XROT |

WTCONSTRAIN_YROT | WTCONSTRAIN_ZROT);

The constraints set with WTsensor_setconstraints pertain to the values read from the devic
so objects attached to a sensor may exhibit unexpected behavior because the objec
coordinate frame is not aligned with the sensor's reference frame. If you need to con
an object's motion in a particular coordinate frame, use motion links to connect a sen
an object and then constrain the motion link. Refer to Chapter 15, Motion Links for more
information.

In the current version of WTK, rotational constraints applied using
WTsensor_setconstraints have no effect on the FASTRAK or Bird devices. However, it
possible to simultaneously constrain all rotational input from these devices as describ
the sections Scaling ISOTRAK Records on page 13-86 and Scaling Bird Records on page
13-41.
WorldToolKit Reference Manual 13-21

Chapter 13: Sensors

es
ou can

e. You

f
tch
WTsensor_getconstraints

short WTsensor_getconstraints(
WTsensor *sensor);

This function returns a short describing the constraints currently imposed on the valu
returned by the sensor. To determine whether a particular constraint has been set, y
use the bit-wise AND operator ’&’ for the particular constraint. For example:

WTsensor *sensor;

if (WTsensor_getconstraints(sensor) & WTCONSTRAIN_XROT) {
WTmessage(“X rotations are constrained\n”);

}

Using Different Baud Rates

As stated under the section Sensor Construction and Destruction on page 13-5, WTsensor
objects can be created with either the generic sensor constructor functon – WTsensor_new
(see page 13-7) or with one of WTK's device-specific coinstructor macros like
WTspaceball_new, WTbird_new, etc.

The device-specific constructor macros create the sensor object at a specific baud rat
can see the baud rate at which a sensor is created by looking in the include file sensors.h
(in the include directory).

To use other baud rates you need to do one of the following:

• Create the sensor object with WTsensor_new rather that the device-specific
macro, passing in a serial port object constructed for that baud rate.

• Use the device-specific macro, but first edit the include file sensors.h (in the
include directory) and change the baud rate setting in the macro definition.

For sensors with DIP switches (i.e., ISOTRAK, ISOTRAK II, FASTRAK, Bird, Flock o
Birds, Extended Range Bird, and Pinch Glove) you also need to change the DIP swi
settings.
13-22 WorldToolKit Reference Manual

Sensor Name

ault, a

u can
et and

n be
ointer
Sensor Name

WTsensor_setname

void WTsensor_setname(
WTsensor *sensor,
const char *name);

This function sets the name of the specified sensor. All sensors have a name; by def
sensor’s name is “” (i.e., a NULL string).

WTsensor_getname

const char *WTsensor_getname(
WTsensor *sensor);

This function returns the name of the specified sensor.

User-specifiable Sensor Data

A void * pointer is included as part of the structure defining a sensor object, so that yo
store whatever data you wish with a sensor. The following functions can be used to s
get this field within any sensor.

WTsensor_setdata

void WTsensor_setdata(

WTsensor *sensor,
void *data);

This function sets the user-defined data field in a sensor. Private application data ca
stored in any structure. To store a pointer to the structure within the sensor, pass a p
to it, cast to a void*, as the data argument.
WorldToolKit Reference Manual 13-23

Chapter 13: Sensors

 value

sult

or. If
WTsensor_getdata

void *WTsensor_getdata(
WTsensor *sensor);

This function retrieves user-defined data stored within a sensor. You should cast the
returned by this function to the same type that was used to store the data with the
WTsensor_setdata function.

Custom Sensor Drivers

The following functions are only needed if you are writing your own sensor driver. Con
Appendix E for more on this subject.

WTsensor_setrecord

void WTsensor_setrecord(

WTsensor *sensor,
WTp3 p,
WTq q);

This function stores the current relative position and orientation record with your sens
your sensor returns absolute records, you must first call WTsensor_relativizerecord (see
below). You may also wish to apply scale factors to the sensor record using
WTsensor_setsensitivity (see page 13-11) and WTsensor_getsensitivity (see page 13-12)
before calling WTsensor_setrecord, as described in Appendix E.

WTsensor_relativizerecord

void WTsensor_relativizerecord(
WTsensor *sensor,
WTp3 absolute_p,

WTq absolute_q,
WTp3 relative_p,
WTq relative_q);
13-24 WorldToolKit Reference Manual

Custom Sensor Drivers

ing
ned

ith

nsor
n
If your sensor returns absolute records, use this function to generate the correspond
relative record. This function is passed the absolute position/orientation record obtai
from your device this time through the simulation loop, and returns (in p and q) the change
in position and orientation since last time.

Note that you must set the sensor’s absolute record (using WTsensor_setlastrecord) prior
to calling WTsensor_relativizerecord.

WTsensor_setlastrecord

void WTsensor_setlastrecord(
WTsensor *sensor,
WTp3 absolute_p,

WTq absolute_q);

This function sets the absolute record for sensors with absolute position/orientation
records. In your sensor update function, after you have set the new sensor record w
WTsensor_setrecord, store the absolute record with WTsensor_setlastrecord so that the
next record can be made relative to it the next time through the simulation loop.

WTsensor_getlastrecord

void WTsensor_getlastrecord(
WTsensor *sensor,

WTp3 absolute_p,
WTq absolute_q);

This function retrieves the position and orientation record most recently set with the
WTsensor_setlastrecord function and stores them in absolute_p and absolute_q.

WTsensor_setmiscdata

void WTsensor_setmiscdata(

WTsensor *sensor,
int data);

This function stores miscellaneous sensor data, like button press events, with the se
object. Typically, you do not need to use this function unless you are writing your ow
sensor driver.
WorldToolKit Reference Manual 13-25

Chapter 13: Sensors

turned
d
n

e

.

WTsensor_setrawdata

void WTsensor_setrawdata(
WTsensor *sensor,
void *dataptr);

This function stores raw sensor data with the sensor object. The data can then be re
with WTsensor_getrawdata. The raw data structure for a custom sensor driver is define
by the developer. You do not need to use this function unless you are writing your ow
sensor driver.

The Mouse

To create a WTK Mouse sensor object, you can call WTsensor_new, passing in the driver
functions WTmouse_open, WTmouse_close, and the desired update function — either on
of the update functions described on page 13-7 or one that you may have written.

For example, using WTsensor_new you might have:

WTsensor *mouse;
mouse = WTsensor_new(WTmouse_open, WTmouse_close,

WTmouse_move2D, NULL, 1, WTSENSOR_DEFAULT);

Note that the serial port argument for the Mouse sensor is always NULL.

Alternatively, a platform-independent macro WTmouse_new is provided for creating a
Mouse sensor object.

To use this macro, simply call:

WTsensor *mouse;
mouse = WTmouse_new();

This macro makes use of the sensor driver functions WTmouse_open, WTmouse_close,
and WTmouse_moveview2 (currently the most popular of the Mouse update functions)
13-26 WorldToolKit Reference Manual

The Mouse

Note that to use the WTmouse_move2D update function rather than WTmouse_moveview2,
you could call:

WTsensor *mouse;
WTsensor_setupdatefn(mouse, WTmouse_move2D);

Accessing Mouse Raw Data

The Mouse raw data structure stores the raw X,Y screen location of the Mouse. This
information is accessed using the WTsensor_getrawdata (see page 13-15) function, as in
the example below.

The raw data structure for the Mouse is type defined as follows:

typedef struct _WTmouse_rawdata {
WTp2 pos;

} WTmouse_rawdata;

and is accessed as follows:

WTmouse_rawdata *raw;
/* get raw x and y mouse values in screen coordinates */
raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);

WTmessage(“Mouse position: %f, %f\n”, raw->pos[X], raw->pos[Y]);

Scaling Mouse Records

Translational and rotational records for the Mouse can be scaled using the functions
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12)
respectively.
WorldToolKit Reference Manual 13-27

Chapter 13: Sensors

e
y/
Mouse Update Functions

WTmouse_drawcursor

void WTmouse_drawcursor(

WTsensor *sensor);

This function is a Mouse update function that does not allow any movement (neither
translational nor rotational). It just updates the X,Y screen location and stores it in th
sensor's raw data structure. It is particularly useful when you want to pick a geometr
polygon (corresponding to a button-click) in the scene instead of flying around.

The following function allows toggling between flying and not flying:

void FlipMouseMode(WTsensor *mouse)
{

int misc;
if (!mouse) return;

/* global variable */
movemouse ^=1;

if (movemouse)
/* enable flying */
WTsensor_setupdatefn(mouse, WTmouse_moveview2);

else
/* disable flying (enable geometry/polygon picking) */
WTsensor_setupdatefn(mouse, WTmouse_drawcursor);

misc = WTsensor_getmiscdata(mouse);

/* left mouse button to pick geometrys */
if (!movemouse && (misc & WTMOUSE_LEFTBUTTON))

/* code for picking geometries */

/* right mouse button to pick polygons */
if (!movemouse && (misc & WTMOUSE_RIGHTBUTTON))

/* code for picking polygons */
13-28 WorldToolKit Reference Manual

The Mouse

 a
ace.
te
und

ment
ow
caled

nt

ed by

ed, the
}

WTmouse_move2D

void WTmouse_move2D(
WTsensor *sensor);

This function is a Mouse update function that allows Z translation and Y rotation. It is
simple update function useful for controlling vehicle motion on a two-dimensional surf
This update function uses the Mouse position within the screen or window to genera
forward and backward motion (translation along Z) and left and right yaw (rotation aro
Y). Button presses have no effect with this update function.

Translations forward and backward along Z are determined from the vertical displace
(positive or negative) of the Mouse from a horizontal line through the screen or wind
midpoint. The translation amount scales linearly with this displacement, and is also s
by the sensor’s sensitivity (see WTsensor_setsensitivity on page 13-11).

Left and right yaw (rotations about Y) are determined from the horizontal displaceme
(positive or negative) of the Mouse from a vertical line through the screen or window
midpoint. The angular rotation scales linearly with this displacement, and is also scal
the sensor’s angular rate (see WTsensor_setangularrate on page 13-12).

WTmouse_moveview1

void WTmouse_moveview1(
WTsensor *sensor);

This function is a Mouse update function that operates in 3D without pitch or roll. It is
useful for moving a viewpoint through a 3D environment, but is a fairly simple update
function that does not pitch or roll the viewpoint. Use WTmouse_moveview2 (see below)
for a Mouse update function providing control of all six degrees of freedom.

With the Mouse attached to the viewpoint using WTmouse_moveview1 (as in the example
below), manipulating the Mouse has the following effect:

• When the Mouse cursor is centered on the screen and no buttons are press
viewpoint is stationary.
WorldToolKit Reference Manual 13-29

Chapter 13: Sensors

t; in

; in

 the

 the
es
• When the cursor is in the left half of the screen, the viewpoint shifts to the lef
the right half of the screen, the viewpoint shifts to the right.

• When the cursor is in the top half of the screen, the viewpoint moves forward
the bottom half of the screen, the viewpoint moves backward.

• When the left Mouse button is pressed, the viewpoint yaws to the left; when
right Mouse button is pressed, the viewpoint yaws to the right,

• Pressing both left and right Mouse buttons simultaneously with the cursor in
top half of the screen translates the viewpoint upward; the viewpoint translat
downward if the cursor is in the bottom half of the screen.

Here’s an example of creating a Mouse sensor object with the WTmouse_moveview1
update function and attaching it to the viewpoint:

main()
{

WTsensor *mouse;

/* initialize the universe */
WTuniverse_new(...);

/* Create the mouse sensor object.The last argument is NULL,

since the mouse, although it may be connected to the serial port,
is not treated by WorldToolKit as a serial port device */
mouse = WTsensor_new(WTmouse_open, WTmouse_close,

WTmouse_moveview1, NULL, 1, WTSENSOR_DEFAULT);

if (!mouse)
WTwarning(“Warning, couldn’t open mouse driver\n”);

/* attach the mouse sensor to the viewpoint */
WTviewpoint_addsensor(WTuniverse_getviewpoint(), mouse);

WTuniverse_go();

WTuniverse_delete();
}

13-30 WorldToolKit Reference Manual

The Mouse

ment

ctions

s
WTmouse_moveview2

void WTmouse_moveview2(
Wtsensor *sensor);

This function is a Mouse update function that supports six degrees of freedom move
of a viewpoint through a 3D environment. Unlike WTmouse_moveview1, which translates
and yaws the viewpoint, with WTmouse_moveview2 the viewpoint can also be pitched and
rolled. Also unlike WTmouse_moveview1, which moves the viewpoint whenever the
Mouse cursor is away from the center of the screen, WTmouse_moveview2 only moves the
viewpoint while the cursor is away from the center of the screen and one or more Mouse
buttons are pressed. The farther away from the middle of the screen, the faster the
movement. Maximum rotations and translations are scaled as described under the fun
WTsensor_setangularrate (see page 13-12) and WTsensor_setsensitivity (see page 13-11).

When you are using WTmouse_moveview2, with the Mouse attached to the viewpoint,
manipulating the Mouse has the following effect.

Using the left Mouse button, you can “walk” about your model. When the left button i
pressed, and the cursor is in:

• the top half of screen – move forward

• the bottom half of screen – move backward

• the left half of screen – yaw left

• the right half of screen – yaw right

When the right button is pressed, and the cursor is in:

• the top half of screen – move up

• the bottom half of screen – move down

• the left half of screen – pan left

• the right half of screen – pan right

When the left and right buttons are pressed, and the cursor is in:

• the top half of screen – pitch up

• the bottom half of screen – pitch down

• the left half of screen – roll left
WorldToolKit Reference Manual 13-31

Chapter 13: Sensors

d.

ed, or

ify
ally,

s raw
• the right half of screen – roll right

The viewpoint is stationary when neither the left nor the right Mouse button is presse

The macro WTmouse_new creates a Mouse sensor object that uses the
WTmouse_moveview2 update function.

Writing Your Own Mouse Update Function

When creating a Mouse sensor object, you can use one of the update functions provid
you can write your own. This is not difficult. Your update function should first call
WTmouse_rawupdate (see below) to obtain the Mouse’s raw data. It should then spec
how the raw data is to be transformed into the 3D position and orientation record. Fin
your update function must store this record with the sensor by calling WTsensor_setrecord
(see page 13-24). See Example 1: Update Function for the Mouse on page E-8.

WTmouse_rawupdate

void WTmouse_rawupdate(
WTsensor *sensor);

This function obtains the X, Y screen location of the Mouse and stores it in the sensor’
data structure. This information can be accessed with WTsensor_getrawdata (see page
13-15). See also Accessing Mouse Raw Data on page 13-27.

Mouse button presses are also read by this function and can be accessed with
WTsensor_getmiscdata (see page 13-15). See also Mouse Defined Constants below.
13-32 WorldToolKit Reference Manual

The Mouse

ves

Mouse Defined Constants

Mouse button presses can be detected in WTK using the function WTsensor_getmiscdata
(see page 13-15), examining the result for the following defined constants (bits). The
constants for the Mouse middle button are used only on three-button mice.

• Button held down . This is generated each frame that the user holds a button
down. These events are defined as: WTMOUSE_LEFTDOWN,
WTMOUSE_MIDDLEDOWN, and WTMOUSE_RIGHTDOWN.

• Button transitioned down . This generates a single event each time the button
moves from up to down. These events are defined as: WTMOUSE_LEFTBUTTON,
WTMOUSE_MIDDLEBUTTON, and WTMOUSE_RIGHTBUTTON.

• Button transitioned up . This generates a single event each time the button mo
from down to up. These events are defined as: WTMOUSE_LEFTUP,
WTMOUSE_MIDDLEUP, and WTMOUSE_RIGHTUP. Note that button up events
may not be available on all systems.

• Button double-clicked . This generates a single event each time the Mouse is
double-clicked. These events are defined as: WTMOUSE_LEFTDBLCLK,
WTMOUSE_MIDDLEDBLCLK, and WTMOUSE_RIGHTDBLCLK.

The following is an example of accessing Mouse button events.

void read_mouse_record(WTsensor *mouse)
{

int buttons;

FLAG leftbutton, rightbutton, bothbuttons;
FLAG leftdown, rightdown;

/* get button press data */

buttons = WTsensor_getmiscdata(mouse);

/* which buttons were just pressed? */
leftbutton = buttons & WTMOUSE_LEFTBUTTON;

rightbutton = buttons & WTMOUSE_RIGHTBUTTON;
bothbuttons = leftbutton && rightbutton;

/* which buttons are currently down */

leftdown = buttons & WTMOUSE_LEFTDOWN;
WorldToolKit Reference Manual 13-33

Chapter 13: Sensors

pdate
 is

e to
rightdown = buttons & WTMOUSE_RIGHTDOWN;
}

Dragging Objects Using a Mouse

If you wanted to use a mouse to drag picked objects, you will need to write a mouse u
function that reports (as XY translation) the movement of the mouse when the button
held down. Here's an example:

void mouse_drag(WTsensor *sensor)
{

 static WTp2 last_position;
 WTp2 diff;
 WTmouse_rawdata *raw;

 WTp3 p;
 WTq q;
 WTp3_init(p);

 WTq_init(q);
 WTmouse_rawupdate(sensor);
 raw = (WTmouse_rawdata *)WTsensor_getrawdata(sensor);

 if (WTsensor_getmiscdata(sensor) & WTMOUSE_LEFTDOWN) {
 diff[X] = raw->pos[X] - last_position[X];
 diff[Y] = raw->pos[Y] - last_position[Y];

}
 WTp2_copy(raw->pos, last_position);
 WTsensor_setrecord(sensor, p, q);

}

By using the above mouse update function instead of the standard
"WTmouse_moveview2" function, and writing object-picking code to attach the mous
picked objects, you can use the mouse to pick an object and drag it in the window.
13-34 WorldToolKit Reference Manual

The Mouse

UE

nter

he
Checking the Input Focus Window for the Mouse

WTmouse_inwindow

FLAG WTmouse_inwindow(

WTsensor *mouse, WTwindow *w)

This function determines whether the the mouse is within a WTK window. It returns TR
if the mouse is within the WTK window; otherwise, it returns FALSE.

WTmouse_whichwindow

WTwindow *WTmouse_whichwindow(
WTsensor *mouse)

This function determines which WTK window (if any) the mouse is in and returns a poi
to that window. It returns NULL if the mouse is not in any WTK window.

The above functions are especially useful in applications having multiple windows. T
following example illustrates this concept. It returns TRUE if it picks a polygon in a
particular window.

FLAG Window_Pickpoly(WTwindow *w)
{

int x0, y0, width, height;

WTpoly *poly;
WTnode *node = NULL;
WTp3 p;

WTp2 point;

/* check if mouse is in the window */
if (WTmouse_inwindow(mouse, w) {

WTwindow *current;

/* get the current window */
current = WTmouse_whichwindow(mouse);

/* check if the current window is the window that was passed in */
WorldToolKit Reference Manual 13-35

Chapter 13: Sensors

ll. The
if (w==current) {
WTwindow_getposition(current, &x0, &y0, &width, &height);
point[X] = width/2.f;

point[Y] = height/2.f;

/* pick the frontmost polygon in the center of current window */
poly = WTwindow_pickpolygon(current, point, NULL, p);

/* if we picked a polygon, return TRUE */
if (poly)

return TRUE

else
return FALSE;

}

else
return FALSE;

}

else
return FALSE;

}

Using the Mouse as a Trackball

WTK provides functions that enable the use of the Mouse sensor object as a trackba
WTK demo flipobj.c uses the Mouse as a trackball.

Following are the update functions for using the Mouse as a trackball:

WTmouse_trackball

void WTmouse_trackball(
WTsensor *sensor);
13-36 WorldToolKit Reference Manual

The Mouse

g

ctor
 the
e

. The
ball,
 that

d 1.0.

s. The
WTmouse_trackballvpoint

void WTmouse_trackballvpoint(
WTsensor *sensor);

Use the function WTmouse_trackball if connecting the trackball to the object. If connectin
the trackball to the viewpoint, use the function WTmouse_trackballvpoint.

To create a Mouse sensor object as a trackball use either the generic sensor constru
functon – WTsensor_new (see page 13-7) with one of the functions described above as
update function or use the macro WTmouse_new and set the update function to one of th
functions described above using WTsensor_setupdatefn (see page 13-10).

When using the Mouse as a trackball you can control the drift, snap angle, and snap
default trackball drift value is 1.0. This means that if you provide a rotation to the track
it goes into continuous rotation and doesn't stop. A drift value of less than 1.0 means
every frame the rotation speed decreases and finally becomes zero.

The following functions allow you to control the drift of the trackball:

WTmouse_settrackballdrift

void WTmouse_settrackballdrift(

WTsensor *sensor,
float drift);

This function is used to set the drift of the trackball. Valid values are between 0.0 an

WTmouse_gettrackballdrift

float WTmouse_gettrackballdrift(

WTsensor *sensor);

This function returns the current drift value of the trackball.

The snap angle (specified in radians) allows you to set the increment value of rotation
default trackball snap angle value is 0.0. This allows for a smooth rotation.
WorldToolKit Reference Manual 13-37

Chapter 13: Sensors

, the
is

 snap

 the
The following functions allow you to control the snap angle of the trackball:

WTmouse_settrackballsnapangle

void WTmouse_settrackballsnapangle(
WTsensor *sensor,
float snapangle);

This function is used to set the snap angle of the trackball. When using this function
trackball drift value must be set to 0.0. If the snap angle is greater than 0.0, rotation
allowed around one axis only at one time.

WTmouse_gettrackballsnapangle

float WTmouse_gettrackballsnapangle(
WTsensor *sensor);

This function returns the current snap angle of the trackball.

The snap allows you to set the increment value of translations. The default trackball
value is 0.0. This allows for smooth translation.

The following functions allow you to control the snap value of the trackball:

WTmouse_settrackballsnap

void WTmouse_settrackballsnap(

WTsensor *sensor,
float snap);

This function is used to set the snap value of the trackball. When using this function,
trackball drift value must be set to 0.0.
13-38 WorldToolKit Reference Manual

Ascension Bird

gree-

This
 unit

d.
WTmouse_gettrackballsnap

float WTmouse_gettrackballsnap(
WTsensor *sensor);

This function returns the current snap value of the trackball.

To reset the trackball use the following function:

WTmouse_trackballreset

void WTmouse_trackballreset (

WTsensor *sensor);

If an object is continuously rotating, you can use this function to stop the rotation.

Ascension Bird

The Bird from Ascension Technology Corporation is an electromagnetic-based six de
of-freedom sensor that measures absolute position and orientation.

To create a Bird sensor object on serial port 1, you can use the macro call:

WTsensor *bird;
bird = WTbird_new(SERIAL1, 1);

This macro makes use of the sensor driver functions WTbird_open, WTbird_close, and
WTbird_update. It creates the Bird sensor object running at 9600 baud.

WTbird_new takes a second argument specifying the unit number of the Bird to open.
value is 1 for a single Bird. (Note that in the Ascension documentation a stand-alone
is number 0, but in WTK it is number 1.)

Following are the DIP switch settings for the Bird sensor objects running at 9600 bau

Older Birds OFF ON OFF OFF OFF OFF OFF OFF

Newer Birds OFF ON ON OFF OFF OFF ON OFF
WorldToolKit Reference Manual 13-39

Chapter 13: Sensors

ple,
 Bird
nd

es
tly
ful

in the
 of
as

n. If

must
ers.

 the

 panel

The three left-most DIP switch settings on each Bird are for the baud rate. For exam
9600 is OFF ON ON and 19200 is ON OFF OFF. The next four DIP switches on each
indicate unit number: unit one is OFF OFF OFF ON, unit two is OFF OFF ON OFF, a
so on. The right-most DIP switch is normally OFF.

Consult your Bird reference manual if you are uncertain of how to set your Bird DIP
switches. A single Bird should be configured with a Bird address of 1, not 0.

When you call WTbird_new to construct a new Bird sensor object, the openfn for the device
is automatically called. Part of the function of the openfn for this device is to calibrate the
sensor, which consists of obtaining an initial position and orientation record. This tak
several seconds, during which the device should not be moved. Records subsequen
generated by the updatefn are with respect to this initial reference frame. It may be use
in your application to let the user know that the device is about to be calibrated. For
example, you might want to have a print statement:

WTsensor *sensor;
WTmessage(“About to calibrate/initialize Bird...\n”);
sensor = WTbird_new(SERIAL1,1);

WTmessage(“Initialization complete.\n”);

The coordinate frame of this sensor is the same as for the ISOTRAK and is defined
WTK driver functions as follows. If the receiver cube is placed “flat-end down” in front
you with the cable from the cube coming out the back of the cube toward you, then (
illustrated in figure 13-5 on page 13-86 for the Polhemus ISOTRAK) the Z axis of the
device points straight ahead, the X axis points to the right, and the Y axis points dow
this coordinate frame is not appropriate for your application, the function WTsensor_rotate
(see page 13-20) can be used to define another coordinate frame for the device.

If a receiver is plugged into the Bird system, and the receiver is in the fly mode, you
initialize it. This has to be done even if your application does not use all of the receiv
The Bird will not return data for any of the receivers unless you have a call to WTbird_new
for every connected receiver.

If your bird fails to initialize, you may need to use the WTBIRDDELAY environment
variable to force WTK to wait longer for the bird to respond before giving up. Refer to
Environment Variables Appendix for more information.

The Ascension 6DOF mouse is used like the standard receiver. It plugs into the back
of the receiver box and is initialized by a call to WTbird_new. The buttons on the mouse are
13-40 WorldToolKit Reference Manual

Ascension Bird

sensor

cord
 in

n and

n

of the

ed in
identified by WTBIRD_LEFTBUTTON, WTBIRD_MIDDLEBUTTON, and
WTBIRD_RIGHTBUTTON.

Accessing Bird Raw Data

WTK does not provide a separate raw data structure for this device. The most recent
record can be obtained using WTsensor_getlastrecord (see page 13-25). This function
retrieves the absolute record in WTK coordinates with no scale factors applied. This re
is called “absolute” because it describes a location in 3D space rather than a change
location since the last frame. This absolute record is, however, relative to the positio
orientation of the device when the device was opened by WTK.

The following function, WTbird_getabsoluterecord, retrieves the absolute sensor locatio
relative to the transmitter.

WTbird_getabsoluterecord

int WTbird_getabsoluterecord(
WTsensor *sensor,

WTp3 p,
WTq q);

This function obtains the most recent absolute position and orientation record for the
specified Bird sensor in relation to the Bird transmitter, and places them in p and q. These
values are in WTK coordinates.

Scaling Bird Records

Translation records for the Bird can be scaled using the function WTsensor_setsensitivity
(see page 13-11). It is often useful, for example, to scale sensor inputs with the size
scene.

Unlike translation records, however, orientation records from the Bird cannot be scal
the WTK update functions for this device.
WorldToolKit Reference Manual 13-41

Chapter 13: Sensors

ate

to the
ctor

reby
 the

CRT

It is possible to turn off all rotational input from these devices by writing your own upd
function which nullifies the orientation record. Scaling ISOTRAK Records on page 13-86
includes an example of how to do this.

Bird Update Function

WTbird_update

void WTbird_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after relativizing it and then applying any translational scale fa
that may have been set with WTsensor_setsensitivity (see page 13-11).

The macro WTbird_new creates a Bird sensor object that uses the WTbird_update function
and is recommended for most users.

Syncing the Bird to the Monitor

WTbird_setsync

void WTbird_setsync(
WTsensor *bird,

short synctype);

This function sets a Bird to synchronize its scanning frequency with that of a CRT, the
reducing the amount of interference. To activate this capability, set up your Bird with
appropriate attachment and call this function. The synctype argument is typically 2. If the
LED display on the Bird indicates an error message, it is probably not picking up the
frequency clearly. Consult your Bird documentation for more information about CRT
synchronization and about interpreting error messages from the Bird.
13-42 WorldToolKit Reference Manual

Ascension Bird

ird

ing.
each
re the

value
Setting the Bird Hemisphere

The functions in this section apply to the Bird, Flock of Birds (see page 13-51), and B
with Extended Range Controller (see page 13-51).

WTbird_sethemisphere

void WTbird_sethemisphere(

WTsensor *sensor,
int hemisphere);

This function tells a Bird sensor in which hemisphere the Bird’s receiver will be navigat
The shape of the magnetic field emitted by the Bird transmitter is symmetrical about
of the axes of the transmitter. For this reason, the Bird needs to know which hemisphe
receiver is in to provide correct translation records.

The hemisphere argument should be one of the following defined constants:

WTBIRD_FORWARD side of Bird away from the transmitter cable

WTBIRD_AFT opposite side from WTBIRD_FORWARD

WTBIRD_UPPER top side of Bird transmitter

WTBIRD_LOWER bottom side of Bird transmitter

WTBIRD_LEFT while facing WTBIRD_FORWARD, the left side of the
transmitter

WTBIRD_RIGHT while facing WTBIRD_FORWARD, the right side of the
transmitter

When you call this function, the Bird’s receiver must be in the indicated hemisphere.

WTbird_gethemisphere

int WTbird_gethemisphere(
WTsensor *sensor);

This function returns the hemisphere currently set for the specified Bird sensor. The
returned is one of the defined constants listed above under WTbird_sethemisphere.
WorldToolKit Reference Manual 13-43

Chapter 13: Sensors

rrent

river
mode
 the
lows
ity for

at if
 the
ssarily

 Due
r’s
not
lutions

d by

ate
WTbird_autohemisphere

void WTbird_autohemisphere(
WTsensor *sensor);

This function automatically sets the hemisphere for the Bird receiver based on its cu
location. The Bird transmitter must be located in the forward hemisphere when this
function is called.

There are some extreme usage circumstances where WTK may set the hemisphere
incorrectly. Therefore, we recommend that you include the ability to reset the Bird
hemisphere interactively — for example, using keyboard input as a trigger for calling
WTbird_sethemisphere.

Streaming-Mode Flock of Birds Driver

WTK also includes a specialized, high performance, streaming-mode Flock of Birds d
that is not intended for generalized usage across multiple platforms. The streaming-
FOB driver is implemented only for the IRIX 6.X operating system and is designed for
Extended Range Transmitter FOB. This driver utilizes multi-threading and therefore al
the FOB to be run in streaming-mode. This mode of operation eliminates the necess
frame by frame communication between WorldToolKit and the FOB hardware.
WorldToolKit simply retrieves the most current data available from the FOB thread’s
buffer. The benefits of this decrease in sensor latency usually far outweights the two
drawbacks associated with the streaming-mode FOB driver. The first drawback is th
you are running on a single-processor machine the operating system must schedule
execution of multiple threads across the same processor; however, this does not nece
cause a large impact upon your application’s performance. The second and largest
inconvenience resides in the driver’s inability to use automatic hemisphere tracking.
to the possibly large number of sensor records being sent from the FOB to the drive
buffer between retrievals by the main WorldToolKit application thread, the driver can
accurately predict when a hemisphere has been crossed. There are two possible so
for this quandary. (1) Simply restrict your movement to one hemisphere as you woul
default in a CAVE or similar Spatially Immersive Display system or, (2) use the
WTflock_sethemisphere function during your program’s execution to dynamically upd
the FOB in accordance with your application’s possible range of movement.
13-44 WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

 bird

The
To create a new Flock sensor object you simply follow the guidelines of the previous
driver.

WTsensor *FOB;
FOB = WTflock_new(SERIAL1,1);
 if (FOB==NULL){

 WTerror("Could not open flock\n");
 }

You may of course specify a valid specific serial port if you prefer, for example:

FOB = WTflock_new("/dev/ttyd3",1);

All of the streaming-mode FOB functions are prefixed with the class name WTflock.
functions provided for use with the streaming-mode driver are described below.

Opening and closing the FOB

WTflock_open

int WTflock_open(
WTsensor *sensor);

Corresponds to the WTbird_open function.

WTflock_deviceopen

WTserial *WTflock_deviceopen(
char *device,
int baud,

char parity,
int databits,
int stopbits,

int buffersize);
WorldToolKit Reference Manual 13-45

Chapter 13: Sensors

t
ion

pon
u

tially

tation
g used
iver
You should only be making this function call when not using the WorldToolKit defaul
WTflock_new macro. Example arguments for this function can be found in the definit
of the WTflock_new macro found below and in wtk/include/flock.p.

WTflock_close

void WTflock_close(
WTsensor *sensor);

Corresponds to the WTbird_close function.

Calibrating/Initializing

WTflock_getdefaulthemisphere

int WTflock_getdefaulthemisphere(void);

Returns the FOB startup default hemisphere.

The returned value represents the currently set hemisphere for ALL FOB receivers u
their initialization. The default setting internal to WTK is WTFLOCK_FORWARD. Yo
can change the initialization hemisphere for a receiver with WTflock_setdefaulthemisphere.

WTflock_setdefaulthemisphere

FLAG WTflock_setdefaulthemisphere(
int hemisphere);

Returns success in setting the default startup hemisphere (useful with multiple FOB
configurations.)

This function is useful in allowing you to initialize multiple receivers in differing
hemispheres. For example, if you were using the FOB Streaming Mode driver in a Spa
Immersive Display (such as a CAVE) you would most probably be using two FOB
receivers. The first FOB receiver would be used to track the user’s head position/orien
whereas the second would be used to track a navigational device. If the receiver bein
for head tracking was lying in a different FOB hemisphere in the CAVE than the rece
13-46 WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

ell.

 with
R.

etic
et of
n
lue

ese
n
for tracking the navigational device, you would initialize them both in different
hemispheres. To do so, set the default hemisphere for the first receiver, initialize the
receiver, set the default hemisphere for the second receiver and then initialize it as w

WTflock_gethemisphere

int WTflock_gethemisphere(
WTsensor *sensor);

Returns the current hemisphere setting for a sensor. See WTbird_gethemisphere.

WTflock_sethemisphere

FLAG WTflock_sethemisphere(

WTsensor *sensor,
int hemisphere);

Returns success in setting the current hemisphere for a sensor. See WTbird_sethemisphere.
It is important to note that the hemispheric constants for the FOB driver are prefixed
WTFLOCK_ (not WTBIRD_), i.e. WTFLOCK_UPPER as opposed to WTBIRD_UPPE

WTflock_getcrtsyncdata

FLAG WTflock_getcrtsyncdata(

WTsensor *sensor,
float *voltage,
float *rate);

Returns success in retrieving the current CRT synchronization settings.

This function aids you in finding the ‘sweet spot’ for your FOB amid the electro-magn
noise introduced into the device by operating a receiver or transmitter within a few fe
a magnetically deflected Cathode Ray Tube (a typical monitor). The value returned i
voltage represents the voltage proportional to your CRT’s vertical scan signal. The va
returned in rate is the rate at which your monitor is vertically refreshing the screen. Th
values are very useful in determining what mode of operation to use with the functio
WTflock_setcrtsync.
WorldToolKit Reference Manual 13-47

Chapter 13: Sensors

 for
ing

the

te

ote: If
he
Note: If the function returns successfully and contains a valid value for voltage but not
rate, your monitor is refreshing at a rate less than 31Hz which precludes your us
the syncing features of the Streaming Mode FOB driver.

WTflock_setcrtsync

FLAG WTflock_setcrtsync(
WTsensor *sensor,
int mode);

Corresponds to the WTbird_setsync function.

WTflock_resetorigin

FLAG WTflock_resetorigin(
WTsensor *sensor);

Returns TRUE if the FOB’s current position and orientation values have been set to
FOB’s original position and orientation values.

Updating/Getting sensor Position/Orientation

WTflock_update

void WTflock_update(
WTsensor *sensor);

Corresponds to the WTbird_update function. Note: orientations are absolute. This upda
function relativizes the current absolute position of the FOB and then applies the
translational scale that may have been set by the function WTsensor_setsensitivity. Once
the record has been relativized and scaled it is stored in the sensor object’s record. N
you design and implement your own update function, you must relativize and scale t
records yourself.
13-48 WorldToolKit Reference Manual

Streaming-Mode Flock of Birds Driver

and

hen
’s

/

en
’s

WTflock_getorgmat

FLAG WTflock_getorgmat(
WTsensor *sensor,
WTm3 mat);

This function is used to retrieve the FOB sensor’s original position/orientation matrix
place it in mat. This matrix, which is set at FOB initialization, is updated only upon
subsequent calls to WTflock_resetorigin. The function returns TRUE if successful.

WTflock_getlastmat

FLAG WTflock_getlastmat(
WTsensor *sensor,
WTm3 mat);

This function is used to copy the FOB’s last stored absolute sensor matrix into mat. W
using the WTflock_update function, each iteration of the simulation loop updates the FOB
absolute position/orientation matrix with the current, unrelativized, unscaled position
orientation matrix excepting an error case. The function returns TRUE if successful.

WTflock_getlastpos

FLAG WTflock_getlastpos(
WTsensor *sensor,
WTp3 p);

This function retrieves the FOB’s last stored absolute position and places it in p. Wh
using the WTflock_update function, each iteration of the simulation loop updates the FOB
absolute position record with the current, unrelativized, unscaled position/orientation
matrix excepting an error case. The function returns TRUE if successful.
WorldToolKit Reference Manual 13-49

Chapter 13: Sensors

es it
ror

led
rror
ed.

tion
l.
WTflock_getabsmat

FLAG WTflock_getabsmat(
WTsensor *sensor,
WTm3 mat);

This function retrieves the FOB’s current abolute position/orientation matrix and stor
in mat. This function will always contain a valid matrix for you to use as during an er
case it is not updated. This function returns TRUE if successful.

WTflock_getabspos

FLAG WTflock_getabspos(
WTsensor *sensor,
WTp3 p);

This function is used to obtain the FOB’s current unreletavized, absolute, and unsca
position and store it in p. The WTp3 returned should always be valid as during an e
case, the last good matrix is the current matrix from which the position will be obtain
This function returns TRUE if successful.

WTflock_getabsoluterecord

FLAG WTflock_getabsoluterecord(
WTsensor *sensor,
WTp3 p,

WTq q);

This function retrieves the last absolute, unreletavized, unscaled position and orienta
values stored in the sensor object’s record. This function returns TRUE if successfu
13-50 WorldToolKit Reference Manual

Ascension Extended Range Bird

and

); the

k in

witch

 ERT
RC

icate
Default sensor creation macro for FOB

#define WTflock_new(port,unit) \

WTsensor_new(WTflock_open,WTflock_close,WTflock_update, \
WTflock_deviceopen(port,38400,’N’,8,1,2600),unit,WTSENSOR_DEFAULT)

Ascension Flock of Birds

Ascension Technology created Flock of Birds to allow users to attach multiple Birds
communicate with them over a single serial port.

Support for a Flock of Birds is already part of the Bird sensor driver (see page 13-39
macro WTbird_new takes a unit argument. With a single Bird, unit is always 1, but with a
Flock, unit specifies which Bird to address. You should always open the birds of a floc
sequential order, like this:

WTsensor *b1, *b2, *b3;
b1 = WTbird_new(SERIAL1, 1);
b2 = WTbird_new(SERIAL1, 2);

b3 = WTbird_new(SERIAL1, 3);

This creates a flock having 3 birds running at 9600 baud. See page 13-39 for the DIP s
settings. There can be a maximum of 14 birds in a flock.

Additional WTK functions for the Bird—for example, for using the Extended Range
Controller or setting the Bird hemisphere—are described in Ascension Extended Range
Bird below, and Setting the Bird Hemisphere on page 13-43.

Ascension Extended Range Bird

The Bird sensors normally have a range of up to 3 feet away from the transmitter.
Ascension offers an extended range transmitter (ERT) allowing a range of 8 feet. The
works with a special Bird controller called the Extended Range Controller (ERC). The E
will be the first unit in your bird arrangement. The ERC's serial port is used to commun
WorldToolKit Reference Manual 13-51

Chapter 13: Sensors

other

ed
tricted
eivers

. As
,
with the whole flock. See your ERC documentation for how to connect the ERC to the
birds in your flock.

When you use the Extended Range Bird, you must call the function WTercbird_new instead
of WTbird_new to initialize a bird. Before you initialize the bird, WTK needs to know
which serial port the bird is connected to. You must use the WTercbird_init macro (with the
port number) to pass this information to WTK.

You must use consecutive addresses (starting at 1) to identify the birds. The Extend
Range Controller (ERC) does not have to be the master unit, and is therefore not res
to an address of 1. For example, if you have the ERC at address 3, and two bird rec
at address 1 and 2 respectively the initialization function calls should be:

/* inform WTK that you are using an ERC at port X */
WTercbird_init(SERIAL_X);
/* initialize the receivers at addresses 1 and 2 */

WTercbird_new(SERIAL_X, 1);
WTercbird_new(SERIAL_X, 2);

If instead, the ERC is set to address 1, the initialization function calls would be:

WTercbird_init(SERIAL_X);

WTercbird_new(SERIAL_X, 2);
WTercbird_new(SERIAL_X, 3);

You may notice that the WTK sensor unit numbers correspond to the bird addresses
with the regular bird, you must call WTercbird_new for all the receiver units in the system
even if you are not using them.

Accessing Extended Range Bird Raw Data

See Accessing Bird Raw Data on page 13-41.

Scaling Extended Range Bird Records

See Scaling Bird Records on page 13-41.
13-52 WorldToolKit Reference Manual

CIS Graphics Geometry Ball, Jr.

t sits

 call:

in the
you

oints
inate

ll, Jr.

 both
ve
Extended Range Bird Update Function

See Bird Update Function on page 13-42.

CIS Graphics Geometry Ball, Jr.

The CIS Graphics Geometry Ball, Jr. is a 6 degree-of-freedom serial port device tha
on the desktop. It responds to both forces and torques, which can be mapped into
translations and rotations in 3D.

To create a Geometry Ball, Jr. sensor object on serial port 1, you can use the macro

WTsensor *geoball;

geoball = WTgeoball_new(SERIAL1);

This macro makes use of the sensor driver functions WTgeoball_open, WTgeoball_close,
and WTgeoball_update. It creates the geoball sensor object running at 9600 baud.

The coordinate frame of this sensor is the same as for the Spaceball and is defined
WTK driver functions as follows. If the device is placed on a desk or table in front of
with the cable coming out the back of the device oriented away from you, then, (as
illustrated in figure 13-6 on page 13-100 for the Spaceball) the Z axis of the device p
straight ahead, the X axis points to the right, and the Y axis points down. If this coord
frame is not appropriate for your application, the function WTsensor_rotate (see page
13-20) can be used to define the device’s coordinate frame.

Accessing Geometry Ball, Jr. Raw Data

WTK maintains a data structure containing the raw data read from the Geometry Ba
This information is accessed using WTsensor_getrawdata (see page 13-15) as in the
example below.

The raw data structure for the Geometry Ball, Jr. is type defined as follows. Note that
p and w are in the original Geometry Ball, Jr. coordinates and that no scale factors ha
been applied to the values.
WorldToolKit Reference Manual 13-53

Chapter 13: Sensors

e

to the
, and

tion
typedef struct _WTgeoball_rawdata {
char p[3]; /* absolute position */
char w[3]; /* euler angles */

} WTgeoball_rawdata;

Geometry Ball, Jr. raw data is accessed as follows:

WTsensor *geoball;
WTgeoball_rawdata *raw;

raw = (WTgeoball_rawdata *)WTsensor_getrawdata(geoball);
WTmessage(“Position: %c, %c, %c\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %c, %c, %c\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Geometry Ball, Jr. Records

Translational and rotational records for the Geometry Ball, Jr. can be scaled using th
functions WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see
page 13-12) respectively.

Geometry Ball, Jr. Update Function

WTgeoball_update

void WTgeoball_update(

WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after transforming the record to the WTK coordinate convention
applying any scale factors that may have been set with WTsensor_setsensitivity (see page
13-11) and WTsensor_setangularrate (see page 13-12).

The macro WTgeoball_new creates a Geometry Ball, Jr. sensor object that uses the func
WTgeoball_update and is recommended for most users.

See Example 2: Driver for the Geometry Ball Jr. on page E-10.
13-54 WorldToolKit Reference Manual

Fakespace BOOM Devices

es

d and

ermit
s.

.
Geometry Ball, Jr. Defined Constants

Button presses for a Geometry Ball, Jr. can be detected using WTsensor_getmiscdata (see
page 13-15) together with the following defined constants:

• Button transitioned down . This event is generated each time the button mov
from up to down. These events are defined as: WTGEOBALL_LEFTBUTTON and
WTGEOBALL_RIGHTBUTTON.

Checking the Serial Port for Geometry Ball, Jr.

WTgeoball_present

FLAG WTgeoball_present(
WTserial * serial);

This function checks whether there is a live Geometry Ball, Jr. sensor object at the
particular serial port corresponding to the serial port object (which is given as input).

Fakespace BOOM Devices

The monochrome BOOM, two-color BOOM2C (which uses a color space based on re
green), and full-color BOOM3C by Fakespace are CRT-based stereoscopic viewing
devices attached to a 6 degree-of-freedom articulated arm. The six joints in the arm p
the BOOM viewer to be moved and oriented within a sphere of about six feet in radiu

WTK’s BOOM sensor driver functions WTboom_open, WTboom_close, and
WTboom_update manage the serial port communications with the BOOM to generate
correct position and orientation records based on the configuration of the BOOM arm

To create a BOOM sensor object on serial port 1, you can use the macro call:

WTsensor *boom;
WTmessage(“About to create BOOM sensor ...\n”);

boom = WTboom_new(SERIAL1);
WorldToolKit Reference Manual 13-55

Chapter 13: Sensors

aud.

. The

efore
he
if (!boom)
WTwarning(“Couldn’t open BOOM\n”);

else

WTmessage(“Calibration complete.\n”);

This macro makes use of the sensor driver functions WTboom_open, WTboom_close, and
WTboom_update to generate correct position and orientation record based on the
configuration of the BOOM arm. It creates the BOOM sensor object running at 9600 b

Accessing BOOM Raw Data

WTK maintains a data structure containing the raw data read from the BOOM device
information is accessed using the function WTsensor_getrawdata (see page 13-15). The
BOOM raw data structure stores the angular readings from the BOOM arm.

The raw data structure for the BOOM is type defined as follows:

typedef struct _WTboom_rawdata {

short angles[6];
} WTboom_rawdata;

and is accessed as follows:

WTboom_rawdata *raw;

raw = (WTboom_rawdata *)WTsensor_getrawdata(boom)

Scaling BOOM Records

The sensitivity of the BOOM (as set by WTsensor_setsensitivity on page 13-11) determines
the magnitude of the translation record generated by motion of the BOOM arm. Ther
by setting the sensor sensitivity, you can affect the apparent range of motion within t
virtual environment. There is no angular adjustment for the BOOM (i.e., the function
WTsensor_setangularrate has no effect).
13-56 WorldToolKit Reference Manual

Fakespace BOOM Devices

 array
e
 data

:

he
BOOM Update Function

WTboom_update

void WTboom_update(

WTsensor *sensor);

This update function reads the raw angular data from the BOOM arm into the angles
in the WTboom_rawdata structure. angles[0] refers to the angle of the first joint above th
base. Refer to the BOOM documentation for more information about interpreting the
read.

The macro WTboom_new creates a BOOM sensor object that uses the WTboom_update
function and is recommended for most users.

BOOM Defined Constants

The BOOM also supports two push-button switches mounted on the ends of the grip
handles. Events from these functions can be accessed using the function
WTsensor_getmiscdata to determine whether the BOOM buttons are currently pressed

• Button held down . This event is generated each frame that the button is held
down. These events are defined as: WTBOOM_LEFTBUTTON, and
WTBOOM_RIGHTBUTTON.

Following is an example of accessing BOOM button events to drive motion through t
virtual world:

WTsensor *boom;
WTviewpoint *view;
WTp3 trans;

/* Obtain the viewpoint direction vector and scale it to a fraction of the
size of the universe being navigated. */
view = WTuniverse_getviewpoints();

WTviewpoint_getdirection(view, trans);
WTp3_mults(trans, WTnode_getradius(WTuniverse_getrootnodes()));
WorldToolKit Reference Manual 13-57

Chapter 13: Sensors

 the

 Use

t
d. The

p
f the
as
/* If the left BOOM button is pressed, translate the viewpoint
along the viewpoint direction */
if (WTsensor_getmiscdata(boom)&WTBOOM_LEFTBUTTON)

WTviewpoint_translate(view, trans, WTFRAME_WORLD);

/* Use the right BOOM button to move backwards */
if (WTsensor_getmiscdata(boom)&WTBOOM_RIGHTBUTTON) {

WTp3_invert(trans, trans);
WTviewpoint_translate(view, trans, WTFRAME_WORLD);

}

The defined constants used with BOOMs configured with a joystick are described in
following section.

BOOM Joystick

Some BOOMs are configured with a joystick rather than buttons built into the handle.
the macro WTboom_newjoystick (which references the update function
WTboom_joystickupdate) for instantiating such a BOOM sensor object, rather than
WTboom_new.

The defined constants WTBOOM_LEFT, WTBOOM_RIGHT, WTBOOM_UP,
WTBOOM_DOWN are provided for use with the function WTsensor_getmiscdata (see page
13-15) to determine the current state of the joystick. In addition, the defined constan
WTBOOM_RESET can be used to determine whether the reset button has been presse
joystick has nine possible positions that can be determined by calling
WTsensor_getmiscdata. These positions are: up, down, right, left, up and to the right, u
and to the left, down and to the right, down and to the left, and centered (i.e., none o
above). For example, to test the various possibilities, your code might be structured
follows:

WTboom *boom;
int data;

data = WTsensor_getmiscdata(boom);
if (data&WTBOOM_LEFT) {

if (data&WTBOOM_UP)

WTmessage(“joystick is up and to the left\n”);
13-58 WorldToolKit Reference Manual

Fakespace Pinch Glove System

aning

 baud

ttings
else if (data&WTBOOM_DOWN)
WTmessage(“joystick is down and to the left\n”);

else

WTmessage(“joystick is to the left\n”);
}
else if (data&WTBOOM_RIGHT) {

if (data&WTBOOM_UP)
WTmessage(“joystick is up and to the right\n”);

else if (data&WTBOOM_DOWN)

WTmessage(“joystick is down and to the right\n”);
else

WTmessage(“joystick is to the right\n”);

}
else if (data&WTBOOM_UP)

WTmessage(“joystick is up\n”);

else if (data&WTBOOM_DOWN)
WTmessage(“joystick is down\n”);

else

WTmessage(“joystick is centered\n”);

Fakespace Pinch Glove System

The Pinch Glove provides a way of recognizing natural gestures that have natural me
to the user. For example a pinching gesture can be used to grab a virtual object.

To create a Pinch Glove sensor object on serial port 1 running at 9600 baud (default
rate setting), you can use the macro call:

WTsensor *pinch;
pinch = WTpinch_new(SERIAL1, 9600);

This macro makes use of the sensor driver functions WTpinch_open, WTpinch_close, and
WTpinch_update.

The right-most 3 switches are for setting baud rates. Following are the DIP switch se
(for the right-most 3 switches) for the Pinch Glove running at 9600 baud:
WorldToolKit Reference Manual 13-59

Chapter 13: Sensors

P
Pinch Glove OFF OFF ON

Consult your Pinch Glove reference manual if you are uncertain of how to set the DI
switches.

Accessing Pinch Glove Raw Data

The raw data structure for the Pinch Glove is type defined as follows:

typedef struct _WTpinch_rawdata {
int ntouch; /* number of touches - maximum 5 */

short int touch[5]; /* information for each touch */
} WTpinch_rawdata;

and accessed as follows:

WTsensor *pinch;

WTpinch_rawdata *raw;
short rp,rr,rm,ri,rt,lp,lr,lm,li,lt;
int i;

raw = (WTpinch_rawdata *)WTsensor_getrawdata(pinch);

/* print number of touches */
WTmessage("Number of touches %d\n", raw->ntouch);

/* for each touch print out what fingers touched */
for(i=0;i<raw->ntouch;i++) {

rp = raw->touch[i]&WTPINCH_RPINKIE;

rr = raw->touch[i]&WTPINCH_RRING;
rm = raw->touch[i]&WTPINCH_RMIDDLE;
ri = raw->touch[i]&WTPINCH_RINDEX;

rt = raw->touch[i]&WTPINCH_RTHUMB;
lp = raw->touch[i]&WTPINCH_LPINKIE;
lr = raw->touch[i]&WTPINCH_LRING;

lm = raw->touch[i]&WTPINCH_LMIDDLE;
li = raw->touch[i]&WTPINCH_LINDEX;
13-60 WorldToolKit Reference Manual

Fakespace Pinch Glove System

en
lt = raw->touch[i]&WTPINCH_LTHUMB;
WTmessage("Touch number %d \n", i+1);
if(rp) WTmessage("rpinkie ");

if(rr) WTmessage("rring ");
if(rm) WTmessage("rmiddle ");
if(ri) WTmessage("rindex ");

if(rt) WTmessage("rthumb ");
if(lp) WTmessage("lpinkie ");
if(lr) WTmessage("lring ");

if(lm) WTmessage("lmiddle ");
if(li) WTmessage("lindex ");
if(lt) WTmessage("lthumb ");

WTmessage("\n");
}

Scaling Pinch Glove Records

Records cannot be scaled for this sensor object. So the functions WTsensor_setsensitivity
and WTsensor_setangularrate have no effect.

Pinch Glove Update Function

WTpinch_update

void WTpinch_update(
WTsensor *sensor);

This update function updates the raw data structure to get contact information betwe
fingers.

The macro WTpinch_new creates a Pinch Glove sensor object that uses the
WTpinch_update function and is recommended for most users.
WorldToolKit Reference Manual 13-61

Chapter 13: Sensors

the

ll

)
Pinch Glove Defined Constants

The contact information between fingers of the Pinch Glove can be accessed using
function WTsensor_getrawdata (see page 13-15). Also see Accessing Pinch Glove Raw
Data on page 13-60.

WTK provides defined constants that are common to both left and right fingers as we
individual constants for left and right fingers.

The common constants are:

WTPINCH_THUMB (thumb)

WTPINCH_INDEX (index finger)

WTPINCH_MIDDLE (middle finger)

WTPINCH_RING (ring finger)

WTPINCH_PINKY (pinky finger)

The individual constants for the left hand fingers are:

WTPINCH_LTHUMB

WTPINCH_LINDEX

WTPINCH_LMIDDLE

WTPINCH_LRING

WTPINCH_LPINKY

The individual constants for the right hand fingers are:

WTPINCH_RTHUMB

WTPINCH_RINDEX

WTPINCH_RMIDDLE

WTPINCH_RRING

WTPINCH_RPINKY

In addition, the defined constants WTPINCH_NOTOUCH (indicating there is no contact
between the fingers) and WTPINCH_FINGERS (indicating there is contact between fingers
are provided.
13-62 WorldToolKit Reference Manual

Fifth Dimension Technologies’ 5DT Glove

and.
ile
Fifth Dimension Technologies’ 5DT Glove

The 5DT Glove measures finger flexure and the orientation (roll and pitch) of a user's h
It can emulate a Mouse as well as a baseless joystick and the user can also type wh
wearing the glove.

To create a 5DT Glove sensor object on serial port 1, you can use the macro call:

WTsensor *glove5DT;
glove5DT = WTglove5DT_new(SERIAL1);

This macro makes use of the sensor driver functions WTglove5DT_open,
WTglove5DT_close, and WTglove5DT_update. It creates the 5DT Glove sensor object
running at 19200 baud.

Accessing 5DT Glove Raw Data

The raw data structure for the 5DT Glove is type defined as follows:

typedef struct _WTglove5DT_rawdata
{

char bSerial;

char bFinger[5]; /* finger flex values 0=Thumb 1=Index ...*/
char bPitch; /* -128 to +128, 0 being straight up*/
char bRoll; /* -128 to +128, 0 being straight up*/

} WTglove5DT_rawdata;

and is accessed as follows:

WTsensor *glove5DT;
WTglove5DT_rawdata *raw;

raw = (WTglove5DT_rawdata *)WTsensor_getrawdata(glove5DT);

WTmessage ("PITCH: %d\tROLL: %d\tFINGERS: %d %d %d %d %d\n", raw->bPitch,
raw->bRoll,

raw->bFinger[0],
raw->bFinger[1],
WorldToolKit Reference Manual 13-63

Chapter 13: Sensors

ta
odel.

and

d
raw->bFinger[2],
raw->bFinger[3],
raw->bFinger[4]

);

Scaling 5DT Glove Records

Records cannot be scaled for this sensor object. So, the functions WTsensor_setsensitivity
and WTsensor_setangularrate have no effect.

5DT Glove Update Function

WTglove5DT_update

void WTglove5DT_update(
WTsensor *sensor);

This update function calls WTglove5dt_rawupdate (see page 13-65) to update the raw da
structure to get absolute orientation and the current state of the fingers in the hand m
It then applies any rotational contraints to the record. Finally it relativizes the record
stores it with the sensor by calling WTsensor_setrecord (see page 13-24).

The macro WTglove5DT_new creates a 5DT Glove sensor object that uses the
WTglove5DT_update function.

WTglove5dt_updatefingers

void WTglove5dt_updatefingers(

WTsensor *sensor);

WTglove5dt_updatefingers is provided so that the current state of the fingers in the han
model can be updated independently of the model's orientation.

This function can be used instead of WTglove5DT_update if the user does not need the
orientation information.
13-64 WorldToolKit Reference Manual

Fifth Dimension Technologies’ 5DT Glove

 the
must

nd

Writing Your Own 5DT Glove Update Function

Your update function should first call WTglove5DT_rawupdate (see below) to obtain the
absolute pitch and roll data and the finger flex information. It should then specify how
raw data is to be transformed into an orientation record. Finally, your update function
store this record by calling WTsensor_setrecord (see page 13-24). See Example 3: Update
Function for Absolute Device (Pseudocode) on page E-15.

WTglove5dt_rawupdate

int WTglove5dt_rawupdate(

 WTsensor *sensor);

This function obtains the absolute pitch and roll data and the finger flex information a
stores it in the sensor's raw data structure (WTglove5DT_rawdata). This information can be
accessed with WTsensor_getrawdata (see page 13-15). Also see Accessing 5DT Glove Raw
Data on page 13-63.

5DT Glove Defined Constants

The current state of the fingers can be accessed using the function WTsensor_getmiscdata
(see page 13-15) together with the following defined constants:

WTGLOVE5DT_OPEN (glove is open)

WTGLOVE5DT_CLOSED (glove is closed)

WTGLOVE5DT_THUMB (thumb)

WTGLOVE5DT_INDEX (index finger)

WTGLOVE5DT_MIDDLE (middle finger)

WTGLOVE5DT_RING (ring finger)

WTGLOVE5DT_PINKY (pinky finger)

WTGLOVE5DT_ALL (all fingers).
WorldToolKit Reference Manual 13-65

Chapter 13: Sensors

p the

p the

 and

ff".
Calibrating the 5DT Glove

WTglove5dt_calibrateopen

int WTglove5dt_calibrateopen(

WTsensor *sensor);

This function allows you to set the state and orientation of the glove, which makes u
“open” state. Calibrating the closed position along with the open position allows
miscellaneous data to provide an accurate reading of the glove states (i.e.,
WTGLOVE5DT_OPEN,WTGLOVE5DT_CLOSED).

WTglove5dt_calibrateclosed

void WTglove5dt_calibrateclosed(
WTsensor *sensor);

This function allows you to set the state and orientation of the glove, which makes u
“closed” state. Calibrating the open position along with the closed position allows
miscellaneous data to provide an accurate reading of the glove states (i.e.,
WTGLOVE5DT_OPEN,WTGLOVE5DT_CLOSED).

Changing the Hand Model of the 5DT Glove

WTglove5dt_loadhandmodel

int WTglove5dt_loadhandmodel(
WTsensor *sensor,

char *filename,
float scale);

This function lets you change the hand model while a simulation is running. The name
scale of the model file are specified by filename and scale, respectively.

Note: The default hand model loaded when the sensor is first initialized is "hand5DT.n
13-66 WorldToolKit Reference Manual

Gameport Joystick

rt 1.

er
e

our
Gameport Joystick

Limitations

• Only 2 axes Gameport Joysticks with up to 4 buttons are supported.

• You can only have one joystick attached to the system and it must be on po
(This is a limitation of the current NT joystick driver.)

Installing the joystick driver under NT

You must have the NT system driver for the gameport joystick installed to use it und
WorldToolKit. If you have not previously installed one before or are unsure, follow th
steps below to add the driver to your system.

1. Insert the NT 4.0 CD into your drive.

2. Open the control panel

3. Select 'multimedia'

4. Select 'devices'

5. Select 'add'

6. Choose 'unlisted or updated driver' and press 'ok'

7. Type in 'd:\drvlib\multimed\joystick\x86' where d is the letter of your CD-ROM
drive

8. Restart system when prompted

Configuring and calibrating the joystick

WorldToolKit uses the standard NT joystick control panel to calibrate the gameport
joystick. You must calibrate before you use a joystick for the first time, and any time y
joystick is not behaving correctly. To calibrate your joystick:
WorldToolKit Reference Manual 13-67

Chapter 13: Sensors

 call:

aud.

ed

,
ed by

es of
1. Open the control panel

2. Select 'joystick'

3. Select the attributes that reflect your joystick

4. Choose 'calibrate' and follow directions

5. Choose 'test' to verify your calibration

Creating a Gameport Joystick Sensor Object

To create a Gameport Joystick sensor object on serial port 1, you can use the macro

WTsensor *joystick;
joystick = WTjoystick_new(SERIAL1);

(if !joystick)
WTwarning(“Could not open gameport joystick\n”);

This macro makes use of the sensor driver functions WTjoystick_open, WTjoystick_close,
and WTjoystick_walk. It creates the Gameport Joystick sensor object running at 19200 b

At initialization, WTK searches the current directory for a joystick calibration file nam
ajoy.cal. The calibration file is in ASCII format with six values specifying floating point
values for minimum X, maximum X, minimum Y, maximum Y, center X and center Y
respectively. This is a sample calibration file and also represents the default values us
WTK:

0.0 255.0 0.0 255.0 128.0 128.0

If the calibration file is not found, default values are used for the center and range valu
the joystick.

To use an update function other than WTjoystick_walk, for example, WTjoystick_fly, you can
call WTsensor_new directly or simply make the following call after using WTjoystick_new:

WTsensor_setupdatefn(joystick, WTjoystick_fly);
13-68 WorldToolKit Reference Manual

Creating a Gameport Joystick Sensor Object

 This

ed as

e

the
Accessing Gameport Joystick Raw Data

WTK maintains a data structure containing the raw data from the Gameport Joystick.
information can be accessed using the function WTsensor_getrawdata (see page 13-15) as
in the example below. The raw data structure for the Gameport Joystick is type defin
follows:

typedef struct _WTjoystick_rawdata

{
unsigned short x;
unsigned short y;

} WTjoystick_rawdata;

and is accessed as follows :

WTsensor *joystick;
WTjoystick_rawdata *raw;

raw = (WTjoystick_rawdata *)WTsensor_getrawdata(joystick);

WTmessage("Roll %d Pitch %d\n", raw->x, raw->y);

Scaling Gameport Joystick Records

Translational and rotaional records for the Gameport Joystick can be scaled using th
functions WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see
page 13-12) respectively.

Gameport Joystick Update Functions

The WTK update functions for the Gameport Joystick store the position record from
device into the sensor object’s record, after applying any scale factors set with
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12).
WorldToolKit Reference Manual 13-69

Chapter 13: Sensors

 of
ard
ving
ls

 be
oving
 the

ving
ight
WTjoystick_fly

void WTjoystick_fly(
WTsensor *sensor);

This function is an update function that moves a sensor forward along the Z-axis at a
constant velocity. It can be used to operate the joystick in a manner familiar to users
flight simulation programs. When this update function is used, the sensor moves forw
along Z at a small constant velocity (0.1 times the sensor sensitivity each frame). Mo
the joystick forward/backward pitches around X, and moving the joystick right/left rol
around Z.

The macro WTjoystick_newfly creates a gameport joystick object that uses the
WTjoystick_fly update function.

WTjoystick_walk

void WTjoystick_walk(

WTsensor *sensor);

This function initializes a sensor to move in the “walkthrough” mode. The joystick can
used to move a viewpoint or object in the X-Z plane. When no buttons are pressed, m
the joystick forward or backward moves forward or backward along the Z axis. Moving
joystick right or left yaws around the Y axis. When the front button is depressed, mo
the joystick forward or backward pitches around the X axis, and moving the joystick r
or left rolls around the Z axis.

The macro WTjoystick_new creates a Gameport Joystick object that uses the
WTjoystick_walk update function.

WTjoystick_walk2

void WTjoystick_walk2(
WTsensor *sensor);

This function initializes a sensor to move in a second “walkthrough” mode. The
WTjoystick_walk2 update function is like WTjoystick_walk except that holding down the
trigger button allows you to raise or lower the viewpoint.
13-70 WorldToolKit Reference Manual

Creating a Gameport Joystick Sensor Object

 3D

nsor’s

a

hese
The macro WTjoystick_newwalk2 creates a gameport joystick object that uses the
WTjoystick_walk2 update function.

Writing your Own Gameport Joystick Update Function

Your update function should first call WTjoyserial_rawupdate to obtain the Gameport
Joystick's raw data. It should then specify how the raw data is to be transformed into
position record. Finally, your update function must store this record by calling
WTsensor_setrecord (see page 13-24). See Example 3: Update Function for Absolute
Device (Pseudocode) on page E-15.

WTjoystick_rawupdate

int WTjoystick_rawupdate(
WTsensor *sensor);

This function reads in the raw data from the Gameport Joystick and stores it in the se
raw data structure. This information can be accessed with the function
WTsensor_getrawdata (see page 13-15). Also see .Accessing Gameport Joystick Raw Dat
on page 13-69

Gameport Joystick Defined Constants

The Gameport Joystick supports three momentary buttons in addition to the trigger. T
values can be accessed by using the WTsensor_getmiscdata function with any of the
following constants described in the joystick.h file in the include directory:

WTJOYSTICK_TRIGGERDOWN
WTJOYSTICK_TOPDOWN

WTJOYSTICK_BUTTON1DOWN
WTJOYSTICK_BUTTON2DOWN
WTJOYSTICK_BUTTONNORM

WTJOYSTICK_BUTTONREVERSE
WorldToolKit Reference Manual 13-71

Chapter 13: Sensors

ined

The
Gameport Joystick Range

WTjoystick_getrange

void WTjoystick_getrange(

WTsensor *sensor,
WTp2 range);

This function returns the maximum X and Y values (divided by 2), which can be atta
by the joystick.

Gameport Joystick Drift

WTjoystick_setdrift

void WTjoystick_setdrift(
WTsensor *sensor,
float drift_per);

This function sets the joystick’s drift amount to a percentage of the joystick’s range.
drift_per parameter specifies the percentage.
13-72 WorldToolKit Reference Manual

Logitech 3D Mouse (Red Baron)

ouse
 very

 the
this
ther
WTjoystick_getdrift

float WTjoystick_getdrift(
WTsensor *sensor);

This function returns the drift amount of the specified joystick sensor. See
WTjoystick_setdrift, above.

Reinitializing the Gameport Joystick

WTjoystick_readcalibrationfile

void WTjoystick_readcalibrationfile(
void);

This function reads the joystick’s calibration file (ajoy.cal) so that the joystick can be re-
initialized. Page 13-68 describes the ajoy.cal file.

Logitech 3D Mouse (Red Baron)

An early version of the Logitech 3D Mouse went by the name “Red Baron,” and WTK
adopted this name for the sensor driver functions for this device. The Logitech 3D M
has two modes of operation. When it is on the desk surface, it functions in a manner
similar to a 2D Mouse, with asynchronous cursor tracking. (Cursor tracking with the
Logitech 3D Mouse is not supported on all platforms.) When the device is lifted from
desk, it is driven by software in a mode that tracks 3D positions and orientations. In
mode it is used for direct manipulation of viewpoints or objects in the same way as o
position and orientation sensing devices.

To create a 3D Mouse sensor object on serial port 1, you can use the macro call:

WTsensor *baron;

baron = WTbaron_new(SERIAL1);
WorldToolKit Reference Manual 13-73

Chapter 13: Sensors

IX

e.
osite

s
 to
or to

is

e
 (as
re
This macro makes use of the sensor driver functions WTbaron_open, WTbaron_close, and
WTbaron_update. It creates the 3D Mouse sensor object running at 9600 baud on UN
platforms and running at 1200 baud on Windows 32-bit platforms.

At initialization, both the transmitter triangle and Mouse should be on the desk surfac
Unlike for the head tracker, where the transmitter and receiver triangles point in opp
directions, for desk-based operation the configuration at initialization is for the two
triangles to point in the same direction.

When the side button (suspend button) on the 3D Mouse is depressed, position and
orientation records for the sensor are frozen at their current values, until the button i
released. In this manner, the button can be used as a “clutch” or “ratchet” to be able
traverse large distances or angles by depressing the button while returning the sens
within range of the ultrasonic speakers.

Accessing 3D Mouse Raw Data

WTK maintains a data structure containing the raw data read from the 3D Mouse. Th
information is accessed using the function WTsensor_getrawdata (see page 13-15) as in the
example below.

The raw data structure for the 3D Mouse is type defined as follows:

typedef struct _WTbaron_rawdata {
WTp3 p; /* absolute position in WTK coordinates*/

WTp3 w; /* euler angles in WTK coords, in degrees */
float x,y; /* desk-based mouse-like rawdata */

} WTbaron_rawdata;

While the values stored in p and w are updated each frame, the X, Y raw data values ar
only updated when the unit is on the desk. When the device has been in flying mode
indicated by WTLOGITECH_FLYING) and then is returned to the desk, the X, Y values a
re-initialized to the middle of the screen or window.

3D Mouse raw data is accessed as follows:

WTsensor *baron;
WTbaron_rawdata *raw;
13-74 WorldToolKit Reference Manual

Logitech 3D Mouse (Red Baron)

sing
/* get raw baron values */
raw = (WTbaron_rawdata *)WTsensor_getrawdata(baron);

/* print position and orientation data if in flying mode */

if (WTsensor_getmiscdata(baron) & WTLOGITECH_FLYING) {
WTp3_print(raw->p, “Baron position: “);
WTp3_print(raw->w, “Baron angles: “);

}
else {

WTmessage(“x,y coordinates: %f %f\n”,x, y);

}

Scaling 3D Mouse Records

As for the Logitech Head Tracker, the 3D Mouse translation records can be scaled u
the function WTsensor_setsensitivity (see page 13-11).

There is no angular speed adjustment for the 3D Mouse, i.e., the function
WTsensor_setangularrate has no effect.
WorldToolKit Reference Manual 13-75

Chapter 13: Sensors

euler
s any

t with

In
o
cribed

ouse
g to
3D Mouse Update Function

WTbaron_update

void WTbaron_update(

WTsensor *sensor);

This update function updates the raw data structure to get absolute 3D position and
angles. It also updates the screen coordinates if the unit is on the desk. It then applie
translational contraints and scale factors. Finally, it relativizes the record and stores i
the sensor by calling WTsensor_setrecord (see page 13-24).

The macro WTbaron_new creates a 3D Mouse sensor object that uses the WTbaron_update
function and is recommended for most users.

3D Mouse Defined Constants

The 3D Mouse has three buttons (left, middle, and right) similar to a normal Mouse.
addition, it has a button on the side of the Mouse body called the “suspend button”, s
named because it is used to suspend motion when pressed (this is the “ratcheting” des
above). Events from these buttons are accessed using the function WTsensor_getmiscdata
(see page 13-15) together with the defined constants:

• Button transitional down . This generates a single event each time the button
moves from up to down. These events are defined as:
WTLOGITECH_LEFTBUTTON, WTLOGITECH_MIDDLEBUTTON,
WTLOGITECH_PEDESTALBUTTON, WTLOGITECH_RIGHTBUTTON, and
WTLOGITECH_SUSPENDBUTTON.

In addition, the defined constants WTLOGITECH_FLAGBIT and WTLOGITECH_FLYING
are provided. WTLOGITECH_FLAGBIT can be used to detect a bad record.
WTLOGITECH_FLYING can be used to detect when the 3D Mouse is currently off the
desktop, as in the example below. Note that this constant makes sense only if the M
was on the desk at initialization. The following code fragment illustrates using this fla
control the viewpoint with the tracker when it is in flying mode:

/* Logitech 3D Mouse starts off on the desk */
FLAG baron_flying = FALSE;
13-76 WorldToolKit Reference Manual

Logitech Head Tracker

nes are
 (see
use as

hics
d in

cords
 the

/* this function tests whether the Logitech 3D Mouse is entering or leaving
* 6D mode, and if so, attaches or detaches the sensor from the viewpoint. */
baron_control_view(WTsensor *baron) {

WTviewpoint *view;
view = WTuniverse_getviewpoints();

/* If lifted off from desk, attach sensor to viewpoint.*/

if (WTsensor_getmiscdata(baron) & WTLOGITECH_FLYING
&& !baron_flying) {

WTviewpoint_addsensor(view, baron);

baron_flying = TRUE;
}
/* Else if landing, remove sensor from viewpoint */

else if (!(WTsensor_getmiscdata(baron) &
WTLOGITECH_FLYING) && baron_flying) {

WTviewpoint_removesensor(view, baron);

baron_flying = FALSE;
}

}

Logitech Head Tracker

The Logitech Head Tracker from Logitech, Inc. is a serial port device that measures
absolute position and orientation by using three microphones to triangulate on three
ultrasonic speakers. The speakers are mounted in a large triangle, and the micropho
in a smaller triangle, which is either attached to the end of a special Logitech Mouse
page 13-73) for desk-based use or is mounted on top of a head-mounted display for
a head tracker. WTK provides sensor drivers for these two different physical
configurations. In another configuration, the Head Tracker is built in to the StereoGrap
CrystalEyesVR combined viewing and tracking system. An additional driver is provide
WTK for this system (see page 13-108).

When the Head Tracker sensor moves out of range of the ultrasonic transmitters, re
returned from the device are thresholded by WTK so that they cease to change until
sensor returns within range. The tracked area is approximately a two foot cube, with
diminished accuracy within a seven foot cube. In using this device, remember that it
WorldToolKit Reference Manual 13-77

Chapter 13: Sensors

sor
tion.

aud

es of
figure
tions.
 of
operates ultrasonically and therefore, unlike the magnetic ISOTRAK or Bird, the sen
microphones must be within line of sight of the transmitting speakers for stable opera

To create a Head Tracker on serial port 1, you use the macro call:

WTsensor *logitech;
WTmessage(“About to create Logitech head tracker...\n”);
logitech = WTlogitech_new(SERIAL1);

if (!logitech)
WTwarning(“Couldn’t open Logitech\n”);

else

WTmessage(“Calibration complete.\n”);

This macro makes use of the sensor driver functions WTlogitech_open, WTlogitech_close,
and WTlogitech_update. It creates the Head Tracker sensor object running at 19200 b
on UNIX platforms and running at 1200 baud on Windows 32-bit platforms.

At sensor initialization, the transmitter and receiver must be in a particular spatial
relationship with one another for its subsequent operation to be correct. The correct
orientation is to place both the helmet and transmitter triangles level so that the plan
the triangles are parallel and the transmitter and receiver units face each other (see
13-3 on page 13-79). The cables from the two triangles should point in opposite direc
If the transmitter and receiver triangles are not within range of each other at the time
sensor initialization, the WTlogitech_open function prompts you to move the receiver
within range so that the initialization can be completed.
13-78 WorldToolKit Reference Manual

Logitech Head Tracker

evice.

Figure 13-3: Setup for the Logitech Head Tracker.

Accessing Head Tracker Raw Data

WTK maintains a data structure containing the raw data read from the Head Tracker d
This information is accessed using the function WTsensor_getrawdata (see page 13-15) as
in the example below.

The raw data structure for the Head Tracker is type defined as follows:

typedef struct _WTlogitech_rawdata {

WTp3 p; /* absolute position in WTK coordinates */
WTp3 w; /* euler angles in WTK coords, in degrees */

} WTlogitech_rawdata;

HMD

 3 feet

transmitter

 receiver
WorldToolKit Reference Manual 13-79

Chapter 13: Sensors

euler
izes
and accessed as follows:

WTsensor *logitech;
WTlogitech_rawdata *raw;

/* print out the raw data */

raw = (WTlogitech_rawdata *)WTsensor_getrawdata(logitech);
WTp3_print(raw->p, “logitech raw position: “);
WTp3_print(raw->w, “logitech raw angles: “);

Scaling Head Tracker Records

Translational records for the Head Tracker can be scaled using the function
WTsensor_setsensitivity (see page 13-11).

There is no angular speed adjustment for the Head Tracker, i.e., the function
WTsensor_setangularrate has no effect.

Head Tracker Update Function

WTlogitech_update

void WTlogitech_update(

WTsensor *sensor);

This update function updates the raw data structure to get absolute 3D position and
angles. It then applies any translational contraints and scale factors. Finally, it relativ
the record and stores it with the sensor by calling WTsensor_setrecord (see page 13-24).

The macro WTlogitech_new creates a Head Tracker sensor object that uses the
WTlogitech_update function and is recommended for most users.
13-80 WorldToolKit Reference Manual

Logitech Space Control Mouse (Magellan)

er)

apped
tion
fter it
s set

ro call:

ws.
back
the
n. If
Head Tracker Defined Constants

The defined constants WTLOGITECH_FLAGBIT (to detect bad records) and
WTLOGITECH_OUTBIT (to detect whether the receiver is out of range of the transmitt
are provided and can be used with the function WTsensor_getmiscdata (see page 13-15).

Logitech Space Control Mouse (Magellan)

The Space Control Mouse, from Logitech, Inc. is a six degrees-of-freedom serial port
device that sits on the desktop. It responds to both forces and torques, which can be m
into translations and rotations in 3D. The WTK update functions package the transla
and rotation record from the Space Control Mouse into the sensor object’s record, a
transforms the record to the WTK coordinate convention and applys any scale factor
with WTsensor_setsensitivity and WTsensor_setangularrate.

To create a Space Control Mouse sensor object on serial port 1, you can use the mac

WTsensor *magellan;

magellan = WTspacecontrol_new(SERIAL1);

This macro makes use of the sensor driver functions WTspacecontrol_open,
WTspacecontrol_close and WTspacecontrol_update. It creates the Space Control Mouse
sensor object running at 9600 baud.

The coordinate frame of these sensors is defined in the WTK driver functions as follo
If the device is placed on a desk or table in front of you with the cable coming out the
of the device pointing away from you, as illustrated in figure 13-4, then the Z axis of
device points straight ahead, the X axis points to the right, and the Y axis points dow
this coordinate frame is not appropriate for your application, the function WTsensor_rotate
(see page 13-20) can be used to define the device’s coordinate frame.
WorldToolKit Reference Manual 13-81

Chapter 13: Sensors

l

 that
ctors
Figure 13-4: Logitech Space Control Mouse (Magellan) reference frame.

Accessing Space Control Mouse Raw Data

WTK maintains a data structure containing the raw data read from the Space Contro
Mouse. This information is accessed using WTsensor_getrawdata (see page 13-15) as in
the following example.

The raw data structure for the Space Control Mouse is type defined as follows. Note
both p and w are in the original Space Control Mouse coordinates and that no scale fa
or constraints have been applied to the values.

typedef struct _WTspacecontrol_rawdata {
short p[3]; /* absolute position */

short w[3]; /* euler angles */
} WTspacecontrol_rawdata;

Space Control Mouse raw data is accessed as follows:

WTsensor *spacecontrol;

WTspacecontrol_rawdata *raw;

/* get the raw spacecontrol values and print them out */
raw = (WTspacecontrol_rawdata *)WTsensor_getrawdata(spacecontrol);

WTmessage(“Position: %d, %d, %d\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %d, %d, %d\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Z axis

X axis

Y axis
13-82 WorldToolKit Reference Manual

Logitech Space Control Mouse (Magellan)

g the

a
 with

alling

s the

e
st

ntrol
or
Scaling Space Control Mouse Records

Translational and rotational records for the Space Control Mouse can be scaled usin
functions WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see
page 13-12) respectively.

Space Control Mouse Update Function

WTspacecontrol_update

void WTspacecontrol_update(
WTsensor *sensor);

This update function calls WTspacecontrol_rawupdate (see below) to update the raw dat
structure to get the 3D position and euler angle. It then applies any scale factors set
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12).
Finally it converts the euler to a quarternion and stores the record with the sensor by c
WTsensor_setrecord (see page 13-24).

The macro WTspacecontrol_new creates a Space Control Mouse sensor object that use
WTspacecontrol_update function.

Writing your own Space Control Mouse Update Function

Your update function should first call WTspacecontrol_rawupdate (see below) to obtain the
sensor’s raw position and orientation. It should then specify how the raw data is to b
transformed into 3D position and orientation record. Finally, your update function mu
store this record by calling WTsensor_setrecord (see page 13-24).

WTspacecontrol_rawupdate

void WTspacecontrol_rawupdate(
WTsensor *sensor);

This function obtains raw position, orientation, and button-press data for a Space Co
Mouse device. WTspacecontrol_rawupdate should be called at the beginning of the sens
WorldToolKit Reference Manual 13-83

Chapter 13: Sensors

nd
the

 with

e are
ith a

 a
s
ccessed
se
user’s update function to obtain the raw Space Control Mouse position, orientation a
button-press data. It obtains the relative translation and orientation information from
Space Control Mouse and stores it in the sensor’s raw data structure
(WTspacecontrol_rawdata). This information can be accessed with WTsensor_getrawdata
(see page 13-15). Also see Accessing Space Control Mouse Raw Data on page 13-82.

This function also reads the SpaceController button presses, which can be accessed
WTsensor_getmiscdata (see page 13-15). Also see Space Control Mouse Defined
Constants below.

Space Control Mouse Defined Constants

There are nine user-programmable buttons on the Space Control Mouse. All of thes
positioned on the top edge of the Space Control Mouse frame. The button marked w
“*” is called the “pick button” (to maintain compatibility with the Spaceball).

Events from these buttons can be accessed using WTsensor_getmiscdata (see page 13-15)
together with the following defined constants:

• Button held down . This event is generated each frame that the button is held
down. These events are defined as: WTSPACECONTROL_BUTTONx (where x is
a number between 1 and 8. For example, WTSPACECONTROL_BUTTON4) and
WTSPACECONTROL_BUTTONA (the “pick button”).

Special Space Control Mouse Modes

As indicated in the Space Control Mouse documentation, you can set the device into
special “dominant” mode where only the largest of the six DOF values is returned. Thi
makes the device easier to operate for new users. This and other control modes are a
through a special combination of key presses. WTK should work fine with any of the
settings.
13-84 WorldToolKit Reference Manual

Polhemus ISOTRAK

f-

00

ord.

Polhemus ISOTRAK

The ISOTRAK tracker from Polhemus, Inc. is an electromagnetic-based six degree-o
freedom sensor that measures absolute position and orientation.

To create an ISOTRAK sensor object on serial port 1, you can use the macro call:

WTsensor *isotrak;
isotrak = WTpolhemus_new(SERIAL1);

This macro makes use of the sensor driver functions WTpolhemus_open,
WTpolhemus_close, and WTpolhemus_update. It creates the ISOTRAK sensor object
running at 9600 baud.

Following are the DIP switch settings for the ISOTRAK sensor objects running at 96
baud.

ISOTRAK ON ON OFF ON OFF OFF OFF OFF

Consult your ISOTRAK reference manual if you are uncertain of how to set your
ISOTRAK DIP switches.

When you call WTpolhemus_new to construct a new ISOTRAK sensor object, the openfn
for the device is automatically called. Part of the function of the openfn for this device is to
calibrate the sensor, which consists of obtaining an initial position and orientation rec
This takes several seconds, during which the device should not be moved. Records
subsequently generated by the updatefn are with respect to this initial reference frame. It
may be useful in your application to let the user know that the device is about to be
calibrated. For example, you might want to have a print statement:

WTsensor *sensor;

WTmessage(“About to calibrate/initialize ISOTRAK...\n”);
sensor = WTpolhemus_new(SERIAL1);
WTmessage(“Initialization complete.\n”);
WorldToolKit Reference Manual 13-85

Chapter 13: Sensors

. If
e

 axis
ts

r the

sensor

cord
 in

n and

or
Figure 13-5: ISOTRAK sensor reference frame

The coordinate frame of this sensor is defined in the WTK driver functions as follows
the receiver cube is placed “flat-end down” in front of you with the cable from the cub
coming out the back of the cube toward you, then (as illustrated in figure 13-5) the Z
of the device points straight ahead, the X axis points to the right, and the Y axis poin
down. If this coordinate frame is not appropriate for your application, the function
WTsensor_rotate (see page 13-20) can be used to define another coordinate frame fo
device.

Accessing ISOTRAK Raw Data

WTK does not provide a separate raw data structure for this device. The most recent
record can be obtained using WTsensor_getlastrecord (see page 13-25). This function
retrieves the absolute record in WTK coordinates with no scale factors applied. This re
is called “absolute” because it describes a location in 3D space rather than a change
location since the last frame. This absolute record is, however, relative to the positio
orientation of the device when the device was opened by WTK.

Scaling ISOTRAK Records

Translation records for the ISOTRAK can be scaled using the function
WTsensor_setsensitivity (see page 13-11). It is often useful, for example, to scale sens
inputs with the size of the scene.

X axis

Y axis

Z axis
13-86 WorldToolKit Reference Manual

Polhemus ISOTRAK

e
sed
ree
the

e
on
Unlike translation records, however, orientation records from the ISOTRAK cannot b
scaled in the WTK update function for this device. For example, if the ISOTRAK is u
to track head motion (the sensor object is attached to the viewpoint), then a 360 deg
rotation of the ISOTRAK device in the real world generates a 360 degree rotation in
virtual world.

It is possible to turn off all rotational input from this device by writing your own updat
function which nullifies the orientation record. The following is a simple update functi
that accomplishes this for the ISOTRAK:

/* update function which turns off all rotational input from the ISOTRAK */

void polhemus_myupdate(WTsensor *sensor)

{
WTp3 p;
WTq q;

/* call the WTK-supplied update function */
WTpolhemus_update(sensor);

/* use the translation record as is */

WTsensor_gettranslation(sensor, p);

/* nullify the orientation record */
WTq_init(q);

/* reset the ISOTRAK sensor record */
WTsensor_setrecord(sensor, p, q);

}

This update function could be set as follows:

WTsensor_setupdatefn(sensor, polhemus_myupdate);

or by passing in polhemus_myupdate to WTsensor_new.
WorldToolKit Reference Manual 13-87

Chapter 13: Sensors

to the
ctor

t it
e
t it

 use

ISOTRAK Update Function

WTpolhemus_update

void WTpolhemus_update(

WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after relativizing it and then applying any translational scale fa
that may have been set with WTsensor_setsensitivity (see page 13-11). The macro
WTpolhemus_new creates an ISOTRAK sensor object that uses the WTpolhemus_update
function and is recommended for most users.

Polhemus ISOTRAK II

The ISOTRAK II tracker is very similar to the ISOTRAK (see page 13-85), except tha
supports two sensors (receivers) instead of one. In fact, an ISOTRAK II with only on
receiver attached operates exactly like an ISOTRAK, and from WTK you should trea
just like an ISOTRAK (however, use WTpolhemus_new rather than WTisotrak2_new if you
are using just one receiver).

To create an ISOTRAK II sensor object having two receivers on serial port 1, you can
the macro call:

WTsensor *i1, *i2;
i1 = WTisotrak2_new(SERIAL1, 1);

i2 = WTisotrak2_new(SERIAL1, 2);

This macro makes use of the sensor driver functions WTisotrak2_open, WTisotrak2_close,
and WTisotrak2_update. It creates the ISOTRAK II sensor object having two receivers
running at 9600 baud.

The second argument to WTisotrak2_new is the unit number (1 or 2). Following are the DIP
switch settings for the ISOTRAK II running at 9600 baud:

ISOTRAK II ON ON OFF ON OFF OFF OFF OFF
13-88 WorldToolKit Reference Manual

Polhemus ISOTRAK II

IP
ally
ange

 and
 be

 the

3-5
Consult your ISOTRAK II reference manual if you are uncertain of how to set your D
switches. You should try to use the ISOTRAK II at 19200 baud as this may dramatic
improve response time. To do so, change the DIP switches on the ISOTRAK II and ch
your WTisotrak2_new macro (in the sensor.h file in the include directory) to use the higher
baud rate.

Following are the DIP switch settings for the ISOTRAK II running at 19200 baud:

ISOTRAK II OFF OFF ON ON OFF OFF OFF OFF

Consult your ISOTRAK II reference manual if you are uncertain of how to set your
ISOTRAK II DIP switches.

When you call WTisotrak2_new for the first receiver (unit 1), the openfn for the device is
called, which calibrates the sensor. Calibration consists of obtaining an initial position
orientation record, which takes several seconds, during which the device should not
moved. Records subsequently generated by the updatefn are with respect to this initial
reference frame. As with other 6D sensors, it may be useful in your application to let
user know that the device is about to be calibrated (see the example under Polhemus
ISOTRAK on page 13-85).

The coordinate frame of the ISOTRAK II is the same as for the ISOTRAK (see figure 1
on page 13-86).

Accessing ISOTRAK II Raw Data

See Accessing ISOTRAK Raw Data on page 13-86.

Scaling ISOTRAK II Records

See Scaling ISOTRAK Records on page 13-86.
WorldToolKit Reference Manual 13-89

Chapter 13: Sensors

to the
ctor

AK
lots.
r and

 call:
ISOTRAK II Update Function

WTisotrak2_update

void WTisotrak2_update(

WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after relativizing it and then applying any translational scale fa
that may have been set with WTsensor_setsensitivity (see page 13-11).

The macro WTisotrak2_new creates an ISOTRAK II sensor object that uses the
WTisotrak2_update function and is recommended for most users.

Polhemus InsideTRAK

The InsideTRAK tracker from Polhemus, Inc. is very similar to the Polhemus ISOTR
(see page 13-85) , but it is only available on Intel-based workstations with ISA bus s
This six-degree-of-freedom electromagnetic tracking system supports one transmitte
two receivers that measure absolute position and orientation.

To create an InsideTRAK sensor object having two receivers you can use the macro

WTsensor *i1, *i2;
i1 = WTinsidetrak_new(1);

i2 = WTinsidetrak_new(2);

if (!i1 || !i2)
WTwarning("Could not open InsideTRAK receivers\n");

This macro makes use of the sensor driver functions WTinsidetraknt_open,
WTinsidetraknt_close, and WTinsidetraknt_update. It creates the InsideTRAK sensor
object having two receivers.
13-90 WorldToolKit Reference Manual

Polhemus InsideTRAK

 (see

 and
 be

 the

13-5

to the
ctor
Note: Unlike other sensor objects, you do not need to specify the serial port for the
InsideTRAK. So, if using the generic sensor constructor function - WTsensor_new
page 13-7), the serial port argument should always be NULL.

When you call WTinsidetrak_new for the first receiver (unit 1), the openfn for the device is
called, which calibrates the sensor. Calibration consists of obtaining an initial position
orientation record, which takes several seconds, during which the device should not
moved. Records subsequently generated by the updatefn are with respect to this initial
reference frame. As with other 6D sensors, it may be useful in your application to let
user know that the device is about to be calibrated (see the example under Polhemus
ISOTRAK on page 13-85).

The coordinate frame of the InsideTRAK is the same as for the ISOTRAK (see figure
on page 13-86).

Accessing InsideTRAK Raw Data

See Accessing ISOTRAK Raw Data on page 13-86.

Scaling InsideTRAK Records

See Scaling ISOTRAK Records on page 13-86.

InsideTRAK Update Function

WTinsidetrak_update

void WTinsidetrak_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after relativizing it and then applying any translational scale fa
that may have been set with WTsensor_setsensitivity (see page 13-11).
WorldToolKit Reference Manual 13-91

Chapter 13: Sensors

iple

n

are
g 3

ur
ice.
The macro WTinsidetrak_new creates an InsideTRAK sensor object that uses the
WTinsidetrak_update function and is recommended for most users.

Polhemus FASTRAK

The FASTRAK is similar to previous Polhemus sensors, except that it supports mult
trackers (up to four) and has much reduced sensor lag and increased accuracy.

To create a FASTRAK sensor object on serial port 1, you can use the macro call:

WTsensor *fastrak;
fastrak = WTfastrak_new(SERIAL1, unit);

This macro makes use of the sensor driver functions WTfastrak_open, WTfastrak_close,
and WTfastrak_update. It creates the FASTRAK sensor object running at 9600 baud o
UNIX platforms and running at 19200 baud on Windows 32-bit platforms.

unit is a unit number, from 1 to 4, specifying which FASTRAK receiver to open. If you
using multiple receivers, open them in sequential order. For example, if you are usin
FASTRAK receivers, open them like this:

WTsensor *f1, *f2, *f3;

f1 = WTfastrak_new(SERIAL1, 1);
f2 = WTfastrak_new(SERIAL1, 2);
f3 = WTfastrak_new(SERIAL1, 3);

Following are the DIP switch settings for the FASTRAK running at 9600 baud:

FASTRAK ON ON OFF OFF ON OFF OFF ON

You should try to use the FASTRAK at 19200 baud as this will dramatically improve
response when used with multiple sensors. To do this, you must first power down yo
FASTRAK, change the DIP switch settings to 19200 baud and then repower the dev
With WTK, you will need to modify the sensors.h include file to specify a baud rate of
19200.
13-92 WorldToolKit Reference Manual

Polhemus FASTRAK

ber
if you
 you
 only

AK.
sing
AK/
Following are the DIP switch settings for the FASTRAK running at 19200 baud:

FASTRAK OFF OFF ON ON ON OFF OFF ON

Consult your FASTRAK reference manual if you are uncertain of how to set your
FASTRAK DIP switches.

The first sensor you open must be the sensor connected to the FASTRAK’s sensor num
one port. For example, you cannot start up using just sensor number two. In addition,
connect multiple sensors to the FASTRAK, but tell WTK to open only a single sensor,
may get erratic results because the FASTRAK is returning multiple records. If you are
using a single sensor with WTK, then you should also configure the FASTRAK
accordingly.

Polhemus Stylus

Using the Polhemus Stylus in your WTK applications is no different than using the
Polhemus FASTRAK. However, you must use the Stylus as the first unit of the FASTR
You must plug the Stylus into the back panel of the FASTRAK where, if you were not u
a Stylus, the FASTRAK receiver 1 would have been plugged in. (Refer to your FASTR
Stylus manual for more information.)

Following is an example of accessing the Stylus button event.

WTsensor *stylus,*f2;
stylus= WTfastrak_new(SERIAL1,1);

f2= WTfastrak_new(SERIAL1,2);
/*Additional units may be connected*/
if(WTsensor_getmiscdata(stylus) & WTFASTRAK_STYLUSBUTTON_DOWN)

 WTmessage("Stylus button is down\n");
else
 WTmessage("Stylus button is up\n");

Accessing FASTRAK Raw Data

See Accessing ISOTRAK Raw Data on page 13-86.
WorldToolKit Reference Manual 13-93

Chapter 13: Sensors

to the
ctor

n
o
 by
and

emus
Scaling FASTRAK Records

See Scaling ISOTRAK Records on page 13-86.

FASTRAK Update Function

WTfastrak_update

void WTfastrak_update(
WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after relativizing it and then applying any translational scale fa
that may have been set with WTsensor_setsensitivity (see page 13-11).

The macro WTfastrak_new creates a FASTRAK sensor object that uses the
WTfastrak_update function and is recommended for most users.

Filtering the FASTRAK

The default operation of the FASTRAK doesn’t use any filtering of its signal inputs. I
some environments, this may lead to a jumpy or erratic signal. Polhemus supplies tw
functions for adaptive filtering of either the position or orientation information returned
the FASTRAK. These filtering operations are performed by the FASTRAK hardware
they will add a noticeable sensor lag into the measurement process.

For more detailed information about the use of these filters, please consult your Polh
FASTRAK manual.
13-94 WorldToolKit Reference Manual

Polhemus FASTRAK

ude
WTfastrak_afilter

void WTfastrak_afilter(
WTsensor *ftrak,
float sensitivity,

float flow,
float fhigh,
float factor);

This function controls the amount of adaptive filtering applied to the orientation or altit
values returned by the FASTRAK device.

WTfastrak_afilteroff

void WTfastrak_afilteroff(
WTsensor *ftrak);

This function turns off the filtering of orientation or altitude values previously set by
WTfastrak_afilter.

WTfastrak_pfilter

void WTfastrak_pfilter(

WTsensor *ftrak,
float sensitivity,
float flow,

float fhigh,
float factor);

This function controls the amount of adaptive filtering applied to the position values
returned by the FASTRAK device.

WTfastrak_pfilteroff

void WTfastrak_pfilteroff(

WTsensor *ftrak);

This function turns off the filtering of position values previously set by WTfastrak_pfilter.
WorldToolKit Reference Manual 13-95

Chapter 13: Sensors

 the
des

:

 This

ion of
Precision Navigation Wayfinder-VR

The Precision Navigation Wayfinder-VR head tracker is a serial device used to track
orientation of the wearer using inertial and compass technologies. This tracker provi
360 degrees of yaw rotation, and about +/- 45 degrees of pitch and roll rotation.

To create a Wayfinder-VR sensor object on serial port 1, you can use the macro call

WTsensor *precision;
precision = WTprecision_new(SERIAL1);

This macro makes use of the sensor driver functions WTprecision_open,
WTprecision_close, and WTprecision_update. It creates the Wayfinder-VR sensor object
running at 38400 baud.

Accessing Wayfinder-VR Raw Data

WTK maintains a data structure containing the raw data read from the Wayfinder-VR.
information can be accessed using the function WTsensor_getrawdata (see page 13-15) as
in the example below. The Wayfinder-VR raw data structure stores the absolute rotat
the tracker as an euler.

The raw data structure for the Wayfinder-VR is type defined as follows:

typedef struct _WTprecision_rawdata {
WTp3 e;

} WTprecision_rawdata;

and is accessed as follows:

WTsensor *precision
WTprecision_rawdata *raw;
raw = (WTprecision_rawdata *) WTsensor_getrawdata (precision);

WTp3_print (raw->e, “Raw euler: “);
13-96 WorldToolKit Reference Manual

Precision Navigation Wayfinder-VR

cro

ta is to
is

e euler
Scaling Wayfinder-VR Records

Records cannot be scaled for this sensor object. So the functions WTsensor_setsensitivity
and WTsensor_setangularrate have no effect.

Wayfinder-VR Update Function

WTprecision_update

void WTprecision_update(
WTsensor *sensor);

This update function calls WTprecision_rawupdate (see below) to update the raw data
structure, convert it to a quaternion, and relativize it with the previous record. The ma
WTprecision_new creates a Wayfinder-VR sensor object that uses the WTprecision_update
function.

Writing your Own Wayfinder-VR Update Function

Your update function should first call WTprecision_rawupdate (see below) to obtain the
sensor object's raw data as an absolute euler. It should then specify how the raw da
be transformed into an orientation record. Finally, your update function must store th
record by calling WTsensor_setrecord (see page 13-24). See Example 3: Update Function
for Absolute Device (Pseudocode) on page E-15.

WTprecision_rawupdate

int WTprecision_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolut
rotation. This information can be accessed with WTsensor_getrawdata (see page 13-15).
Also see Accessing Wayfinder-VR Raw Data on page 13-96.
WorldToolKit Reference Manual 13-97

Chapter 13: Sensors

ing.

means
e next
 rate
 rate,

tput

lays,
to

dialog
il the

aud

ds of
t.

Special Notes on Wayfinder-VR

This section provides some tips on what you can do if your Wayfinder-VR is not work
Before you proceed, make sure the battery is not dead.

The device keeps track of the previous baud rate at which it was being operated. This
that suppose it was being used at 9600 baud rate before being disconnected, then th
time that it is used it would still be running at 9600 baud rate. WTK uses 38400 baud
when trying to open the device. Thus, if the device was being used at any other baud
it fails to open.

If you encounter the above problem do the following:

Connect the Precision Navigation Wayfinder-VR to one of the serial ports.

On Windows NT 3.51:

1. From Program Manager/Accessories, double-click on Terminal.

A window displays from which you can either see erroneous records being ou
or nothing being output.

2. Click on Settings and select Terminal Preferences. From the dialog box that
displays, check the Local Echo option.

3. Click on Settings and select Communications. From the dialog box that disp
choose the required COM port. Set Data Bits to 8, Stop Bits to 1 and Parity
None.

4. If erroneous records are being output, choose the baud rate (from the same
box as above) one by one (i.e., 300/1200/2400/4800/9600/19200/38400) unt
device starts outputting correct records (i.e., of type
$C<compass>P<pitch>R<roll>*checksum<cr><lf>).

5. If nothing is being output, the device is probably in halt mode. Choose the b
rate one by one (as above) but additionally type go and press Enter (try to get the
device into continuous mode). If the device is on the correct baud rate, recor
type $C<compass>P<pitch>R<roll>*checksum<cr><lf> will start being outpu

6. Once correct records have started being output, type h and press Enter to bring the
device into halt mode. Now set the baud rate to 38400 by typing b=7. The device
is now set to baud rate 38400 and can be opened by WTK.
13-98 WorldToolKit Reference Manual

Precision Navigation Wayfinder-VR

 (this
s the

nal.

lick

are.

gs
.

dialog
il the

aud

ds of
t.

 (this
s the
7. Close the terminal program (no need to save settings). Disconnect the device
is important). The effect of changing the baud rate does not take place unles
device is disconnected. Now reconnect it and open it with WTK.

On Windows 95/NT 4.0:

1. Double-click on Hypertrm.exe from Program Files/Accessories/Hyper Termi

The Connection Description dialog box displays.

2. Choose an icon (any icon) and type a name (any name). Click OK.

The Phone Number dialog box displays.

3. From the Connect Using pull-down menu, choose the required COM port. C
OK.

The COM Properties dialog box displays.

4. Set Data Bits to 8, Parity to None, Stop Bits to 1, and Flow Control to Hardw
Click OK.

5. From the File menu, click Properties. From the dialog box, choose the Settin
tab. Click on ASCII Setup. Check the Echo Typed Characters Locally option

6. If erroneous records are being output, choose the baud rate (from the same
box as above) one by one (i.e., 300/1200/2400/4800/9600/19200/38400) unt
device starts outputting correct records (i.e., of type
$C<compass>P<pitch>R<roll>*checksum<cr><lf>).

7. If nothing is being output, the device is probably in halt mode. Choose the b
rate one by one (as above) but additionally type go and press Enter (try to get the
device into continuous mode). If the device is on the correct baud rate, recor
type $C<compass>P<pitch>R<roll>*checksum<cr><lf> will start being outpu

8. Once correct records have started being output, type h and press Enter to bring the
device into halt mode. Now, set the baud rate to 38400 by typing b=7. The device
is now set to baud rate 38400 and can be opened by WTK.

9. Close the terminal program (no need to save settings). Disconnect the device
is important). The effect of changing the baud rate does not take place unles
device is disconnected. Now reconnect it and open it with WTK.
WorldToolKit Reference Manual 13-99

Chapter 13: Sensors

 the
ns and

. If
ck of
ce
is
Spacetec IMC Spaceball

The Spacetec IMC Spaceball is a 6 degree-of-freedom serial port device that sits on
desktop. It responds to both forces and torques, which can be mapped into translatio
rotations in 3D.

Figure 13-6: Spaceball and its reference frame

To create a Spaceball sensor object on serial port 1, you can use the macro call:

WTsensor *spaceball;
spaceball = WTspaceball_new(SERIAL1);

This macro makes use of the sensor driver functions WTspaceball_open,
WTspaceball_close, and WTspaceball_update. It creates the Spaceball sensor object
running at 9600 baud.

The coordinate frame of this sensor is defined in the WTK driver functions as follows
the device is placed on a desk or table in front of you with the cable coming out the ba
the device oriented away from you, then, (as illustrated above) the Z axis of the devi
points straight ahead, the X axis points to the right, and the Y axis points down. If th
coordinate frame is not appropriate for your application, the function WTsensor_rotate (see
page 13-20) can be used to define the device’s coordinate frame.

Z axis

X axis

Y axis
13-100 WorldToolKit Reference Manual

Spacetec IMC Spaceball

is

 to the

ons
Accessing Spaceball Raw Data

WTK maintains a data structure containing the raw data read from the Spaceball. Th
information is accessed using WTsensor_getrawdata (see page 13-15) as in the example
below.

The raw data structure for the Spaceball is type defined as follows. Note that both p and w
are in the original Spaceball coordinates and that no scale factors have been applied
values.

typedef struct _WTspaceball_rawdata {

short p[3]; /* absolute position */
short w[3]; /* euler angles */

} WTspaceball_rawdata;

Spaceball raw data is accessed as follows:

WTsensor *spaceball;
WTspaceball_rawdata *raw;

/* get the raw spaceball values and print them out */

raw = (WTspaceball_rawdata *)WTsensor_getrawdata(spaceball);
WTmessage(“Position: %d, %d, %d\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Angles: %d, %d, %d\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Spaceball Records

Translational and rotational records for the Spaceball can be scaled using the functi
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12)
respectively.
WorldToolKit Reference Manual 13-101

Chapter 13: Sensors

to the
, and

te

the
ther
nted

In
ward

Spaceball Update Functions

WTspaceball_update

void WTspaceball_update(

WTsensor * sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after transforming the record to the WTK coordinate convention
applying any scale factors that may have been set with WTsensor_setsensitivity (see page
13-11) and WTsensor_setangularrate (see page 13-12).

The macro WTspaceball_new creates a Spaceball sensor object that uses the
WTspaceball_update function and is recommended for most users.

WTspaceball_dominant

void WTspaceball_dominant(
WTsensor *sensor);

This update function restricts the Spaceball movement to just one axis. It is an upda
function for the Spaceball that can be used in place of WTspaceball_update.

In “dominant” mode, the largest single input value from the Spaceball is considered
only input. So, out of the six possible values only the largest value is kept, and the o
five values are filtered out (reduced to zero). This can be very useful for avoiding unwa
motion. For example, if you push the Spaceball forward intending to cause a forward
motion, the Spaceball is likely to detect small forces in other directions or rotations.
dominant mode, these small values are filtered out and the viewpoint would move for
along a single axis only. This can be a useful technique for “rookie” users or for more
precise control over positioning objects.

To toggle the use of dominant mode, simply use the WTsensor_setupdatefn to switch
between the functions WTspaceball_dominant and WTspaceball_update.

The macro WTspaceball_newdominant creates a Spaceball sensor object that uses the
WTspaceball_dominant function.
13-102 WorldToolKit Reference Manual

Spacetec IMC Spaceball

itioned

essed

ld

s

ves

s may
has
Spaceball Defined Constants

There are nine user-programmable buttons on the Spaceball. Eight of these are pos
on the top edge of the Spaceball frame. One other button, called the “pick button,” is
mounted on the forward face of the ball itself. Events from these buttons can be acc
using WTsensor_getmiscdata (see page 13-15) together with the following defined
constants:

• Button held down . This event is generated each frame that the button is held
down. These events are defined as: WTSPACEBALL_BUTTONx where x is a
number between 1 and 8 (for example, WTSPACEBALL_BUTTON4) and
WTSPACEBALL_PICKBUTTON. In addition, there is a mask called
WTSPACEBALL_BUTTONS that can be used to see if any button is currently he
down.

• Button transitioned down . This event is generated each time the button move
from up to down. These events are defined as:
WTSPACEBALL_BUTTONx_DOWN, where x is a number between 1 and 8, and
WTSPACEBALL_PICKBUTTON_DOWN. In addition, there is a mask called
WTSPACEBALL_BUTTONS_DOWN that can be used to see if any button
transitioned down.

• Button transitioned up . This generates a single event each time the button mo
from down to up. These events are defined as: WTSPACEBALL_BUTTONx_UP,
where x is a number between 1 and 8, and WTSPACEBALL_PICKBUTTON_UP.
In addition, there is a mask called WTSPACEBALL_BUTTONS_UP that can be
used to see if any button transitioned up.

Redefining the Center for the Spaceball

WTspaceball_rezero

WTspaceball_rezero(

WTsensor *spaceball);

This function redefines the Spaceball’s center value at its current position. Spaceball
become slightly inaccurate with use and may “drift” when their default “center” value
changed. If you have a drifting Spaceball, you can call this function to redefine the
WorldToolKit Reference Manual 13-103

Chapter 13: Sensors

s

as not
e of
th
n) that
re

evice
d into

 macro

in the
you

oints
inate
Spaceball’s “center” as its current position. The Spaceball should not have any force
applied to it when this function is called.

Special Notes on Spaceball Model 3003

If you are using the Spacetec Spaceball Model 3003, be aware that the WTK driver h
been rewritten for the Model 3003. The 2003 driver works for both units, with a coupl
differences. The ball controls translation and rotation in 6 degrees in real time for bo
models, but the 3003 only has one button (whereas the 2003 has 8 plus a pick butto
WTK supports. The button on the right side of the 3003 acts as the pick button. Futu
drivers for the 3003 may include additional support.

Spacetec IMC Spaceball SpaceController

The Spacetec IMC Spaceball SpaceController is a 6 degree-of-freedom serial port d
that sits on the desktop. It responds to both forces and torques, which can be mappe
translations and rotations in 3D.

To create a Spaceball SpaceController sensor object on serial port 1, you can use the
call:

WTsensor *spacecontrol;
spacecontrol = WTspaceballSC_new(SERIAL1);

This macro makes use of the sensor driver functions WTspaceballSC_open,
WTspaceballSC_close, and WTspaceballSC_update. It creates the Spaceball
SpaceController sensor object running at 9600 baud.

The coordinate frame of this sensor is the same as for the Spaceball and is defined
WTK driver functions as follows. If the device is placed on a desk or table in front of
with the cable coming out the back of the device oriented away from you, then, (as
illustrated in figure 13-6 on page 13-100 for the Spaceball) the Z axis of the device p
straight ahead, the X axis points to the right, and the Y axis points down. If this coord
frame is not appropriate for your application, the function WTsensor_rotate (see page
13-20) can be used to define the device’s coordinate frame.
13-104 WorldToolKit Reference Manual

Spacetec IMC Spaceball SpaceController

t both
ctors

 using
Accessing Spaceball SpaceController Raw Data

WTK maintains a data structure containing the raw data read from the Spaceball
SpaceController. This information is accessed using WTsensor_getrawdata (see page
13-15) as in the example below.

The Spaceball SpaceController raw data structure is type defined as follows. Note tha
p and w are in the original Spaceball SpaceController coordinates and that no scale fa
have been applied to the values.

typedef struct _WTspaceballSC_rawdata {

WTp3 p; /* absolute position */
WTp3 w; /* euler angles */

} WTspaceballSC_rawdata;

Spaceball SpaceController raw data is accessed as follows:

WTsensor *spacecontrol;
WTspaceballSC_rawdata *raw;

raw = (WTspaceballSC_rawdata *)WTsensor_getrawdata(spacecontrol);

WTmessage(“Position: %f, %f, %f\n”, raw->p[X], raw->p[Y], raw->p[Z]);
WTmessage(“Rotation: %f, %f, %f\n”, raw->w[X], raw->w[Y], raw->w[Z]);

Scaling Spaceball SpaceController Records

Translational and rotational records for the Spaceball SpaceController can be scaled
the functions WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see
page 13-12) respectively.
WorldToolKit Reference Manual 13-105

Chapter 13: Sensors

to the
, and

t is an

er is
 kept,
r

 to
lues
can
Spaceball SpaceController Update Functions

WTspaceballSC_update

void WTspaceballSC_update(

WTsensor *sensor);

This update function packages the translation and rotation record from the device in
sensor object's record after transforming the record to the WTK coordinate convention
applying any scale factors that may have been set with WTsensor_setsensitivity (see page
13-11) and WTsensor_setangularrate (see page 13-12).

The macro WTspaceball_new creates a Spaceball sensor object that uses the function
WTspaceballSC_update and is recommended for most users.

WTspaceballSC_dominant

void WTspaceballSC_dominant(
WTsensor *sensor);

This update function restricts Spaceball SpaceController movement to just one axis. I
update function for the Spaceball SpaceController that can be used in place of
WTspaceballSC_update.

In “dominant” mode, the largest single input value from the Spaceball SpaceControll
considered the only input. So, out of the six possible values only the largest value is
and the other five values are filtered out (reduced to zero). This can be very useful fo
avoiding unwanted motion. For example, if you push the Spaceball SpaceController
forward intending to cause a forward motion, the Spaceball SpaceController is likely
detect small forces in other directions or rotations. In dominant mode, these small va
are filtered out and the viewpoint would move forward along a single axis only. This
be a useful technique for “rookie” users or for more precise control over positioning
objects.

To toggle the use of dominant mode, simply use the WTsensor_setupdatefn (see page
13-10) to switch between the functions WTspaceballSC_dominant and
WTspaceballSC_update.
13-106 WorldToolKit Reference Manual

Spacetec IMC Spaceball SpaceController

from

n.

ition.
hen

oller,
rrent
n this
Spaceball SpaceController Defined Constants

There are two buttons on the Spaceball SpaceController, one on each side. Events
these buttons can be accessed using WTsensor_getmiscdata (see page 13-15) together with
the following defined constants:

• Button held down. This event is generated each frame the button is held dow
These events are defined as: WTSPACEBALLSC_BUTTONx where x is either 1
and 2 (for example, WTSPACEBALLSC_BUTTON1). In addition, there is a mask
called WTSPACEBALLSC_BUTTONS that can be used to see if either button is
currently held down.

Redefining the Center for the Spaceball SpaceController

WTspaceballSC_rezero

WTspaceballSC_rezero(
WTsensor *spacecontrol);

This function redefines the Spaceball SpaceController’s center value at its current pos
Spaceball SpaceControllers may become slightly inaccurate with use and may “drift” w
their default “center” value has changed. If you have a drifting Spaceball SpaceContr
you can call this function to redefine the Spaceball SpaceController’s “center” as its cu
position. The Spaceball SpaceController should not have any forces applied to it whe
function is called.

Changing the Input Focus Window for the Spaceball
SpaceController

WTspaceballSC_setwindow

FLAG WTspaceballSC_setwindow(
WTsensor *sensor,
WTwindow *window);
WorldToolKit Reference Manual 13-107

Chapter 13: Sensors

ds

ow

The
tually
e
 and
 a

.

The Spaceball SpaceController has a WTK window associated with it to which it sen
messages. By default, this is the WTK window created by the call to WTuniverse_new (see
page 2-2). So, you need to call this function only if you want to change the WTK wind
having the input focus associated with the Spaceball Spacecontrollers.

StereoGraphics CrystalEyes and
CrystalEyesVR LCD Shutter Glasses

WTK supports StereoGraphics CrystalEyes and the CrystalEyesVR display system.
CrystalEyes provide stereo viewing, whereas the CrystalEyesVR display system is ac
a specialized usage of the Logitech position tracker together with stereo viewing. Th
system consists of LCD-shutter glasses synchronized with a high-frequency monitor
imbedded Logitech ultrasonic receivers. Since orientation and initialization differ from
generic Logitech sensor, WTK provides a separate sensor driver for CrystalEyesVR

Figure 13-7: CrystalEyesVR sensor reference frame.

Stereo-capable monitor

Logitech transmitter
CrystalEyes
emitter

CrystalEyesVR
LCD shutter glasses
with built in tracker
13-108 WorldToolKit Reference Manual

StereoGraphics CrystalEyes and CrystalEyesVR LCD Shutter Glasses

ll:

s 32-

 is
 13-7
e time

r the

 by
To create a CrystalEyesVR sensor object on serial port 1, you can use the macro ca

WTsensor *ceyesvr;
WTmessage(“About to open CrystalEyes VR...\n”);
ceyesvr =WTcrystaleyesVR_new(SERIAL1);

if (!ceyesvr)
WTwarning(“Warning, couldn’t open CrystalEyesVR\n”);

else

WTmessage(“Calibration complete.\n”);

This macro makes use of the sensor driver functions WTcrystaleyesVR_open,
WTlogitech_close, and WTcrystaleyesVR_update. It creates the CrystalEyerVR sensor
object running at 9600 baud on UNIX platforms and running at 1200 baud on Window
bit platforms.

At sensor initialization, the transmitter and receiver must be in a particular spatial
relationship with one another for everything to work correctly. The correct orientation
with the goggles and transmitter triangle facing each other directly as shown in figure
on page 13-108. If the transmitter and receiver are not within range of each other at th
of sensor initialization, the WTcrystaleyesVR_open function prompts you to move the
receiver within range so that the initialization process can be completed.

Accessing CrystalEyesVR Raw Data

The raw data structure for the CrystalEyesVR is the same raw data structure used fo
Logitech Head Tracker device (see page 13-79).

Scaling CrystalEyesVR Records

As for the Logitech Head Tracker, CrystalEyesVR translation records can be scaled
using the function WTsensor_setsensitivity (see page 13-11).

There is no angular adjustment for the CrystalEyesVR (i.e., the function
WTsensor_setangularrate has no effect).
WorldToolKit Reference Manual 13-109

Chapter 13: Sensors

er)

cene

d
wn
This
lows:

rs,
set
o

ice
i.e.,
) is
ion,

ith

This
g the
CrystalEyesVR Defined Constants

The defined constants WTLOGITECH_FLAGBIT (to detect bad records) and
WTLOGITECH_OUTBIT (to detect whether the receiver is out of range of the transmitt
are provided and can be used with the function WTsensor_getmiscdata (see page 13-15).

CrystalEyesVR Update Function

WTcrystaleyesVR_update

void WTcrystaleyesVR_update(
WTsensor *sensor);

The update function provided in WTK follows the approach recommended by
StereoGraphics (the vendor of the CrystalEyesVR system). This update function is
appropriate for a user who is sitting or standing in front of the monitor on which the s
is displayed. Most likely the transmitter triangle is fixed to the top of the monitor.

The function WTcrystaleyesVR_update uses only the X and Y translation values returne
by the ultrasonic tracker. In other words, only the side-to-side motion and up-and-do
motion of the user, as returned by the head-tracker, is used by the update function.
information is turned into translation and rotation records by the update function as fol

• Horizontal and vertical (X and Y) translations are generated by this update
function based on the X and Y input values. As with other WTK sensor drive
the translation amounts are scaled by the sensor’s sensitivity, which can be
using WTsensor_setsensitivity (see page 13-11), and is by default equal to 1.0. N
Z translations are generated.

• Rotations are computed as a function of the X, Y translation values of the dev
(while rotational inputs from the device are ignored). The viewpoint is yawed (
rotated about Y) when the user shifts left or right. The yaw angle (in radians
computed by scaling the user’s X location, relative to the user’s original locat
so that it is between plus and minus the sensor’s angular rate value, as set w
WTsensor_setangularrate (see page 13-12). Similarly, the angle of pitch is
computed based on the user’s Y location relative the user’s original position.
update function does not generate roll, that is, rotations corresponding to tiltin
head.
13-110 WorldToolKit Reference Manual

ThrustMaster Formula T2 Steering Console

tated
 head

 your
rd.

e able
e sense

e

and
ed by
The effect is that when you translate your head to the right, your viewpoint is also ro
(by an amount controlled by the sensor’s angular rate) to the left. If you translate your
to the left, your viewpoint is rotated to the right. If you move your head upward, your
viewpoint translates upward within the scene, and is also pitched down. If you move
head down, your viewpoint is translated down in the scene and is also pitched upwa

With this approach, as you move your head from side-to-side and up and down, you ar
to see around to the sides of objects as well as above and below them, enhancing th
of 3D.

The macro WTcrystaleyesVR_new creates a CrystalEyesVR sensor object that uses th
WTcrystaleyesVR_update function and is recommended for most users.

ThrustMaster Formula T2 Steering Console

The Formula T2 provides a natural driving experience around your virtual world.

To create a Formula T2 sensor object you can use the macro call:

WTsensor *formula;
formula = WTformula_new(unit);

This macro makes use of the sensor driver functions WTformula_open, WTformula_close,
and WTformula_update. It creates the Formula T2 sensor object having two steering
consoles. The unit argument is unused and can be set to 1.

At initialization, WTK searches the current directory for a Formula T2 calibration file
named formula.cal. The calibration file is in ASCII format with six values specifying
integer values for wheel center, wheel range, wheel drift, pedal center, pedal range,
pedal drift. This is a sample calibration file and also represents the default values us
WTK:

11 24 4 20 21 4

If the calibration file is not found, the default values are used.
WorldToolKit Reference Manual 13-111

Chapter 13: Sensors

mula

tions
Note: Unlike other sensor objects, you do not need to specify the serial port for the For
T2. So, if using the generic sensor constructor function – WTsensor_new (see page
13-7), the serial port argument should always be NULL.

Accessing Formula T2 Raw Data

The raw data structure for the Formula T2 is type defined as follows:

typedef struct _WTformula_rawdata {
unsigned short wheel;

unsigned short pedal;
} WTformula_rawdata;

and accessed as follows:

WTsensor *formula;

WTformula_rawdata *raw;
raw = (WTformula_rawdata *)WTsensor_getrawdata(formula);
WTmessage(" Wheel %d Pedal %d\n", raw->wheel, raw->pedal);

Scaling Formula T2 Records

Translational and rotational records for the Formula T2 can be scaled using the func
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12)
to change the speed and turning radius respectively.

Formula T2 Update Function

WTformula_drive

void WTformula_drive(

WTsensor *sensor);
13-112 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

al

rmed
s

d

B9
In
, and
ons
This function calls WTformula_rawupdate (see below) to obtain the raw wheel and ped
information. It then applies any scale factors that may have been set with
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12).
Finally it stores the record with the sensor by calling WTsensor_setrecord (see page 13-24).

The macro WTformula_new creates a Formula T2 sensor object that uses the
WTformula_update function.

Writing Your Own Formula T2 Update Function

Your update function should first call WTformula_rawupdate (see below) to obtain the raw
wheel and pedal information. It should then specify how the raw data is to be transfo
into a 3D position and orientation record. Finally, your update function must store thi
record by calling WTsensor_setrecord (see page 13-24).

WTformula_rawupdate

void WTformula_rawupdate(
WTsensor *sensor);

This function obtains the raw wheel and pedal information. It stores the raw wheel an
pedal information in the sensor's raw data structure (WTformula_rawdata). This
information can be accessed with WTsensor_getrawdata (see page 13-15). Also see
Accessing Formula T2 Raw Data on page 13-112.

ThrustMaster Serial Joystick

The ThrustMaster Mark II Flight Control System is similar to a number of game-port
joysticks available for Intel-based personal computers, although this version has a D
serial connector which makes it usable on virtually all platforms supported by WTK.
addition to left and right analog actuators, this joystick has three buttons, one trigger
a four-way hat switch. For more inputs, you can attach a ThrustMaster Mark II Weap
Control System directly to the Mark II Flight Control System.
WorldToolKit Reference Manual 13-113

Chapter 13: Sensors

l:

ud.

ed
t

,
ed by

es of

is

To create a Serial Joystick sensor object on serial port 1, you can use the macro cal

WTsensor *joyserial;
joyserial = WTjoyserial_new(SERIAL1);

(if !joyserial)

WTwarning(“Could not open serial joystick\n”);

This macro makes use of the sensor driver functions WTjoyserial_open, WTjoyserial_close,
and WTjoyserial_walk. It creates the Serial Joystick sensor object running at 19200 ba

At initialization, WTK searches the current directory for a joystick calibration file nam
joystick.cal. The calibration file is in ASCII format with six values specifying floating poin
values for minimum X, maximum X, minimum Y, maximum Y, center X and center Y
respectively. This is a sample calibration file and also represents the default values us
WTK:

0.0 255.0 0.0 255.0 128.0 128.0

If the calibration file is not found, default values are used for the center and range valu
the joystick.

To use an update function other than WTjoyserial_walk, for example, WTjoyserial_fly, you
can call WTsensor_new directly or simply make the following call after using
WTjoyserial_new:

WTsensor_setupdatefn(joyserial, WTjoyserial_fly);

Accessing Serial Joystick Raw Data

WTK maintains a data structure containing the raw data from the Serial Joystick. Th
information can be accessed using the function WTsensor_getrawdata (see page 13-15) as
in the example below.
13-114 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

ctions

vice
The raw data structure for the Serial Joystick is type defined as follows:

typedef struct _WTjoyserial_rawdata
{

unsigned short x,y; /* roll & pitch */

unsigned short throttleleft; /* weapons control system throttle (wcs) */
unsigned short throttleright;
unsigned short throttletrim;

unsigned short rudder;
} WTjoyserial_rawdata;

and is accessed as follows :

WTsensor *joyserial;

WTjoyserial_rawdata *raw;
raw = (WTjoyserial_rawdata *)WTsensor_getrawdata(joyserial);

WTmessage("Roll %d Pitch %d\n", raw->x, raw->y);

WTmessage("Throttleleft %d ThrottleRight %d Rudder %d\n", raw->throttleleft,
raw->throttleright, raw->rudder);

Scaling Serial Joystick Records

Translational and rotaional records for the Serial Joystick can be scaled using the fun
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12)
respectively.

Serial Joystick Update Functions

The WTK update functions for the Serial Joystick store the position record from the de
into the sensor object’s record, after applying any scale factors set with
WTsensor_setsensitivity (see page 13-11) and WTsensor_setangularrate (see page 13-12).
WorldToolKit Reference Manual 13-115

Chapter 13: Sensors

 of
ard
ving
ls

 be
oving
 the

ving
ight

WTjoyserial_fly

void WTjoyserial_fly(
WTsensor *sensor);

This function is an update function that moves a sensor forward along the Z-axis at a
constant velocity. It can be used to operate the joystick in a manner familiar to users
flight simulation programs. When this update function is used, the sensor moves forw
along Z at a small constant velocity (0.1 times the sensor sensitivity each frame). Mo
the joystick forward/backward pitches around X, and moving the joystick right/left rol
around Z.

The macro WTjoyserial_newfly creates a serial joystick object that uses the WTjoyserial_fly
update function.

WTjoyserial_walk

void WTjoyserial_walk(

WTsensor *sensor);

This function initializes a sensor to move in the “walkthrough” mode. The joystick can
used to move a viewpoint or object in the X-Z plane. When no buttons are pressed, m
the joystick forward or backward moves forward or backward along the Z axis. Moving
joystick right or left yaws around the Y axis. When the front button is depressed, mo
the joystick forward or backward pitches around the X axis, and moving the joystick r
or left rolls around the Z axis.

The macro WTjoyserial_new creates a Serial Joystick object that uses the WTjoyserial_walk
update function.

WTjoyserial_walk2

void WTjoyserial_walk2(
WTsensor *sensor);

This function initializes a sensor to move in a second “walkthrough” mode. The
WTjoyserial_walk2 update function is like WTjoyserial_walk except that holding down the
trigger button allows you to raise or lower the viewpoint.
13-116 WorldToolKit Reference Manual

ThrustMaster Serial Joystick

n

’s raw

n
n
alues
The macro WTjoyserial_newwalk2 creates a serial joystick object that uses the
WTjoyserial_walk2 update function.

Writing your Own Serial Joystick Update Function

Your update function should first call WTjoyserial_rawupdate to obtain the Serial Joystick's
raw data. It should then specify how the raw data is to be transformed into 3D positio
record. Finally, your update function must store this record by calling WTsensor_setrecord
(see page 13-24). See Example 3: Update Function for Absolute Device (Pseudocode) on
page E-15.

WTjoyserial_rawupdate

int WTjoyserial_rawupdate(
WTsensor *sensor);

This function reads in the raw data from the Serial Joystick and stores it in the sensor
data structure. This information can be accessed with the function WTsensor_getrawdata
(see page 13-15). Also see Accessing Serial Joystick Raw Data on page 13-114.

Serial Joystick Defined Constants

The ThrustMaster Mark II Flight Control System supports three momentary buttons i
addition to the trigger and a hat switch. The Mark II Weapons Control System adds a
additional six momentary switches as well as a three position rocker switch. These v
can be accessed by using the WTsensor_getmiscdata function with any of the following
constants described in the joyserial.h file in the include directory:

WTJOYSERIAL_TRIGGERDOWN
WTJOYSERIAL_TOPDOWN

WTJOYSERIAL_SIDEDOWN
WTJOYSERIAL_BOTTOMDOWN
WTJOYSERIAL_HATRIGHT

WTJOYSERIAL_HATLEFT
WTJOYSERIAL_HATDOWN
WTJOYSERIAL_HATUP
WorldToolKit Reference Manual 13-117

Chapter 13: Sensors

ined

The
WTJOYSERIAL_WCS1
WTJOYSERIAL_WCS2
WTJOYSERIAL_WCS3

WTJOYSERIAL_WCS4
WTJOYSERIAL_WCS5
WTJOYSERIAL_WCS6

WTJOYSERIAL_WCS7
WTJOYSERIAL_WCSTOGGLEA
WTJOYSERIAL_WCSTOGGLEB

Serial Joystick Range

WTjoyserial_getrange

void WTjoyserial_getrange(
WTsensor *sensor,

WTp2 range);

This function returns the maximum X and Y values (divided by 2), which can be atta
by the joystick.

Serial Joystick Drift

WTjoyserial_setdrift

void WTjoyserial_setdrift(

WTsensor *sensor,
float drift_per);

This function sets the joystick’s drift amount to a percentage of the joystick’s range.
drift_per parameter specifies the percentage.
13-118 WorldToolKit Reference Manual

VictorMaxx Technologies’ CyberMaxx2 HMD

des

 call:
WTjoyserial_getdrift

float WTjoyserial_getdrift(
WTsensor *sensor);

This function returns the drift amount of the specified joystick sensor. See
WTjoyserial_setdrift, above.

Reinitializing the Serial Joystick

WTjoyserial_readcalibrationfile

void WTjoyserial_readcalibrationfile(
void);

This function reads the joystick’s calibration file so joystick.cal can be re-initialized. Page
13-113 talks about the joystick.cal file.

VictorMaxx Technologies’ CyberMaxx2 HMD

VictorMaxx Technologies’ CyberMaxx2 HMD is a serial device used to track the
orientation of the wearer using inertial and compass technologies. This tracker provi
360 degrees of yaw rotation, and about +/- 60 degrees of pitch and roll rotation.

To create a CyberMaxx2 HMD sensor object on serial port 1, you can use the macro

WTsensor *cybermaxx2;

cybermaxx2 = WTcybermaxx2_new(SERIAL1);

This macro makes use of the sensor driver functions WTcybermaxx2_open,
WTcybermaxx2_close, and WTcybermaxx2_update. It creates the CyberMaxx2 HMD
sensor object running at 9600 baud.
WorldToolKit Reference Manual 13-119

Chapter 13: Sensors

MD.

e
Accessing CyberMaxx2 HMD Raw Data

WTK maintains a data structure containing the raw data read from the CyberMaxx2 H
This information can be accessed using the function WTsensor_getrawdata (see page
13-15) as in the example below. The CyberMaxx2 HMD raw data structure stores th
absolute rotation of the tracker as an euler.

The raw data structure for the CyberMaxx2 HMD is type defined as follows:

typedef struct _WTcybermaxx2_rawdata {

float e[3];
} WTcybermaxx2_rawdata;

and is accessed as follows:

WTsensor *cybermaxx2;

WTp3 p3;
WTcybermaxx2_rawdata *raw;
raw = (WTcybermaxx2_rawdata *) WTsensor_getrawdata (cybermaxx2);

WTp3_copy(raw->e, p3);
WTp3_print (p3, “Raw euler: “);

Scaling CyberMaxx2 HMD Records

Records cannot be scaled for this sensor object. So the functions WTsensor_setsensitivity
and WTsensor_setangularrate have no effect.

CyberMaxx2 HMD Update Function

WTcybermaxx2_update

void WTcybermaxx2_update(
WTsensor *sensor);
13-120 WorldToolKit Reference Manual

Virtual i-O i-glasses!

acro

ta is to
is

e euler

g
, and

.

This update function calls WTcybermaxx2_rawupdate (see below) to update the raw data
structure, convert it to a quaternion, and relativize it with the previous record. The m
WTcybermaxx2_new creates a CyberMaxx2 HMD sensor object that uses the
WTcybermaxx2_update function.

Writing your Own CyberMaxx2 HMD Update Function

Your update function should first call WTcybermaxx2_rawupdate (see below) to obtain the
sensor object's raw data as an absolute euler. It should then specify how the raw da
be transformed into an orientation record. Finally, your update function must store th
record by calling WTsensor_setrecord (see page 13-24). See Example 3: Update Function
for Absolute Device (Pseudocode) on page E-15.

WTcybermaxx2_rawupdate

FLAG WTcybermaxx2_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolut
rotation. This information can be accessed with WTsensor_getrawdata (see page 13-15).
Also see Accessing CyberMaxx2 HMD Raw Data (see page 13-120).

Virtual i-O i-glasses!

Virtual i-O i-glasses! is a serial device used to track the orientation of the wearer usin
inertial and compass technologies. This tracker provides 360 degrees of yaw rotation
about +/- 60 degrees of pitch and roll rotation.

To create an i-glasses! sensor object on serial port 1, you can use the macro call:

WTsensor *iglasses;
iglasses = WTiglasses_new(SERIAL1);

This macro makes use of the sensor driver functions WTiglasses_open, WTiglasses_close,
and WTiglasses_update. It creates the i-glasses! sensor object running at 19200 baud
WorldToolKit Reference Manual 13-121

Chapter 13: Sensors

is

of the

a
Accessing i-glasses! Raw Data

WTK maintains a data structure containing the raw data read from the i-glasses!. Th
information can be accessed using the function WTsensor_getrawdata (see page 13-15) as
in the example below. The i-glasses! raw data structure stores the absolute rotation
tracker as an euler.

The raw data structure for the i-glasses! is type defined as follows:

typedef struct _WTiglasses_rawdata {

WTp3 e;
} WTiglasses_rawdata;

and is accessed as follows:

WTsensor *iglasses;

WTiglasses_rawdata *raw;
raw = (WTiglasses_rawdata *) WTsensor_getrawdata (iglasses);
WTp3_print (raw->e, “Raw euler: “);

Scaling i-glasses! Records

Records cannot be scaled for this sensor object. So the functions WTsensor_setsensitivity
and WTsensor_setangularrate have no effect.

i-glasses! Update Function

WTiglasses_update

int WTiglasses_update(

WTsensor *sensor);

This update function calls WTiglasses_rawupdate (see below) to update the raw dat
structure, convert it to a quaternion, and relativize it with the previous record.
13-122 WorldToolKit Reference Manual

Virtual Technologies CyberGlove

ta is to
is

e euler

del

ves.
ses
r this
 this
:

The macro WTiglasses_new creates an i-glasses! sensor object that uses the
WTiglasses_update function.

Writing your Own i-glasses! Update Function

Your update function should first call WTiglasses_rawupdate (see below) to obtain the
sensor object's raw data as an absolute euler. It should then specify how the raw da
be transformed into an orientation record. Finally, your update function must store th
record by calling WTsensor_setrecord (see page 13-24). See Example 3: Update Function
for Absolute Device (Pseudocode) on page E-15.

WTiglasses_rawupdate

void WTiglasses_rawupdate(
WTsensor *sensor);

This function reads the tracker input and puts it in the raw data structure as an absolut
rotation. This information can be accessed with WTsensor_getrawdata (see page 13-15).
Also see Accessing i-glasses! Raw Data on page 13-122.

Virtual Technologies CyberGlove

The Virtual Technologies CyberGlove is a popular serial port device for direct
manipulation of objects in virtual worlds. The CyberGlove comes in an 18-sensor mo
and a 22-sensor model. WorldToolKit's CyberGlove driver automatically handles
CyberGloves with either number of sensors, and also supports both left and right glo
WTK's CyberGlove device driver is different from the other WTK device drivers and u
a WTcybglove structure which is different from the WTsensor structure. The reason fo
difference is to be able to provide functions for calibrating and graphically representing
compound device. WorldToolKit's CyberGlove driver enables you to do the following

• Instantiate up to two WTcybglove entities.

• Optionally specify CyberGlove parameters in the VirtualHand resource file.

• Calibrate the CyberGlove.
WorldToolKit Reference Manual 13-123

Chapter 13: Sensors

 the

ation

jects

ction
o its

 you
glove,
rt

t be

o
new

400,
name,
orts
• Create a graphical hand model which is automatically updated by input from
CyberGlove.

• Set the visibility of the hand model.

• Access the movable objects comprising the hand model and the angle inform
from the glove.

• Perform collision detection between the hand model objects and the other ob
in the scene graph.

Note: This device is supported on the SGI and Windows NT platforms only. The subse
- "For Windows NT Users" - lists some characteristics of the driver that are specific t
functioning on the Windows NT platform.

Initializing the CyberGlove

WTcybglove_new

WTcybglove *WTcybglove_new(
int baud,

char *device,
char *calibrationfilename);

Call WTcybglove_new to initialize a CyberGlove and obtain a pointer to a new
WTcybglove object. WTcybglove_new must be called separately for each CyberGlove
wish to use. For example, to create an application which uses both a left and a right
you must call WTcybglove_new twice. In addition, you must use a different serial po
device for each CyberGlove.

Note: The WTcybglove structure is different from the WTsensor structure and may no
passed in to the WTsensor functions.

Currently WTK supports the use of up to two CyberGloves in an application. Once tw
WTK CyberGlove objects have been constructed, subsequent calls to WTcybglove_
return NULL.

The first argument to WTcybglove_new is the baud rate, which must be one of 1200, 2
4800, 9600, 19200, 38400 or 57600. The second argument is the serial port device
which is, for example, SERIAL1 for serial port 1. You can find out more about serial p
13-124 WorldToolKit Reference Manual

Initializing the CyberGlove

ame
e

ted,

s,

 to
" if

e the
ne by
al
ion
ent.

cified

hat
s,
e
r's
nd
t the
 the
y

 in 0
nt, but
ts to

tion
fault
by consulting your hardware guide. The third argument to WTcybglove_new is the n
of a calibration file for the glove. This file must be located in the same directory as th
application executable. A default calibration file (default.cal) is supplied with the
CyberGlove product.

Note: You must have a CyberGlove calibration file to call WTcybglove_new. If the
specified calibration file is not found in the directory in which your executable is loca
then WTcybglove_new produces a warning message and returns NULL.

On the Windows platform, you must have the calibration panel resource file, panel.re
included in the project makefile. The file "panel.res" is located in the CyberGlove
distribution provided by Virtual Technologies. The CyberGlove driver will not be able
create the calibration panel without this file, and will exit with an "unhandled exception
thefile is not present. If your application has a resource file of its own, you must merg
resources specified in panel.res into your application's resource file. This may be do
dragging and dropping the resources fromone file into the other, from within the Visu
C++ development environment. Even if you do not wish to open and use the calibrat
panel, WTcybglove_new initializes the panel window and requires this file to be pres
There is no equivalent calibration panel resource file on the UNIX platform.

The baud rate, serial port selection, and calibration file name can alternatively be spe
in a configuration file. The configuration (or application resource) file is called
VirtualHand. Refer to the CyberGlove User's Manual for a description of the format t
must be used in the VirtualHand resource file. Apart from the initialization parameter
there are various other application specific options that can be set using the resourc
file.These, and their respective field definitions are discussed in the CyberGlove Use
Manual. On UNIX platforms, you may use the xrdb command to merge the VirtualHa
resource file into the X server's resource database. (Type xrdb -merge VirtualHand a
command prompt). On Windows platforms the VirtualHand resource file must exist in
directory that contains the executable. The resource file will not be read otherwise. B
using the VirtualHand file you can make changes to the values of the initialization
parameters without having to recompile your application.

If you wish to use the resource file to specify the baud rate for your glove, simply pass
for the baud argument to WTcybglove_new. If you pass in 0 as the baud rate argume
no value for the baud rate is found in the configuration file, then the baud rate defaul
38400.

Similarly, to use the VirtualHand resource file to specify the device name and/or calibra
file name, pass in NULL for the corresponding argument to WTcybglove_new. The de
value for the device name is /dev/ttyd1 on UNIX platforms and COM1 on Windows
WorldToolKit Reference Manual 13-125

Chapter 13: Sensors

 and
ove

 Note
add

is
in the

ich
 this
se

g

sion.
n the
platforms. You must use a system-specific device designation in the configuration file
not one of WTK's cross-platform serial device constants. The default value for the gl
calibration file is default.cal.

Following are example entries such as might appear in the VirtualHand resource file.
that "glove1" refers to the first CyberGlove activated with WTcybglove_new. You can
similar lines substituting "glove2" for "glove1" if two CyberGloves are in use.

VirtualHand*glove1device: /dev/ttyd2
VirtualHand*glove1speed: 38400
VirtualHand*glove1calFile: default.cal

VirtualHand*handModel: hires_hand.vnf

(On Windows platforms, a device name of COM2 is specified by entering:

VirtualHand*glove1device: COM2)

Calibrating the CyberGlove

WorldToolKit enables you to interactively recalibrate your CyberGlove while your
WorldToolKit application is running. Please note though that an initial calibration file
still required to be present at the time that WTcybglove_new is called, as described
previous section.

WTcybglove_showcalibrationpanel

void WTcybglove_showcalibrationpanel(
FLAG on);

Call WTcybglove_showcalibrationpanel passing in TRUE to display a panel from wh
you can alter the calibration settings loaded from your calibration file. If you do not call
function, your calibration remains as originally loaded from your calibration file. To clo
the calibration panel, call WTcybglove_showcalibrationpanel passing in FALSE.This
function may not be called until at least one CyberGlove has been initialized by callin
WTcybglove_new.

The adjustments made using the calibration panel will be used in the current WTK ses
If you wish to save the adjustments, you may do so by clicking on the "save" button i
13-126 WorldToolKit Reference Manual

Creating a Graphical Hand Model for CyberGlove

n be
iting

er the
, and
een

y

rder

bject
model

 must
LL

el is
odel
odels
calibration panel. The default name of a saved calibration file is "untitled.cal." This ca
changed by editing the name field in the panel. You will not be warned about overwr
an existing calibration file.

The calibration panel can be used to calibrate multiple gloves. To do so, you must ent
desired glove number into the field next to the "Show" button on the calibration panel
then click the "Show" button. Make sure that all CyberGloves to be calibrated have b
activated using WTcybglove_new before trying to calibrate them.

The calibration file written out by this function may be used in a new WTK session b
specifying the new file name in the configuration file.

Creating a Graphical Hand Model for CyberGlove

WTcybglove_usehandmodel

WTnode *WTcybglove_usehandmodel(
WTcybglove *glove,

char *handmodelname,
float scale,
WTnode *parent);

WTcybglove_usehandmodel builds a hand model from a multi-object NFF file. The o
and naming of the objects in this file is described in the CyberGlove User's Manual.

The first argument to WTcybglove_usehandmodel specifies the CyberGlove sensor o
by which the hand model is to be controlled. Once this call has been made, the hand
is automatically updated by WTK with the latest CyberGlove input once per frame.

The second argument is the name of the file which contains the hand model. The file
follow the Virtual Technologies guidelines for a hand model file. You may supply NU
as an argument here, which will result in a default to the value specified in your
VirtualHand resource file. If the hand model file is not found, a very simple hand mod
generated automatically without a model file. WTK supplies a more complex hand m
for use with the CyberGlove, if you so desire. Please see the Readme.txt file in the m
directory of the WTK distribution.
WorldToolKit Reference Manual 13-127

Chapter 13: Sensors

:

1",

be
f the
ill

hich
t wish
r this

 hand
NULL
el
child.
g of

t from
 you
acker,
 with

ated
y all

 this
 other

g to

 hand
WTK assigns the following names to the hand model objects constructed by this call
"cyforearm1", "cypalm1", "cythumbbase1", "cythumbmedial1", "cythumbtip1",
"cyindexbase1", "cyindexmedial1", "cyindextip1", "cymiddlebase1", "cymiddlemedial
"cymiddletip1", "cyringbase1", "cyringmedial1", "cyringtip1", "cypinkiebase1",
"cypinkiemedial1", "cypinkietip1", for the first WTcybglove object constructed. If a
second WTcybglove is constructed, the names are "cyforearm2", etc. These are the

names that are returned by the function WTnode_getname.

The third argument specifies the scale of the hand model. The hand model may not
scaled after it is created by the WTcybglove_usehandmodel function. If you use any o
geometry scaling functions provided by WTK on the hand model objects, the hand w
become distorted.

The fourth argument, parent, is a pointer to a WTnode that indicates the node below w
the CyberGlove hand model structure will be attached in the scene graph. If you do no
to insert the CyberGlove hand model into the scene graph, you may pass in NULL fo
argument.

This function returns the top most node in the CyberGlove hand model structure. The
model is created as a hierarchy of movable nodes and attachments. If you passed in
for the parent argument, you may use the returned node to add the CyberGlove mod
structure anywhere in the scene graph by using WTnode_addchild or WTnode_insert
Use the function WTnode_print (with the node returned by this function) to get a listin
the hierarchy of nodes in the hand model structure.

Once constructed, WTK updates the graphical hand's position each frame using inpu
the CyberGlove device. The forearm object is the only object in the hand model which
may attach another sensor to or alter the orientation of. Any sensor, such as a 6-D tr
can be attached to the forearm object, and the rest of the hand model will move along
the forearm. In the WTK event loop, the CyberGlove finger and wrist objects are upd
immediately after all other objects (including the forearm object) have been updated b
active WTsensors in the simulation. The input from the CyberGlove determines the
position and orientation of all of the finger and wrist objects relative to the forearm. For
reason, attempts to alter the orientation or position of any of the hand model objects
than the forearm will have no effect.

You may not delete the nodes which comprise the hand model objects using
WTnode_delete or WTnode_deletechild; your program will crash if any node belongin
the CyberGlove hand model structure is deleted. To delete the hand model, use
WTcybglove_deletehandmodel. The forearm node (which is the top most node in the
13-128 WorldToolKit Reference Manual

Creating a Graphical Hand Model for CyberGlove

entire

e new
-axis.

ting
he old
 may

havior

ate a

and
atrix

l. The

ew

des.
model hierarchy) may be removed and attached elsewhere in the scene graph. The
hand model will automatically be moved along with the forearm node.

If there is already a hand model associated with the WTcybglove object at the time
WTcybglove_usehandmodel is called, it is deleted and a new hand model is built
corresponding to the current args to WTcybglove_usehandmodel. Note that when th
hand model is created, it is positioned at the universe origin and oriented along the Y

You may wish to obtain the position and orientation of the forearm object before crea
the new hand model, so that you can position and orient the new hand model where t
one was. Also, if a WTK sensor had been attached to the original forearm object, you
wish to attach the sensor to the new forearm object if you want it to have the same be
as the original hand model.

In order to get the current position and orientation of the forearm node, you must cre
nodepath from the root node of the scene graph to the forearm node. A nodepath is
necessary to obtain the cumulative transformation matrix from the root node to the h
model. Pass this nodepath to the function WTnodepath_gettransform to get a 4x4 m
containing the position and orientation information of the forearm node in world
coordinates.

WTcybglove_deletehandmodel

void WTcybglove_deletehandmodel(
WTcybglove *glove);

WTcybglove_deletehandmodel deletes and frees all of the objects in the hand mode
calibration of the CyberGlove remains the same, so that if you call
WTcybglove_usehandmodel again, the current calibration data will be used for the n
model.

You must use this function only to delete the CyberGlove object and hand model no
The hand model nodes must not be deleted using WTnode_delete.
WorldToolKit Reference Manual 13-129

Chapter 13: Sensors

ke the
E to

the
nd
 then

odes,
or is
earm
below
d as

odel

ions
Setting the Visibility of the Hand Model

WTcybglove_setvisibility

void WTcybglove_setvisibility(

WTcybglove *glove,
FLAG visible);

WTcybglove_setvisibility sets the visibility of all of the objects in the hand model
associated with the given CyberGlove. The second argument should be TRUE to ma
hand model visible, that is, to have WTK render the hand model each frame, or FALS
make it invisible. The hand model is visible by default.

To set the visibility of an individual object in the hand model, such as the forearm or
thumb, you must first access the relevant node. Accessing individual nodes in the ha
model is discussed in the next section. Once you get a pointer to the node, you may
call WTnode_enable passing in TRUE or FALSE to turn the visibility on or off
respectively. Note that since the hand model is organized as a hierarchy of movable n
turning off the visibility of the palm causes the fingers also to be invisible. This behavi
programmed to be different for the forearm, in that, calling WTnode_enable on the for
disables/enables the forearm only, even though the rest of the hand is hierarchically
the forearm. This allows you to choose not to render the forearm and display the han
just the palm and the fingers.

Use the function WTnode_print to get a listing of the hierarchy of nodes in the hand m
structure.

Accessing Hand Model Objects

The graphical objects making up the hand model can be accessed through the funct
described in this section.

CWTcybglove_getforearm

WTnode *WTcybglove_getforearm(
WTcybglove *glove);
13-130 WorldToolKit Reference Manual

Accessing Hand Model Objects

be
It is
ly

s

fore

 by
bject
 angle
.

ld be

n in
WTcybglove_getforearm returns a pointer to the forearm object associated with the
specified CyberGlove. This is a pointer to a movable node. The forearm object may
moved in any way that you wish, and the rest of the hand will follow this orientation.
permitted to set the visibility of this or any of the other hand model objects individual
with WTnode_enable.

If you haven't called WTcybglove_usehandmodel before calling this function, NULL i
returned.

You may not delete this node. To delete the CyberGlove hand model structure use
WTcybglove_deletehandmodel.

WTcybglove_getpalm

WTnode *WTcybglove_getpalm(
WTcybglove *glove);

WTcybglove_getpalm returns a pointer to the palm object constructed
byWTcybglove_usehandmodel. If you haven't called WTcybglove_usehandmodel be
calling this function, NULL is returned.

You may not move this object in relation to the forearm; this relationship is controlled
the CyberGlove. The only way to affect the position and orientation of a CyberGlove o
(other than the forearm) with respect to the object it is connected to is by changing the
information present in the 2-D array of floats returned by WTcybglove_getanglearray

You may not delete this node. To delete the CyberGlove hand model structure use
WTcybglove_deletehandmodel.

WTcybglove_getfingers

WTnode **WTcybglove_getfingers(

WTcybglove *glove);

WTcybglove_getfingers returns a 5x3 array of WTnode pointers. These pointers cou
useful if you wish to do collision detection or change the color of the finger objects.

Indexing into the 2d array is accomplished using multiplication and addition as show
the example below, which sets the visibility of the finger objects.
WorldToolKit Reference Manual 13-131

Chapter 13: Sensors

s

rray.
ble
 they

the
l

e use

ray.
ngles
If you haven't called WTcybglove_usehandmodel before calling this function, NULL i
returned.

WTnode **fingers;
WTcybglove *glove;
int finger, joint;

glove = WTcybglove_new(19200, SERIAL1, "default.cal");
WTcybglove_usehandmodel(glove, "hires_hand.vnf", 1.0f, NULL);
fingers = WTcybglove_getfingers(glove);

for (finger = WTCG_THUMB; finger < WTCG_FINGERS; finger++) {
for (joint = WTCG_BASE; joint < WTCG_FINGER_SEGMENTS; joint++) {

WTnode_enable(fingers[WTCG_FINGER_SEGMENTS * finger + joint],

FALSE);
}

}

(Note that the above example is only intended to show how to index into the finger a
In actuality, if you want to disable all the fingers, you would have to call WTnode_ena
on the bases of the fingers only. The medials and tips will be automatically disabled as
are arranged below the bases in the node hierarchy.)

Refer to the section 'Defined Constants for the CyberGlove Hand Model' for a list of
constants WTCG_THUMB, WTCG_BASE, etc, that identify the different hand mode
parts.

You may not delete the finger objects. To delete the CyberGlove hand model structur
WTcybglove_deletehandmodel.

Accessing the CyberGlove Bend Angle Data

CyberGlove bend angle data can be obtained with a call to WTcybglove_getanglear
The angles returned reflect the current calibration settings for the glove, and are the a
used when the CyberGlove hand model is rendered if you have called
WTcybglove_usehandmodel. All of the angle information is specified in radians.

WTcybglove_getanglearray

float *WTcybglove_getanglearray(
13-132 WorldToolKit Reference Manual

Accessing the CyberGlove Bend Angle Data

s are
inger,
- the

edial,

o by
mine

the
l
WTcybglove *glove);

WTcybglove_getanglearray returns a 6x4 array of floating point values. These value
bend angles represented in radians. The first index in this array corresponds to the f
starting with 0 for the thumb to 4 for the pinkie. Index 5 is used for the palm and wrist
palm arch, wrist pitch and wrist yaw are stored from [5][0] through [5][2]. The second
index into this array refers to the joints of each finger. Index 0 is the base, 1 is the m
and 2 is the tip. Index 3 holds the abduction angle for each finger.

The following example shows how to access the information in this array.

float *anglearray;
int finger, joint;

anglearray = WTcybglove_getanglearray(glove);
for (finger = WTCG_THUMB; finger < WTCG_FINGERS; finger++) {

for (joint = WTCG_BASE; joint < WTCG_FINGER_ANGLES; joint++) {

printf("anglearray[%d][%d] = %f\n", finger, joint,
anglearray[WTCG_FINGER_ANGLES * finger + joint]);

}

}

finger = WTCG_WRIST;
for (joint = WTCG_PALM_ARCH; joint < WTCG_WRIST_ANGLES; joint++) {

printf("anglearray[%d][%d] = %f\n", finger, joint,
anglearray[WTCG_FINGER_ANGLES * finger + joint]);

}

If you wish to impose constraints on the movement of the hand model, you can do s
modifying the contents of the angle array. If you choose to do this, you will have to exa
and alter the joint angle values every frame.

Refer to the section 'Defined Constants for the CyberGlove Hand Model' for a list of
constants WTCG_THUMB, WTCG_BASE, etc, that identify the different hand mode
parts.

Note that in the angle array, the following elements:

array[WTCG_FINGER_ANGLES * WTCG_WRIST + 3]
array[WTCG_FINGER_ANGLES * WTCG_INDEX + WTCG_ABDUCT]
WorldToolKit Reference Manual 13-133

Chapter 13: Sensors

ers

base
hole.
are not used or updated by the CyberGlove, and the following element:

array[WTCG_FINGER_ANGLES * WTCG_WRIST + WTCG_PALM_ARCH]

is not considered during the rendering process.

Defined Constants for the CyberGlove Hand Model

The following constants are used for the fingers and the wrist.

WTCG_THUMB

WTCG_INDEX

WTCG_MIDDLE

WTCG_RING

WTCG_PINKIE

WTCG_WRIST

WTCG_FINGERS

The first five of the above are used for the thumb, index, middle, ring and pinkie fing
respectively. WTCG_WRIST is used to identify the wrist joint. WTCG_FINGERS is
provided as a delimiter for the set of finger constants.

The following constants are used to identify the joint angles for each finger, from the
to the tip (for the three joints in a finger) and the abduction angle for the finger as a w

WTCG_BASE

WTCG_MEDIAL

WTCG_TIP

WTCG_ABDUCT

WTCG_FINGER_ANGLES

WTCG_FINGER_ANGLES is a delimiter for the finger angles.
13-134 WorldToolKit Reference Manual

For Windows NT Users:

 the
rist

file.

es

d
The following constants are used to identify the joint angles for the wrist -the arch of
palm, the pitch and yaw of the wrist. WTCG_WRIST_ANGLES is a delimiter for the w
angles.

WTCG_PALM_ARCH

WTCG_WRIST_PITCH

WTCG_WRIST_YAW

WTCG_WRIST_ANGLES

For Windows NT Users:

• The resource file panel.res must be included in the Visual C++ project make
If this file is not present, the CyberGlove driver will notbe able to create the
calibration panel, and will exit because of an"unhandled exception". (panel.r
exists in the CyberGlove distribution provided by Virtual Technologies.)

• The glove defaults resource file, VirtualHand, must be present in the current
working directory. (VirtualHand exists in the CyberGlove distribution provide
by Virtual Technologies.)
WorldToolKit Reference Manual 13-135

Chapter 13: Sensors
13-136 WorldToolKit Reference Manual

orld
in the
ck in a

ording
time
14
Paths

Introduction

A WorldToolKit path stores a series of position and orientation records in absolute w
coordinates. These paths can be used to guide the viewpoint or move other entities
scene. Paths can be dynamically recorded, edited, saved and loaded, and played ba
variety of ways. You can also use interpolation to smooth a roughly defined path.

Figure 14-1: A path around an object

As shown in figure 14-1, paths are made up of a set of discrete elements, where each
element stores an absolute position and orientation. A path may be constructed by rec
the position and orientation of the viewpoint each frame, creating one element each
through the simulation loop or at a specified sample rate.

First element

Last element

Chapter 14: Paths

ent
ich it
aths
ne

nsider
 is to
e task
could
 to
ple,

aceball
 to be
ck

r as it
Paths are useful for a variety of applications. For example, if you are creating a
demonstration program, you can record an optimal path through the virtual environm
before the actual demonstration. Viewpoint paths are useful for any application in wh
may be important for the user to see certain aspects of the virtual world. Viewpoint p
can also be used whenever an application requires that a viewpoint be moved from o
location to another and you want to provide a smooth transition.

Similarly, there are many uses for paths associated with other entities in the scene. Co
a simple case in which you want to have a door swing open and shut. One approach
create a task function, in which the door is rotated a specified amount each frame. Th
function would also include a test to determine when the door was fully open so that it
be made to rotate in the opposite direction. An alternative approach is to use pathing
record the motion of the door while it is interactively swung open and shut. For exam
you could attach a sensor such as the Spaceball to the door, and while twisting the Sp
to open and close the door, record the door’s path. Then, whenever the door needed
opened and closed in the simulation, the path could be replayed. If the path’s playba
mode were set to oscillate, then you would only need to record the motion of the doo
opened to have it both open and shut on playback.

Path Construction and Destruction

There are five ways to create or define a new path. You can:

• Record it

• Construct it element by element

• Interpolate an existing path

• Copy an existing path

• Load a path from a file

TO RECORD A PATH:

1. Call WTpath_new to obtain a pointer to a new, empty path.

2. Call WTpath_record to start recording your current viewpoint’s location and
orientation.
14-2 WorldToolKit Reference Manual

Path Construction and Destruction

e

, use
3. Call WTuniverse_go to start the simulation loop if it is not already running. On
element will be recorded to the path each frame.

4. Call WTpath_stop to stop recording.

TO CONSTRUCT A PATH ELEMENT BY ELEMENT:

1. Call WTpath_new to obtain a pointer to a new, empty path.

2. Call WTpathelement_new to create a new element at the desired location.

3. Call WTpath_insertelement or WTpath_appendelement to add the element to the
path.

TO INTERPOLATE AN EXISTING PATH

To construct a path which is an interpolated (“smoothed”) version of an existing path
the function WTpath_interpolate.

TO COPY AN EXISTING PATH:

• See WTpath_copy on page 14-5.

TO LOAD A PATH FROM A FILE

• See WTpath_load on page 14-11.
WorldToolKit Reference Manual 14-3

Chapter 14: Paths

 that
ter

lt

e.

ch

t

ich
Functions

WTpath_new

WTpath *WTpath_new(

NULL);

This function creates and returns a pointer to a new path. The path is initially empty,
is, it contains no elements. NULL is passed in as the only argument. (The NULL parame
is a redundancy necessitated by earlier releases of WTK.) necessary

A path has a variety of state parameters, summarized in the following list. The defau
values listed here are the values set when a new path is constructed with WTpath_new:

Visibility TRUE (on) or FALSE (off). The default is FALSE (off).
See WTpath_setvisibility on page 14-8 and
WTpath_setmarker on page 14-9.

Direction WTDIRECTION_FORWARD or
WTDIRECTION_BACKWARD. The default is
WTDIRECTION_FORWARD. See WTpath_setdirection on
page 14-19.

Play mode WTPLAY_TOEND, WTPLAY_CONTINUOUS, and/or
WTPLAY_OSCILLATE. The default is WTPLAY_TOEND.
See WTpath_setmode on page 14-21.

Speed The default playback speed is 1 (one) element per fram
See WTpath_setplayspeed on page 14-22.

Sample rate The default sample rate is 1 (one) element recorded ea
frame. See WTpath_setsamples on page 14-22.

Constraints The default is none. See WTpath_setconstraints on page
14-20.

By default, a path created with WTpath_record is associated with the motion of the curren
viewpoint. Any viewpoint’s motion can be recorded in a path by first assigning that
viewpoint to be the current viewpoint (if it isn’t already) using WTuniverse_setviewpoint
(see page 2-15). To associate a path with an entity other than the viewpoint (and wh
could be controlled by a sensor) use WTpath_setrecordlink (see page 14-15).
14-4 WorldToolKit Reference Manual

Functions

is

th

isplay
ory

ments
ation
ility,

d.
To visually represent the path, a marker is displayed at each element of the path. Th
marker (a geometry) can be set using WTpath_setmarker (see page 14-9). As no default
marker will be used, you must set the marker before setting the visibility of a path wi
WTpath_setvisibility (see page 14-8).

WTpath_delete

void WTpath_delete(
WTpath *path);

This function deletes the path specified by the path argument. If the path is playing, it is
stopped. All elements belonging to the path are deleted, as are all markers used to d
the path if it is visible. The path is removed from the universe’s list of paths, and all mem
used by the path is released.

WTpath_copy

WTpath *WTpath_copy(

WTpath *path);

This function copies an existing path. It creates a new path with a sequence of path ele
with the same position and orientation values as in the original path. No other inform
is copied from the original path to the new path, so the new path’s play direction, visib
and other state values are the same as those of a path just constructed with WTpath_new.

If successful, a pointer to the copy of the path is returned, otherwise NULL is returne

Note: If you plan to visually display the copied path, you must call WTpath_setmarker for the
new copied path, as in the example below.

WTpath *path, *copy;

WTgeometry *newmarker;

copy = WTpath_copy(path);
WTpath_setmarker(copy, newmarker);
WorldToolKit Reference Manual 14-5

Chapter 14: Paths

fied
 those

 is

f the
l path

olate
WTpath_interpolate

WTpath *WTpath_interpolate(
WTpath *path,
int nsectors,

int method);

This function creates a new path by interpolating between the elements of the speci
path. The new path’s play direction, visibility, and other state values are the same as
of a path just constructed with WTpath_new.

If successful, the new path is returned, otherwise NULL is returned. The original path
unaffected by this operation.

The nsectors argument specifies the number of sectors to be created between each o
elements of the original path. This number must be 1 (one) or greater and the origina
must have at least two elements for the interpolation to be successful.

The method argument indicates the approach to be used to generate the positions of the
interpolated points (see figure 14-2). The possible values for method are as follows:

WTPATH_LINEAR For a straight line path between elements.

WTPATH_BEZIER For a Bezier curve.

WTPATH_BSPLINE For a B-spline curve.

The orientations of the elements are also interpolated, however the method used to
interpolate orientations is always linear, independent of the method chosen to interp
positions.
14-6 WorldToolKit Reference Manual

Functions

e

at
ezier

is

hich
Figure 14-2: Path Interpolation methods

The Linear path interpolation option places the interpolated points along a straight lin
between each pair of points in the original path.

The Bezier option may be the most generally useful since it gives a smooth curve th
passes through the elements of the original path. WTK sets the control points for the B
interpolation so that the tangent vector to the curve at any point on the original path
parallel to the vector from the previous point on the path to the next one.

The B-spline option produces a curve which is the “smoothest” of all the options, but w
does not in general pass through the elements of the original path.

Linear Bezier

B-spline
WorldToolKit Reference Manual 14-7

Chapter 14: Paths

f

ath.

 find

ated

y

th as a

 a
t’s

nd
An example of calling WTpath_interpolate is the following. Note that after calling this
function, you can delete the original path if it is no longer needed.

WTpath *oldpath, *newpath;
newpath = WTpath_interpolate(oldpath, 6, WTPATH_BEZIER);

The new path created by the example above has six elements between every pair o
elements in the original path, or 7 times as many elements as oldpath (plus one). The
elements of the new path lie on a Bezier curve through the elements of the original p

Path Management

There can be many multiple active paths in the universe, each in a different state. To
the list of all paths in the universe, use WTuniverse_getpaths (see page 2-13), then
WTpath_next (see page 14-10) to iterate through the list. By default, paths are associ
with the universe’s current viewpoint (see WTuniverse_setviewpoint on page 2-15). You
can use the function WTpath_setrecordlink (see page 14-15) to associate a path with an
other entity.

Paths can be made visible by calling WTpath_setvisibility (see below). When visible, the
path’s “marker,” passed in as the argument to WTpath_setmarker (see page 14-9), is
replicated at each path element location. The effect is that you can see the entire pa
string of geometries through space.

WTpath_setvisibility

void WTpath_setvisibility(

WTpath *path,
FLAG flag);

This function toggles the visibility of a path’s graphical representation. When visible,
copy of the path’s marker appears at each element of the path (with the path elemen
position and orientation). The flag argument should be TRUE to make the path visible a
FALSE to make it invisible.
14-8 WorldToolKit Reference Manual

Path Management

ent

ble

path's
ents.

d. The
ry

reds
LL,
By default, paths are invisible. Once a path is made visible for the first time, subsequ
calls to WTpath_setvisibility adds or removes the marker replicas from the universe as
needed. See the example below, under WTpath_getvisibility.

Also see WTpath_setmarker on page 14-9 and WTpath_getmarker on page 14-10.

WTpath_getvisibility

FLAG WTpath_getvisibility(
WTpath *path);

This function returns TRUE if a path is currently visible, otherwise FALSE. In the
following example, a path’s visibility is toggled, so that if it was invisible it becomes visi
and vice versa:

WTpath *path;

WTpath_setvisibility(path, !WTpath_getvisibility(path));

WTpath_setmarker

void WTpath_setmarker(
WTpath *path,

WTgeometry *marker);

This function sets the geometry that will be used to display a path element, when the
visibility is TRUE. The function takes in the relevant path and the geometry as argum

This function is provided to visualize a path that has been recorded, loaded or create
requested geometry is displayed at every path element position. It is best to use a ve
simple geometry model (with very few polygons) for the marker since potentially hund
of copies of it could be visible in the simulation. If either the path or the geometry is NU
the function returns without any effect.

Note: This function should only be called for a path that has never been made visible.
WorldToolKit Reference Manual 14-9

Chapter 14: Paths

t path

used

nts.
not
WTpath_getmarker

WTgeometry *WTpath_getmarker(
WTpath *path);

This function returns a pointer to the geometry that is currently being used to represen
elements when the path is made visible.

The function returns NULL when the path passed in is void. This function should be
only after a call to WTpath_setmarker, otherwise NULL will be returned since there is no
default geometry to make the path elements visible.

WTpath_getelements

WTpathelement *WTpath_getelements(

WTpath *path);

This function returns a pointer to the first element in the specified path’s list of eleme
Use WTpathelement_next to iterate through the path’s list of elements. If the path does
contain any elements, for example if the path was just created with WTpath_new, NULL is
returned. See also WTpath_getcurrentelement on page 14-18.

WTpath_numelements

int WTpath_numelements(
WTpath *path);

This function returns the number of elements in a path’s element list.

WTpath_next

WTpath *WTpath_next(
WTpath *path);

This function iterates through the universe’s list of paths. If the path argument is NULL, or
if the specified path is the last path on the list, then NULL is returned.
14-10 WorldToolKit Reference Manual

Loading and Saving Paths

aved
on

ation
 the

ly-
The following example uses WTpath_next to iterate through the universe’s list of paths,
turning off the visible representation of each path:

WTpath *path;
for (path=WTuniverse_getpaths() ; path ; path=WTpath_next(path)) {

WTpath_setvisibility(path, FALSE);

}

Loading and Saving Paths

Paths can be saved to files and loaded back again. The file created when a path is s
contains a simple ASCII listing of the path elements’ coordinates. No other informati
about the path is saved.

WTpath_load

WTpath *WTpath_load(
char *filename,

NULL);

This function creates a new path by loading in path data from the file specified by the
filename argument. The new path consists of one element for each position and orient
record in the path file. Aside from the elements constructed from the file, the state of
new path is the same as that of a path constructed using WTpath_new. If successful, a
complete, new path is returned, otherwise NULL is returned.

See WTpath_new on page 14-12 for more information about the default state of a new
created path, and how to set a marker to visualize it.
WorldToolKit Reference Manual 14-11

Chapter 14: Paths

.
 is

ry). A
 file
WTpath_save

FLAG WTpath_save(
WTpath *path,
char *filename);

This function saves a path to the file specified by filename. The file that is written contains
a sequential list of the positions and orientations of the elements making up the path
Success is indicated by the return value; TRUE indicates success, otherwise FALSE
returned.

Path File Format

WTK path files are usually given a .pth extension. (Note however, that this is not necessa
WTK path file stores position and orientation records in the ASCII format. An example path
is shown below:

path record v.2
8

Posi -10.60 651.98 875.80
Orie -0.33 0.01 -0.004 0.94
Posi -6.14 646.44 3885.47

Orie -0.33 0.011 -0.004 0.94
Posi -1.680267 640.893738 3895.134277
Orie -0.334686 0.011820 -0.004199 0.942246

Posi 2.781840 635.345947 3904.798096
Orie -0.334686 0.011820 -0.004199 0.942246
Posi 7.243946 629.798096 3914.461914

Orie -0.335399 0.014391 -0.005124 0.941952
Posi 11.024731 624.091980 3923.803711
Orie -0.335399 0.014391 -0.005124 0.941952

Posi 14.805515 618.385864 3933.145508
Orie -0.335399 0.014391 -0.005124 0.941952
Posi 18.586300 612.679749 3942.487305

Orie -0.335399 0.014391 -0.005124 0.941952
14-12 WorldToolKit Reference Manual

Recording and Playback

at.
you
 v.2".

le. In
 8
TK

will
ntain

. Each

g the
ord
n.

hink
s are
and
when
ithout

he
The first line is used by WTK to identify that the file is indeed a path file in the WTK form
If the path file is generated by WTK (using WTpath_save), this line is inserted for you. If
are generating the file using an external editor, make sure the first line says "path record

The second line indicates the number of position and orientation pairs contained in the fi
the above example, this number is 8, which means that there are 8 position records and
orientation records in the file. If the number of records in the file is less than this value, W
will not load the file. If the number of records in the file is greater than this number, WTK
quit reading the file after the specified number of records have been read. A path can co
any (non-negative) number of position and orientation pairs.

The path data follows next, as a sequence of alternating position and orientation records
pair of position and orientation records constitutes a 'path element'.

A position record begins with the keyword "Posi", and consists of three floats representin
x,y and z values of that position respectively. An orientation record begins with the keyw
"Orie", and consists of four floats that represent the orientation in the form of a quaternio

Recording and Playback

Many options are provided for recording and playing back WTK paths. It may help to t
of WTK paths as analogous with a common tape deck or VCR, since similar function
available: play, record, stop, rewind, etc. One difference between using a WTK path
using a VCR is that the path only affects the viewpoint or any other associated entity
it is being played – you can rewind the path or change the current element setting w
actually moving the viewpoint there.

By default, a path plays (either forward or backward) until the end (or beginning) of t
path is reached, and then it stops. Using alternative playback modes (set with
WTpath_setmode) a path can be played back continuously and can be made to play
backwards and forwards between its two ends.
WorldToolKit Reference Manual 14-13

Chapter 14: Paths

nt
h a

o
oint,
ent.

ently

nt
point,

ault)

er this
WTpath_play

void WTpath_play(
WTpath *path);

This function begins the playback of the indicated path starting from the path’s curre
element. Prior to calling this function, a motion link connecting the specified path wit
target object must have been created. (See WTmotionlink_new on page 15-3.) When a path
plays, the target of the motion link associated with the path is moved from element t
element along the path. At any given path element, the target of the motion link (viewp
transform or movable) is given the position and orientation stored with the path elem

Once WTpath_play is called, the path continues to play until either WTpath_stop is called
or the conditions for stopping, as determined by the path’s play mode, are met.

You cannot simultaneously play and record a path. If the path you wish to play is curr
recording, call WTpath_stop before calling WTpath_play.

See also WTpath_stop, WTpath_setplayspeed, WTpath_setdirection, WTpath_setmode,
and WTpath_setcurrentelement.

WTpath_play1

void WTpath_play1(

WTpath *path);

This function begins the playback of the indicated path starting from the path’s curre
element, but plays for one frame only. Depending on the path’s play speed, the view
or any associated entity may or may not advance when WTpath_play1 is called.

WTpath_record

FLAG WTpath_record(
WTpath *path);

This function starts recording the position and orientation of the current viewpoint (def
or the position and orientation of the target of a motion link. (See WTpath_setrecordlink on
page 14-15.) By default, position and orientation are recorded once per frame, howev
sample rate can be changed by calling WTpath_setsamples.
14-14 WorldToolKit Reference Manual

Recording and Playback

ment

o add

h.

ault)
rded.

s
 valid
es not
n.

e

y

reate
Each position/orientation record obtained while recording is stored in a new path ele
that is added to the end of the specified path. In this way, you can use WTpath_record to
build a completely new sequence of path elements for a newly constructed path or t
new path elements to the end of an existing path.

To stop recording, call WTpath_stop. You can not simultaneously play and record a pat
If the path you wish to record is currently playing, you must either call WTpath_stop first
or wait until the path finishes playing. The return value indicates success or failure.

WTpath_record1

FLAG WTpath_record1(
WTpath *path);

This function starts recording the position and orientation of the current viewpoint (def
or the position and orientation of the target of a motion link, but only one frame is reco

WTpath_setrecordlink

FLAG WTpath_setrecordlink(

WTpath *path,
WTmotionlink *link)

Use this function to record the motion of the target of a motion link. The motion link i
expected to have been created with a valid source (a sensor or another path), and a
target (a viewpoint, a transform node, a node path, or a movable node). If the path do
already exist, WTpath_new must be called to create a new path prior to calling this functio

The path should be stopped (i.e., not playing or recording) at the time WTpath_setrecordlink
is called. If the path you wish to record is currently playing, you must either call
WTpath_stop first or wait until the path finishes playing.

WTpath_setrecordlink returns TRUE if it is able to begin recording or FALSE if either th
path or the motion link is void, or if the path is already playing or recording.

If this function is not called first, then WTpath_record will record the position and
orientation of the current viewpoint. To record the position and orientation of an entit
other than the current viewpoint, you must call WTpath_setrecordlink prior to calling
WTpath_record or WTpath_record1. To begin recording, call WTpath_record or
WTpath_record1 after calling this function. Once the path has been recorded, you can c
WorldToolKit Reference Manual 14-15

Chapter 14: Paths

ved
 the

rns

e it
a motion link between this newly created path and any target for playback. See
WTmotionlink_new on page 15-3.

WTpath_stop

void WTpath_stop(
WTpath *path);

This function stops a path that is either playing or recording.

WTpath_rewind

void WTpath_rewind(

WTpath path);

This function sets a path’s current pointer to the path’s first element. Only the path’s
pointer and, not the current viewpoint (or other entity associated with the path), is mo
by this call. To move the current viewpoint (or other entity associated with the path), to
current element, call WTpath_showcurrentelement.

WTpath_isplaying

FLAG WTpath_isplaying(
WTpath *path);

This function returns TRUE if the specified path is currently playing, otherwise it retu
FALSE.

WTpath_isrecording

FLAG WTpath_isrecording(
WTpath *path);

This function returns TRUE if the specified path is currently being recorded, otherwis
returns FALSE.
14-16 WorldToolKit Reference Manual

Recording and Playback

 the

from

ove
ation

 does
WTpath_showcurrentelement

void WTpath_showcurrentelement(
WTpath *path);

This function moves the current viewpoint (or other entity associated with the path) to
position and orientation of the path’s current element. In the following example, the
viewpoint is moved to the first element of a path:

WTpath *path;

WTpath_rewind(path);
WTpath_showcurrentelement(path);

WTpath_setcurrentelement

FLAG WTpath_setcurrentelement(

WTpath *path,
WTpathelement *element);

This function sets the current element of a path. The current element is the element
which play begins, when WTpath_play or WTpath_play1 is called. It is also the element
after which a new element is inserted when WTpath_insertelement is called. This function
affects only the current element setting, not the location of the current viewpoint. To m
the current viewpoint (or an entity associated with the path) to the current element loc
after calling WTpath_setcurrentelement, call WTpath_showcurrentelement as in the
following example:

WTpath *path;

WTpathelement *element;
WTpath_setcurrentelement(path, telement);
WTpath_showcurrentelement(path);

If successful, TRUE is returned. Otherwise, for example if the specified path element
not belong to the path, then FALSE is returned.
WorldToolKit Reference Manual 14-17

Chapter 14: Paths

ple, if

h’s
ber
et

ent),
WTpath_getcurrentelement

WTpathelement *WTpath_getcurrentelement(
WTpath *path);

This function returns a path’s current element. If the path has no elements, for exam
the path was just created with WTpath_new, then NULL is returned.

WTpath_seek

FLAG WTpath_seek(

WTpath *path,
int offset,
int where);

This function moves a path’s current element pointer forward or backward in the pat
element list. The offset value, which can be either positive or negative, specifies the num
of elements to move. The where argument specifies the starting point from which the offs
is made. Valid values of where are:

• WTPATH_FIRST

• WTPATH_CURRENT

• WTPATH_LAST

The return value is TRUE if successful and FALSE if the seek is invalid, that is, if an
attempt is made to seek to a non-existent position in the list.

For example, to move the element position backward by one, call:

WTpath_seek(path, -1, WTPATH_CURRENT);

To move the element position forward by two, call:

WTpath_seek(path, 2, WTPATH_CURRENT);

To move the element position to the third element in the list (two ahead of the first elem
call:

WTpath_seek(path, 2, WTPATH_FIRST);
14-18 WorldToolKit Reference Manual

Recording and Playback

ade
at a
To move the element position to three before the last element, call:

WTpath_seek(path, -3, WTPATH_LAST);

If there were 10 elements in the list, after the above call to WTpath_seek the current
element position would be at the 7th element.

Additional examples of using WTpath_seek are provided below under
WTpath_setdirection.

WTpath_setdirection

void WTpath_setdirection(
WTpath *path,

FLAG flag);

This function sets the play direction of a path. The flag argument should be
WTDIRECTION_BACKWARD for backward or WTDIRECTION_FORWARD for forward.
The default play direction for a path is forward. In the following example, a path is m
to play back and forth between its fifth and tenth elements. This example assumes th
path with at least this many elements has been constructed.

WTpath *path;
WTpathelement *element, *element5, *element10;

/* make sure we actually have this many elements */
if (WTpath_numelements(path)<10)

WTwarning(“Don’t proceed\n”);

/* get pointers to the 5th and 10th elements */
WTpath_seek(path, 9, WTPATH_FIRST);
element10 = WTpath_getcurrentelement(path);

WTpath_seek(path, 4, WTPATH_FIRST);
element5 = WTpath_getcurrentelement(path);

/* set the play direction to forward and start playing from the

5th element. */
WTpath_setdirection(path, WTDIRECTION_FORWARD);
WTpath_play(path);

/*..... the simulation is run...... */
WorldToolKit Reference Manual 14-19

Chapter 14: Paths

th.
y the

a
rable
ntrol

/* reverse the path playback direction when the 5th and 10th elements
are reached while the simulation runs. */
element = WTpath_getcurrentelement(path);

if (element==element5)
WTpath_setdirection(path, WTDIRECTION_FORWARD);

else if (element==element10)

WTpath_setdirection(path, WTDIRECTION_BACKWARD);

WTpath_getdirection

FLAG WTpath_getdirection(
WTpath *path);

This function returns a path’s play direction, either WTDIRECTION_BACKWARD or
WTDIRECTION_FORWARD.

WTpath_setconstraints

void WTpath_setconstraints(
WTpath *path,
short constraints);

This function constrains the position and orientation information played back by a pa
This is accomplished by passing in a combination of the flags listed below separated b
C language bitwise OR operator “|”.

One particularly useful application of this function is to provide a guided tour around
simulation for someone wearing a head-mounted display. In this case it is often desi
to have the viewpoint follow the path, while leaving orientations under the complete co
of the user as their head motion is tracked. The following line of code constrains the
playback of path orientations (rotations):

WTpath *path;
WTpath_setconstraints(path, WTCONSTRAIN_XROT |

WTCONSTRAIN_YROT | WTCONSTRAIN_ZROT);

It is not possible to constrain path rotations about the individual coordinate axes
independently. Turning on any of the rotational constraints (WTCONSTRAIN_XROT,
WTCONSTRAIN_YROT, or WTCONSTRAIN_ZROT) effectively turns all of them on.
14-20 WorldToolKit Reference Manual

Recording and Playback

te

le

er

er
le,
, it

ps,

e
Similarly, it is not possible to constrain path translations along the individual coordina
axes independently. Turning on any of the translational constraints (WTCONSTRAIN_X,
WTCONSTRAIN_Y, or WTCONSTRAIN_Z) effectively turns all of them on.

Also see WTsensor_setconstraints on page 13-21.

WTpath_getconstraints

short WTpath_getconstraints(
WTpath *path);

This function returns a path’s constraints, as set by WTpath_setconstraints. The default
value is 0 (zero), meaning no constraints are applied.

A restriction on the use of path constraints is described under WTpath_setconstraints.

WTpath_setmode

void WTpath_setmode(

WTpath *path,
short mode);

This function sets a path’s playback mode. The following list summarizes the possib
values of the mode argument.

WTPLAY_TOEND The path plays in its current direction until it reaches eith
end of the path, then it stops.

WTPLAY_CONTINUOUS The path plays in its current direction until it reaches eith
end of the path, then it repeats continuously. For examp
when a forward-playing path reaches the end of the path
starts playing again from the beginning of the path.

WTPLAY_OSCILLATE When a playing path reaches either end of the path, it sto
but its direction is reversed.

WTPLAY_OSCILLATE | The path plays continuously backward and forward
WTPLAY_CONTINUOUS between the ends of the path.

If the fourth option above is set, as in the following example, the path will both chang
direction and keep going when it reaches either end of the path:
WorldToolKit Reference Manual 14-21

Chapter 14: Paths

ments
n
short mode;
WTpath *path;
mode = WTPLAY_CONTINUOUS | WTPLAY_OSCILLATE;

WTpath_setmode(path, mode);

WTpath_getmode

short WTpath_getmode(
WTpath *path);

This function returns a path’s play mode, as set by WTpath_setmode. The return value is
either WTPLAY_TOEND, WTPLAY_CONTINUOUS, WTPLAY_OSCILLATE or
WTPLAY_CONTINUOUS|WTPLAY_OSCILLATE.

The following code fragment calls WTpath_getmode to determine whether the mode
WTPLAY_OSCILLATE has been set for the path:

WTpath *path;
if (WTpath_getmode(path) & WTPLAY_OSCILLATE)

WTmessage(“Path set to oscillate\n”);

else
WTwarning(“Path not set to oscillate\n”);

WTpath_setplayspeed

void WTpath_setplayspeed(

WTpath *path,
int speed);

This function sets the playback speed for a path. The speed is the number of path ele
advanced each frame of the simulation. The speed argument must be an integer greater tha
or equal to 1 (one). The default speed is 1 (one).
14-22 WorldToolKit Reference Manual

Recording and Playback

n

 1
 frame.

ially
WTpath_getplayspeed

int WTpath_getplayspeed(
WTpath *path);

This function returns the playback speed of a path. The default value is 1 (one).

WTpath_setsamples

void WTpath_setsamples(

WTpath *path,
int frames_per_element);

This function sets a path’s sample rate, that is, the number of frames of the simulatio
which elapse for each recorded element. For example, if frames_per_element is 10, an
actively recording path will record position and orientation information once every 10
frames. The frames_per_element argument must be an integer greater than or equal to
(one). The default sample rate is 1 (one), meaning that one element is created each

This function allows you to save memory by recording fewer elements. This is espec
useful for long paths and/or high frame rates.

WTpath_getsamples

int WTpath_getsamples(

WTpath *path);

This function returns the sample rate of a path. The default value is 1 (one).
WorldToolKit Reference Manual 14-23

Chapter 14: Paths

re are
 and
ments

to the

t

 path
sing

t is a
Path Element Management

The WTpathelement Class

The individual elements in a path are a WTK class of their own, the WTpathelement class.
With this class you can create a path element by element or edit an existing path. The
functions for creating, deleting, and copying path elements, and functions for adding
removing path elements from paths. You can also set and get the locations of path ele
directly. Once a path element is created, it can be added to a path with either
WTpath_insertelement or WTpath_appendelement.

WTpathelement_new

WTpathelement *WTpathelement_new(
WTpq *location);

This function creates and returns a pointer to a new path element, which is initialized
specified position and orientation.

Position and orientation are specified in the location structure. The path element does no
belong to any path until specifically added to one with WTpath_insertelement or
WTpath_appendelement.

A path element can belong to only one path at a time. If a path element is currently in a
and you wish to insert it in another path, it must first be removed from the path it is in u
WTpathelement_remove.

WTpathelement_delete

void WTpathelement_delete(
WTpathelement *element);

This function deletes a path element and frees the memory used. If the path elemen
member of a path, it is first removed from the path and then deleted.
14-24 WorldToolKit Reference Manual

The WTpathelement Class

lete it.

e. If
. The

th the
WTpathelement_remove

void WTpathelement_remove(
WTpathelement *element);

This function removes a path element from the path that references it but does not de
If the path element does not belong to a path, this function has no effect.

WTpathelement_copy

WTpathelement *WTpathelement_copy(

WTpathelement *element);

This function creates a copy of the path element pointed to by the element argument. The
copy is a new path element with the same position and orientation as the original on
successful, a pointer to the path element copy is returned, otherwise NULL is returned
new path element does not belong to any path.

WTpathelement_setposition

void WTpathelement_setposition(
WTpathelement *element,

WTp3 pos);

This function sets the position of a single path element to the location specified in pos. Path
element positions are the positions to which the viewpoint (or an entity associated wi
path) is moved as a path is played back.

WTpathelement_getposition

void WTpathelement_getposition(
WTpathelement *element,

WTp3 pos);

This function retrieves the position of the specified path element and places it in pos.
WorldToolKit Reference Manual 14-25

Chapter 14: Paths

 by

th
 to a

erate
WTpathelement_setorientation

void WTpathelement_setorientation(
WTpathelement *element,
WTq q);

This function sets the orientation of a single path element to the orientation specifiedq.

WTpathelement_getorientation

void WTpathelement_getorientation(
WTpathelement *element,
WTq q);

This function retrieves the orientation of a single path element and places it in q.

WTpathelement_getpath

WTpath *WTpathelement_getpath(
WTpathelement *element);

This function returns a pointer to the path to which a path element belongs. If the pa
element does not belong to any path, NULL is returned. Path elements are assigned
path either automatically when a path is in record mode or with the functions
WTpath_appendelement or WTpath_insertelement.

WTpathelement_next

WTpathelement *WTpathelement_next(

WTpathelement *element);

This function returns the next element in a list of path elements. Use this function to it
through the list of elements in a path, as in the following example.

WTp3 p;
WTpathelement *element;

WTpath *path;
14-26 WorldToolKit Reference Manual

Path Editing

ments
d with

 it the

ted to
nd

t
/* Display the positions of the elements in a path */
for (element=WTpath_getelements(path) ; element ;

element=WTpathelement_next(element)) {

WTpathelement_getposition(element, p);
WTp3_print(p, “element position”);

}

Path Editing

These path-editing functions let you add elements to the end of the path or insert ele
at the current element position. Elements can be removed from a path and/or delete
WTpathelement_remove and WTpathelement_delete, which are described in the previous
section.

WTpath_appendelement

void WTpath_appendelement(
WTpath *path,
WTpathelement *element);

This function appends a path element onto a specified path’s list of elements, making
last element of the path. The element argument is a pointer to an existing path element
object. A path element can only belong to one path at a time. If the path element poin
by the element argument is already in a path, then this function has no effect. To appe
this element to the new path, first call WTpathelement_remove to remove it from the old
path.

WTpath_insertelement

void WTpath_insertelement(
WTpath *path,
WTpathelement *element);

This function inserts a path element into a path’s list of elements at the path’s curren
position. The element is inserted immediately after the path’s current element.
WorldToolKit Reference Manual 14-27

Chapter 14: Paths

he

. If
 the
t (or

asses
st

ent
An element can only belong to one path at a time. If the path element pointed to by t
element argument is already in a path, then this function has no effect. To insert this
element into the new path, first call WTpathelement_remove to remove it from the old path.

The element argument is either a pointer to an existing path element or it may be NULL
element is NULL, then a new path element is created and inserted into the path, and
position and orientation of this new path element are taken from the current viewpoin
any other entity associated with the path).

For example, suppose that you wish to insert an element in a path so that the path p
through the world coordinate origin with the same orientation as the path element ju
before the inserted element. The following example shows how to create such a elem
between the fifth and sixth elements in a path:

WTpath *path;
WTpathelement *element;
WTpq location;

/* go to the 5th element in the path (the 4th element after the first one) */
WTpath_seek(path, 4, WTPATH_FIRST);

/* get the orientation of that element and store it in location */

WTpathelement_getorientation(WTpath_getcurrentelement(path),
location.q);

/* construct a pathelement at the world origin with the same orientation

as the 5th element */
WTp3_init(location.p);
element = WTpathelement_new(&location);

/* insert the element in the path after the 5th (current) element */
WTpath_insertelement(path, element);
14-28 WorldToolKit Reference Manual

Path Name

path’s

re
et this

e
ointer
Path Name

WTpath_setname

void WTpath_setname(
WTpath *path,
const char *name);

This function sets the name of the specified path. All paths have a name; by default, a
name is “” (i.e., a NULL string).

WTpath_getname

const char *WTpath_getname(
WTpath *path);

This function returns the name of the specified path.

User-specifiable Path Data

A void pointer is included as part of the structure defining a path, so that you can sto
whatever data you wish with a path. The following functions can be used to set and g
field within any path.

WTpath_setdata

void WTpath_setdata(

WTpath *path,
void *data);

This function sets the user-defined data field in a path. Private application data can b
stored in any structure. To store a pointer to the structure within the path, pass in a p
to the structure, cast to void*, as the data argument.
WorldToolKit Reference Manual 14-29

Chapter 14: Paths

d by
WTpath_getdata

void *WTpath_getdata(
WTpath *path);

This function retrieves user-defined data stored within a path. Cast the value returne
this function to the same type used to store the data with the WTpath_setdata function.
14-30 WorldToolKit Reference Manual

trol
entity

n.

wing:

y

 a
st

t to
 the
de.

k.
so be
15
Motion Links

Introduction

Sensors and paths allow you to interact with a virtual world by providing you with con
over the motion of objects or the viewpoint. To associate a sensor (or a path) with an
in a world, use motion links. A motion link connects a source of position and orientation
information with a target that moves to correspond with that changing set of informatio

Motion Link Sources and Targets

The motion link source can be a path or a sensor. Motion link targets include the follo

• viewpoint: Use this as your target when you want to control your viewpoint b
the source you’ve specified.

• transform node: Use this as your target when you want your source to affect
specific transformation in the scene graph, such as the one that controls wri
movement in a human figure.

• node path: Use this as your target when you want your source to affect the
cumulative set of transformations used for a specific node, as when you wan
control the position of a human figure in the world coordinate frame. Note that
leaf node of the node path must be either a transform node or a movable no

• movable node: Use this as your target when you want your source to affect a
movable node (with or without attachments). Refer to the Movable Nodes chapter
(starting on page 5-1) for more information about movable nodes.

Figure 15-1 illustrates the targets that can be attached to a sensor using a motion lin
Although a sensor is shown on one end (the source) of the motion link. A path can al
used as the source that is connected to a target via a motion link.

Chapter 15: Motion Links

nd
ated

n then
 to
yon

 then

his
rget

f the
newly
fault
Figure 15-1: Some ways to use motion links

Once a motion link is created (WTmotionlink_new on page 15-3), position and orientation
records from the motion link source automatically cause corresponding translation a
rotation of the motion link’s target. If the target has more than one motion link associ
with it, each of these motion links contributes to the motion of the target.

You can also use a path as the source of position and orientation information which ca
be directed to some object by a motion link. This would be an advantage if you want
move a viewpoint through your scene along a defined path. If you have a Grand Can
simulation, for example, you can define a path through the best parts of the canyon,
attach the path to the viewpoint using a motion link.

Additionally, you can use functions like WTpath_setrecordlink (see page 15-14) to create a
path from the position and orientation information being transmitted by a motion link. T
path can then be used as a source of position and orientation information to some ta
using another motion link.

Reference Frames

When you create a new motion link, the source affects the position and orientation o
target relative to a particular reference frame. The default reference frame used for a
created motion link is dependent upon the target type. The target types and their de
references frames are as listed in table 15-1 on page 15-4.

Sensor
via a motion link

Viewpoint

Node Path

Transform Node

Movable Node

Gives position and
transform information

can attach to
15-2 WorldToolKit Reference Manual

Constraints

ation

tion

e
edom

e,

d
It is possible to change the reference frame in which the source’s position and orient
information is applied to the motion link’s target by using the function
WTmotionlink_setreferenceframe (see page 15-8). For example, if you have created a
motion link which connects a sensor to a movable, the sensor’s position and orienta
information will, by default, affect the movable in its local frame. By calling
WTmotionlink_setreferenceframe, you could apply a sensor’s position and orientation
information to the movable in a coordinate frame other than the default.

Constraints

WTK lets you add control to a motion link so that the position and/or orientation of th
motion link’s target is constrained. You can add the constraint along any degree of fre
(DOF) or any combination of DOFs using the WTmotionlink_addconstraint (see page
15-11) function.

Motion Link Functions

WTmotionlink_new

WTmotionlink *WTmotionlink_new(
void *source,

void *target,
int from_type,
int to_type);

Arguments:

source Pointer to either a sensor or a path.

target Pointer to either a viewpoint, a movable, a transform nod
or a node path leading to either a transform node or a
movable node.

from_type The type of the source — one of the following pre-define
constants:

WTSOURCE_SENSOR
WorldToolKit Reference Manual 15-3

Chapter 15: Motion Links

d

frame
 table

n

WTSOURCE_PATH

to_type The type of the target — one of the following pre-define
constants:

WTTARGET_VIEWPOINT

WTTARGET_MOVABLE

WTTARGET_TRANSFORM

WTTARGET_NODEPATH

This function creates a new motion link whose source will affect the position and
orientation of the target relative to a particular reference frame. The default reference
used for a newly created motion link is dependent upon the target type and is shown in
15-1.

The possible reference frames are WTFRAME_LOCAL, WTFRAME_PARENT,
WTFRAME_VPOINT, and WTFRAME_WORLD.

To change the reference frame of a motion link from its default value, use the functio
WTmotionlink_setreferenceframe. For sensors that return absolute records (e.g.,
FASTRAK, ISOTRAK, InsideTRAK, and Flock of Birds), to either a transform or
movable node, you must set the reference frame of the corresponding motion link to
WTFRAME_PARENT in order to get the expected behavior.

Table 15-1: Default Motion Link Reference Frames

Target type Default reference frame

WTTARGET_VIEWPOINT WTFRAME_LOCAL

WTTARGET_TRANSFORM WTFRAME_LOCAL

WTTARGET_NODEPATH WTFRAME_WORLD

WTTARGET_MOVABLE WTFRAME_LOCAL
15-4 WorldToolKit Reference Manual

Motion Link Functions

and

E,
ffect

urns
ect
WTmotionlink_delete

void WTmotionlink_delete(
WTmotionlink *link);

This function deletes the specified motion link from the universe’s list of motion links,
releases all memory used by the motion link.

WTuniverse_deletelink

See WTuniverse_deletelink on page 2-17 for a description.

WTmotionlink_enable

void WTmotionlink_enable(

 WTmotionlink *link,
 FLAG flag);

If the flag is TRUE, this function enables the specified motion link. If the flag is FALS
this function disables the specified motion link. When disabled, a motion link has no e
on its target. By default, a motion link is enabled, meaning that it is active.

WTmotionlink_isenabled

FLAG WTmotionlink_isenabled(

 WTmotionlink *link);

This function returns TRUE if the specified motion link is enabled (i.e., active), and ret
FALSE if the motion link is disabled. If a motion link is disabled, it ceases to have eff
on its target.
WorldToolKit Reference Manual 15-5

Chapter 15: Motion Links

ve
ion

The

e
WTmotionlink_setdata

void WTmotionlink_setdata(
WTmotionlink *link,
void *data);

This function sets the user-defined data field for the specified motion link. You will ha
to type cast data to a VOID pointer. Use the data field if you need to store any applicat
information that is specific to a motion link.

WTmotionlink_getdata
void *WTmotionlink_getdata(

WTmotionlink *link);

This function retrieves the user-defined data field for the specified motion link. This
function returns NULL if you did not set the data field with non-NULL data, by way of
WTmotionlink_setdata.

WTmotionlink_getsource
FLAG WTmotionlink_getsource(

WTmotionlink *link,
void **source,
int *type);

Use this function to retrieve the source and source type of the specified motion link.
return value is TRUE if successful. See WTmotionlink_gettarget below for an example of
usage.

WTmotionlink_gettarget

FLAG WTmotionlink_gettarget(
WTmotionlink *link,
void **target,

int *type);

Use this function to retrieve the target and target type of the specified motion link. Th
return value is TRUE if successful.
15-6 WorldToolKit Reference Manual

Motion Link Functions
Example:

WTmotionlink *link;
void *from, *to;
int from_type, to_type;

WTmotionlink_getsource(link, &from, &from_type);
WTmotionlink_gettarget(link, &to, &to_type);
switch (from_type){

case WTSOURCE_SENSOR:
WTmessage(“From a sensor”);
break;

case WTSOURCE_PATH:
WTmessage(“From a path”);
break;

}
switch (to_type){

case WTTARGET_VIEWPOINT:

WTmessage(“ to a viewpoint.\n”);
break;

case WTTARGET_MOVABLE:

WTmessage(“ to a movable.\n”);
break;

case WTTARGET_TRANSFORM:

WTmessage(“ to a transform.\n”);
break;

case WTTARGET_NODEPATH:

WTmessage(“ to a nodepath.\n”);
break;

}

WTuniverse_getmotionlinks

See WTuniverse_getmotionlinks on page 2-17 for a description.
WorldToolKit Reference Manual 15-7

Chapter 15: Motion Links

ter

rate.
e in

tion
ts the
WTmotionlink_next

WTmotionlink *WTmotionlink_next(
WTmotionlink *link);

This function returns the next motion link in the universe’s list of motion links. A poin
to the first link is obtained with a call to WTuniverse_getmotionlinks. You can then iterate
through the list of existing motion links using WTmotionlink_next.

WTmotionlink_setreferenceframe

FLAG WTmotionlink_setreferenceframe(

WTmotionlink *link,
int frame,
WTviewpoint *vpoint);

Use this function to set the reference frame in which the indicated motion link will ope
A reference frame, (not to be confused with a constraint frame) is the coordinate fram
which motion of the motion link’s target is expected. Depending on the type of the mo
link’s target, only certain coordinate frames are valid reference frames. Table 15-2 lis
valid motion link reference frames.

Table 15-2: Valid Motion Link Reference Frames

Target Valid reference frames

WTTARGET_VIEWPOINT WTFRAME_LOCAL, (equivalent to
WTFRAME_VPOINT) and
WTFRAME_WORLD

WTTARGET_TRANSFORM WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD),
WTFRAME_LOCAL and
WTFRAME_VPOINT

WTTARGET_NODEPATH WTFRAME_WORLD,
WTFRAME_VPOINT and
WTFRAME_LOCAL

WTTARGET_MOVABLE WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD),
WTFRAME_VPOINT and
WTFRAME_LOCAL
15-8 WorldToolKit Reference Manual

Constraints on Motion links

s
a
 upon

, and
e

n
ly or

tities)
y only
y
If a motion link is to be applied in a viewpoint frame, then a pointer to the pertinent
viewpoint is passed in as the third argument, vpoint. In this case, if this pointer is invalid
the function returns FALSE. In all other cases the vpoint argument should be NULL.

This function returns FALSE if an invalid motion link is passed in, or if the requested
reference frame is not a valid one, otherwise TRUE is returned. If this function return
FALSE, the reference frame of the specified motion link remains unchanged. When
motion link is created, the reference frame is assigned to a default value, depending
the target type. See table 15-1 for a list of the default motion link reference frames.

Note: For sensors that return absolute records (e.g., FASTRAK, ISOTRAK, InsideTRAK
Flock of Birds), to either a transform or movable node, you must set the referenc
frame of the corresponding motion link to WTFRAME_PARENT in order to get the
expected behavior.

WTmotionlink_getreferenceframe

int WTmotionlink_getreferenceframe(
WTmotionlink *link);

This function returns the frame (WTFRAME_LOCAL, WTFRAME_WORLD,
WTFRAME_PARENT, or WTFRAME_VPOINT), in which the indicated motion link is
applied. If the specified motion link is invalid, -1 is returned.

Constraints on Motion links

Use the following functions to set and manipulate constraints on motion links. You ca
constrain translation along and rotation about any axis, to either prevent motion entire
to restrict motion to a specified range.

For ease of use, this release supports the functions WTsensor_setconstraints and
WTsensor_getconstraints (see Chapter 13, Sensors). Remember, however, that these
functions constrain the values returned by a sensor so they affect all the targets (or en
that are controlled by that sensor. Constraints on motion links, on the other hand, appl
on the target of the motion link and are not associated with a sensor. That is why the
provide better flexibility.
WorldToolKit Reference Manual 15-9

Chapter 15: Motion Links

ints
 as the

s
d upon
nce.
link’s
WTmotionlink_setconstraintframe

FLAG WTmotionlink_setconstraintframe(
WTmotionlink *link,
int constraintframe);

Use this function to set the constraint frame of a motion link. A constraint frame is the
coordinate frame in which the constraints on a motion link are applied. If the constra
are to be applied in a frame different from the default one, the new frame is passed in
argument constraintframe. Depending on the motion link's target type, only certain
constraint frames are valid. Table 15-3 lists the valid motion link constraint frames.

This function returns FALSE if an invalid motion link is passed in, or if the requested
constraint frame is an invalid one, otherwise TRUE is returned. When a motion link i
created, the constraint frame is set to a default value. If there are no constraints applie
the motion link, then the constraint frame assigned to this motion link has no significa
The default constraint frame assigned to a motion link is dependent upon the motion
target type and are listed in table 15-4.

Table 15-3: Valid Motion Link Constraint Frames

Target Valid constraint frames

WTTARGET_VIEWPOINT WTFRAME_LOCAL, (equivalent to
WTFRAME_VPOINT) and
WTFRAME_WORLD.

WTTARGET_TRANSFORM WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD) and
WTFRAME_LOCAL.

WTTARGET_NODEPATH WTFRAME_WORLD and
WTFRAME_VPOINT.

WTTARGET_MOVABLE WTFRAME_PARENT, (equivalent to
WTFRAME_WORLD) and
WTFRAME_LOCAL.
15-10 WorldToolKit Reference Manual

Constraints on Motion links

nts

ation
of

e
WTmotionlink_getconstraintframe

int WTmotionlink_getconstraintframe(

WTmotionlink *link);

This function returns the frame (WTFRAME_LOCAL, WTFRAME_WORLD,
WTFRAME_PARENT or WTFRAME_VPOINT) in which the constraints on the specified
motion link are applied. If the motion link is invalid, -1 is returned. Even if no constrai
have been applied on the motion link, a WTFRAME_ value (the default value, if not set) is
returned which indicates the frame in which constraints, if added, would be in effect.

See also WTmotionlink_setconstraintframe on page 15-10.

WTmotionlink_addconstraint

FLAG WTmotionlink_addconstraint(
WTmotionlink *link,

int dof,
float min,
float max);

Use this function to add a constraint to a motion link so that the position and/or orient
of the motion link’s target is constrained. The constraint is added along the degrees
freedom (DOF) specified by the dof argument (WTCONSTRAIN_X, WTCONSTRAIN_Y,
WTCONSTRAIN_Z, WTCONSTRAIN_XROT, WTCONSTRAIN_YROT or
WTCONSTRAIN_ZROT). The min and max arguments specify the range within which th
target of the motion link is constrained (within that DOF). When constraining a

Table 15-4: Default Motion Link Constraint Frames

Target Default constraint frames

WTTARGET_VIEWPOINT WTFRAME_LOCAL

WTTARGET_TRANSFORM WTFRAME_LOCAL

WTTARGET_NODEPATH WTFRAME_WORLD

WTTARGET_MOVABLE WTFRAME_LOCAL
WorldToolKit Reference Manual 15-11

Chapter 15: Motion Links

l

ax

,

be

k.

e
t is
translational DOF, min and max specify coordinates, and when constraining a rotationa
DOF min and max represent angles specified in radians.

This function returns FALSE if an invalid motion link is passed in or if the min and m
values are unacceptable for the indicated DOF. Valid min and max values for the different
DOFs and target types are discussed below. When constraining a translational DOF
regardless of the motion link’s target type, min must be less than or equal to max. When
constraining a rotational DOF with a target type of either WTTARGET_TRANSFORM,
WTTARGET_NODEPATH or WTTARGET_MOVABLE, min must be less than or equal to
max. When constraining a rotational DOF with a target type of WTTARGET_VIEWPOINT,
the following rules apply:

• For constraining rotations about the x-axis or the y-axis, min and max could
assume either positive or negative values, with min being less than or equal to
max. The absolute values of min and max should individually be less than two
times Pi. Also, the sum of the absolute values of min and max should be less than
two times Pi.

• For constraining rotation about the z-axis (or twist) apart from min having to
less than or equal to max, min and max must each be between -Pi and Pi.

WTmotionlink_removeconstraint

FLAG WTmotionlink_removeconstraint(
WTmotionlink *link,
int dof);

This function removes a particular constraint, if applied, from the specified motion lin
The constraint is specified by the degree of freedom (dof) argument. For example, dof could
be WTCONSTRAIN_X, WTCONSTRAIN_YROT or some other WTCONSTRAIN_ value.
(See WTmotionlink_addconstraint on page 15-11.)

If the motion link passed in is invalid, or if the specified constraint does not exist in th
motion link’s list of constraints, FALSE is returned, otherwise, the specified constrain
removed and TRUE is returned.
15-12 WorldToolKit Reference Manual

Constraints on Motion links

tate
nd
Example of Constraining a Motion Link

/* Program segment to demonstrate the use of constraints on a motion link between
/* a sensor and a transform node */

WTmotionlink *link;

WTsensor *sensor;
WTnode *pos_xform, *sens_xform;
WTnode *root;

WTnode *sep;
WTnode *door_node;
WTgeometry *door_geom;

root = WTuniverse_getrootnodes();
sep = WTsepnode_new(root);
/* Create and set a tranfsorm node that sets the door in its global position */

pos_xform = WTxformnode_new(sep);
WTnode_translate(pos_xform, 4.0f, 0.0f, 4.0f);
/* Create a transform node that will be linked to the sensor to allow sensor

control of the door */
sens_xform = WTxformnode_new(sep);
door_geom = WTgeometry_newblock(2.4f, 4.8f, 0.4f, TRUE);

door_node = WTgeometrynode_new(sep, door_geom);
sensor = WTmouse_new();
link = WTmotionlink_new(sensor, sens_xform,

WTSOURCE_SENSOR, WTTARGET_TRANSFORM);
/* Set constraints on the motion link to the door, to allow only restricted
rotation around Y-axis. */

WTmotionlink_addconstraint(link, WTCONSTRAIN_X, 0.0f, 0.0f);
WTmotionlink_addconstraint(link, WTCONSTRAIN_Y, 0.0f, 0.0f);
WTmotionlink_addconstraint(link, WTCONSTRAIN_Z, 0.0f, 0.0f);

WTmotionlink_addconstraint(link, WTCONSTRAIN_XROT, 0.0f, 0.0f);
WTmotionlink_addconstraint(link, WTCONSTRAIN_YROT, 0.0f, 1.4f);
WTmotionlink_addconstraint(link, WTCONSTRAIN_ZROT, 0.0f, 0.0f);

The above code segment constrains the motion of a door such that it is allowed to ro
only about its Y axis between 0.0 and 1.4 radians. (Translation along all three axes a
rotation about the X axis and Z axis is completely restrained.)
WorldToolKit Reference Manual 15-13

Chapter 15: Motion Links
WTpath_setrecordlink

See WTpath_setrecordlink on page 14-15 for a description.
15-14 WorldToolKit Reference Manual

screen.
 the

ou
h to

 use
h
 scene
indows
uch as

int
16
Viewpoints

Introduction

A WorldToolKit viewpoint defines the position and orientation from which all of the
geometries associated with a simulation are rendered and projected to the computer
Each WTK window has a viewpoint associated with it, and it is from this viewpoint that
scene graph associated with the window is drawn.

When you create a universe with WTuniverse_new, WTK automatically creates a
viewpoint for it. For many applications, this one viewpoint is sufficient. WTK also lets y
construct additional viewpoints and switch between them. For example, you may wis
create a “birds-eye view,” an “out-the-window view,” or a “rear view.” Changing
viewpoints in this way is like cutting between different cameras in a movie. (The Animating
Textures section on page 10-18 of the Textures chapter discusses rear-view mirrors.) To
create additional viewpoints, or to copy or delete existing viewpoints, see Basic Viewpoint
Management on page 16-3.

To display several viewpoints simultaneously, you create multiple windows and then
the WTwindow_setviewpoint function (see page 17-11) to specify the viewpoint from whic
the scene is rendered into each window. Each of these windows is associated with a
graph; alternate views of the same scene would use the same scene graph, while w
depicting different scenes would use different scene graphs. Unlike some systems (s
Open Inventor), viewpoints aren’t nodes in the WTK scene graph; the viewpoint is
determined before a scene is rendered.

You can set the position and orientation of a viewpoint through function calls like
WTviewpoint_setposition and WTviewpoint_setorientation (see Accessing Viewpoint
Position and Orientation on page 16-8). Or, you can control a viewpoint’s position and
orientation using a sensor, which you attach to it (see Linking a Sensor to a Viewpoint on
page 16-6). For example, if a mouse sensor object is constructed and attached to a
viewpoint (see WTmotionlink_new on page 15-3), you can translate and rotate the viewpo
using mouse motion and button clicks.

Chapter 16: Viewpoints

then
the

 such
s are

es for

nctions
 in
bal

iew

rally
d, is
You can also manage a viewpoint’s motion through viewpoint pathing. Using the functions
in the Paths chapter, you can record a suitable path through a virtual world. You can
play back the path such that the viewpoint moves smoothly along the path. Refer to
Paths chapter (starting on page 14-1) and the Motion Links chapter (starting on page 15-1)
for more information.

Apart from position and orientation, a viewpoint is characterized by other parameters
as aspect ratio, parallax, convergence and convergence distance. These parameter
defined in detail in the description of the function WTviewpoint_new on page 16-3. The
WTK functions that manipulate these parameters are presented in the sections Viewpoint
Aspect Ratio on page 16-18 and Stereo Viewing on page 16-19.

Figure 16-1 and Figure 16-2 illustrate monoscopic and stereoscopic viewing geometri
symmetric window projections. (For information on the different stereoscopic viewing
modes, see page 2-34). The view angle and the hither and yon values are set using fu
described in the Windows chapter (starting on page 17-1). (These terms are explained
detail on page 17-5.) Note that the view position and orientation is relative to the glo
(i.e., world) coordinate frame.

In figure 16-1, the view position is the origin of the viewpoint coordinate frame. The v
direction is the same as the Z axis of the viewpoint frame. Although the Y axes in the
viewpoint frame and the world coordinate frame happen to be parallel, this is not gene
the case. The yon clipping plane, which truncates the view pyramid defining its far en
not shown.

Figure 16-1: Monoscopic viewing geometry

y

x

World coordinate

hither clipping plane

hither distance

view plane

frame axes

2x the viewing angle

y

x

z (view direction)

Viewpoint coordinate
frame axes

view position

z

16-2 WorldToolKit Reference Manual

Basic Viewpoint Management

scopic
.

ng

.

is

d
ion

Figure 16-2: Stereoscopic viewing

Figure 16-2 illustrates how stereoscopic viewing has the same parameters as mono
viewing, except that there are two view pyramids, linearly offset by the parallax distance

Basic Viewpoint Management

WTviewpoint_new

WTviewpoint *WTviewpoint_new(
void);

This function creates and returns a pointer to a new viewpoint object with the followi
default parameter values:

Position The origin of the world coordinate frame: (0.0, 0.0, 0.0)

Orientation Looking straight down the Z axis, with no twist about th
axis. From this orientation, the world X axis points to the
right, the world Y axis points straight down, and the worl
Z axis points straight ahead. The corresponding quatern
is (0.0, 0.0, 0.0, 1.0), and the corresponding orientation
matrix is the identity matrix.

parallax

left eye view

right eye view

view position
WorldToolKit Reference Manual 16-3

Chapter 16: Viewpoints

 or
o

eft

s
 is

e

ated

om

e
Direction Looking straight down the Z axis: (0.0, 0.0, 1.0).

Aspect ratio 1.0. This is a vertical scale factor applied to the screen
image. You can use this value to correct for any monitor
pixel distortions that cause spherical or square objects t
look flattened.

Parallax 0.0. Both right and left eye views are from the same
position. Parallax is the distance between the right and l
eye views in the simulation.

Convergence 0. Convergence is a horizontal offset in pixels, which i
applied to both the left and right eye images. This offset
subtracted from the left eye and added to the right eye.

Convergence distance 100.0. For asymmetric window projections only. The
distance at which a stereoscopic image is perceived to
exist. For example, with StereoGraphics CrystalEyesVR
LCD Shutter Glasses, this parameter determines the
perceived location of an object relative to the plane of th
computer screen.

If only one viewpoint is needed for your application, you do not need to call
WTviewpoint_new because WTuniverse_new automatically constructs a viewpoint and
adds it to the universe. WTuniverse_new (which must be called at the beginning of any
WTK application) also creates a window, which by default uses the automatically cre
viewpoint when the scene is rendered.

The WTwindow_setviewpoint function is used to set the viewpoint for a window. The
WTwindow_seteye function is used to specify whether the view is rendered as seen fr
the left or right eye.

The universe maintains a list of all viewpoints created with WTviewpoint_new. This list can
be accessed with WTuniverse_getviewpoints (see page 2-15), which returns a pointer to th
first viewpoint. You can then iterate through the list using the WTviewpoint_next function,
which returns the next viewpoint in the list.
16-4 WorldToolKit Reference Manual

Basic Viewpoint Management

s not
lete

he
tate
 The

 to
WTviewpoint_delete

void WTviewpoint_delete(
WTviewpoint *viewpoint);

This function deletes the specified viewpoint, and frees the memory it uses. WTK doe
delete the viewpoint if that is the universe’s current viewpoint. You can, however, de
any other viewpoint. All viewpoints are deleted when WTuniverse_delete is called.

WTviewpoint_copy

WTviewpoint *WTviewpoint_copy(

WTviewpoint *old_viewpoint);

This function copies an existing viewpoint and returns a pointer to a new viewpoint. T
new viewpoint’s state is initialized to the values of the original viewpoint. The entire s
of the original viewpoint is copied, except for any sensors that may be attached to it.
new viewpoint has no sensors attached to it.

WTviewpoint_next

WTviewpoint *WTviewpoint_next(
WTviewpoint *viewpoint);

This function returns the next viewpoint in the universe’s list of viewpoints. A pointer
the first viewpoint is obtained with a call to WTuniverse_getviewpoints. You can then
iterate through the list of existing viewpoints using WTviewpoint_next.
WorldToolKit Reference Manual 16-5

Chapter 16: Viewpoints

tation
. The

ching

ath to

nsor,

ion in
d, but
e
Linking a Sensor to a Viewpoint

It is possible to attach a sensor to a viewpoint, so that the sensor’s position and orien
records automatically cause a corresponding translation and rotation of the viewpoint
easiest way to attach a sensor to a viewpoint is by calling WTviewpoint_addsensor as
shown in the example below. Motion links, which are described in the Motion Links chapter
(starting on page 15-1), are a more powerful and general-purpose mechanism for atta
sensors to viewpoints or other entities in the scene graph.

Motion links cause position and orientation information generated by a sensor or a p
be applied to the link’s target. A viewpoint is one such target.

Once you’ve linked a sensor or a path to a viewpoint, translation and rotation of the
viewpoint can be controlled by the sensor. If a viewpoint is linked to more than one se
each sensor contributes to the motion of the viewpoint.

In the following example, Polhemus ISOTRAK and Spacetec IMC Spaceball sensor
objects are created and attached to the viewpoint. This is a useful sensor configurat
setups where head tracking with an absolute sensor such as the ISOTRAK is desire
where you also want to independently control the viewpoint with a joystick-like devic
such as the Spaceball.

#include “wt.h”

main()
{

WTsensor *polhemus, *spaceball; /* sensor objects */
WTnode *root, *scene;

/* initialize the universe */

WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

/* create some graphics */
root = WTuniverse_getrootnodes();

scene = WTnode_load(root, “myscene”, 1.0);

/* create a polhemus sensor object on serial port SERIAL1 */
polhemus = WTpolhemus_new(SERIAL1);
16-6 WorldToolKit Reference Manual

Linking a Sensor to a Viewpoint

and is

 same

/* create a spaceball sensor object on serial port SERIAL2 */
spaceball = WTspaceball_new(SERIAL2);

/* attach the polhemus and spaceball to the universe’s viewpoint */

WTviewpoint_addsensor(WTuniverse_getviewpoints(), polhemus);
WTviewpoint_addsensor(WTuniverse_getviewpoints(), spaceball);

/* prepare to enter the simulation */

WTuniverse_ready();

/* start the simulation */
WTuniverse_go();

/* clean up */
WTuniverse_delete();

return 0;

}

This example uses an absolute device and a relative device to control the viewpoint,
a fairly intuitive configuration to work with. It can be interesting to experiment with
different sensor configurations. Not all work equally well, although what works well
depends on your particular application. Linking more than one absolute sensor to the
viewpoint, for example, can lead to non-intuitive results if the devices generate input
simultaneously. Refer to Constraints on Motion links on page 15-9 in the Motion Links
chapter to constrain the effect of a sensor on the motion of a viewpoint.

WTviewpoint_addsensor

void WTviewpoint_addsensor(
WTviewpoint *viewpoint,

WTsensor *sensor);

This function attaches a sensor to a viewpoint.
WorldToolKit Reference Manual 16-7

Chapter 16: Viewpoints

or no

rom

 If

fied
WTviewpoint_removesensor

void WTviewpoint_removesensor(
WTviewpoint *viewpoint,
WTsensor *sensor);

This function detaches a sensor from a viewpoint object, so that input from the sens
longer affects the motion of the viewpoint.

Accessing Viewpoint Position and Orientation

When sensors are linked to a viewpoint, the viewpoint moves automatically with input f
the sensors. The functions in this section provide additional means for specifying the
motion or placement of viewpoints.

Several of the functions in this section take a reference frame as the final argument.
WTFRAME_LOCAL or WTFRAME_VPOINT is specified, then the viewpoint is translated
and/or rotated with respect to its own reference frame.

WTviewpoint_setposition

void WTviewpoint_setposition(
WTviewpoint *viewpoint,
WTp3 p);

This function moves the viewpoint to the specified 3D position. The position is speci
in the p parameter (in world coordinates).

WTviewpoint_getposition

void WTviewpoint_getposition(
WTviewpoint *viewpoint,
WTp3 p);
16-8 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

igure

point

me.

int

ld
o

 is

m
t is
the

int

This function retrieves the 3D position of the viewpoint and places it in p. In the case of
stereo viewing with non-zero parallax, this is the position of the left eye, as shown in f
16-2 on page 16-3.

WTviewpoint_getlastposition

void WTviewpoint_getlastposition(
WTviewpoint *vpoint,
WTp3 pos);

This function gets a viewpoint’s position when the last frame was rendered. The view
is passed in as vpoint and the position is returned in pos.

Technically speaking, this is the viewpoint’s position after the completion of the last fra
Before the viewpoint moves in the current frame, WTviewpoint_getposition and
WTviewpoint_getlastposition return the same position. For example, suppose the viewpo
is being controlled by a sensor. Now, working with the default event order, a call to
WTviewpoint_getlastposition in the actions function would return the same value as wou
a call to WTviepwoint_getposition because the sensor updates have not occurred yet. T
effectively use this function, you should change the event order (using
WTuniverse_seteventorder) such that sensor updates occur before the actions function
called. This way, the sensor updates the viewpoint’s position, and WTviewpoint_getposition
returns the new position, while WTviewpoint_getlastposition returns the previous position.

This function is especially useful if you are implementing a collision detection algorith
to prevent the viewpoint from bumping into objects in the universe. After the viewpoin
updated by the sensor, if you detect a collision with any object, you can reset it with
value returned by WTviewpoint_getlastposition.

WTviewpoint_translate

void WTviewpoint_translate(
WTviewpoint *viewpoint,
WTp3 p,

short frame);

This function translates a viewpoint by the specified vector in the world, local/viewpo
frame. The parameter p is the specified vector. The world, local or viewpoint frame are
specified by WTFRAME_WORLD, WTFRAME_LOCAL, or WTFRAME_VPOINT. Note that
WorldToolKit Reference Manual 16-9

Chapter 16: Viewpoints

 the
16-3).
WTFRAME_LOCAL and WTFRAME_VPOINT both refer to the reference frame of the
viewpoint in this case, and produce the same result when used.

The following code fragment shows how to shift a viewpoint to the right in its own
reference frame by one unit. Recall that for any reference frame, the X axis points to
right, the Y axis points straight down, and the Z axis points straight ahead (see figure

WTviewpoint *viewpoint;
WTp3 p;

p[X] = 1.0; p[Y] = p[Z] = 0.0;

WTviewpoint_translate(view, p, WTFRAME_VPOINT);

Figure 16-3: Reference frames for geometry motion

world x

world y

world z

view x

view y

view z

viewing plane (screen)

geometry x

geometry y

geometry z

WTFRAME_WORLD WTFRAME_VPOINT

WTFRAME_LOCAL
16-10 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

tion
assed

e

in as

s
ns
WTviewpoint_setorientation

void WTviewpoint_setorientation(
WTviewpoint *viewpoint,
WTq q);

This function sets the viewpoint’s orientation to the specified quaternion. The q parameter
is the specified quaternion.

If orientations are represented as 3x3 matrices in your program, the conversion func
WTm3_2q can be used to generate the corresponding quaternion, which can then be p
in to WTviewpoint_setorientation.

WTviewpoint_getorientation

void WTviewpoint_getorientation(
WTviewpoint *viewpoint,
WTq q);

This function returns the orientation of the viewpoint, specified as a quaternion (in thq
parameter). To convert this to a 3x3 matrix representation, use the function WTq_2m3.

WTviewpoint_getlastorientation

void WTviewpoint_getlastorientation(
WTviewpoint *view,
WTq q);

This function gets a viewpoint’s orientation in the last frame. The viewpoint is passed
view and the orientation is returned in q.

Similar to the WTviewpoint_getlastposition function, the way you use this function depend
on the universe event order – whether the sensor updates are done before the actio
function is called. See WTviewpoint_getlastposition (on page 16-9) for more information
about how and where you can use this function.
WorldToolKit Reference Manual 16-11

Chapter 16: Viewpoints

the

a

WTviewpoint_rotate

void WTviewpoint_rotate(
WTviewpoint *viewpoint,
short axis,

float angle,
short frame);

This function rotates a viewpoint on a specified axis about the viewpoint’s position in
world, local/viewpoint frame (see figure 16-3 on page 16-10). The axis parameter is one of
the defined constants X, Y, or Z, and pertains to the specified reference frame
(WTFRAME_WORLD, WTFRAME_LOCAL, or WTFRAME_VPOINT). Note that
WTFRAME_LOCAL and WTFRAME_VPOINT both refer to the reference frame of the
viewpoint in this case, and produce the same result when used. The angle parameter
represents the amount of rotation (in radians) to perform about the specified axis.

The following example shows how to roll a viewpoint by 90 degrees to the right:

WTviewpoint *viewpoint;

WTviewpoint_rotate (view, Z, 0.5*PI, WTFRAME_VPOINT);

WTviewpoint_move

void WTviewpoint_move(
WTviewpoint *viewpoint,

WTpq *moveby,
short frame);

This function moves a viewpoint by the translation and rotation values specified in moveby.
The argument moveby is a pointer to a WTpq structure (which contains both a WTp3 and a
WTq), and is applied to the viewpoint in the specified reference frame
WTFRAME_WORLD, WTFRAME_LOCAL or WTFRAME_VPOINT. (The latter two
reference frames are the same when referring to a viewpoint.) This function causes
translation and a rotation of the viewpoint, because the WTpq structure contains both
translation and rotational information. WTviewpoint_move is a relative move, compared to
WTviewpoint_moveto (see below), which is an absolute move.

The rotational component of the moveby parameter (the q portion of the WTpq structure)
is applied about the viewpoint position (see figure 16-1 on page 16-2).
16-12 WorldToolKit Reference Manual

Accessing Viewpoint Position and Orientation

on

res

WTviewpoint_moveto

void WTviewpoint_moveto(
WTviewpoint *viewpoint,
WTpq *newviewat);

This function moves a viewpoint to the position and orientation specified in newviewat. The
argument newviewat is a pointer to a WTpq structure (which contains both a WTp3 and a
WTq). WTviewpoint_moveto moves the viewpoint to the absolute position and orientati
contained in them. WTviewpoint_moveto is an absolute move, compared to
WTviewpoint_move (see above), which is a relative move.

Since a WTpq is a structure, only a pointer to it can be passed in to a function. Structu
should not be directly passed in to functions.

WTviewpoint_setdirection

void WTviewpoint_setdirection(
WTviewpoint *viewpoint,
WTp3 dir);

This function sets the viewpoint direction to the view specified by the dir parameter. The
view direction represents the Z axis of the local viewpoint frame.

The WTviewpoint_rotate function can be used after a call to WTviewpoint_setdirection to
specify the amount of twist (rotation) around the new view direction.

WTviewpoint_getdirection

void WTviewpoint_getdirection(
WTviewpoint *viewpoint,
WTp3 dir);

This function returns the direction of the viewpoint. The dir vector points along the Z axis
of the viewpoint’s local coordinate frame.
WorldToolKit Reference Manual 16-13

Chapter 16: Viewpoints

tion.

s.

t the
 and
ified
WTviewpoint_getaxis

void WTviewpoint_getaxis(
WTviewpoint *viewpoint,
short axis,

WTp3 vector);

This function returns the unit vector in the direction of the specified viewpoint’s axis in the
world frame, which is specified by the axis parameter. Valid values for axis are X, Y, and
Z (which represent axes).

WTviewpoint_alignaxis

void WTviewpoint_alignaxis(
WTviewpoint *viewpoint,

short axis,
WTp3 dir);

This function rotates the viewpoint so the specified axis aligns with the specified direc
The axis is specified by the axis parameter. Valid values of axis are X, Y, and Z (which
represent axes). Direction is specified by the dir vector. The dir vector should be specified
relative to the world frame axis.

Using a Specified Reference Frame

The first function in this section, WTviewpoint_getframe, is used to obtain reference frame
information (a WTpq) which can then be passed in to any of the other “frame” function

The functions in this section are just like the correspondingly named functions withou
final “frame” at the end of the function name, except that the positions (or 3D vectors)
orientations passed in to these functions are interpreted as being relative to the spec
reference frame.
16-14 WorldToolKit Reference Manual

Using a Specified Reference Frame

 the

 It is

It is

 like
WTviewpoint_getframe

void WTviewpoint_getframe(
WTviewpoint *viewpoint,
WTpq *frame);

This function returns the specified viewpoint’s position and orientation and places it in
frame parameter.

WTviewpoint_setpositionframe

void WTviewpoint_setpositionframe(
WTviewpoint *viewpoint,
WTp3 pos,

WTpq *frame);

This function moves the viewpoint to the specified 3D position in the specified frame.
like WTviewpoint_setposition (see page 16-8) but takes an additional argument frame.

WTviewpoint_getpositionframe

void WTviewpoint_getpositionframe(
WTviewpoint * view,

WTp3 pos,
WTpq *frame);

This function returns the 3D position of the viewpoint relative to the specified frame.
like WTviewpoint_getposition (see page 16-8) but takes an additional argument frame.

WTviewpoint_translateframe

void WTviewpoint_translateframe(

WTviewpoint * view,
WTp3 p,
WTpq *frame);

This function translates a viewpoint by the specified vector in the specified frame. It is
WTviewpoint_translate but takes an additional argument frame.
WorldToolKit Reference Manual 16-15

Chapter 16: Viewpoints

l

 the
WTviewpoint_setorientationframe

void WTviewpoint_setorientationframe(
WTviewpoint * view,
WTq q,

WTpq *frame);

This function sets the viewpoint’s orientation in the specified frame to the specified
quaternion. It is like WTviewpoint_setorientation (see page 16-11) but takes an additiona
argument frame.

WTviewpoint_getorientationframe

void WTviewpoint_getorientationframe(
WTviewpoint * view,

WTq q,
WTpq *frame);

This function returns the orientation of the viewpoint relative to the specified frame,
specified as a quaternion. It is like WTviewpoint_getorientation (see page 16-11) but takes
an additional argument frame.

WTviewpoint_rotateframe

void WTviewpoint_rotateframe(

WTviewpoint * view,
short axis,
float angle,

WTpq *frame);

This function rotates a viewpoint around a given axis around the viewpoint’s position in
specified frame. It is like WTviewpoint_rotate (see page 16-12) but takes an additional
argument frame, which can be any coordinate frame (i.e., the specified WTpq).
16-16 WorldToolKit Reference Manual

Using a Specified Reference Frame

 a

d
t

e. It
WTviewpoint_moveframe

void WTviewpoint_moveframe(
WTviewpoint * view,
WTpq *pq,

WTpq *frame);

This function moves a viewpoint by the specified translation and rotation values in the
specified frame. It is like WTviewpoint_move (see page 16-12) but takes an additional
argument frame, which can be any coordinate frame (i.e., the specified WTpq). This is
relative move, compared to WTmovetoframe (see below), which is an absolute move.

WTviewpoint_movetoframe

void WTviewpoint_movetoframe(
WTviewpoint * view,

WTpq *pq,
WTpq *frame);

This function moves a viewpoint to the specified position and orientation in the specifie
frame. It is like WTviewpoint_moveto (see page 16-13) but takes an additional argumen
frame, which can be any coordinate frame (i.e., the specified WTpq). This is an absolute
move, compared to WTmoveframe (see above), which is a relative move.

WTviewpoint_setdirectionframe

void WTviewpoint_setdirectionframe(

WTviewpoint * view,
WTp3 dir,
WTpq *frame);

This function rotates the viewpoint to the specified view direction in the specified fram
is like WTviewpoint_setdirection but takes an additional argument frame.
WorldToolKit Reference Manual 16-17

Chapter 16: Viewpoints

like

n

r any
ts to
al,

bject
 tall as
WTviewpoint_getdirectionframe

void WTviewpoint_getdirectionframe(
WTviewpoint * view,
WTp3 dir,

WTpq *frame);

This function returns the direction of the viewpoint relative to the specified frame. It is
WTviewpoint_getdirection but takes an additional argument frame.

For more information about the use of reference frames, please see the discussion i
Geometry Motion Reference Frames on page 13-19.

Viewpoint Aspect Ratio

WTviewpoint_setaspect

void WTviewpoint_setaspect (
WTviewpoint *viewpoint,

 float aspect);

This function sets the viewpoint’s aspect ratio. This function can be used to correct fo
monitor or pixel distortion that causes round objects to look elliptical or square objec
look rectangular. If the horizontal and vertical extents of pixels in the display are equ
then no correction should be needed. Otherwise, call this function with aspect set to the
ratio of the horizontal pixel extent to the vertical pixel extent. Increasing values of aspect
make objects appear taller on the screen (without affecting their apparent width).

For example, if the pixels in your display are twice as wide as they are tall, then an o
which was modeled as a perfect square would appear on the screen to be only half as
it was wide when rendered with the default viewpoint aspect ratio of 1.0. You could
compensate for this by using the following call.

WTviewpoint *viewpoint;
WTviewpoint_setaspect(view, 2.0);
16-18 WorldToolKit Reference Manual

Stereo Viewing

ject

 ratio

iewing.

en the

its of
ined
This effectively stretches objects vertically by a factor of two, making the particular ob
appear square. See also WTwindow_setviewangle on page 17-19, and
WTviewpoint_getaspect, below.

WTviewpoint_getaspect

float WTviewpoint_getaspect(
WTviewpoint *viewpoint);

This function returns the viewpoint’s current aspect ratio. This value is specified as a
of the horizontal and vertical drawing dimensions. See also WTwindow_setviewangle,
WTviewpoint_setaspect above.

Stereo Viewing

The functions in this section are used to set and get the parameters used for stereo v
Please refer to the function WTviewpoint_new on page 16-3 for parameter definitions and
default values.

WTviewpoint_setparallax

void WTviewpoint_setparallax(

WTviewpoint *viewpoint,
float parallax);

This function sets the parallax value for stereo viewing. Parallax is the distance betwe
left and right eye views in the simulation (see figure 16-2 on page 16-3).

It is often desirable to set the parallax value to some fraction of the typical range of un
interest in your application. For example, you might use the radius of the volume def
by the scene graph, as in the following:

WTviewpoint *viewpoint;

WTviewpoint_setparallax(view, 0.05 *
WTnode_getradius(WTuniverse_getrootnodes());
WorldToolKit Reference Manual 16-19

Chapter 16: Viewpoints

pared
 over
tent
ive to

imes
ur

f the
In some applications, the volume defined by the scene graph may be very large com
to the size of typical objects in the scene. For example, consider a driving simulation
a very large terrain containing trees and buildings that are considerably smaller in ex
than the terrain. In this case, it may be preferable to scale the viewpoint parallax relat
the extents of just a portion of the scene graph, as in the following:

WTnode*node;
WTviewpoint *viewpoint;
WTviewpoint_setparallax(view, 0.1 * WTnode_getradius(node));

By increasing the parallax value, you can achieve an enhanced stereo effect (somet
called “hyper-stereo”). However, as parallax increases, it may become difficult for yo
eyes to fuse the stereo pair of images into a single 3D image.

WTviewpoint_getparallax

float WTviewpoint_getparallax(
WTviewpoint *viewpoint);

This function returns the viewpoint’s parallax value, which is the distance in world
coordinates between the left and right eyes.

The following example uses the viewpoint’s parallax value to determine the location o
viewpoint’s left and right eyes in the world coordinate frame.

WTviewpoint *viewpoint;

WTp3 pleft, pright;

/* retrieve the position of the viewpoint’s left eye */
WTviewpoint_getposition(view, pleft);

/* set pright to the position of the right eye
in the viewpoint frame */

pright[X] = WTviewpoint_getparallax(view);

pright[Y] = pright[Z] = 0.0;

/* convert pright to world coordinates */
WTviewpoint_local2world(view, pright, pright);
16-20 WorldToolKit Reference Manual

Stereo Viewing

ight

the
rgence
rther

 This
etric
/* print out eye positions in world coordinates */
WTp3_print(pleft, “left eye”);
WTp3_print(pright, “right eye”);

WTviewpoint_setconvergence

void WTviewpoint_setconvergence(
WTviewpoint *viewpoint,
short convergence);

This function sets the horizontal offset (in pixels) that is applied to both the left and r
eye images. The offset is subtracted from the left eye and added to the right eye.

This function can be used to achieve stereo fusion in head-mounted displays where
display screens are not exactly centered in front of the user’s eyes. A negative conve
value moves the images for the eyes closer together, a positive value moves them fu
apart.

WTviewpoint_getconvergence

short WTviewpoint_getconvergence(
WTviewpoint *viewpoint);

This function returns the viewpoint’s stereo convergence value in screen pixel units.
value should not be confused with the convergence distance value used with asymm
viewing projections, shown in figure 16-4.
WorldToolKit Reference Manual 16-21

Chapter 16: Viewpoints

s no
alling

w
tric
y the
. As
Figure 16-4: Top view of stereoscopic viewing pyramid with asymmetric projection

WTviewpoint_setconvdistance

void WTviewpoint_setconvdistance(

WTviewpoint *viewpoint,
float val);

This function sets the convergence distance of the specified viewpoint. This value ha
effect on the scene that is drawn unless asymmetric viewing has been turned on by c
WTwindow_setprojection and specifying WTPROJECTION_ASYMMETRIC for the
projection type.

When asymmetric viewing is on, the scene is drawn from the same view position, vie
direction, and view angle as when asymmetric viewing is off. However, with asymme
viewing, the scene appears horizontally skewed. The amount of skew is determined b
value of the viewpoint’s convergence distance parameter, as illustrated in figure 16-4
the convergence distance decreases, the amount of skew increases.

Left eye Right eye

View
direction

2x horizontal
view angle

view planeview plane

C
on

ve
rg

en
ce

 d
is

ta
nc

e

Asymmetric Symmetric
16-22 WorldToolKit Reference Manual

Stereo Viewing

 the

 than
t is
creen.

o be in
riment
to the
Asymmetric viewing is useful in some stereo viewing configurations. By changing the
convergence distance, geometries can be made to appear either in front of or behind
display device (e.g., the screen). A geometry in the 3D world closer to the viewpoint
the convergence distance appears to be in front of the screen, while a geometry tha
farther from the viewpoint than the convergence distance appears to be behind the s

The most dramatic stereo effect is often achieved when part of your scene appears t
front of the screen, and part appears to be behind the screen. You may wish to expe
with setting the value of the convergence distance to the distance from the viewpoint
midpoint of your scene, as in the following example. This example assumes that the
asymmetric projection type has already been set for the specified window:

void adjustconvergencedistance(WTwindow *w)
{

WTviewpoint *viewpoint;

float distance;
WTp3 p, midpt;

/* find distance from viewpoint to midpoint of scene graph*/

view = WTwindow_getviewpoint(w);
WTnode_getmidpoint(WTwindow_getrootnode(), midpt);
WTviewpoint_getposition(view, p);

distance = WTp3_distance(midpt, p);

/* set viewpoint convergence distance to that value */
WTviewpoint_setconvdistance(view, distance);

}

WTviewpoint_getconvdistance

float WTviewpoint_getconvdistance(
WTviewpoint *viewpoint);

This function returns the value of the viewpoint’s convergence distance parameter.

See also WTviewpoint_setconvdistance above and WTwindow_setprojection on page 17-14.
WorldToolKit Reference Manual 16-23

Chapter 16: Viewpoints

ion
Coordinate Transformations

WTviewpoint_world2local

void WTviewpoint_world2local(
WTviewpoint *viewpoint,
WTp3 pin,

WTp3 pout);

This function takes the specified 3D point pin in the world coordinate frame, and
determines the location of that point in relation to the specified viewpoint’s reference
frame. The result is stored in the pout parameter.

WTviewpoint_local2world

void WTviewpoint_local2world(
WTviewpoint *viewpoint,

WTp3 pin,
WTp3 pout);

This function takes a 3D point pin in the coordinate frame of the specified viewpoint
(specified in the viewpoint parameter), and determines the location of that point in relat
to the world coordinate frame. The result is stored in pout.

The following example uses WTviewpoint_local2world to place a geometry in front of a
viewpoint. Another example is provided under WTviewpoint_getparallax on page 16-20.

WTnode *geom;

WTviewpoint *viewpoint;
WTp3 pos_local; /* position in viewpoint’s frame */
WTp3 pos_world; /* position in world frame */

/* place the object in front of the viewpoint.
The object’s orientation is not considered in this example. */
pos_local[X] = pos_local[Y] = 0.0;

pos_local[Z] = 5.0 * WTnode_getradius(geom);
WTviewpoint_local2world(view, pos_local, pos_world);
/* move the object to the world-coordinate location */

WTnode_settranslation(geom, pos_world);
16-24 WorldToolKit Reference Manual

Viewpoint Name

y

an
o set

an be
 a
Viewpoint Name

WTviewpoint_setname

void WTviewpoint_setname(
WTviewpoint *viewpt,
const char *name);

This function sets the name of the specified viewpoint. All viewpoints have a name; b
default, a viewpoint’s name is “” (i.e., a NULL string).

WTviewpoint_getname

const char *WTviewpoint_getname(
WTviewpoint *viewpt);

This function returns the name of the specified viewpoint.

User-specifiable Viewpoint Data

A void * pointer is included as part of the structure defining a viewpoint, so that you c
store whatever data you want with a viewpoint. The following functions can be used t
and get this field within any viewpoint.

WTviewpoint_setdata

void WTviewpoint_setdata(

WTviewpoint *viewpoint,
void *data);

This function sets the user-defined data field in a viewpoint. Private application data c
stored in any structure. To store a pointer to a structure within the viewpoint, pass in
pointer to the structure, cast to a void*, as the data argument.
WorldToolKit Reference Manual 16-25

Chapter 16: Viewpoints

lue
WTviewpoint_getdata

void *WTviewpoint_getdata(
WTviewpoint *viewpoint);

This function retrieves private data stored within a viewpoint. You should cast the va
returned by this function to the same type used to store the data with the
WTviewpoint_setdata function.

Viewpoint Intersection Test

WTviewpoint_intersectpoly

For information on this function, see page 4-89. Also see How Do I Test For Objects
Intersecting With Other Objects In The Universe? on page A-25.
16-26 WorldToolKit Reference Manual

yed

nd

ture
17
Windows

Introduction

A WTK window object corresponds to a region of the screen in which a view of the
graphical universe is displayed. With the window class, multiple views can be displa
simultaneously and flexibly to different parts of the screen.

Included in this chapter are WTK functions that let you do the following:

• create a window with system-specific characteristics (such as border type) a
delete it

• reposition and resize a window

• define the way in which the scene is viewed in a window when rendered

• define the way in which the scene is projected to the window when rendered

• picking and ray-casting in a window

• set the rendering properties of a window (such as background color and tex
backdrop)

• assign user-specifiable data to a window

• get the system-specific ID of a window

• create multiple viewports within a window

Chapter 17: Windows

the
ed;

es,

.

ve

e

Window Construction and Destruction

WTwindow_new

WTwindow *WTwindow_new(
int x0,
int y0,

int xsize,
int ysize,
int flags);

This function creates a new WTK window object and displays it on the screen using
host system window manager. If successful, a pointer to the window object is return
otherwise NULL is returned.

The values in the x0 and y0 arguments are the minimum X, Y screen coordinates of the
window. The values in the xsize and ysize arguments are the width and height of the
window, not including the window border. The parameter flags is a constant defining the
window’s characteristics. (For information on the different stereoscopic viewing mod
see page 2-34).

These are the possible values for flags:

WTWINDOW_DEFAULT Creates a window with no special attributes
The window has a border unless
WTWINDOW_NOBORDER is used in
combination with this constant (via the
bitwise OR operator).

WTWINDOW_STEREO Creates a stereo window on systems that ha
hardware support for stereo. On systems
without hardware stereo support, this option
will create 2 images in the window (one on
the top with the left eye view, the other on th
bottom with the right eye view). On Windows
platforms, if this option is selected and the
WTDISPLAY_NEEDSTENCIL option is
selected in the display_config parameter
when WTuniverse_new is called, the
17-2 WorldToolKit Reference Manual

Window Construction and Destruction

in

e
t

i-

behavior you will obtain is that of
WTWINDOW_STEREOVSPLIT.

WTWINDOW_STEREOVSPLIT This constant can be combined with the
WTWINDOW_STEREO option by using the
bitwise OR operator (|), to create 2 images
the window (one on the top with the left eye
view, the other on the bottom with the right
eye view) even if your system has hardware
stereo support. In essence, this option will
cause WTK to disable your system’s stereo
hardware and to create a “vertically split”
stereo window instead.

WTWINDOW_RBSTEREO Creates a window with red/blue stereo.

WTWINDOW_INTERLACEEVENODD Creates an interlaced stereo window whose
even numbered scanlines correspond to the
left eye view and whose odd numbered
scanlines correspond to the right eye view.
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in the display_config parameter
when WTuniverse_new is called.

WTWINDOW_INTERLACEODDEVEN Creates an interlaced stereo window whose
odd numbered scanlines correspond to the
left eye view and whose even numbered
scanlines correspond to the right eye view
This option requires that the
WTDISPLAY_NEEDSTENCIL option be
selected in the display_config parameter
when WTuniverse_new is called.

WTWINDOW_NOBORDER This constant can be combined with any of
the above listed options by using the bitwis
OR operator (|), to create a window withou
a border.

WTWINDOW_SCREENn Where n is a number from 0 to 8. In the mult
pipe/multi-processor version of WTK, this
constant can be combined with any of the
above listed options by using the bitwise OR
WorldToolKit Reference Manual 17-3

Chapter 17: Windows

ed

 A

.

to

ed

e,

n

d
operator (|), to specify which screen the
window is to be placed on.

If the window_config parameter is set to any of the stereo options (WTWINDOW_STEREO,
WTWINDOW_RBSTEREO, WTWINDOW_INTERLACEEVENODD, or
WTWINDOW_INTERLACEODDEVEN), you will need to adjust the viewpoint’s parallax
and convergence values. See WTviewpoint_setparallax and WTviewpoint_setconvergence.

You only need to call WTwindow_new to create additional windows besides those creat
by the call to WTuniverse_new. The windows created by WTuniverse_new have viewpoints
associated with them, while windows created by calling WTwindow_new are assigned a
NULL viewpoint. A window’s viewpoint is set using WTwindow_setviewpoint (see page
17-11).

As windows are created, they are added to the end of the universe’s list of windows.
pointer to the front window in this list is returned by the WTuniverse_getwindows (see page
2-13) function. When the window is created, the following parameters are set:

projection type This defines how the scene is projected into the window
The default projection is symmetric
(WTPROJECTION_SYMMETRIC). See
WTwindow_setprojection on page 17-14.

viewpoint This is the viewpoint from which the scene is projected in
the window. By default, this viewpoint is NULL. See
WTwindow_setviewpoint on page 17-11.

eye By default, the scene projected into the window as view
from the left eye (WTEYE_LEFT) of the window's
viewpoint. To have the scene rendered from the right ey
use WTwindow_seteye on page 17-12. As explained in the
Viewpoints chapter, the viewpoint’s left eye position is
obtained when WTviewpoint_getposition (on page 16-8) is
called. The right eye position is obtained by a translatio
from the left eye along the viewpoint's X axis by the
parallax distance.

background color Default value: blue (rgb=0, 0, 255). See
WTwindow_setbgrgb on page 17-22.

view angle (in radians) The default view angle (half the total horizontal viewing
angle) is 0.698131 radians (40 degrees). Given the
horizontal view angle, the vertical view angle is determine
17-4 WorldToolKit Reference Manual

Window Construction and Destruction

l
ite
e

 of
n.

e
e
id
from the window’s aspect ratio, which is the ratio of the
vertical view angle tangent to the horizontal view angle
tangent. See WTwindow_setviewangle on page 17-19. and
WTviewpoint_setaspect on page 16-18. For general and
orthographic window projections
(WTPROJECTION_GENERAL and
WTPROJECTION_ORTHOGRAPHIC), the view angle is
not used. See WTwindow_setparams on page 17-16.

hither clipping value The distance (along the viewpoint direction) from the
viewpoint position to the hither clipping plane. Graphica
entities are clipped at this plane; only things on the oppos
side of the hither plane from the viewpoint are drawn. Th
default hither clipping value is 1.0. See
WTwindow_sethithervalue on page 17-18.

yon clipping value The distance (along the viewpoint direction) from the
viewpoint position to the yon clipping plane. Graphical
entities are clipped at this plane; only things on the side
the yon clipping plane closest to the viewpoint are draw
The default yon clipping value is 65536.0. See
WTwindow_setyonvalue on page 17-19.

Figure 17-1 illustrates the relationship of the viewpoint to the window parameters. Th
view plane is a slice through the view frustum (pyramid) determined by the size of th
window and the view angle. The yon clipping plane, which truncates the view pyram
defining its far end, is not shown.
WorldToolKit Reference Manual 17-5

Chapter 17: Windows

e

 be

Figure 17-1: Monoscopic viewing geometry

WTinit_usewindow

Prototype for Windows:

void WTinit_usewindow(
HWND *parent);

Prototype for UNIX:

void WTinit_usewindow(
Widget *parent)

Argument:

parent The ID of the parent host-specific window that will enclos
the WTK window.

This function integrates WTK windows with host-specific windows. This function must
called before WTuniverse_new (see page 2-2). See How Do I Integrate A WTK Rendering
Window With A Host-Specific Window? on page A-35.

y

x

World coordinate

Hither clipping plane

Hither distance

View plane

frame axes

2x the viewing angle

y

x

z (View direction)

Viewpoint coordinate
frame axes

View position

z

17-6 WorldToolKit Reference Manual

Window Construction and Destruction

 be

WTwindow_newuser

Prototype for Windows

WTwindow *WTwindow_newuser(
HWND *parent,

int window_config);

Prototype for UNIX:

WTwindow *WTwindow_newuser(

Widget *parent,
int window_config);

Argument:

parent The ID of the parent host-specific window that would
enclose the WTK window.

window_config This value is the same as the flag’s value in the
WTwindow_new (see page 17-2) function.

This function integrates WTK windows with host-specific windows. This function must
called after WTuniverse_new (see page 2-2). See How Do I Integrate A WTK Rendering
Window With A Host-Specific Window? on page A-35.

WTwindow_delete

void WTwindow_delete(
WTwindow *window);

This function deletes a WTK window object. The window argument may be a pointer to a
window object, created by an explicit call to WTwindow_new, or a pointer to a window that
was created implicitly by a call to WTuniverse_new.
WorldToolKit Reference Manual 17-7

Chapter 17: Windows

 be

t node
cified
Accessing Universe’s Windows

WTwindow_next

WTwindow *WTwindow_next(

WTwindow *window);

This function returns the next window in the universe’s list of WTK window objects. A
pointer to the first window in this list is obtained by calling WTuniverse_getwindows (see
page 2-13).

For example, suppose that your application uses a stereo display created by calling
WTuniverse_new with the WTDISPLAY_STEREO option, and that you wish to obtain
pointers to the windows in which the left and right-eye views are displayed. This can
accomplished as follows:

WTwindow *wleft, *wright;

/* WTuniverse_new is first WTK call in program */

WTuniverse_new(WTDISPLAY_STEREO, WTWINDOW_NOBORDER);

/* left eye view is displayed in first window created by WTuniverse_new */
wleft = WTuniverse_getwindows();

/* right eye view displayed in second window created. */
wright = WTwindow_next(wleft);

Associating Scene Graphs with Windows

WTwindow_setrootnode

void WTwindow_setrootnode(
WTwindow *window,
WTnode *rootnode);

This function associates a scene graph with a specified window by passing in the roo
of the scene graph. Once this is done, the scene graph will be rendered into the spe
window.
17-8 WorldToolKit Reference Manual

Associating Scene Graphs with Windows

ne

te any

ault,
ws

the
The WTuniverse_new (see page 2-2) function automatically associates the default sce
graph (i.e., the root node constructed by WTuniverse_new) with each of the windows it
creates. So, if your application uses only the default scene graph and does not crea
additional windows, then you do not need to call this function.

WTwindow_getrootnode

WTnode *WTwindow_getrootnode (
WTwindow *window);

This function returns the root node of the scene graph associated with the specified
window.

WTwindow_enable

void *WTwindow_enable (

WTwindow *window,
FLAG enable);

This function allows you to enable or disable rendering to a specified window. By def
each window is enabled. This is useful when your simulation contains multiple windo
and one or more windows are not active, i.e., they do not need to be updated in the
simulation loop. Using this function to disable rendering to inactive windows can
substantially improve performance.

WTwindow_isenabled

FLAG WTwindow_isenabled (

WTwindow *window);

This function returns TRUE if the specified window is enabled and returns FALSE if
specified window is disabled. See WTwindow_enable above.
WorldToolKit Reference Manual 17-9

Chapter 17: Windows

isplay

resize

 the

 Y

Window Size and Placement

A WTK window object’s initial size and location on the screen are set at the time it is
created. For a window created with WTwindow_new (see page 17-2), the initial size and
location are specified as arguments of the function. Size and location depend on the d
option chosen, and can also be set using WTK’s resource facility (discussed in Resource
Files on page 2-28).

After the windows objects are created, you can obtain their current size and location,
them, or move them using the functions described in this section.

WTwindow_setposition

void WTwindow_setposition(
WTwindow *window,
int x0,

int y0,
int width,
int height);

This function changes a window’s size and/or location on the screen. The x0 and y0
parameters are the minimum X and Y screen coordinates of the window, while width and
height specify the width and height of the window in screen coordinates (not including
window border).

WTwindow_getposition

void WTwindow_getposition(
WTwindow *window,
int *x0,

int *y0,
int *width,
int *height);

This function returns the location and size of a window. It places the minimum X and
window coordinates into the values x0 and y0, and the width and height of the window (in
pixels) into the values width and height (not including the window border).
17-10 WorldToolKit Reference Manual

Windows and Viewpoints

her
e
w of
 to

 or
d

.
l to

K
ons,
Windows and Viewpoints

Each WTK window object has, associated with it, a viewpoint, as well as the eye (eit
left or right) from which the scene is rendered in that window (see figure 17-1 on pag
17-6). For example, it may be useful to have a window that provides a bird’s-eye vie
the simulation, or a close-up view, or an out-the-window view. It may even be useful
have a window with a NULL viewpoint, which simply displays status information with
user-defined drawing functions.

The functions in this section allow you to control your viewpoints.

WTwindow_setviewpoint

void WTwindow_setviewpoint(
WTwindow *window,
WTviewpoint *view);

This function sets the viewpoint to be displayed in the specified window. The window
stereo-pair of windows created when WTuniverse_new (see page 2-2) is called is assigne
the viewpoint which is automatically created by the WTuniverse_new call. However, when
a window is created with WTwindow_new (see page 17-2), the viewpoint set for it is NULL
To have a viewpoint displayed in a window other than the windows put up by the cal
WTuniverse_new, you must explicitly set the viewpoint for the window by calling
WTwindow_setviewpoint.

To have a window in your WTK application which does not display a view of the WT
graphical universe, but which only displays the results of user-defined drawing functi
set the viewpoint for the window to NULL.

WTwindow_getviewpoint

WTviewpoint *WTwindow_getviewpoint(
WTwindow *window);

This function returns the viewpoint currently set for the specified window. See
WTwindow_setviewpoint, above.
WorldToolKit Reference Manual 17-11

Chapter 17: Windows

e
ated

ough

 left

s
st

ng a
 view
WTwindow_seteye

void WTwindow_seteye(
WTwindow *window,
short eye);

This function specifies whether the scene displayed in the specified window should b
rendered from the left or right eye of the viewpoint. The left and right eyes are separ
by the viewpoint’s parallax value.

The value of eye must be one the defined constants WTEYE_LEFT or WTEYE_RIGHT. The
default value for a window is WTEYE_LEFT.

This function is useful in the case where two distinct windows are created for stereo
viewing and when it is desirable to use a common viewpoint for each window. Even th
each window shares a common viewpoint, WTviewpoint_setparallax (see page 16-19) can
be used to set the distance in the 3D virtual world between the points from which the
and right eye views are drawn. You can then use WTwindow_seteye to specify which eye
view to use for each window of the stereo window pair.

WTwindow_geteye

short WTwindow_geteye(
WTwindow *window);

This function determines which eye the window’s viewpoint is set to display. It return
either WTEYE_LEFT or WTEYE_RIGHT. If the pointer passed in is not in the universe’s li
of windows, it returns -1. See WTwindow_seteye above, and WTviewpoint_setparallax on
page 16-19.

WTwindow_setviewpoint2

void WTwindow_setviewpoint2(

WTwindow *window,
WTviewpoint *view);

This function sets the second viewpoint to display for the specified window when usi
stereo window. Use this function in special situations, when it is necessary to perform
projections into a stereo window using two completely different viewpoints.
17-12 WorldToolKit Reference Manual

Zooming the Window Viewpoint

hen
 the

e

cene

d
If the viewpoints used for the left and right eye view only differ in their parallax value, t
you do not need to use this function. You can instead use a single viewpoint and set
viewpoint’s parallax value to an appropriate value. See WTwindow_setviewpoint on page
17-11 and WTviewpoint_setparallax on page 16-19.

WTwindow_getviewpoint2

WTviewpoint *WTwindow_getviewpoint2(
WTwindow *window);

This function returns the second viewpoint associated with the specified window. Se
WTwindow_setviewpoint2 above.

WTwindow_getscreen

int WTwindow_getscreen(

WTwindow *window);

This function returns the screen number upon which the window appears.

Zooming the Window Viewpoint

WTwindow_zoomviewpoint

void WTwindow_zoomviewpoint(

WTwindow *window);

This function zooms the viewpoint of the given window so that all geometries in the s
graph (associated with that window) are visible. The orientation of the viewpoint is
preserved. This is useful when you associate a new scene graph with the window an
require orientation.
WorldToolKit Reference Manual 17-13

Chapter 17: Windows

he
ved.

e

e,
th the
r the
ons

s

s

WTwindow_zoomviewtonode

void WTwindow_zoomviewtonode(
WTwindow *window,
WTnode *node,

int which);

This function zooms the viewpoint of the specified window so that all geometries in t
node (and the node’s sub-tree) are visible. The orientation of the viewpoint is preser
This is useful when you associate a new scene graph with the window and require
orientation. The which parameter indicates which instance of the node to zoom to, sinc
there may be many instances of the node in the scene graph.

Window-projection Functions

In WTK Version 2.0, the WTviewpoint class contained all parameters pertaining to the
viewing pyramid or frustum. Beginning with WTK 2.1 and including the current releas
functions are provided so that the view frustum parameters can instead be stored wi
window. This gives more flexibility, because with this capability, you are able to rende
scene from the same viewpoint into different windows using different viewing projecti
into each window.

WTwindow_setprojection

void WTwindow_setprojection(
WTwindow *window,

int type);

This function sets one of the following projection types for the specified window:

WTPROJECTION_SYMMETRIC Commonly used projection, especially for
monoscopic and flat screen displays. This i
the default projection type.

WTPROJECTION_ASYMMETRIC Useful for stereoscopic displays. By varying
the viewpoint convergence distance, object
can be made to appear in front of or behind
17-14 WorldToolKit Reference Manual

Window-projection Functions

er

e

l
t

).

the projection plane. See the discussion und
WTviewpoint_setconvdistance on page
16-22.

WTPROJECTION_GENERAL Provides the greatest flexibility; useful when
the viewer is not always perpendicular to th
display surface, for example in CAVE
environments. See note below.

WTPROJECTION_ORTHOGRAPHIC Useful for plan views or anytime a
perspective distortion is not desired; paralle
lines remain parallel regardless of viewpoin
position. Translations in the X and Y
directions work as before, but translations
along the Z-axis do not affect the scene
(except when either the hither or yon clipping
planes interact with the scene’s geometries
See note below.

Note: When using either WTPROJECTION_GENERAL or
WTPROJECTION_ORTHOGRAPHIC, you must specify any aspect of the window's
viewing frustum using WTwindow_setparams. The functions
WTwindow_setviewangle, WTwindow_sethithervalue, and WTwindow_setyonvalue,
do not affect the window's view frustum when using orthographic or general
projections.

The default projection type is WTPROJECTION_SYMMETRIC. However, when
WTuniverse_new is called with WTDISPLAY_CRYSTALEYES, the window projection is
set to WTPROJECTION_ASYMMETRIC.

If you intend to use a projection type other than the default one
(WTPROJECTION_SYMMETRIC), the call to WTwindow_setprojection must precede calls
to any other window functions. For example, if you call WTwindow_zoomviewpoint and
then set the projection to orthographic, it will look as if the zoom didn’t work.
WorldToolKit Reference Manual 17-15

Chapter 17: Windows

e is

 for

fine
he

” is
WTwindow_getprojection

int WTwindow_getprojection
WTwindow *window);

This function returns the projection type for the specified window. The projection typ
one of the following:

WTPROJECTION_SYMMETRIC

WTPROJECTION_ASYMMETRIC
WTPROJECTION_GENERAL
WTPROJECTION_ORTHOGRAPHIC.

WTwindow_setparams

void WTwindow_setparams(
WTwindow *window,
FLAG eye,

float left,
float right,
float bottom,

float top,
float near,
float far);

This function specifies the parameters describing the window’s viewing frustum used
the specified eye (WTEYE_LEFT or WTEYE_RIGHT). This function only works when a
window’s projection type has been set to either WTPROJECTION_GENERAL or
WTPROJECTION_ORTHOGRAPHIC.

The near parameter defines the distance to the near (hither) clipping plane. The far
parameter defines the distance to the far (yon) clipping plane. The parameters top and left
are the distances along the X and Y axes in the viewpoint coordinate frame which de
the top-left corner of the view pyramid where it intersects the hither clipping plane. T
parameters bottom and right are the distances along the X and Y axes in the viewpoint
coordinate frame which define the bottom-right corner of the view pyramid where it
intersects the hither clipping plane. For orthographic projections the viewing “pyramid
not a pyramid at all, but a box with all of its walls mutually perpendicular. The view
pyramid is shown in figure 17-1 on page 17-6.
17-16 WorldToolKit Reference Manual

Other Window-projection Functions

int,
 then
low

e,
TK

for a

d
With this function, you can create windows that are not directly in front of the viewpo
depending on the left, right, bottom, and top coordinates. If left and right are positive,
the window is off to the right. If bottom and top are both negative, then the window is be
the viewpoint.

To keep the viewpoint within the window boundaries, make left negative, right positiv
bottom negative, and top positive. For example, to create a window like the default W
window (with the viewpoint directly in the center) use WTPROJECTION_GENERAL, make
left a negative number, right a positive number of the same magnitude as left, top a positive
number, and bottom a negative number of the same magnitude as top.

When this function is called, the values specified for near and far override the hither and
yon values of the window.

WTwindow_getparams

void WTwindow_getparams(
WTwindow *window,
FLAG eye,

float *left,
float *right,
float *bottom,

float *top,
float *near,
float *far);

This function obtains the current window parameters describing the viewing frustum
window with general or orthographic projection. The eye parameter can be either
WTEYE_LEFT or WTEYE_RIGHT. See WTwindow_setprojection on page 17-14.

Other Window-projection Functions

The functions described in this section are WTwindow class functions that had
corresponding functions in the WTviewpoint class in releases of WTK prior to Release 6 an
this current release. These functions have been moved to the WTwindow class to give
greater flexibility in associating viewpoints and viewing parameters with windows.
WorldToolKit Reference Manual 17-17

Chapter 17: Windows

 same
 in

t, it
nding

pe is

int.

z”
e
For backward compatibility, the corresponding WTviewpoint class functions will continue
to be supported, and applications created with WTK 2.1 should behave in exactly the
way if recompiled using the current release. However, if you call one of the functions
this section, it will override any calls to the corresponding WTviewpoint function that you
previously made for the viewpoint associated with that window. In future developmen
is recommended that you use the functions in this section rather than the old correspo
WTviewpoint functions.

The functions described in this section have no effect when the window projection ty
WTPROJECTION_GENERAL or WTPROJECTION_ORTHOGRAPHIC, because in those
cases all view frustum parameters are set with WTwindow_setparams (see page 17-16).

WTwindow_sethithervalue

void WTwindow_sethithervalue(
WTwindow *window,
float val);

This function sets the distance of the window’s hither clip plane in front of the viewpo
The default hither clipping value is 1.0

The new value specified in the val argument must be greater than the floating point “fuz
value WTFUZZ (0.004) used by WTK, or the function will leave the hither clipping plan
as close to the viewpoint as it can.

WTwindow_gethithervalue

float WTwindow_gethithervalue(
WTwindow *window);

This function returns the window’s hither clipping value.
17-18 WorldToolKit Reference Manual

Other Window-projection Functions

 pass
hich

ed

 total
WTwindow_setyonvalue

void WTwindow_setyonvalue(
WTwindow *window,
float val);

This function sets the window's yon clipping value. This is the distance in front of the
viewpoint beyond which the scene is not rendered in that window. For example, if you
in a value of 100.0 to this function, then those geometries or portions of geometries w
are beyond 100.0 distance units from the eye are not rendered.

The default yon clipping value is 65536.0.

WTwindow_getyonvalue

float WTwindow_getyonvalue(
WTwindow *window);

This function returns the window’s yon clipping value.

WTwindow_setviewangle

void WTwindow_setviewangle(

WTwindow *window,
float angle);

This function sets the specified window’s horizontal view angle.The view angle is defin
as half the horizontal angular field of view (in radians). The angle specified must be
between 0.0 and PI/2.0 or the function has no effect. The default view angle (half the
horizontal viewing angle) is 0.698131 radians (40 degrees).

When the horizontal view angle is set with this function, the vertical view angle is
automatically sets as well, based on the dimensions of the window.
WorldToolKit Reference Manual 17-19

Chapter 17: Windows

he
n
ttom-
the
at

ich

 of the

f the

WTwindow_getviewangle

float WTwindow_getviewangle(
WTwindow *window);

This function returns the window’s view angle in radians. The view angle is half the
horizontal angular field of view.

Picking and Ray Casting

WTwindow_pickpoly

WTpoly *WTwindow_pickpoly(

WTwindow *window,
WTp2 point,
WTnodepath **nodepath,

WTp3 p);

This function obtains a pointer to the frontmost polygon at the specified 2D point in t
specified window. The 2D point argument is specified in window coordinates, not scree
coordinates, where (0.0, 0.0) represents the top-left corner of the window and the bo
right corner of the window is represented by (window width - 1, window height - 1). If
specified point does not lie within the specified window, or if there is no polygon at th
coordinate, then NULL is returned.

The WTp3 value obtained is the 3D world coordinate point of the picked polygon wh
projects to the specified 2D point.

This function also fills in the value of the WTnodepath pointer, indicating the node path to
which the selected polygon belongs. The node path returned begins at the root node
specified window. If the polygon selected is in a WTgeometry node which is referenced
more than once in the scene graph, it may be useful to know for which occurrence o
WTgeometry node the polygon was selected. You are allowed to pass in NULL for the
nodepath argument. If you do pass in NULL, then the function does not provide the
WTnodepath pointer information to you and does not create a WTnodepath for you. If a
WTnodepath is created, you are responsible for deleting this WTnodepath, when you no
longer need it. To do so, call WTnodepath_delete.
17-20 WorldToolKit Reference Manual

Picking and Ray Casting

ow.

ne in

in the
The following example shows how to pick the frontmost polygon in the center of a wind

WTpoly *pick_center_poly(WTwindow *w)
{

int width, height, x0, y0;

WTpoly *pickedpoly;
WTp2 point;
WTp3 p;

WTwindow_getposition(w, &x0, &y0, &width, &height);
point[X] = width/2.0;
point[Y] = height/2.0;

pickedpoly = WTwindow_pickpoly(w, point, NULL, p);
return pickedpoly;

}

WTwindow_getray

FLAG WTwindow_getray(
WTwindow *window,
WTp2 point,

WTp3 rayorigin,
WTp3 ray);

This function determines the ray that emanates from the view position (where the sce
that window is rendered), which passes through the specified point. For the point argument,
the point (0.0, 0.0) corresponds to the upper-left corner of the window. This ray is
normalized (that is, has a length equal to 1.0) and is in world coordinates; it is placed
parameter ray by this function. The view position is placed in rayorigin by this function.

WTwindow_projectpoint

FLAG WTwindow_projectpoint(

WTwindow *window,
int eye,
WTp3 pos,

WTp2 point);
WorldToolKit Reference Manual 17-21

Chapter 17: Windows

3D
f the
rn

r the

 for

TK
This function computes the 2D screen point relative to the window position where a
world coordinate projects. If the 3D point projects to a 2D screen point that is outside o
window, this function still returns the 2D point relative to the window but it will also retu
FALSE.

If the specified window is a stereo window, then the eye parameter identifies whethe
projection is computed from the left (WTEYE_LEFT) eye of the window’s viewpoint or the
right (WTEYE_RIGHT) eye. For non-stereo windows, the eye parameter is ignored.

Window-rendering Properties

WTwindow_setbgrgb

void WTwindow_setbgrgb(
WTwindow *window,
unsigned char r,

unsigned char g,
unsigned char b);

This function sets the 24-bit background color for the specified window. Valid values
r, g, and b are 0 to 255. The default value is blue (rgb = 0, 0, 255).

The following example sets the background color of the first window created by the W
application to yellow:

WTwindow_setbgrgb(WTuniverse_getwindows(), 255, 255, 0);

WTwindow_getbgrgb

void WTwindow_getbgrgb(
WTwindow *window,
unsigned char *r,

unsigned char *g,
unsigned char *b);

This function obtains the background color of the specified window.
17-22 WorldToolKit Reference Manual

Window-rendering Properties

n

ix
 from

the
n,

nd Z

K
ng

e user-
WTwindow_setdrawfn

void WTwindow_setdrawfn(
WTwindow *window,
void (*drawfn)(WTwindow *win, FLAG eye));

This function specifies a function containing calls to 3D drawing routines (see 3D Drawing
on page 19-8 in the Drawing Functions chapter). For example, you could use this functio
to incorporate a 3D grid, or other objects, into the simulation.

Your user-defined 3D drawing function drawfn is invoked by WTK during the simulation
loop. If the specified window is a stereo window then drawfn will be invoked twice, once
for each eye. In this case the eye parameter that WTK passes to drawfn will be
WTEYE_RIGHT and then WTEYE_LEFT. If the specified window is not a stereo window
then WTK will pass in WTEYE_LEFT as the eye parameter.

Before drawfn is called within the WTK simulation loop, a copy of the current view matr
is pushed on top of the model view stack, so that your drawing elements can be drawn
this viewpoint if desired. Don’t forget that the WTK coordinate convention differs from
OpenGL convention. (The WTK convention has X pointing to the right, Y pointing dow
and Z pointing straight ahead. WTK coordinates are obtained by simply negating Y a
OpenGL coordinate values.)

The current view matrix in WTK incorporates the transformation from OpenGL to WT
coordinates. So, if your drawfn uses the current view matrix, you must specify your drawi
coordinates such as values passed into the OpenGL function glVertex using the WTK
coordinate convention.

If using OpenGL drawing routines in the drawfn function, you must pop all matrices, and
only those matrices, that you pushed onto the stack.

Note that no WTK function calls (other than math library calls, WTwindow_set3D...,
WTwindow_draw3D..., or WTwindow_loadimage) may be used in the user-defined draw
function, drawfn.

It is recommended that you not use this function because 3D drawing calls made in th
specified drawfn are platform specific and hence make your application non-portable.
WorldToolKit Reference Manual 17-23

Chapter 17: Windows

e

 the
 this
al
or
ther

in

WTwindow_setfgactions

void WTwindow_setfgactions(
WTwindow *window,
void (*fgdrawfn)(WTwindow* win,

FLAG eye));

This function specifies a function containing calls to 2D drawing routines (drawn in th
foreground). (See 2D Drawing on page 19-1 in the Drawing Functions chapter.) The
drawing routines are incorporated as an overlay onto the WTK scene. WTK handles
overlaying of the drawing elements onto the WTK scene; you do not have to manage
yourself. WTK does not actually draw into overlay bitplanes. Instead it uses the norm
draw bitplanes, so that you can use the full image depth of the normal draw buffer. F
example, you could use this function to create a “heads-up display” including text or o
2D graphical entities.

Your user-defined 2D drawing function fgdrawfn is invoked by WTK during the simulation
loop. If the specified window is a stereo window, then fgdrawfn is invoked twice, once for
each eye; the eye parameter that WTK passes to fgdrawfn will first be WTEYE_RIGHT and
then WTEYE_LEFT. If the specified window is not a stereo window then WTK passes
WTEYE_LEFT as the eye parameter.

Before the function fgdrawfn is called, the matrix stack is initialized so that all the 2D
functions use a normalized window coordinate system. A value of:

0.0 for X Specifies the left edge of the window

1.0 for X Specifies the right edge of the window

0.0 for Y Specifies the bottom edge of the window

1.0 for Y Specifies the top edge of the window

Note: This coordinate convention is unique within WTK.

If using OpenGL drawing routines in the function fgdrawfn, you must pop all matrices and
only those matrices that you push onto the stack.

Note that no WTK function calls (other than math library calls, WTwindow_set2D...,
WTwindow_draw2D..., or WTwindow_loadimage) may be used in the user-defined draw
function, fgdrawfn. In fact, the WTwindow_set2D... and WTwindow_draw2D... functions
can only be called from the fgdrawfn specified in WTwindow_setfgactions.
17-24 WorldToolKit Reference Manual

Window-rendering Properties

in the
ble.

 with

-

TK

is
ling

s in
It is recommended that you do not use this function because 2D drawing calls made
user-specified drawfn are platform specific and hence make your application non-porta

WTwindow_numpolys

int WTwindow_numpolys(
WTwindow *window);

This function returns the number of polygons sent to the graphics pipeline associated
the specified window.

WTwindow_loadimage

FLAG WTwindow_loadimage(

WTwindow *window,
char *filename,
float zval,

FLAG swapbuf,
FLAG bitmapdel);

This function loads an image (bitmap) file to the specified window so that it fills the
window. This function can be called from the universe action function, or from a user
specified draw function (see WTwindow_setdrawfn and WTwindow_setfgactions above).

This function draws the image at depth zval in a view frustum for which depth values are
scaled to lie between z = -0.999 and z = 1.0. To create a texture backdrop for your W
scene, call WTwindow_loadimage from a user-defined draw function specifying zval = -
0.999. If you want the image to be placed on top of the WTK scene, you must call
WTwindow_loadimage with zval = 1.0.

The parameter swapbuf (either TRUE or FALSE) is used to specify whether the image
buffer should be swapped immediately after the image is drawn. If WTwindow_loadimage
is called from an action function, then this value should be TRUE, so that the image
displayed immediately. (In this case, you will probably want to put in a delay after cal
WTwindow_loadimage so that the image is visible for a specified time.) If
WTwindow_loadimage is called from a user-defined draw function, then you should pas
FALSE for swapbuf, so that the image can be incorporated into the WTK scene.
WorldToolKit Reference Manual 17-25

Chapter 17: Windows

ll

 by

d.

over
e

e
The value of bitmapdel specifies whether you want the bitmap that is created when the
image is loaded to be deleted after the call to WTwindow_loadimage. If you will only be
displaying this bitmap once, and not using it as a surface texture, then you should ca
WTwindow_loadimage with bitmapdel set to TRUE. However, if this bitmap will be reused
in your program, you should call WTwindow_loadimage with bitmapdel set to FALSE,
which saves time when it is reused.

It returns TRUE if it successfully loads and draw the image in the window. It returns
FALSE if the specified pointer is not a valid window pointer, or if the bitmap specified
filename could not be loaded.

WTwindow_saveimage

FLAG WTwindow_saveimage(
 WTwindow *window,
 int x,

 int y,
 int width,
 int height,

 char *filename);

Use this function to save a part or all of the display in a WTK window into a file. The
argument window is a pointer to the WTK window. (See WTuniverse_getwindows on page
2-13 to get a pointer to your WTK window.) The image is saved in the TARGA (.tga)
format. The last argument, filename is your name for the image file.

The arguments x, y, width and height, determine what area of the display you want capture
x = 0 and y = 0 corresponds to the lower left corner of the window. The width and height
arguments indicate the extents in the X and Y axes respectively, that is, the extents
which the image will be saved. The lower-left corner of the captured part will have th
window-coordinates x, y and the upper-right corner of the captured part will have the
window-coordinates x + width, y + height. For example, if you need to capture your entir
window:

 WTwindow_saveimage(w, 0, 0, width, height, “file.tga”);

where width and height are determined with the following call:

 WTwindow_getposition(w, &xpos, &ypos, &width, &height);
17-26 WorldToolKit Reference Manual

Window Name

tion
r 8

fault,
Note that the second and third parameters in the WTwindow_saveimage call are 0 (zero),
indicating that you want to capture from the lower left corner of the window. This func
only works if your system is set to true color (24 bit) mode. It will not work in 16 bit o
bit mode. See also WTwindow_getimage.

WTwindow_getimage

See page 10-33 for a description of WTwindow_getimage.

Window Name

WTwindow_setname

void WTwindow_setname(
WTwindow *win,
const char *name);

This function sets the name of the specified window. All windows have a name; by de
a window’s name is “” (i.e., a NULL string).

WTwindow_getname

const char *WTwindow_getname(
WTwindow *win);

This function returns the name of the specified window.
WorldToolKit Reference Manual 17-27

Chapter 17: Windows

tion
dow,

er-

t the
e
User-specifiable Window Data

WTwindow_setdata

void WTwindow_setdata(
WTwindow *window,

void *data);

This function sets the user-defined data field for the specified window. Private applica
data can be stored in any structure. To store a pointer to this structure within the win
pass in a pointer to the structure, cast to a void*, as the data argument.

The following example stores a pointer to a WTK graphical object in the window’s us
defined data field:

WTnode *geo;
WTwindow *window;

WTwindow_setdata(window, (void *) geo);

WTwindow_getdata

void *WTwindow_getdata(
WTwindow *window);

This function retrieves a pointer to the user-defined data stored within a window. Cas
value returned by this function to the same type that was used to store the data in th
window with WTwindow_setdata (see above).

In the following example, the user-defined data field set in the example under
WTwindow_setdata is retrieved.

WTnode *geo;
WTwindow *window;

/* retrieve pointer to the geometry node that was associated with the window */

geo = (WTnode *) WTwindow_getdata(window);
17-28 WorldToolKit Reference Manual

System-specific Window ID

urn

 is

nter
System-specific Window ID

WTwindow_getidx

WTwinidtype WTwindow_getidx(
WTwindow *window);

This function returns the system-specific window ID for the specified window. The ret
value's type is host-system specific:

UNIX platforms The return type is Widget (i.e., an XID)

Windows platforms The return type is HWND.

See also WTuniverse_getwindows on page 2-13 and WTuniverse_getcurrwindow on page
2-14.

WTwindow_getwidget

Widget WTwindow_getwidget(
WTwindow *w);

This function gets the X Widget that corresponds to a WTK window, w.
If w is invalid, that is if the pointer is not recognized to be a valid WTK window, NULL
returned. (Available only on UNIX systems.)

This is a very useful function when you need to make Xt calls that require WTK's poi
to the X11 Display. (Display = XtDisplay(Widget);)

See On UNIX Platforms, How Do I Get A Pointer To The Display That WTK Is Using? on
page A-38 for an example of how to use this function.
WorldToolKit Reference Manual 17-29

Chapter 17: Windows

an be

w
ce is

 swap
frame
en
r the

rate
 one

 the
w

TK

e

e

r

Viewports

Every WorldToolKit window contains, by default, a single viewport which covers the
entire area of the window and wherein the scene is rendered. Additional viewports c
created for each WTK window so that multiple views of one or more scenes can be
rendered inside a single WTK window.

There are two advantages to creating and using multiple viewports in a single windo
instead of creating and using multiple windows. The first advantage is that performan
improved when using multiple viewports in a WTK window instead of using multiple
(single viewport) WTK windows. The reason for this is that the rendering buffers are
cleared and swapped only once for the single window, rather than having to clear and
for several windows. The second advantage is that the rendering of each viewport is
synchronized, i.e. all viewports are rendered on the screen at the same time in a giv
frame. In contrast, using multiple windows means that WTK must process and rende
geometry associated with the first WTK window before it can process and render the
geometry associated with succeeding WTK windows and if your application’s frame
is low, there will be a discernable time lag between the updates of each window within
frame.

It is also possible to create a rear-view mirror effect by using multiple viewports in a
window. Refer to the Rv_mirror.c example program in the examples sub-directory of
WTK distribution for an example of how viewports can be used to achieve a rear-vie
mirror effect.

Applications which do not require multiple viewports within a window, can ignore the
concept of a viewport entirely, because viewports are not directly exposed like other W
objects such as WTwindow, WTnode, etc. There are no objects such as a WTviewport object
because the viewport concept is embedded into the WTwindow type. By embedding
viewports into the WTwindow type, all of the functionality pertaining to viewports can b
accessed via three functions: WTwindow_setviewport, WTwindow_getviewport, and
WTwindow_newviewport. The WTwindow_setviewport function is used to position and size
a window’s default viewport, WTwindow_newviewport is used to create, position, and siz
additional viewports within a window while WTwindow_getviewport is used to access a
viewport’s position and size.

Each of these functions operates on a WTwindow object type. For example, to reposition o
resize the default viewport of a window, you would pass a pointer to the WTwindow whose
viewport is to be modified into WTwindow_setviewport. To create additional viewports in
a window, you would pass a pointer to the WTwindow to which additional viewports are to
17-30 WorldToolKit Reference Manual

Viewports

ich

sents
kinds

een
d

w.
d, all

 as x
ned
ative

he
f
be added, to the WTwindow_newviewport function which will return a pointer to another
WTwindow. In this situation, you would have two WTwindow pointers, one which points to
the original window (the one which contained the default viewport), and the other wh
points to the newly created second viewport. All of the WTwindow functions can be used
on either of these two WTwindow objects. The only distinction between these two
WTwindow objects is the fact that one of them is the base window and the second repre
the additional viewport contained in the base window. In essence, there are only two
of WTwindows: base windows (which represent the default viewport of a window) and
additional viewports (which are added to base windows). The only real distinction betw
these two types of WTwindows is the fact that only a base type of window can be passe
into WTwindow_newviewport to create additional viewport windows. You cannot create
additional viewports within a viewport window; trying to do so will result in an error.

The background color for all the viewports within a window is the same as that of the
window. You cannot set a different background color for each viewport within a windo
Each viewport can be independently disabled. However, if the base window is disable
the viewports it contains are also disabled.

As with windows, the position of a viewport is specified by the position of its top left
corner. The viewport's position is, however, relative to the window, and is represented
and y offsets from the top left corner of the window. For instance, if a window is positio
at (50,50) in screen coordinates, the default viewport's position is (0,0), since it is rel
to the top left corner of the window.

WTwindow_setviewport

FLAG WTwindow_setviewport(
WTwindow *win,
int xoff,

int yoff,
int xsize,
int ysize);

WTwindow_setviewport is used to set the position and size of the default viewport of a
window. The x and y positions of the top left corner of the viewport are specified by xoff
and yoff respectively. Since the viewport's position is relative to the top left corner of t
window to which it belongs, xoff and yoff must represent offsets from the top left corner o
the window.
WorldToolKit Reference Manual 17-31

Chapter 17: Windows

 the

the

at the
t

e. It
The width and height of the viewport are specified by xsize and ysize respectively. xsize
and ysize are not relative to the window; they must be specified in pixel values. For
instance, if you want the height of the viewport to be half the window's height (where
window's height is 480), ysize must be 240, and NOT 0.5.

WTwindow_setviewport returns TRUE if it succeeds in setting the position and size of
viewport. It returns FALSE if the pointer to the window is invalid.

WTwindow_getviewport

FLAG WTwindow_getviewport(
WTwindow *win,
int *xoff,

int *yoff,
int *xsize,
int *ysize);

Use this function to retrieve the position and size of a viewport. The argument win is used
to specify the viewport whose position and size properties are to be obtained. Note th
handle of a viewport is a pointer to a WTwindow. The x and y positions of the top lef
corner of the viewport are returned in xoff and yoff respectively. Since the viewport's
position is relative to the position of the window to which it belongs, xoff and yoff represent
the offsets from the top left corner of the window that contains the viewport. Use
WTwindow_getposition to obtain the window's position in screen coordinates. The
viewport's width and height are returned in xsize and ysize respectively.

This function returns TRUE if it succeeds in retrieving the viewport's position and siz
returns FALSE if the viewport handle win is invalid.

WTwindow_newviewport

WTwindow *WTwindow_newviewport(
WTwindow *basewin,
int xoff,

int yoff,
int xsize,
int ysize);
17-32 WorldToolKit Reference Manual

Viewports

t

 the

ust
 want

w

es
WTwindow_newviewport creates a new viewport in a window. basewin must point to the
base window wherein to create the new viewport. Note that a window has a viewpor
associated with it by default. Use WTwindow_setviewport to either reposition or resize the
default viewport. Use WTwindow_newviewport only to create an additional viewport in the
window.

The x and y positions of the top left corner of the new viewport are specified as xoff and yoff
respectively. Since the viewport's position is relative to the position of the window, xoff and
yoff must be offsets from the top left corner of the window.

The width and height of the viewport are specified using xsize and ysize respectively. xsize
and ysize are not relative to the window; they must be specified in pixel values. For
instance, if you want the height of the viewport to be half the window's height (where
window's height is 480), ysize must be 240, and NOT 0.5.

If this function succeeds, it returns a pointer to a WTwindow structure. This pointer m
be used as a handle to the newly created viewport. For example, if at a later time you
to get the position and size of this viewport, you must pass in this pointer to
WTwindow_getviewport. Since the viewport's handle is a pointer to a window, all windo
functions are applicable to it.

This function returns NULL if it fails. WTwindow_newviewport will fail if the argument
basewin is an invalid pointer, or if WTK cannot create any more viewports. (WTK plac
a limit (8) on the number of windows and viewports in an application.)
WorldToolKit Reference Manual 17-33

Chapter 17: Windows
17-34 WorldToolKit Reference Manual

s

hile

tain
y

K’s

it is
ns

K’s
18
Adding User Interface (UI) Objects

WTK provides a set of User Interface (WTui) functions for you to create a standard
graphical user interface (GUI). The WTui functions are a set of generic high-level function
for creating common UI objects for both UNIX and Microsoft Windows environments
using X/Motif widgets and Microsoft Foundation Classes (MFC). You can use WTui
functions to make a GUI that runs on both X Windows and MS Windows systems, w
preserving the look and feel of each native environment.

In addition to making common UI objects, you can also easily add functionality to cer
UI objects by associating callback handler functions with them. Differences in the wa
Motif and MFC handle events and messages are automatically taken care of by WT
underlying UI framework.

Although the WTui functionality provided by WTK is not powerful enough to create
independent GUI applications (to do that, you must either use Motif or MFC directly),
useful in creating GUIs for virtual reality applications developed with WTK. Applicatio
developed with WTK using WTui functionality are portable across UNIX and Microsoft
Windows platforms.

Note that on Windows platforms, you can only create a windows application using WT
WTui functionality. You cannot create a console application when using WTK’s WTui
functionality. However, WTK can simulate and display a console window if your
application wants to use WTmessages to display text in a console window. See
WTui_showconsole on page 18-41.

Chapter 18: Adding User Interface (UI) Objects

etc.).

ck
Creating a UI Application

Here’s the basic procedure to create a UI application using WTK’s UI:

1. Create the toplevel application shell by calling WTui_init. (See Step 1: Creating
the Toplevel Application Shell on page 18-5.)

2. Create the main form by calling WTuiform_new. (See Step 2: Creating the Main
Form on page 18-6.)

3. Create the required UI objects (such as menus, pushbuttons, scrolled lists,
(See Step 3: Creating Other UI Objects on page 18-7.)

4. Add functionality (if required) to individual UI objects by associating a callba
handler function using WTui_setcallback or WTui_settoolbarcallback, for tool
bars. (See Step 4: Adding Functionality to the Required UI Objects on page 18-8.)

5. Create the WorldToolKit rendering window by calling WTuiwtkwindow_new (to
integrate the WTK rendering window and the GUI window) or WTwindow_new
(to have the WTK rendering window separate from the GUI window). (See Step
5: Creating the WorldToolKit Rendering Window on page 18-11.)

6. Manage each form created by calling WTui_manage. (See Step 6: Managing Each
Container Object on page 18-11.)

7. Call WTui_go to start the main platform specific application loop. (See Step 7:
Starting The Application Loop on page 18-12.)

The following example shows these seven steps.

Example: A Complete GUI Application Using WTK’s UI

/*** The following program creates an application consisting of the WTK
rendering window and two pushbuttons. Clicking the ‘Load’ pushbutton
alternates between loading the file clown.nff and deleting it. You can

exit the application by clicking on the ‘Exit’ pushbutton ***/

#include <stdio.h>
#include <stdlib.h>

#include "wt.h"
18-2 WorldToolKit Reference Manual

Creating a UI Application
/*** global variables ***/
WTui *toplevel;

/*** callback handler function - called when pushbuttons are clicked ***/

static void LoadFile(WTui *pStruct, void *pData);
static void Exit(WTui *pStruct, void *pData);

int main(int argc, char *argv[])

{
WTui *shell, *windowform, *pushbutton1, *pushbutton2;
FLAG toload = TRUE;

/*** Step 1: Creating the toplevel application shell ***/
toplevel = WTui_init(&argc,argv);

/*** Step 2: Creating the main form ***/

shell = WTuiform_new(toplevel, "WTK GUI Application",
 WTUIATT_LEFT, 200, WTUIATT_TOP, 200,
 WTUIATT_WIDTH, 500, WTUIATT_HEIGHT, 500, NULL);

/*** Step 3: Creating other UI objects ***/
pushbutton1 = WTuipushbutton_new(shell, "Load",

WTUIATT_LEFT, 100, WTUIATT_TOP, 400,

WTUIATT_WIDTH, 100, WTUIATT_HEIGHT, 50, NULL);

pushbutton2 = WTuipushbutton_new(shell, "Exit",
WTUIATT_LEFT, 300, WTUIATT_TOP, 400,

WTUIATT_WIDTH, 100, WUIATT_HEIGHT, 50, NULL);

windowform = WTuiform_new(shell, NULL,
WTUIATT_LEFT, 50, WTUIATT_TOP,50, WTUIATT_WIDTH, 400,

WTUIATT_HEIGHT, 300, NULL);

 /*** Step 4: Adding functionality to the pushbuttons ***/
WTui_setcallback(pushbutton1, WTUIEVENT_ACTIVATE, LoadFile,

(void *)&toload);
WTui_setcallback(pushbutton2, WTUIEVENT_ACTIVATE, Exit, NULL);

WTuniverse_new(WTDISPLAY_NOWINDOW, WTWINDOW_DEFAULT);
WorldToolKit Reference Manual 18-3

Chapter 18: Adding User Interface (UI) Objects

ions for
/*** Step 5: Creating the WTK rendering window ***/
WTuiwtkwindow_new(windowform, WTWINDOW_DEFAULT);

/*** Step 6: Managing each container object ***/

WTui_manage(windowform);
WTui_manage(shell);

WTmotionlink_new(WTmouse_new(), WTuniverse_getviewpoints(),
WTSOURCE_SENSOR, WTTARGET_VIEWPOINT);

WTuniverse_ready();

/*** Step 7: Starting the application loop ***/
WTui_go(toplevel, TRUE);
return 0;

}

static void LoadFile(WTui *pStruct, void *pData)
{

if ((*(FLAG *)pData)) {
WTnode_load(WTuniverse_getrootnodes(), "clown.nff", 1.f);
WTwindow_zoomviewpoint(WTuniverse_getwindows());

(*(FLAG *)pData) = FALSE;
}
else {

WTnode_deletechild(WTuniverse_getrootnodes(), 0);
(*(FLAG *)pData) = TRUE;

}

}
static void Exit(WTui *pStruct, void *pData)
{

WTui_delete(toplevel);
WTuniverse_delete();
exit(0);

}

The rest of this section details these seven steps and describes the appropriate funct
each of the steps.
18-4 WorldToolKit Reference Manual

Creating a UI Application

op-

guage
These

ther
ts file,

to
STEP 1: CREATING THE TOPLEVEL APPLICATION SHELL

WTui_init

WTui *WTui_init(

int *argc,
char **argv);

This function performs the necessary platform-specific initialization and creates the t
level application shell. You must call this function before you create any UI objects.

Arguments:

argc Specifies the number of command-line arguments passed.

argv Specifies a pointer to an array of command line argument strings.

The arguments above are used to process command-line options in the normal C lan
style, and these are the same arguments passed to the application’s main function.
are particularly useful in the UNIX environment, where you can specify a particular
resource for the application from the command line. This resource value overrides o
definitions (for the same resource) specified in standard resource files (the app-defaul
for example). Thus, if the name of the application is gui, the user can set the default
background color for this application using the following command:
gui -bg blue.

On UNIX platforms, if you are using WTK's support for X Resources, calling WTui_init is
sufficient since it creates the X Resource database. You do not need to make a call
WTinit_defaults, as this function is called internally.

Note: The WTui returned by this function is passed as the first parameter to WTuiform_new
when creating the main form as explained in Step 2.
WorldToolKit Reference Manual 18-5

Chapter 18: Adding User Interface (UI) Objects

n

r
f

ion
STEP 2: CREATING THE MAIN FORM

WTuiform_new

WTui* WTuiform_new(

WTui* parent,
char *title,
...);

This function creates a form (container) object and returns a pointer to it.

Arguments:

parent The parent UI object, the toplevel application shell (whe
creating the main form) or another form. When you use
WTuiform_new to create the main form for your
application, the parent parameter is always the toplevel
application shell created by the call to WTui_init. (See Step
1 on page 18-5.)

title Text to go in the title bar. The title parameter is equivalent
to NULL for a form that is a child of another form. In othe
words, the title does not show for a form that is a child o
another form, and therefore should be NULL.

... Variable argument list for size and position of the form
object (see below).

A form is a container object for other UI objects. The main window of the GUI applicat
must always be a form object. The WTUIEVENT_ACTIVATE event (see WTui_setcallback
on page 18-8) of a form object occurs whenever the form is resized by the end-user.
18-6 WorldToolKit Reference Manual

Creating a UI Application

nts.

bjects

tion
scale

WTK
STEP 3: CREATING OTHER UI OBJECTS

WTK provides a set of generic high-level functions for creating common UI objects.

Many of the UI objects make use of the following UI resources, when created. These
resources are used to set the position and size of a UI object with respect to its pare

WTUIATT_LEFT X offset of the UI object with respect to the
parent UI object, defaults to 0 (zero).

WTUIATT_TOP Y offset of the UI object with respect to the
parent UI object, defaults to 0 (zero).

WTUIATT_WIDTH Width of the UI object with respect to the
parent UI object, defaults to 100.

WTUIATT_HEIGHT Height of the UI object with respect to the
parent UI object, defaults to 100.

You can set these resources through the variable argument list. They apply to all UI o
having a variable argument list parameter in their creation function.

Example: Using Variable Argument List Resources

/*** A form and a textfield object ***/

WTui *form, *textfield;
textfield = WTuitextfield_new(form, “Testing”,

WTUIATT_LEFT, 150, /** X offset of the textfield with respect to the form **/

WTUIATT_TOP, 150, /** Y offset of the textfield with respect to the form **/
WTUIATT_WIDTH, 50, /** Width of the textfield with respect to the form **/
WTUIATT_HEIGHT, 20, /** Height of the textfield with respect to the form **/

NULL);

SCALED POSITION AND SIZE

The above resources - WTUIATT_LEFT, WTUIATT_TOP, WTUIATT_WIDTH, and
WTUIATT_HEIGHT are scaled internally. They are scaled by a factor of 1000/x-resolu
of the screen. So, if you are running your application at a resolution of 1024x768, the
factor is 1000/1024 (0.98 approximately). Now if you specify the WTUIATT_LEFT,
WTUIATT_TOP, WTUIATT_WIDTH, and WTUIATT_HEIGHT to be 100, 100, 200, and 200
respectively, the scaled values would be 98, 98, 196, and 196 (approximately). Thus
WorldToolKit Reference Manual 18-7

Chapter 18: Adding User Interface (UI) Objects

ross-

ality,
rt an
e of

 100

e

lback
to a

nu
divides the screen into 1000 units along the X and Y axis. This scaling is to ensure c
platform portability so that an application looks the same on UNIX and Windows
platforms.

Note: Although you should be able to take advantage of WTK’s cross-platform function
you might be required to change the values of the above resources when you po
application from UNIX to Windows and vice-versa. This is because the actual siz
a UI object on UNIX and Windows is different. For example, a pushbutton of width
on Windows may display the string "File Load" fully, whereas you might have to
increase the width on UNIX to display the same string fully.

See User Interface Objects on page 18-13 for a complete list of UI objects which can b
created using WTK’s WTui functionality. See User Interface Object’s Utility Functions on
page 18-29 for a list of functions which operate on the different types of UI objects.

STEP 4: ADDING FUNCTIONALITY TO THE REQUIRED UI OBJECTS

You can add functionality to the UI objects that you have created by associating a cal
handler function with the particular UI object. For example, you can add functionality
pushbutton or menu item so that something happens when the user clicks on it.

WTui_setcallback

void WTui_setcallback(

WTui *ui,
int eventtype,
UICBP cb,

void *cbdata);

This function sets the callback handler function for a UI object.

Arguments:

ui The UI object in question. Valid UI objects are forms, file
selection boxes, text-input dialogs, checkbuttons,
pushbuttons, radio boxes, scales, scrolled lists, and me
items.

eventtype This parameter should always be set to
WTUIEVENT_ACTIVATE.
18-8 WorldToolKit Reference Manual

Creating a UI Application

k

k

d to

le,

 to

(by

e
 cb Name of the callback handler function.

cbdata Pointer to the callback data to be passed to the callback
handler function.You can pass any data into the callbac
handler function by typecasting it to a void pointer. It
should be NULL if no data is to be passed to the callbac
handler function.

UICBP (User Interface Call Back Procedure) is a type define for a callback handler
function. In general a callback handler function has the following signature:

void callback_function_name(WTui *pStruct, void *pData)

where,

callback_function_name is the name of the call back handler function;

pStruct: is the UI object for which the callback has been set;

pData is a void pointer to the callback data that has been passe
the callback handler function. You can access this data
after it has been typecast to the proper type. For examp
if the callback data was of the type char *, inside the
callback handler function, you access it by type casting it
a char *, i.e., (char *) pData. See the example Example: A
Complete GUI Application Using WTK’s UI on page 18-2
to see how data is passed to a callback handler function
the call WTui_setcallback(pushbutton,
WTUIEVENT_ACTIVATE, Loadfile, (void*)&toload); and
how it is accessed in the callback handler function (in th
function LoadFile).

WTui_settoolbarcallback

void WTui_settoolbarcallback(
WTui *ui,
int id,

init eventtype
UICBP cb,
void *cbdata);
WorldToolKit Reference Manual 18-9

Chapter 18: Adding User Interface (UI) Objects

es

ion

 each
This function sets a callback handler function for a particular button on the tool bar.

Arguments:

ui The tool bar UI object in question.

id The index of the desired pushbutton in the tool bar. Indic
start from 0 for the left-most button.

eventtype This parameter should always be set to
WTUIEVENT_ACTIVATE.

cb Name of the callback handler function.

cbdata Pointer to the callback data, as explained in the descript
for the WTui_setcallback function on page 18-8.

Example: Creating a Tool Bar and Associating Callbacks

This example code creates a tool bar with five buttons and associates callbacks with
of the toolbar buttons.

 /*** Specify the bitmap files *****/

char *bmap[] = { {xm_hour16},
 {keyboard16},

 {scales},
 {icon},
 {xlogo16}

 };

/*** Create the toolbar ***/
toolbar = WTui_newtoolbar(shell, 5, bmap);

/*** set callbacks to each toolbar button **/
WTui_settoolbarcallback(toolbar, 0, WTUIEVENT_ACTIVATE, FileOpen, NULL);
WTui_settoolbarcallback(toolbar, 1, WTUIEVENT_ACTIVATE, DoLights, NULL);

WTui_settoolbarcallback(toolbar, 2, WTUIEVENT_ACTIVATE, DoFlying, NULL);
WTui_settoolbarcallback(toolbar, 3, WTUIEVENT_ACTIVATE, DoFlying, NULL);
WTui_settoolbarcallback(toolbar, 4, WTUIEVENT_ACTIVATE, FileExit, NULL);
18-10 WorldToolKit Reference Manual

Creating a UI Application

o
ither

STEP 5: CREATING THE WORLDTOOLKIT RENDERING WINDOW

WTuiwtkwindow_new

WTwindow *WTuiwtkwindow_new(

WTui *form),
int window_config;

This function integrates a WTK rendering window with a user-defined GUI window, s
that WTK rendering takes place in the GUI window instead of a separate window. E
this function or WTwindow_new (see page 17-2) must be called to create the WTK
rendering window. (WTwindow_new sets the WTK rendering window separate from the
user-defined GUI window.)

 Arguments:

form The form object in which the WTK rendering window is to
be created. This is usually the main form object created
with the first call to WTuiform_new.

window_config This is the same as the flags parameter used with
WTwindow_new.

Note: You must call WTuniverse_new with the display_config parameter set to
WTDISPLAY_NOWINDOW before calling this function.

STEP 6: MANAGING EACH CONTAINER OBJECT

WTui_manage

void WTui_manage(
WTui *ui);

This function manages a form object.

Argument:

ui The form UI object.
WorldToolKit Reference Manual 18-11

Chapter 18: Adding User Interface (UI) Objects

d.

or

’s

r

ng

In GUI applications, a form object is a Manager object, i.e., it manages its children
(controlling their size and location). This is called Geometry Management and is
accomplished by an X Toolkit or Windows function call after all its children are create
To comply with this, WTK has a function, WTui_manage, that should be called for each
form object after all the children of the form object have been created.

For form objects, you should call this function for the child first and then the parent. F
example, if form A is the parent of form B, then you should call WTui_manage(B) before
WTui_manage(A).

STEP 7: STARTING THE APPLICATION LOOP

WTui_go

void WTui_go(
WTui *toplevel,
FLAG startwtk);

This function enters the main platform-specific application loop and continuously
processes events and messages. WTui_go should be the last statement in your application
main function.

 Arguments:

toplevel The toplevel application shell created by a call to WTui_init.

startwtk Controls starting of the WTK simulation loop. If the
startwtk parameter is TRUE, the WTK simulation loop is
automatically started. If it is FALSE, you must call
WTui_start (see page 18-38) from within a callback handle
function to start the WTK rendering.

WTui_go is analogous to WTuniverse_go (which is used for WTK applications not using
WTK’s UI functionality) except that it performs the additional functionality of processi
windowing system events. So, when using this function, you do not need to call
WTuniverse_go. Note that WTK does not have a WTui_go1 function which corresponds to
WTuniverse_go1. Example: Simulating WTuniverse_go1 on page 18-38 shows how you
can accomplish the functionality equivalent to WTuniverse_go1 when using WTK’s UI.
18-12 WorldToolKit Reference Manual

User Interface Objects

nt
 need

 and
ems.
e.g.,
lso
User Interface Objects

Forms

Forms are described in Step 2: Creating the Main Form on page 18-6. Forms are the only
container (user interface) objects available in WTK. The only end-user triggered eve
which applies to forms is a resize event, and so a callback handler function for a form
only concern itself with resize events.

File-selection Boxes

WTuifileselection_new

WTui *WTuifileselection_new(

WTui *parent,
char *title,
char *file,

char *pat);

This function creates a modal file selection box and returns a pointer to it.

Arguments:

parent The parent UI object.

title The title text of the file selection box object.

file The default file

pat The pattern for file selections

A file selection box is a selection dialog that presents the user with a list of directories
files. It normally pops up when the user clicks on the File Open or File Save As menu it
During creation, a file pattern can be specified using standard wild-card characters (
*.c) and the file selection box will display all files fitting that pattern. A default file can a
be specified.
WorldToolKit Reference Manual 18-13

Chapter 18: Adding User Interface (UI) Objects

licks
tion

k data
You are responsible for writing the appropriate handler function to call when the user c
OK after selecting a file. Again, identifying the selected file in the callback handler func
is very easy; just set a callback for the file selection box object using WTui_setcallback (see
page 18-8). A pointer to the pathname of the selected file is obtained from the callbac
argument, pData (see page 18-8) of the callback handler function.

The following example illustrates how file selection works.

EXAMPLE: ACCESSING PATHNAME OF SELECTED FILE

/*** The following code segment shows how you can access the pathname of the
selected file from a file selection box. It assumes the file selection box is created in the

callback handler function of a menu item (already created). The file selected can be
accessed in the callback handler function of the file selection box, when you click OK
***/

/*** Callback handler function for the menu item (already created) ***/
static void FileOpen(WTui *pStruct, void *pData)

{
WTui *file_select;

file_select = WTuifileselection_new(pStruct, "File Open" , "clown.nff", "*.nff");
WTui_setcallback(file_select, WTUIEVENT_ACTIVATE, OnFileOpenOK, NULL);

}

 /*** Callback handler function for the file selection box ***/
static void OnFileOpenOK(WTui *pStruct, void *pData)

{
char *file;

file = (char *)pData;
WTnode_load(root,file,1.0f);

}

18-14 WorldToolKit Reference Manual

Message Boxes

ge and

t box
Message Boxes

WTuimessagebox_new

WTui *WTuimessagebox_new(
WTui *parent,

char *message,
char *title);

This function creates a modal message box, and returns a pointer to it.

Arguments:

parent The parent UI object.

message The message text

title The box title text.

A message box object is a simple message dialog. It displays an appropriate messa
the dialog disappears when the user clicks on OK or Cancel. You cannot associate a
callback handler function with a message box object.

Text-input Dialogs

WTuitextinput_new

WTui *WTuitextinput_new(
WTui *parent,

char *title);

This function creates a simple text input box and returns a pointer to it. The text inpu
is composed of a label and a text field.

Arguments:

parent The parent UI object.
WorldToolKit Reference Manual 18-15

Chapter 18: Adding User Interface (UI) Objects

ompts
ss the
 gets
k

rm

f

up of
title The prompt message.

A text input dialog box is a prompt dialog that displays an appropriate message and pr
the user for input. This dialog box allows the user to enter a text string.You can acce
string entered by associating a callback handler function with the text input dialog that
called when the user presses the enter key or clicks on the OK button. In the callbac
handler function, WTui_gettext (see page 18-30) can be used to retrieve the text string
which was entered.

Checkbuttons

WTuicheckbutton_new

WTui* WTuicheckbutton_new(
WTui *parent,

char *label,
...);

This function creates a checkbutton object and returns a pointer to it.

Arguments:

parent The parent UI object.

label Text on the checkbutton.

... Variable argument list for size and position of the
checkbutton object. The resources WTUIATT_WIDTH,
and WTUIATT_HEIGHT have no effect on UNIX
platforms, whereas these must be set on Windows platfo
for the checkbutton to be made visible.

A checkbutton is a simple object that can be checked or unchecked by clicking on it.
Checkbuttons are normally used in a group, where the user can select any number o
checkbuttons at a given time. Use WTui_ischecked on page 18-35 to get the state of a
particular checkbutton.

Note: This function creates a single checkbutton. Thus, for example, if you want a gro
five checkbuttons, you need to call this function five times.
18-16 WorldToolKit Reference Manual

Labels

 it.

d

on-
. You
Labels

WTuilabel_new

WTui *WTuilabel_new(
WTui *parent,

char *label,
FLAG labeltype,
...);

This function creates a simple, non-editable, static text label and returns a pointer to

Arguments:

parent The parent UI object, normally a form object.

label When the labeltype parameter is WTUI_TEXT, this
represents the text which goes into the label. When the
labeltype parameter is WTUI_FILE, this represents the
name of a image file (*.bmp for Windows applications an
*.xbm for UNIX applications). The file name should be
specified without extension to ensure cross-platform
portability (e.g., if the filename is name.bmp or name.xbm,
the label should be just name).

labeltype This parameter should be set to either WTUI_TEXT (to load
a text string) or WTUI_FILE (to load an image file).

... Variable argument list for size and position of the label
object.

Labels are basic objects that do not permit user interaction. Labels normally create n
editable text. However, an image may also be loaded into a label as described above
cannot associate a callback handler function with a label object.
WorldToolKit Reference Manual 18-17

Chapter 18: Adding User Interface (UI) Objects

.

 label
ith

sts of
Pushbuttons

WTuipushbutton_new

WTui *WTuipushbutton_new(

WTui *parent,
char *label,
...);

This function creates a pushbutton object and returns a pointer to it.

Arguments:

parent The parent UI object.

label Text on the pushbutton.

... Variable argument list for size and position of the pushbutton object

A pushbutton is a simple object that responds to a mouse click. It normally has a text
indicating its functionality. You can write a callback handler function and associate it w
the pushbutton so that it will be called whenever the user clicks the pushbutton. This
connection is accomplished with the WTui_setcallback function (see page 18-8).

Radioboxes

WTuiradiobox_new

WTui* WTuiradiobox_new(
WTui *parent,
int num,

char **labels,
...);

This function creates a radiobox object and returns a pointer to it. The radiobox consi
togglebuttons, only one of which can be selected at a given time.
18-18 WorldToolKit Reference Manual

Scales

e

x

 a set
 use
Arguments:

parent The parent UI object.

num The number of toggle buttons in the radiobox.

labels Pointer to an array of text strings, holding the text for th
togglebuttons.

... Variable argument list for size and position of the radiobo
object. The resources WTUIATT_WIDTH, and
WTUIATT_HEIGHT have no effect on UNIX platforms,
whereas these must be set on Windows platform for the
radiobox to be made visible.

A radiobox is normally used when the user is required to make a single selection from
of choices. You can associate a callback handler function with a radiobox object and
WTui_getselecteditem on page 18-31 to get the index number of the togglebutton
selected in a radiobox.

Scales

WTuiscale_new

WTui *WTuiscale_new(
WTui *parent,

char *label,
int minimum,
int maximum,

int decimal_points,
int value,
...);

This function creates a scale object and returns a pointer to it.

Arguments:

parent The parent UI object.

label Text to appear below the scale object.
WorldToolKit Reference Manual 18-19

Chapter 18: Adding User Interface (UI) Objects

as

the
when
 using
having

stored
lues.

yed.

ndler

t

minimum The minimum value (lower bound) of the scale.

maximum The maximum value (upper bound) of the scale.

decimal_points The number of decimal points (if any) to be considered,
described below.

value The initial value to be displayed on the scale.

... Variable argument list for size and position of the scale
object.

A scale object is a slider that displays a numeric value depending on the position of
slider. The value displayed is between an upper and lower bound, which you specify
you create the object. Thus the user can interactively change the value displayed by
the slider mechanism. Scale objects should be used, whenever possible, in place of
the user input a numeric value using the keyboard.

One important aspect to be noted for scale objects is that the scale’s values can be
only as an integer. This, however, does not keep you from representing fractional va
When creating the scale object, you specify an integer argument called decimal_points.
This value indicates the number of places to move the decimal point to the left of the
displayed value. WTK takes care of calculating the actual fractional value that is displa
The fractional value (float) can be obtained from the callback data of the callback ha
function.

Note: On Windows platforms the actual height of the scale object is 2/3rd of the heigh
specified using WTUIATT_HEIGHT variable, whereas 1/3rd of the height is the text
that appears below the scale object. So if WTUIATT_HEIGHT is 60, the actual scale
height is 40 and the caption height is 20.

The example below illustrates how to create and use a scale object.

Example: Creating a Scale Object

WTui *scale, *form;
/** Make a new scale object inside the Form (which is already created). The following
call creates a scale object at the desired location. The minimum value is 0 as specified.

The maximum value is 1 although 100 is specified. This is because the number of
decimal points is specified to be 2.**/
scale = WTuiscale_new(form,“Ambient Light”,

0, /** the minimum value **/
18-20 WorldToolKit Reference Manual

Scrolled Lists
100, /** the maximum value **/
2, /** the # of decimal points **/
40, /** the initial value to be displayed **/

WTUIATT_LEFT, 20,
WTUIATT_TOP, 40,
NULL);

/** set callback for the scale **/
WTui_setcallback(scale, WTUIEVENT_ACTIVATE, SetLightIntensity,NULL);

/** The callback routine **/

void SetLightIntensity(WTui *pStruct, void *pData)
{

float *value;

value = (float *)pData;
/** Note: pointer pData automatically points to the actual fraction value of the
scale**/

WTlightnode_setintensity(light, *value);
}

Scrolled Lists

WTuiscrolledlist_new

WTui* WTuiscrolledlist_new(

WTui *parent,
char *label,
char *items[],

int nitems,
...);

This function creates a scrolled list of strings and returns a pointer to it.

Arguments:

parent The parent UI object.

label The text to appear above the scrolled list object.
WorldToolKit Reference Manual 18-21

Chapter 18: Adding User Interface (UI) Objects

.

 in
ally,
 is not

n,
er
ine
items Array of text strings to be put in the scrolled list object.

nitems The number of text strings in the scrolled list object.

... Variable argument list for size and position of the scrolled list object

A scrolled list is very convenient for displaying a list of text choices. To select an item
the list, the user double-clicks on it. Only one item can be selected at a time. Addition
these objects have scroll bars attached to them; the scroll bars show up whenever it
possible to simultaneously display all items in the list.

What happens after a particular item is selected is up to the callback handler functio
which must be written by you. The callback handler function gets called when the us
selects a particular text item by double-clicking on it. Inside the callback handler rout
you can get the index number of the item selected by calling WTui_getselecteditem on page
18-31 or the actual string selected by calling WTui_gettext on page 18-30). See also
WTui_insertitem and WTui_deleteitem to insert or delete items from the scrolled list.

The following example illustrates how to use scrolled list objects.

Example: Accessing Selected Items in a Scrolled List

WTui *scroll_list;
scroll_list = WTuiscrolledlist_new(....

WTui_setcallback(scroll_list, WTUIEVENT_ACTIVATE, SelectedItem, NULL);

void SelectedItem(WTui *pStruct, void *pData)
{

int index;

char *string;

/*** get the index of item selected ***/
index = WTui_getselecteditem(pStruct);

/*** get the string selected ***/
string = WTui_gettext(pStruct);

}

18-22 WorldToolKit Reference Manual

Scrolled Text

d

t
 text

e text
on
Scrolled Text

WTuiscrolledtext_new

WTui *WTuiscrolledtext_new(
WTui *parent,

char *text,
FLAG editable,
...);

This function creates a text box (with a scroll bar) and returns a pointer to it.

Arguments:

parent The parent UI object, normally a form.

text Text to go in the box.

editable This parameter should be set to either WTUI_EDITABLE
(indicating the text can be edited) or WTUI_NOTEDITABLE
(indicating the text cannot be edited).

... Variable argument list for size and position of the scrolle
text object.

This is a simple text object that can be used for text entry by the user. You can use i
anywhere the user types in free-form text. You can also use it to display non-editable
as in a popup help box. Use WTui_gettext on page 18-30 to retrieve the text from the text
box. You cannot associate a callback handler function to a scrolled text object.

Note: When the text box is used to display non-editable text, a newline character in th
to be displayed is given by ‘\r\n’ on Windows and by ‘\n’ on UNIX. ‘\r\n also works
UNIX.
WorldToolKit Reference Manual 18-23

Chapter 18: Adding User Interface (UI) Objects

field
ing

ou

s and
Text Fields

WTuitextfield_new

WTui *WTuitextfield_new(
WTui *parent,

char *text,
...);

This function creates a new editable text-field object and returns a pointer to it.

Arguments:

parent The parent UI object.

text Text to go in the field.

... Variable argument list for size and position of the text field object.

A text field is a simple object that allows a user to enter text using the keyboard. Text-
objects are normally used as a single line data entry field. It allows the user text edit
capabilities and also provides the point and click functionality expected of GUI
applications. Use WTui_gettext (see page 18-30) to retrieve the text from the text field. Y
cannot associate a callback handler function with a text field object.

Menus

WTuimenubar_new

WTui *WTuimenubar_new(
WTui *parent);

This function creates a new menu bar and returns a pointer to it. Menu pop-up button
menu items must be created separately with the functions listed below.

Argument:

parent The parent UI object, usually a form.
18-24 WorldToolKit Reference Manual

Menus

pull-
rts:

en of
ction

 button
ks on
p to

 these

nd

up
You cannot associate callback handler functions with a menubar object.

Menus are important objects in a GUI application. WTK allows you to create custom
down menu systems for an application. A menu system in WTK consists of three pa

• The menu bar object, created by a call to the function WTuimenubar_new (see
above).

• Pop-up buttons as children of the menu bar (or pop-up buttons can be childr
other pop-up buttons to create cascading menus), created by a call to the fun
WTuimenupopup_new (see below).

• Menu items as children of pop-up buttons, created by a call to the function
WTuimenuitem_new (see page 18-26). You can associate callback handler
functions to menu items only.

Almost any menu system can be developed using these three objects. When a pop-up
is a child of the menu bar, the menu drops down below the button when the user clic
it. When the pop-up button is a child of another pop-up button, the new menu pops u
the right of the item when the user clicks on it.

The example on page 18-26 illustrates how easy it is to create a menu system using
functions.

Note: On Windows platforms, if your application has a menu bar, it affects the width a
height of the main form. It reduces the width by 8, and the height by 46 units.

WTuimenupopup_new

WTui *WTuimenupopup_new(

WTui *parent,
char *label);

This function creates a new menu pop-up button, and returns a pointer to it.

Arguments:

parent The parent UI object (always a menu bar or another pop-
button. The latter allows for cascading menus).

label Text label to appear on the pop-up button.
WorldToolKit Reference Manual 18-25

Chapter 18: Adding User Interface (UI) Objects

clicks
clicks

eck if
You cannot associate a callback handler function to a menu pop-up button object.

WTuimenuitem_new

WTui *WTuimenuitem_new(
WTui *parent,
char *label);

This function creates a new menu item button and returns a pointer to it.

Arguments:

parent The parent UI object (always a pop-up menu button).

label The menu item text.

You can associate a callback handler function which gets called every time the user
on the menu item. For example, you can pop-up a file selection dialog when the user
on a menu item. See Example: Accessing Pathname of Selected File on page 18-14.

The text on a menu item can be accessed or changed by calls to WTui_settext on page 18-29
and WTui_gettext on page 18-30. The functions WTui_enable on page 18-34 and
WTui_isenabled on page 18-34 can be used to enable/disable a menu item and to ch
a menu item is enabled respectively.

Example: Simple Menu System Creation

WTui *shell, *mmenu;
WTui *pop1, *pop2, *pop3;
WTui *pb1, *pb2, *pb3, *pb4;

WTui *pb5, *pb6, *pb7, *pb8, *pb9;

/*** Construct the menu system inside the main form (shell - already created)***/
/*** Create the menu bar ***/

mmenu = WTuimenubar_new(shell);

/*** Create the pop-up buttons ***/
pop1 = WTuimenupopup_new(mmenu, File);

pop2 = WTuimenupopup_new(mmenu, Options);
18-26 WorldToolKit Reference Manual

Menus

.

tems
enu

imple
pop3 = WTuimenupopup_new(mmenu, WTK);

/*** Create the menu items ***/
pb1 = WTuimenuitem_new(pop1,New);

pb2 = WTuimenuitem_new(pop1,Open);
pb3 = WTuimenuitem_new(pop1,Save);
pb4 = WTuimenuitem_new(pop1,Exit);

pb5 = WTuimenuitem_new(pop2,WireFrame);
pb6 = WTuimenuitem_new(pop2,Picking);
pb7 = WTuimenuitem_new(pop2,Lights);

pb8 = WTuimenuitem_new(pop3,WTK Start);
pb9 = WTuimenuitem_new(pop3,WTK Stop);
/*** Register callbacks for each of above buttons in the menu ***/

WTui_setcallback(pb1, WTUIEVENT_ACTIVATE, WTUI_FileNew, NULL);
WTui_setcallback(pb2, WTUIEVENT_ACTIVATE, WTUI_FileOpen, NULL);
WTui_setcallback(pb3, WTUIEVENT_ACTIVATE, WTUI_FileSave, NULL);

WTui_setcallback(pb4, WTUIEVENT_ACTIVATE, WTUI_FileExit, NULL);
WTui_setcallback(pb5, WTUIEVENT_ACTIVATE, WTUI_DoWireFrame, NULL);
WTui_setcallback(pb6, WTUIEVENT_ACTIVATE, WTUI_DoPicking, NULL);

WTui_setcallback(pb7, WTUIEVENT_ACTIVATE, WTUI_DoLights, NULL);
WTui_setcallback(pb8, WTUIEVENT_ACTIVATE, WTUI_DoWTKStart, NULL);
WTui_setcallback(pb9, WTUIEVENT_ACTIVATE, WTUI_DoWTKStop, NULL);

The above code generates a menu system having the following attributes:

• The main menu bar with three pop-up buttons named File, Options and WTK

• Each of the above is associated with a popup menu that has several menu i
associated with it. For example, if the user clicks on the File popup button, a m
pops up with the following items: New, Open, Save, and Exit.

• Each menu item has a callback handler function associated with it.

It is your responsibility to write the callback handler functions named above (i.e.,
DoPicking, DoLights etc.). That’s all there is to creating a menu system. It can be as s
or as complex as the application demands.
WorldToolKit Reference Manual 18-27

Chapter 18: Adding User Interface (UI) Objects

he

s,

te
each

ass a
o be

 with
e tool

nts.
Tool Bars

WTuitoolbar_new

WTui *WTuitoolbar_new(
WTui *parent,

int items,
char **bitmap_files);

This function creates a new tool bar and returns a pointer to it.

Arguments:

parent The parent UI object, usually a form.

items The number of items required in the tool bar.

bitmap_files A pointer to an array of character strings, each holding t
filename of the image file for above items. For UNIX the
file format is .xbm; for Windows the format is .bmp.
However, when you declare the array of character string
you do not have to specify the filename extension. This
ensures cross-platform portability.

Tool bars allow users to quickly accomplish a task instead of selecting the appropria
menu item and clicking on it. A tool bar object is essentially a group of push buttons,
painted with an appropriate bitmap.

During creation, you must specify the number of items required in the tool bar and p
pointer to an array of character strings, each specifying the name of the bitmap file t
displayed on each button of the tool bar.

To get the best visual results, all bitmaps in the tool bar should of the same size. As
other UI objects, callback handler functions can be associated with each button of th
bar. This can be accomplished using WTui_settoolbarcallback (see page 18-9), which is
similar to the more generic WTui_setcallback function, with the difference being that you
can pass the integer index of the desired button in the tool bar as one of the argume
18-28 WorldToolKit Reference Manual

User Interface Object’s Utility Functions

.

box,
User Interface Object’s Utility Functions

Accessing the Scale Factors

WTui_setscalefactor

void WTui_setscalefactor(
float x,

float y);

This function adjusts the scaling factors that WTK uses when positioning a UI object

WTui_getscalefactor

void WTui_getscalefactor(
float *x,

float *y);

This function retrieves the scaling factors used by WTK to position UI objects.

Accessing the Text for Text UI Objects

WTui_settext

FLAG WTui_settext(

WTui *ui,
char *text);

This function sets the text of a menu item, scrolled list, scrolled text, text input dialog
or text field. It returns TRUE if successful, or FALSE otherwise.
WorldToolKit Reference Manual 18-29

Chapter 18: Adding User Interface (UI) Objects

g

log

s,
xt

ective
or
Arguments:

ui The menu item, scrolled list, scrolled text, text input dialo
box, or text field UI object in question.

text Text to display on the UI object.

This function replaces the Release 7 function WTui_setmenutext.

WTui_gettext

char *WTui_gettext(
WTui *ui);

This function returns the text of a menu item, scrolled list, scrolled text, text input dia
box, or text field UI object, or NULL if the UI object is not one of listed UI objects.

Argument:

ui The UI object in question. Valid UI objects are menu item
scrolled lists, scrolled texts, text input dialog boxes and te
fields.

For menu items, scrolled lists and text-input dialogs, this can be called inside the resp
callback handler function, to access the selected string or string input, respectively. F
scrolled texts and text fields this function can be called from the action function by
associating it to a keyboard input.

This function replaces the Release 7 function WTui_getmenutext.
18-30 WorldToolKit Reference Manual

Accessing the Position of a Selection (Scrolled Lists and Radioboxes)

e n is
efers

to

r the

d list
rned
 7
y
Accessing the Position of a Selection (Scrolled Lists and
Radioboxes)

WTui_setselecteditem

void WTui_setselecteditem(
WTui *ui,

int item);

This function selects the item numbered text string in a scrolled list object or the item
numbered togglebutton in a radiobox object. Items are numbered from 0 to n-1, wher
the number of items in the scrolled list or radio box. 0 refers to the first item and n-1 r
to the last item.

Argument:

ui The scrolled list or radiobox UI object in question.

item The item number of the scrolled list or radiobox which is
be selected.

WTui_getselecteditem

int WTui_getselecteditem(
WTui *ui);

This function retrieves the position of the selected text string in a scrolled list object o
position of the selected togglebutton in a radiobox object.

Argument:

ui The scrolled list or radiobox UI object in question.

The values returned vary from 0 to n-1, where n is the number of items in the scrolle
or radio box. 0 refers to the first item and n-1 refers to the last item. A value of -1 is retu
if the UI object is not a scrolled list or a radiobox. This function replaces the Release
function WTui_getselected. Use WTui_getnumitems on page 18-32 to determine how man
items are in a scrolled list or radiobox.
WorldToolKit Reference Manual 18-31

Chapter 18: Adding User Interface (UI) Objects

d
 list.
a

ms in
s
Accessing the Number of Items (Scrolled Lists and
Radioboxes)

WTui_getnumitems

int WTui_getnumitems(
WTui *ui);

This function returns the number of items contained in the specified scrolled list or
radiobox UI object.

Accessing Text of Scrolled List Items

WTui_setitemtext

void WTui_setitemtext(
WTui *ui,

char *text,
int item);

This function assigns the text string to the item numbered element of the specified scrolle
list. Items are numbered from 0 to n-1, where n is the number of items in the scrolled
Use WTui_getnumitems on page 18-32 to determine the number of items contained in
scrolled list.

WTui_getitemtext

const char* WTui_getitemtext(

WTui *ui,
int item);

This function returns the text string associated with the item numbered element of the
specified scrolled list. Items are numbered from 0 to n-1, where n is the number of ite
the scrolled list. Use WTui_getnumitems on page 18-32 to determine the number of item
contained in a scrolled list.
18-32 WorldToolKit Reference Manual

Inserting or Deleting Items (Scrolled Lists)
Inserting or Deleting Items (Scrolled Lists)

WTui_insertitem

void WTui_insertitem(
WTui *ui,

int index,
char *text);

This function inserts a new text string into an existing scrolled list object.

Arguments:

ui The scrolled list UI object in question.

index The position where the text string is to be inserted (0 to n,
where n is the number of items in the scrolled list. 0 inserts
before all other strings, n inserts at the end of the list).

text The text string to be inserted.

WTui_deleteitem

void WTui_deleteitem(
WTui *ui,

int item);

This function deletes a text string from an existing scrolled list object.

Arguments:

ui The scrolled list UI object in question.

item The position where the text string is to be deleted (0 to n-1,
where n is the number of items in the scrolled list. 0 deletes
the first item and n-1 deletes the last item).
WorldToolKit Reference Manual 18-33

Chapter 18: Adding User Interface (UI) Objects

ox. It
 the

d).

ise.
Accessing Status of UI Objects

WTui_enable

FLAG WTui_enable(
WTui *ui,

FLAG flag);

This function enables or disables (dims or undims) the specified menu item or radiob
returns TRUE if the UI object is enabled, or FALSE otherwise.This function replaces
Release 7 function WTui_dimitem.

Arguments:

ui The menu item or radiobox UI object in question.

flag This parameter should be set to either TRUE (indicating the
menu item or radiobox should be enabled) or FALSE
(indicating the menu item or radiobox should be disable

WTui_isenabled

FLAG WTui_isenabled(
Wtui *ui);

This function returns TRUE if the menu item or radiobox is enabled, or FALSE otherw
This function replaces the Release 7 function WTui_isdimmed.

Argument:

ui Specifies the menu item or radiobox UI object in question.
18-34 WorldToolKit Reference Manual

Accessing State of UI Objects (Menu Items and Checkbuttons)

em. If
). If

ton

e UI

 is
ot a
Accessing State of UI Objects (Menu Items and
Checkbuttons)

WTui_check

int WTui_check(
WTui *ui,

int flag);

This function is used to enable or disable the checkmark on a checkbutton or menu it
flag is TRUE, the checkbutton’s or menu item’s checkmark will be enabled (displayed
flag is FALSE, the checkbutton’s or menu item’s checkmark will be disabled (not
displayed).

Arguments:

ui The checkbutton or menu item UI object in question.

flag Specifies whether to check the checkmark in a checkbut
or menu item.

It returns 1 if the checkbutton is checked, or 0 otherwise. A value of -1 is returned if th
object is not a checkbutton or a menu item.

WTui_ischecked

int WTui_ischecked(
WTui *ui);

This function returns TRUE if the specified checkbutton’s or menu item’s checkmark
checked and FALSE if it is not checked. A value of -1 is returned if the UI object is n
checkbutton or menu item. This function replaces the Release 7 function
WTui_checkbuttonstate.

Arguments:

ui The checkbutton or menu item UI object in question.
WorldToolKit Reference Manual 18-35

Chapter 18: Adding User Interface (UI) Objects
Accessing the Position of UI objects

WTui_setposition

void WTui_setposition(
WTui *ui,

int left,
int top,
int width,

int height);

This function sets the scaled position and size of the UI object. See Scaled Position and Size
on page 18-7. This function is applicable to all UI objects.

Arguments:

ui The UI object in question.

left Upper-left X coordinate

top Upper-left Y coordinate.

width Width of object.

height Height of object.

WTui_getposition

void WTui_getposition(
WTui *ui,
int *left,

int *top,
int *width,
int *height);

This function return s the scaled position and size of the UI object. See Scaled Position and
Size on page 18-7.This function is applicable to all UI objects.
18-36 WorldToolKit Reference Manual

Extending The UI Functionality of Your Application

I
end

 do

it
e

rds,
Arguments:

ui The UI object in question.

left Upper-left X coordinate

top Upper-left Y coordinate.

width Width of object.

height Height of object.

Extending The UI Functionality of Your Application

WTui_getid

WTwinidtype WTui_getid(
WTui *ui)

This function returns a platform-specific ID. On Windows platforms, the return type is
HWND. On UNIX platforms, the return type is Widget.

Argument:

ui The UI object in question.

As mentioned in the beginning of the chapter, WTui does not provide comprehensive GU
functionality. It provides the basic functionality to create a GUI. However, you can ext
the functionality of your application by adding UI objects directly using Motif or MFC
(depending on the platform). This function allows access to the platform-specific ID to
that.

Controlling the WorldToolKit Simulation Loop

A WTK UI application must process the window system events while the WorldToolK
simulation loop is running. Sometimes an application may be required to start/stop th
WTK simulation loop, while still being able to process the window events. In other wo
WorldToolKit Reference Manual 18-37

Chapter 18: Adding User Interface (UI) Objects

TK

ack

ler

ion
an application may require the user to interact with the UI objects whether or not the W
simulation is running. The following three functions give you this control.

WTui_wtkstart

void WTui_wtkstart(

void);

This function starts the WTK simulation loop. It should always be called from a callb
handler function.

WTui_wtkstop

void WTui_wtkstop(
void);

This function stops the WTK simulation loop. It is a complementary function to WTui_start
and is used to stop the WTK simulation loop, while window system events are still
processed. It can be called from the universe action function or from a callback hand
function.

Note: This function should never be called after WTuniverse_delete.

WTui_iswtkrunning

FLAG WTui_iswtkrunning(

void);

This function returns TRUE if the WTK simulation loop is running at the time this funct
is called, or FALSE otherwise.

Example: Simulating WTuniverse_go1

/*** The following code segment simulates WTuniverse_go1. It calls WTui_go as usual
from the main function to start the WTK simulation loop. In the action function a global

counter keeps track of the number of frames the simulation is run - 50 times in this
example. The simulation can be started again by calling WTui_wtkstart from a callback

function of a pushbutton or menu item (not shown in this code segment)***/
18-38 WorldToolKit Reference Manual

Controlling the WorldToolKit Simulation Loop
/*** global variables ***/
FLAG go1 = TRUE;
int framecount = 0;

int main(int argc, char *argv[])
{

....

....

....

....
WTuniverse_setactions(actions);

WTui_go(toplevel, TRUE);
return 0;

}

void actions(void)
{

if (go1) {
if (framecount != 50) {

/*** tasks to perform in the first 50 frames ***/

framecount++;
}
else {

WTui_wtkstop();
go1 = FALSE;

}

}
/*** rest of the tasks ***/

}

WorldToolKit Reference Manual 18-39

Chapter 18: Adding User Interface (UI) Objects

 pop-
Miscellaneous Functions

WTui_delete

void WTui_delete(
WTui *ui);

This function deletes the UI object and its children.

Argument:

ui Specifies the UI object to delete.

WTui_getparent

WTui *WTui_getparent (
WTui *ui);

This function returns a pointer to the UI object’s parent.

Argument:

ui Specifies the UI object in question.

WTui_unmanage

void WTui_unmanage(

WTui *ui);

This function is used to hide a UI object.

Argument:

ui Specifies the UI object in question.

Note: This function is not applicable for the toplevel application shell, menus (menubar,
up menus, and menu items) and toolbars.
18-40 WorldToolKit Reference Manual

Miscellaneous Functions

cified

to
 and

 Pass
ake

le.
WTui_getcallback

UICBP WTui_getcallback(

WTui *ui,
int eventtype);

This function returns a pointer to the callback handler function associated with the spe
UI object.

Argument:

ui Specifies the UI object in question.

eventtype This parameter should always be set to
WTUIEVENT_ACTIVATE.

Use this function to dynamically switch callbacks between UI objects. For example,
switch callbacks of two pushbuttons, you would get their callbacks using this function
then set the appropriate callbacks using WTui_setcallback (see page 18-8.)

WTui_showconsole

void WTui_showconsole(

int flag);

This function can be used on Windows platforms to show or hide the console window.
in TRUE as the flag parameter to make the console window visible, and FALSE to m
the console window invisible.

WTui_isconsolevisible

int WTui_showconsole(void);

This function returns TRUE if the console window is visible, and FALSE if it is not visib
This function can only be used on Windows platforms.
WorldToolKit Reference Manual 18-41

Chapter 18: Adding User Interface (UI) Objects
18-42 WorldToolKit Reference Manual

.
ber of
K.

re

e
19
Drawing Functions

User-defined Drawing Functions

WTK lets you embed your own OpenGL drawing routines into your WTK application
SENSE8 created this capability because there will probably always be a greater num
rendering capabilities of your OpenGL workstation than can be supported within WT
With WTK’s user-defined drawing functions, you can combine the full rendering
capabilities of your workstation with the functionality of WTK. The drawing functions a
classified into two categories: 2D (see below) and 3D (see page 19-8).

2D Drawing

WTwindow_setfgactions

See WTwindow_setfgactions on page 17-24 for a description.

Pre-defined 2D Drawing Functions

WTwindow_set2Dcolor

void WTwindow_set2Dcolor(
WTwindow *window,
unsigned char r,

unsigned char g,
unsigned char b);

This function specifies the color to be used by subsequent 2D drawing
(WTwindow_draw2D...) functions. The default color is white. This function should only b

Chapter 19: Drawing Functions

ates
ue is:
called from within the user-defined fgdrawfn function, which is specified in
WTwindow_setfgactions (see page 19-1).

WTwindow_set2Dlinestyle

void WTwindow_set2Dlinestyle(
WTwindow *window,
int style);

This function sets the 2D line style of the specified window to the stipple pattern
represented by the style parameter. The default line style is solid.

The style parameter’s 16 least significant bits represent a bitmask where a 1 bit indic
that drawing occurs while a 0 bit indicates that drawing does not occur. If the style val

0xaaaa, The line style will be solid

0x3333 Results in dashed lines

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

WTwindow_set2Dlinewidth

void WTwindow_set2Dlinewidth(

WTwindow *window,
float width);

This function sets the 2D line width (in pixels) for the specified window to the value
specified by the width argument. The default line width is 1.0.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).
19-2 WorldToolKit Reference Manual

Pre-defined 2D Drawing Functions

n on
WTwindow_draw2Dcircle

void WTwindow_draw2Dcircle(
WTwindow *window,
float xc,

float yc,
float radius,
int mode);

This function draws a circle whose center is specified by the xc, yc parameters. The xc, yc,
and radius values are in normalized window coordinates (i.e., 0.0 -1.0). The discussio
the function WTwindow_setfgactions (see page 19-1) talks about normalized window
coordinates. A radius of 1.0 will be the smaller of the window height or width.

The mode parameter indicates the drawing style to be used. If the mode is:

WTDRAW2D_HOLLOW Draw outline.

WTDRAW2D_SOLID Solid fill.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

Also see, WTwindow_set2Dcolor (page 19-1), WTwindow_set2Dlinestyle (page 19-8),
and WTwindow_set2Dlinewidth (page 19-2).

WTwindow_draw2Drectangle

void WTwindow_draw2Drectangle(

WTwindow *window,
float x1,
float y1,

float x2,
float y2,
int mode);

This function draws a rectangle whose bottom left point is specified by the x1, y1 values
and the upper right point is specified by the x2, y2 values. The x1, y1, x2, and y2 values are
in normalized coordinates (i.e., 0.0-1.0). The discussion on the function
WTwindow_setfgactions (see page 19-1) talks about normalized window coordinates.
WorldToolKit Reference Manual 19-3

Chapter 19: Drawing Functions
The mode parameter indicates the drawing style to be used. If the mode is:

WTDRAW2D_HOLLOW Draw outline.

WTDRAW2D_SOLID Solid fill.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

Also see, WTwindow_set2Dcolor (page 19-1), WTwindow_set2Dlinestyle (page 19-8),
and WTwindow_set2Dlinewidth (page 19-2).

WTwindow_draw2Dpoint

void WTwindow_draw2Dpoint(

WTwindow *window,
float x,
float y);

This function draws a point at the coordinates specified by the x and y values. The x and y
values are in normalized coordinates (i.e., 0.0-1.0). The discussion on the function
WTwindow_setfgactions (see page 19-1) talks about normalized window coordinates.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1). Also see WTwindow_set2Dcolor
(see page 19-1).

WTwindow_draw2Dline

void WTwindow_draw2Dline(
WTwindow *window,
float x1,

float y1,
float x2,
float y2);

This function draws a line between the point specified by the x1 and y1 values to the point
specified by the x2 and y2 values. The x1, y1, x2, and y2 values are in normalized
coordinates (i.e., 0.0-1.0). The discussion on the function WTwindow_setfgactions (see
page 19-1) talks about normalized window coordinates.
19-4 WorldToolKit Reference Manual

Pre-defined 2D Drawing Functions

rtices

ide

f

re
This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

Also see, WTwindow_set2Dcolor (page 19-1), WTwindow_set2Dlinestyle (page 19-8),
and WTwindow_set2Dlinewidth (page 19-2).

WTwindow_draw2Dtexture

void WTwindow_draw2Dtexture(
WTwindow *window,
char *bitmapname,

FLAG transparent,
WTp2 *xyarray,
WTp2 *uvarray);

This function drapes the specified texture bitmap specified by bitmapname onto the 2D
polygon represented by the sequence of four coordinates defined by xyarray and their
respective texture coordinates contained in uvarray. The xyarray should contain coordinates
for four vertices, because the 2D polygon is assumed to be a quad. Moreover, the ve
have to be specified in the counter-clockwise order.

The bitmapname argument must be a name of a bitmap previously loaded in WTK, outs
of the 2D callback function. The easiest way to do this is to call
WTtexture_cache(bitmapname,TRUE) (see page 10-17) prior to starting the universe.

If a texture is transparent (transparent=TRUE), you will be able to see through portions o
the polygon to which the texture is applied. The transparent flag indicates whether black
pixels in the texture should be rendered; if black pixels are not rendered, then they a
effectively transparent.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).
WorldToolKit Reference Manual 19-5

Chapter 19: Drawing Functions

dow.
X

e
WTwindow_set2Dfont

void WTwindow_set2Dfont(
WTwindow *window,
int fontindex);

This function sets the font index to be used when drawing 2D text to the specified win
The default font is system dependent on Windows 32-bit platforms, whereas on UNI
platforms, there is no default font. The specified fontindex parameter is used as an index
into an ASCII file named font.wtk, which contains a list of font names that are loaded
automatically by WTK. Valid values for the fontindex parameter range between 0 and th
number of entries in the font.wtk file minus one. The user must create the font.wtk file and
place it in the same directory as the application.

To obtain a list of available fonts on a UNIX system, run xlsfonts. To obtain a list of
available fonts in a Windows 32-bit system, use the fonts icon in the Control Panel.

On Windows 32-bit platforms, the format of the font.wtk file is font name followed by font
size. Following is a sample of the font.wtk file (2 entries) on Windows 32-bit platforms:

Arial Bold Italic 20
Times New Roman 15

On UNIX platforms, the best way to create the font.wtk file is to first redirect the output of
the xlsfonts command to a file, say font.txt.

xlsfonts > font.txt

Now you can open this file and copy the fonts you require to the font.wtk file. Following is
a sample of the font.wtk file (2 entries) on SGI Indigo2 Impact:

-adobe-courier-bold-o-normal--0-0-0-0-m-0-iso8859-1

-sgi-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-3

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

Also see WTwindow_set2Dcolor (see page 19-1).
19-6 WorldToolKit Reference Manual

Pre-defined 2D Drawing Functions

s

WTwindow_draw2Dtext

void WTwindowdrawt2Dtext(
WTwindow *window,
float x,

float y,
char *text);

This function draws the specified text string (specified by the text parameter) starting at the
x, y coordinates of the specified window. The x and y values are in normalized coordinate
(i.e., 0.0-1.0). The discussion on the function WTwindow_setfgactions (see page 19-1) talks
about normalized window coordinates.

The font used to draw the text string is set by calling WTwindow_set2Dfont (see page 19-6).

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions (see page 19-1).

Note: On UNIX platforms, since there is no default font, you must call WTwindow_set2Dfont
(see page 19-6) before calling this function. On Windows 32-bit platforms, if this
function is called without calling WTwindow_set2Dfont (see page 19-6), it uses the
default system dependent font.

WTwindow_get2Dtextextents

void WTwindow_get2Dtextextents(
WTwindow *window,
char *string,

float *width,
float *height);

This function returns the width and height in normalized window coordinates of the
specified text string’s extents.

This function should only be called from within the user-defined fgdrawfn function, which
is specified in WTwindow_setfgactions.
WorldToolKit Reference Manual 19-7

Chapter 19: Drawing Functions

ates
3D Drawing

WTwindow_setdrawfn

See WTwindow_setdrawfn on page 17-23 for a description.

Pre-defined 3D Drawing Functions

WTwindow_set3Dcolor

void WTwindow_set3Dcolor(
WTwindow *window,

unsigned char r,
unsigned char g,
unsigned char b);

This function specifies the color to be used by subsequent 3D drawing
(WTwindow_draw3D...) functions. The default color is white.

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).

WTwindow_set3Dlinestyle

void WTwindow_set3Dlinestyle(
WTwindow *window,
int style);

This function sets the 3D line style of the specified window to the stipple pattern
represented by the style parameter. The default line style is solid.

The style parameter’s 16 least significant bits represent a bitmask where a 1 bit indic
that drawing occurs while a 0 bit indicates that drawing does not occur.
19-8 WorldToolKit Reference Manual

Pre-defined 3D Drawing Functions
If the style value is:

0xaaaa, The line style will be solid

0x3333 Results in dashed lines

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).

WTwindow_set3Dlinewidth

void WTwindow_set3Dlinewidth(

WTwindow *window,
float width);

This function sets the 3D line width (in pixels) for the specified window to the value
specified by the width parameter. The default line width is 1.0.

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).

WTwindow_set3Dpointsize

void WTwindow_set3Dpointsize(

WTwindow *window,
float size);

This function sets the 3D point size (in pixels) of the specified window to the value
specified by the size parameter. The default point size is 1.0.

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).
WorldToolKit Reference Manual 19-9

Chapter 19: Drawing Functions

n
WTwindow_draw3Dpoints

void WTwindow_draw3Dpoints(
WTwindow *window,
WTp3 *pts,

int numpts);

This function draws a set of points at the coordinates specified in the pts array. The numpts
parameter specifies the number of points to draw.

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).

See WTwindow_set3Dcolor on page 19-8 and WTwindow_set3Dpointsize above.

WTwindow_draw3Dlines

void WTwindow_draw3Dlines(
WTwindow *window,

WTp3 *pts,
int numpts,
FLAG style);

This function draws a set of lines between the points specified in the pts array. The numpts
parameter specifies the number of points contained in the pts array.

The style parameter indicates the drawing style to be used. If the style is:

WTLINE_SEGMENTS individual line segments

WTLINE_CONNECTED a connected series of line segments

WTLINE_CLOSE a closed series of line segments (i.e., single series of
connected lines with an additional line segment betwee
the last and first point)

This function should only be called from within the user-defined drawfn function, which is
specified in WTwindow_setdrawfn (see page 19-8).

See WTwindow_set3Dcolor on page 19-8, WTwindow_set3Dlinestyle on page 19-8, and
WTwindow_set3Dlinewidth on page 19-9.
19-10 WorldToolKit Reference Manual

und
e

.

sing
20
Sound

Introduction

The WTK sound support library provides a common cross-platform API for playing so
files on various hardware platforms. Some platforms support spatialized sound, whil
others simply provide ambient sounds.

A common scenario would proceed as follows:

1. Open an audio hardware device.

2. Set up the hardware parameters (output type, rolloff, etc.).

3. Load various sound samples from disk.

4. Assign properties to sounds (volume, pitch, priority, position, etc.).

5. Cue the sounds to play on events or loop continuously during the simulation

6. Close the audio hardware device, which removes the sound samples from
memory.

Supported Devices

WINDOWS 95/NT

• Windows-compatible sound card (WINMM)

This device does not require any special software. For this device to work, a
standard Windows compatible sound card should be installed and working. U
this device you can play one software-spatialized sound at a time.

• DiamondWare with Windows-compatible sound card (DWSTK)

Chapter 20: Sound

ble
ing
stall

ally
und
 to

d at
cies
usly
s
ound

 this

rver
For this device type to work, you need to have a standard Windows compati
sound card installed and working, as well as the DiamondWare STK DLL. Us
this device you can play up to 16 software-spatialized sounds at a time. To in
the DLL, copy the DWSW32.DLL file to your Windows system directory.

• Crystal River Engineering AudioReality NT Sound Server (CRE)

This device requires an AudioReality NT Sound Server from Crystal River
Engineering. This device is a separate PC which contains hardware specific
designed to produce high-quality 3D audio. WTK communicates with the So
Server through a null-modem serial cable. Using this device you can play up
four hardware-spatialized sounds at a time.

• Direct Sound (only available with Windows 95 using the Direct3D version of
WTK)

This device allows up to 16 spatialized sounds to be played at once. This
capability does not require any special software or hardware other than the
DirectX toolkit (installed with WTK Direct) and a Windows-compatible sound
card. See your Hardware Guide for more information.

SGI

• SGI Audio Library (SGI)

This device requires that you have an IRIS Audio Processor, and the Audio
Library (AL) installed. The number of sounds that can be software-spatialize
a time depends on the system hardware. Multiple sounds of differing frequen
cannot be played simultaneously on this device. If you attempt to simultaneo
play multiple sounds with differing frequencies on this device, only the sound
whose frequencies are identical to the frequency of the most recently loaded s
will actually play.

• VSI Synthesizer (VSI)

This device requires a synthesizer from Visual Synthesis Incorporated. Using
device you can play up to 16 hardware-spatialized sounds at a time.

• Crystal River Engineering Acoustetron (CRE)

Same as above, with the exception that the SGI requires an Acoustetron Se
rather than an AudioReality NT Server.

Note: For vendor-specific information, see Sources of Components on page J-1.
20-2 WorldToolKit Reference Manual

Device-level Functionality

ner. It

mber
s you

ice. It
Device-level Functionality

WTsounddevice_open

WTsounddevice *WTsounddevice_open(

int type,
int nplayable,
WTviewpoint *listener);

This function opens an audio device and assigns the specified viewpoint as the liste
returns a pointer to a new sound device object, or NULL if unsuccessful.

If a NULL is passed for listener, then the default universe viewpoint (returned from
WTuniverse_getviewpoints()) is set as the default listener. Use the nplayable argument to
request a specific number of sounds you want to play simultaneously. The actual nu
may be adjusted by the hardware you are using. (To determine the number of sound
can play, use WTsounddevice_numplayable.)

Arguments:

type WTSOUNDDEVICE_DS
WTSOUNDDEVICE_WINMM
WTSOUNDDEVICE_DWSTK
WTSOUNDDEVICE_VSI
WTSOUNDDEVICE_SGI
WTSOUNDDEVICE_CRE

nplayable The number of sounds you would like to play at once.

viewpoint The viewpoint assigned to the listener.

WTsounddevice_close

FLAG WTsounddevice_close(
WTsounddevice *device)

This function closes an audio device and deletes all sounds associated with the dev
returns TRUE, if successful, or FALSE otherwise. The device argument specifies the
device you want to close.
WorldToolKit Reference Manual 20-3

Chapter 20: Sound

. For
g of

 are
t

f

ity for
an
WTsounddevice_update

WTsound *WTsounddevice_update (
WTsounddevice *device);

This function updates listener and sound position/orientations. For smooth motion of
sounds and listeners, you should call this function from the universe’s action function
non-spatialized systems this function is used to force updates of sampling and mixin
sounds, and should still be called in the actions function.

Note: If the user does not call this function, it is called internally by WTK.

Argument:

device Device to update sounds for.

WTsounddevice_getsounds

WTsound *WTsounddevice_getsounds (
WTsounddevice *device);

This function gets a pointer to the list of sounds currently loaded by a device. The device
argument specifies the device from which to get sounds.

It returns a pointer to the first sound in the device's list of sounds, NULL if no sounds
currently loaded by the device. Use WTsound_next (see page 20-11) to loop through the lis
until NULL is returned signifying the end of the list.

WTsounddevice_numplayable

int WTsounddevice_numplayable (
WTsounddevice *device);

This function gets the number of sources available for a device. This is the number o
sounds that can play simultaneously. The device argument specifies the device from which
to retrieve the number of sources.

It returns the number of sound sources available for the device. You can set the prior
each sound (see WTsound_setparam on page 20-12) so if you try to play more sounds th
20-4 WorldToolKit Reference Manual

Device-level Functionality

er

ribes
the sound device is capable of playing, the highest priority sounds will play, while low
priority sounds get bumped from the list of simultaneously playing sounds.

WTsounddevice_name2sound

WTsound *WTsounddevice_name2sound (
WTsounddevice *device,
char *name);

This function gets a sound by its name. The device argument specifies the device from
which to get the sound. The name argument specifies the name of the sound to get.

WTsounddevice_setparam

void WTsounddevice_setparam (
WTsounddevice *device,
int param,

float value);

This function sets various parameters for a sound device. The device argument specifies the
device to modify. The param argument specifies the parameter to adjust. The value
argument specifies the value to set. For example:

WTsounddevice_setparams(
myDevice,

WTSOUNDDEVICE_ROLLOFF,
10.0f);

Table 20-1 shows which options can be used with which hardware. Table 20-2 desc
some of these options further.
WorldToolKit Reference Manual 20-5

Chapter 20: Sound

er
Please refer to CRE Device Parameters on page 20-7 for descriptions of parameters for
Crystal River Engineering devices.

Key for table 20-1:

WINMM Windows-compatible sound card

DWSTK DiamondWare with Windows-compatible sound card

CRE Crystal River Engineering Audio Reality NT Sound Serv

DS Direct Sound (via DirectX) for Windows 95

SGI SGI Audio Library

VSI VSI Synthesizer

Table 20-1: Options for WTsounddevice_setparam

WINMM DWSTK CRE DS SGI VSI

WTSOUNDDEVICE_OUTPUT x x

WTSOUNDDEVICE_
ROLLOFF

x x x x x

WTSOUNDDEVICE_
ROLLOFFEXP

x

WTSOUNDDEVICE_
ABSORBDIST

x

WTSOUNDDEVICE_
SPATIALIZE

x x x x x x
20-6 WorldToolKit Reference Manual

CRE Device Parameters

RE

s
e

vely.

s.
ff
t when
Table 20-2 describes some of the options for WTsounddevice_setparams.

CRE Device Parameters

As indicated by table 20-1 on page 20-6, the parameters that are applicable to the C
device are WTSOUNDDEVICE_OUTPUT, WTSOUNDDEVICE_ROLLOFFEXP,
WTSOUNDDEVICE_SPATIALIZE and WTSOUNDDEVICE_ABSORBDIST.
(WTSOUNDDEVICE_ROLLOFF is interpreted as WTSOUNDDEVICE_ABSORBDIST.)

WTSOUNDDEVICE_OUTPUT refers to the type of output hardware used. WTK choose
the headphones (WTOUTPUT_HEADPHONE) as the default for the CRE server output. Th
other types supported are the WTOUTPUT_STEREO and the WTOUTPUT_SURROUND,
which refer to speakers built in your monitor or placed around your monitor, respecti

WTSOUNDDEVICE_ROLLOFFEXP is an index to the roll-off due to spreading power los
This parameter is set for the device, so it affects all sounds created. Typically, roll-o
exponents in the range of 0.5 to 1.2 are of interest. The default value is 0.8. Use a floa
you refer to this parameter. A zero or a negative roll-off resets it to its default value.

Table 20-2: Description of WTsounddevice_setparams options

Description Range

WTSOUNDDEVICE_OUTPUT The type of
output hardware
used, like
headphones or
speakers.

WTOUTPUT_HEADPHONE,
 WTOUTPUT_STEREO,
WTOUTPUT_SURROUND

Default: HEADPHONE

WTSOUNDDEVICE_ROLLOFF Rolloff or
clipping
distance, i.e., the
distance at
which sound
becomes silent.

0.0 to...

Default: 2500.0

WTSOUNDDEVICE_SPATIALIZE Spatialize
sounds for this
device.

WTSPATIALIZE_ON or

WTSPATIALIZE_OFF

Default: WTSPATIALIZE_ON
WorldToolKit Reference Manual 20-7

Chapter 20: Sound

e.
f extra
 it

urrent

e port
ple,
400,

. The
WTSOUNDDEVICE_ABSORBDIST refers to the atmospheric absorption control distanc
This parameter is used to simulate atmospheric absorption and controls the amount o
high frequency fall-off over distance. This option also is used only on the “device,” so
affects all created sounds. The argument should be a float, indicating a distance in c
units. A zero or negative argument resets it to its default value.

Note: You can make use of the CRE Acoustetron environment variables to set either th
specifications or the baud rate at which to communicate with the CRE. For exam
on UNIX platforms if you want to use the CRE on /dev/ttyd2 at a baud rate of 38
do the following:

setenv TRONCOM 2@384

Please refer to your CRE manual for more information.

WTsounddevice_getparam

float WTsounddevice_getparam (
WTsounddevice *device,

int param);

This function returns a parameter for a sound device. See table 20-4 on page 20-14
device argument specifies the device to get the parameters from. The param argument
specifies the parameters to adjust. For example:

float rolloff;
rolloff=WTsounddevice_getparam (

myDevice,
WTSOUNDDEVICE_ROLLOFF);

WTsounddevice_setdata

void WTsounddevice_setdata (

WTsounddevice *device,
void *data);

This function attaches user-defined data to a sound device. The device argument specifies
the device where the data will be attached. The data argument is a pointer to the data.
20-8 WorldToolKit Reference Manual

Device-level Spatializing Functions

cture

urned

It

e
Private application data can be stored in any structure. To store a pointer to the stru
within the sound, pass in a pointer, cast to a void*, as the data argument.

WTsounddevice_getdata

void *WTsounddevice_getdata (
WTsounddevice *device);

This function retrieves the user-defined data from a sound device. The device argument
specifies the device from which the data is retrieved.

This function returns a void pointer to the sound’s data. You should cast the value ret
by this function to the same type that was used to store the data in the sound with
WTsound_setdata.

Device-level Spatializing Functions

WTsounddevice_setlistener

FLAG WTsounddevice_setlistener (
WTsounddevice *device,
WTviewpoint *viewpoint);

This function specifies a viewpoint as a listener. The device argument specifies the device
for which the listener is set. The viewpoint argument specifies the location of the listener.
returns TRUE if successful, FALSE if unsuccessful.

WTsounddevice_getlistener

WTviewpoint *WTsounddevice_getlistener (
WTsounddevice *device);

This function gets the viewpoint that is being used as a listener by a device. The device
argument specifies the device from which to get the listener. This function returns th
viewpoint used as listener or NULL if unsuccessful.
WorldToolKit Reference Manual 20-9

Chapter 20: Sound

w

lls to

eded.
re a

e

Sound-level Functionality

WTsound_load

WTsound *WTsound_load (

WTsounddevice *device,
char *source);

This function creates a new sound from a source. The device argument specifies the sound
device from which to load the sound. The source argument specifies the name of source
(filename, resource name, or sample name). This function returns a pointer to the ne
sound or NULL if unsuccessful.

The source can be a file or, on VSI systems, a sample in a midi bank. For VSI sound
systems, first call this function with the bank name to load, then make subsequent ca
load particular samples. The filename should contain the path to the sound if it is ne
Search paths are not used for loading sounds. The CRE sound servers do not requi
directory path.

WTsound_delete

FLAG WTsound_delete (

WTsound *sound);

This function deletes a sound. The sound argument specifies which sound to delete. If th
deletion is successful, the function returns TRUE; otherwise it returns FALSE.

WTsound_stop

void WTsound_stop (
WTsound *sound);

This function stops a currently playing sound. The sound argument specifies the name of
the sound to stop playing.
20-10 WorldToolKit Reference Manual

Sound-level Functionality

next
urns

ns to
y.

vice

the

ds
cies
WTsound_next

WTsound *WTsound_next (
WTsound *sound);

This function iterates through the list of sounds currently loaded by a device. The sound
argument specifies the name of the sound to start playing. This function returns the
sound in the list of sounds, if there is one. If the sound is the last one in the list, it ret
NULL.

To get a pointer to the first sound in this list, see WTsounddevice_getsounds on page 20-4.

WTsound_play

FLAG WTsound_play (

WTsound *sound);

This function cues a sound to begin playing. When a sound is finished playing, it retur
the beginning of the sample. The sound argument specifies the name of the sound to pla

This function returns a FALSE if the passed parameter (sound) is NULL (or if the de
type in the sound structure is not one of the types mentioned under WTsounddevice_open).
For all other cases, it returns TRUE.

When the sound is finished playing it calls its done function, which can be set using
WTsound_setdonefn function (see page 20-16).

Note that when using the SGI Audio Library, multiple sounds of differing frequencies
cannot be played simultaneously. If you attempt to simultaneously play multiple soun
with differing frequencies using the SGI Audio library, only the sounds whose frequen
are identical to the frequency of the most recently loaded sound will actually play.

To check if a sound is currently playing, see WTsound_isplaying, below.
WorldToolKit Reference Manual 20-11

Chapter 20: Sound

e to

ires

WTsound_isplaying

FLAG WTsound_isplaying (
WTsound *sound);

This function determines if a sound is currently playing. The sound argument specifies the
name of the sound that you want to check.

This function returns a TRUE or FALSE. A playing sound is not necessarily audible du
spatialization or priority.

Note: For the Crystal River Engineering AudioReality NT Sound Server, this action requ
communication over the serial port and therefore can be quite expensive from a
performance perspective.

WTsound_setparam

void WTsound_setparam (
WTsound *sound,
int param,

float value);

This function sets various parameters for a sound. The sound argument specifies the name
of the sound to modify. The param argument specifies the parameter to adjust. The value
parameter specifies the value to set. For example:

WTsound_setparam (
mySound,

WTSOUND_VOLUME,
0.5f);

Sound sample rates:

WTSAMPLERATE_8KHZ WTSAMPLERATE_11KHZ

WTSAMPLERATE_16KHZ WTSAMPLERATE_22KHZ

WTSAMPLERATE_32KHZ WTSAMPLERATE_44KHZ

WTSAMPLERATE_48KHZ
20-12 WorldToolKit Reference Manual

Sound-level Functionality

er
These sample rates can be used for setting the WTSOUND_PLAYRATE parameter of the
sound.

Table 20-4 shows which options can be used with which hardware.

Key for table 20-4:

WINMM Windows-compatible sound card

DWSTK DiamondWare Sound Tool Kit with Windows-compatible
sound card

CRE Crystal River Engineering Audio Reality NT Sound Serv

DS Direct Sound (via DirectX) for Windows 95

SGI SGI Audio Library

VSI VSI Synthesizer

Table 20-3: Devices with which WTsound_setparam options are used

WINMM DWSTK CRE DS SGI VSI

WTSOUND_VOLUME x x x x x

WTSOUND_LRPAN x x

WTSOUND_FBPAN x

WTSOUND_PITCH x x x

WTSOUND_PLAYRATE x x

WTSOUND_PRIORITY x x x x x

WTSOUND_LOOPS x x x x x

WTSOUND_DOPPLER x

WTSOUND_SPATIALIZE x x x x x x
WorldToolKit Reference Manual 20-13

Chapter 20: Sound
Table 20-4 describes some of the WTsound_setparams options.

Table 20-4: Description of WTsound_setparam options

Description Range

WTSOUND_VOLUME Volume of a sound specified in
ratio, 1.0 being the normal
volume of a sound.

0.0 to...

Default: 1.0

WTSOUND_LRPAN The ratio of left/right volume. -1.0 to +1.0

Default: 0.0

WTSOUND_FBPAN The ratio of front/back volume. -1.0 to +1.0

Default: 0.0

WTSOUND_PITCH The pitch to be used for playing
sound.

0.5 to 2.0

Default: 1.0

WTSOUND_PLAYRATE The frequency of the playback
rate wanted (in Hz).
The defined sound sample rate
constants listed above can also
be used.

0.0 to...

Default:
System default

WTSOUND_PRIORITY The priority for this sound. If a
sound has higher priority it can
stop other sounds so it can play
first.

0.0 to 1.0

Default 1.0

WTSOUND_LOOPS The number of loops to play this
sound.

1.0 to... (-1.0 =
Infinite)

Default: 1.0

WTSOUND_DOPPLER Doppler factor for a sound. 0.0 to...

Default: 1.0

WTSOUND_SPATIALIZE Spatialize this sound. WTSPATIALIZE_ON
or
WTSPATIALIZE_OFF

Default:
WTSPATIALIZE_ON
20-14 WorldToolKit Reference Manual

Sound-level Functionality

pplies
 the

ointer,
WTsound_getparam

float WTsound_getparam (
WTsound *sound,
int param);

This function retrieves the parameters for a sound. Table 20-4 on page 20-14 also a
to this function. The sound argument specifies the name of the sound from which to get
parameters. The param argument specifies the parameter to get. For example:

float volume;
volume=WTsound_getparams (

myDevice,

WTSOUND_VOLUME);

WTsound_getname

char *WTsound_getname (
WTsound *sound);

This function returns a pointer to the filename of the sound. The sound argument specifies
the sound from which to get the name.

WTsound_setdata

void WTsound_setdata (
WTsound *sound,
void *data);

This function attaches user-definable data to a sound. The sound argument specifies the
sound where the data will be attached. The data argument is the pointer to the data.

This function returns a void pointer to the sound's data. Private application data can be
stored in any structure. To store a pointer to the structure within the sound, pass in a p
cast to a void*, as the data argument.
WorldToolKit Reference Manual 20-15

Chapter 20: Sound

urned

d
g
FVS
WTsound_getdata

void *WTsound_getdata (
WTsound *sound);

This function retrieves user-defined data from a sound. The sound argument specifies the
sound from which to get the data.

This function returns a void pointer to the sound's data. You should cast the value ret
by this function to the same type that was used to store the data in the sound with
WTsound_setdata.

WTsound_setdonefn

void WTsound_setdonefn (
WTsound *sound,

PFVS done);

This function sets a function to call when a sound is finished playing. The sound argument
specifies the sound to modify. The done argument is a pointer to the function that is calle
when the sound is done playing. PFVS is a type signifying a pointer to a function returnin
VOID and taking a pointer to a WTsound structure as a parameter. In C terminology, P
means the following:

typedef void (*PFVS)(WTsound_ptr);

The following is an example for WTsound_setdonefn:

void doneFn(WTsound *sound)

{
WTmessage("Sound is done\n");

}

20-16 WorldToolKit Reference Manual

Sound-level Spatializing Functions

. It

at the

r

WTsound_getdonefn

PFVS WTsound_getdonefn (
WTsound *sound);

This function retrieves the function that will be called when the sound is done playing
returns a pointer to the sound's function, which is specified in the done argument. The
sound argument specifies from which sound the function is retrieved.

Sound-level Spatializing Functions

If none of these functions are used for positioning a sound, the sound will be placed
current viewpoint position — or the origin if no viewpoint position exists.

WTsound_setposition

void WTsound_setposition (
WTsound *sound,
WTp3 position);

This function sets a sound's position in 3D space. This setting overrides object and
viewpoint attachments for placing sounds. The sound argument specifies the sound for
which the position is specified. The position argument specifies the new position setting fo
the sound void.

WTsound_getposition

void WTsound_getposition (
WTsound *sound,
WTp3 position);

This function returns the current position setting of a sound. The sound argument specifies
the sound from which to get the position. The position argument is the current position of
the sound void.
WorldToolKit Reference Manual 20-17

Chapter 20: Sound

ll

WTsound_setnodepath

FLAG WTsound_setnodepath(
 WTsound *sound,
 WTnodepath *npath);

This function assigns the sound to a source specified by a node path. The sound argument
specifies the sound you want to attach. The npath argument specifies the node path that wi
be attached to the sound. Setting npath to NULL will remove the sound from it source, or
object.

WTsound_getnodepath

WTnodepath *WTsound_getnodepath(
 WTsound *sound);

This function retrieves the current nodepath associated with the sound
20-18 WorldToolKit Reference Manual

 8,

ities
 you
ntage

re
ipate
s
here is
te. If
 that

ying
e value
ernally
 be
perty.
in

re
duct

ulti-
 client
21
Client-Server Networking

(Via the World2World Servers)

Introduction

The Object/Property/Event programming paradigm (described in Chapter 3), in
conjunction with the new high level networking functionality provided in WTK Release
provides programmers with the ability to easily develop multi-user 3D/VR networked
applications for use over LANs or the Internet. The new high level networking capabil
are designed to operate in conjunction with Sense8’s World2World server product. If
have not purchased the World2World server product, you will not be able to take adva
of the high level networking capabilities described in this chapter to build multi-user
simulations. See below for a brief description of World2World or contact Sense8 for
detailed information about the World2World product.

Based on the Object/Property/Event paradigm, World2World-compliant simulations a
composed of objects and object properties. To allow multiple users to run and partic
in the same simulation, each user (client) needs to be able to receive certain update
(changes in property values) made by the other participants. For example, suppose t
a graphical object in your simulation that you want each user to be able to manipula
one user drags the object to a new location, you will want the other users to also see
movement.

To achieve this, the affected property must be shared by both the client that is modif
the value and the clients that want to receive the new value. Each change made to th
of a property is known as an event. When a property is shared, the events that are int
generated for each property value change are what allow the updated information to
automatically sent over the network to any other clients that have also shared that pro
If desired, you can add additional event handlers to specify actions to be performed
response to an event (see page 3-23).

The mechanism by which property value changes are transmitted to all clients who a
sharing the property is the World2World server product. The World2World server pro
consists of a Server Manager, Simulation Servers, and an optional Firewall Proxy. A m
user client application connects to the Server Manager, which determines whether the

Chapter 21: Client-Server Networking (Via the World2World Servers)

n
s and
 of the

8 API
w that
vides
rk

hich
 has a

group.

ause
s been
all the
, but

ve a
es
t
each
has the appropriate log-in authority and directs the client to the appropriate Simulatio
Server, based on the simulation that the client is running. The Simulation Server store
organizes simulation data and distributes data updates as appropriate to other users
multi-user application connected to the same Simulation Server. The WTK Release
allows programmers to specify which object properties are to be shared, to specify ho
shared data will be stored and organized on a World2World Simulation Server and pro
the functionality necessary to connect to the World2World servers. By limiting netwo
data transfer to only properties that have been shared, World2World helps to reduce
bandwidth usage.

WTK applications can connect to multiple World2World Simulation Servers. Each
connection made by WTK to a World2World Simulation Server is represented by a
WTconnection object. Each WTconnection object has one or more WTsharegroups, w
are used to group together a set of shared properties. By default, each WTconnection
single WTsharegroup, which is referred to as the root WTsharegroup. Additional
WTsharegroups can be created in a hierarchical arrangement under the root WTshare

Note: This chapter discusses only the client-side aspects of developing a multi-user
World2World-compliant simulation. For more information on the server-side
components of World2World, including how to install, configure, and start the
World2World servers, see the “World2World User’s Guide.”

Sharing Properties

As described in the introduction, when a client shares a property, the events that are
internally generated each time that a client makes changes to the property’s value c
those updates to be sent to the World2World Simulation Server. Once the update ha
made on the Simulation Server, the Simulation Server sends the property update to
other clients who are sharing that property. These updates will happen automatically
can be overridden by a connection callback function (see page 21-23).

In order to share a property, you must specify the WTsharegroup under which the property
will be grouped on a World2World Simulation Server. Each Simulation Server can ha
hierarchical arrangement of WTsharegroups which are used to organize the properti
stored on a Simulation Server. See Sharegroups on page 21-11 for more information abou
WTsharegroups. A single property can be shared under multiple sharegroups, though
Simulation Server will only retain a single copy of the shared property value.
21-2 WorldToolKit Reference Manual

Locked Properties

it any

 that
 down
. See

u
 the
If a
tion

client

client
nt.

s how

s are
Locked Properties

Shared properties can be locked by a client, causing the Simulation Server to prohib
other user from removing the property from its sharegroup or from modifying the
property’s value until the client (which holds the lock) releases the lock.

Only one client can have a lock on a particular property at any given time. Be aware
properties are also affected by locks on sharegroups in that a sharegroup lock trickles
to the sharegroup’s properties (as well as its child sharegroups and their properties)
page 21-12 for information on locked sharegroups.

You can immediately lock properties upon being shared through the shareflags parameter
of the WTproperty_share function (see page 21-5), or you can lock existing shared
properties with the WTproperty_lock function (see page 21-10).

Persistent Properties

When a property is shared, it can be flagged as being persistent through the shareflags
parameter of the WTproperty_share function. By making a shared property persistent, yo
can ensure that the property is not removed from the Simulation Server even if all of
clients who are sharing the property have disconnected from the Simulation Server.
property is not persistent, the property will be automatically removed from the Simula
Server when there are no remaining clients who are sharing this property.

The only way a persistent property can be deleted from the Simulation Server is if a
sharing the property makes an explicit call to WTproperty_unshare with the forcedelete
parameter set to TRUE. Note that a shared property will be persistent if at least one
who has asked to share the property has specified that the property is to be persiste

Update Frequencies

Shared properties have an update frequency, specified in seconds, which determine
often property value updates are queued up to be sent over the network. It is the
connection’s update rate (see page 21-23) that controls how often the queued update
actually sent across the network.
WorldToolKit Reference Manual 21-3

Chapter 21: Client-Server Networking (Via the World2World Servers)

 is
th the

ually

re
and
, you
 so that
s into
s’

rk may
eiving
tory

 at
tain a
 than

nt

ore

ates
’s
roperty.
The default update frequency for shared properties is 0.0
(WTSHAREDDATA_UPDATEONSET), which means that a property change update
queued every time the property is changed. You can control the update frequency wi
WTproperty_setupdatefreq function (see page 21-8). If the shared property’s update
frequency is set to a negative number or WTSHAREDDATA_NOUPDATE, property
change updates will not be queued for the property and must therefore be sent man
with calls to WTproperty_sendupdate (see page 21-9).

Note that it is pointless (and inefficient) to queue property updates faster than they a
actually being sent across the network. In fact, if you want to reduce network traffic,
you have shared properties whose update frequency is not critical to your simulation
can queue property updates less often than they are being sent across the network,
property updates aren’t made more often than is really necessary. Take these factor
consideration when setting your properties’ update frequencies and your connection
update rates.

Be aware that reducing the number of times that an update is sent across the netwo
require you to employ dead reckoning techniques to smooth the data updates on rec
clients. An example of dead reckoning is provided in the Samples directory of the direc
in which you installed World2World.

Time Sensitive Properties

Shared properties can be flagged as time sensitive properties (see
WTproperty_settimesensitive on page 21-9), if it is important to accurately track the time
which its value changed. All property update events sent by a Simulation Server con
timestamp, though the timestamp of time sensitive properties is much more accurate
the timestamp associated with non-time sensitive properties as shown below:

• For time sensitive properties – the timestamp used is the time at which the clie
first modified the property value.

• For non-time sensitive properties – the timestamp used is the time at which the
data update was made on the Simulation Server instead of the (earlier and m
accurate) time at which the client first modified the property value.

A good example of when to use time sensitive properties is when those property upd
are being dead reckoned by the receiving clients. By tracing the history of a property
update style, future updates can be predicted and used to smooth the updates to a p
Because time sensitive properties require clients to send some additional data (the
21-4 WorldToolKit Reference Manual

WTbase – Working with Unsupported Object Types

t

ng
eir pre-
es,
 most
 and

operty
 to the
n on
mples

ise

. If a
er
timestamp) to the Simulation Server, they increase network traffic somewhat. For tha
reason, shared properties are, by default, non-time sensitive.

WTbase – Working with Unsupported Object Types

There are several WTK object types for which the Object/Property/Event programmi
paradigm does not apply (see page 3-2 for a list of the supported object types and th
defined properties). Consequently, these unsupported types cannot contain properti
which allow for the generation of events, and the sharing of data across a network. The
significant WTK objects that fall into this category are geometries, polygons, vertices,
materials.

To extend the Object/Property/Event paradigm, create a WTbase object and add a pr
to that object representing the desired object attribute, and then synchronize changes
WTK object data with changes to the WTbase version of the data. For more informatio
this procedure, see page 3-7. Also, an example of this procedure is supplied in the Sa
directory of the directory in which you installed World2World.

Note: Each of the functions described in this chapter are synchronous unless otherw
noted.

Property Sharing Functions

WTproperty_share

FLAG WTproperty_share(

void *object
const char *propname
WTsharegroup *shgrp

int shareflags);

This function shares an object’s property under a sharegroup of a Simulation Server
connection is passed in as the shgrp parameter, this function will share the property und
the root sharegroup of that connection. The shareflags argument determines how the
property is shared. Valid values are:
WorldToolKit Reference Manual 21-5

Chapter 21: Client-Server Networking (Via the World2World Servers)

n

a

it

d also

lient

e
erty is
ct’s
e

WTSHAREFLAG_LOCK Requests a property lock from the Simulatio
Server for the local client. If the local client
obtains a lock on this property, no other
clients will be able to modify this property’s
value. If this property is already locked by a
remote client, the lock request will fail.

WTSHAREFLAG_PERSISTENT Ensures that this property is not removed
from the Simulation Server even if all of the
clients who are sharing this property have
disconnected from the Simulation Server. If
property is not persistent, the property will be
automatically removed from the Simulation
Server when there are no remaining clients
who are sharing this property.

The only way a persistent property can be
deleted from the Simulation Server is if a
client sharing the property makes an explic
call to WTproperty_unshare with the
forcedelete parameter set to TRUE.

By setting shareflags to (WTSHAREFLAG_LOCK | WTSHAREFLAG_PERSISTENT),
i.e. bitwise or’ing both of the above options, you can request a lock on the property an
specify that the property is to be persistent. If shareflags is set to 0, the local client will not
obtain a lock on the property and the property will not be persistent unless another c
has specified that the shared property is to be persistent.

When an object’s property is shared, the object’s name must be unique among all th
objects whose properties are shared on a Simulation Server. If the object whose prop
being shared has a non-unique name, WorldToolKit will automatically modify the obje
name to make it unique. To ensure that the name you use to refer to an object whos
property has been shared, use WTbase_getname to retrieve the potentially modified name
of the object. While an object’s property is being shared, you cannot use WTbase_setname
or any of the WT*_setname functions to modify that object’s name.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.
21-6 WorldToolKit Reference Manual

Property Sharing Functions

urns
WTproperty_unshare

FLAG WTproperty_unshare(
void *object
const char *propname

WTsharegroup *shgrp,
FLAG forcedelete);

This function unshares an object’s property from the specified sharegroup. If shgrp is
NULL, the object’s property will be unshared from all sharegroups.

If the forcedelete parameter is set to TRUE, this property will be removed from the
Simulation Server’s data tree even if the property is persistent. See Persistent Properties
on page 21-3.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTproperty_isshared

FLAG WTproperty_isshared(

void *object
const char *propname);

This function returns TRUE if the object’s property is currently shared, otherwise it ret
FALSE.

WTproperty_numshares

int WTproperty_numshares(

void *object
const char *propname);

This function returns the number of times an object’s property is shared.
WorldToolKit Reference Manual 21-7

Chapter 21: Client-Server Networking (Via the World2World Servers)

l be

perty

ants:

t

d
d

ccur.
WTproperty_getsharegroup

WTsharegroup* WTproperty_getsharegroup(
void *object
const char *propname

int nshare);

This function returns the nshare’th sharegroup in which an object’s property is shared.
nshare can range between 0 and (WTproperty_numshares - 1).

WTproperty_setupdatefreq

void WTproperty_setupdatefreq(
void *object

const char *propname
double frequency);

This function sets the frequency with which data updates for an object’s property wil
queued for transmission to a Simulation Server. The frequency is specified in seconds. By
default an update is queued every time a property is set. For more information on pro
update frequencies, see page 21-3.

The frequency argument can be any value of type double, or one of the following const

WTSHAREDDATA_UPDATEONSET Property change updates are queued every
time the property changes. This is equivalen
to a value of 0.0.

WTSHAREDDATA_NOUPDATE Property change updates will not be queue
for the property and must therefore be queue
manually with calls to
WTproperty_sendupdate.

WTproperty_getupdatefreq

double WTproperty_getupdatefreq(
void *object

const char *propname);

This function returns the frequency with which data updates for an object’s property o
21-8 WorldToolKit Reference Manual

Property Sharing Functions

rty’s
led

om

, see

se it
WTproperty_sendupdate

void WTproperty_sendupdate(
void *object
const char *propname);

This function manually queues an update for the specified object’s property. If a prope
update frequency is set to WTSHAREDDATA_NOUPDATE, this function must be cal
in order for an update to occur. See WTproperty_setupdatefreq on page 21-8.

WTproperty_settimesensitive

void WTproperty_settimesensitive(
void *object
const char *propname

FLAG timesensitive);

This function makes an object’s property time sensitive if the timesensitive parameter is set
to TRUE and makes the object’s property non-time sensitive if timesensitive is set to
FALSE. Time sensitive properties are received by other clients with the timestamp fr
the initiating client, providing more accurate timing information to receiving clients.
Properties are NOT time sensitive by default. For more information on time sensitivity
page 21-4.

WTproperty_gettimesensitive

FLAG WTproperty_gettimesensitive(
void *object

const char *propname);

This function returns TRUE if the specified object’s property is time sensitive, otherwi
returns FALSE.
WorldToolKit Reference Manual 21-9

Chapter 21: Client-Server Networking (Via the World2World Servers)

odify
ge

nce
’s
tion
WTproperty_lock

FLAG WTproperty_lock(
void *object
const char *propname);

This function requests a property lock for the local client so that other clients cannot m
the specified object’s propname property. For more information on property locks, see pa
21-3.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTproperty_unlock

FLAG WTproperty_unlock(
void *object
const char *propname);

This function requests that a property that is locked by the local client be unlocked. O
the local client has unlocked an object’s property, other clients can modify the object
property or can themselves request a lock on the object’s property. For more informa
on property locks, see page 21-3.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTproperty_islocked

unsigned int WTproperty_islocked(
void *object
const char *propname);

This function returns the id of the client who has a lock on the specified object’s propname
property, or 0 if the property isn’t locked.
21-10 WorldToolKit Reference Manual

Sharegroups

rties

ps so
r. Each
ups

hildren
WTproperty_islockedbyme

FLAG WTproperty_islockedbyme(
void *object
const char *propname);

This function returns TRUE if the specified object’s propname property is locked by the
local client, otherwise it returns FALSE.

WTbase_unshare

FLAG WTbase_unshare(
void *object);

This function unshares all of an object’s properties.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

Sharegroups

Sharegroups are container objects that are used to group one or more shared prope
together on a World2World Simulation Server. Sharegroups can also contain child
sharegroups. That is, they can have a parent/child relationship with other sharegrou
that a hierarchical arrangement of sharegroups can be created on a Simulation Serve
Simulation Server (connection) has, by default, a root sharegroup. All other sharegro
created on that Simulation Server will be direct descendants (children) or indirect
descendants of the root sharegroup. Sharegroups that are siblings (that is, they are c
of a common parent sharegroup) must be uniquely named.
WorldToolKit Reference Manual 21-11

Chapter 21: Client-Server Networking (Via the World2World Servers)

ups are
tree.

other
ked

n the

ted on

chen
 also

g
In the sample sharegroup data tree below, the Root, House1, and House2 sharegro
placeholders. They contain no properties and exist only to add structure to the data

Locked Sharegroups

Sharegroups can be locked by a client, causing the Simulation Server to prohibit all
users from adding, moving, or removing properties or child sharegroups within the loc
sharegroup’s subtree, or from modifying the values of any properties contained withi
locked sharegroup’s subtree until the client releases the lock. That is, the lock on a
sharegroup is recursive, affecting not only the properties located directly within the
sharegroup, but also any of its child sharegroups and their properties. Locks are gran
a first-come, first-served basis.

In the preceding example, if a client placed a lock on the House1 sharegroup, its Kit
and Bedroom child sharegroups, and all the properties contained within them would
be locked.

You can immediately lock new sharegroups upon creation through the shareflags
parameter of the WTsharegroup_new function (see page 21-15), or you can lock existin
sharegroups with the WTsharegroup_lock function (see page 21-19).

Root

House1 Outside

Kitchen Bedroom Bedroom

Master Bath

Master Bedroom

House2
21-12 WorldToolKit Reference Manual

Registered Interest

r
 they

r more

eive
om:

ation
, the

e

red
r
utside.
fied
Registered Interest

While the Simulation Server keeps track of the data tree for all sharegroups and thei
properties, clients will only stay up-to-date with the sub-trees of sharegroups in which
have registered interest. Through connection callback events, each client receives
notification of changes occuring to those sharegroups that they are interested in. (Fo
information on connection callbacks, see page 21-22.)

In the sample data tree on page 21-12, suppose a client registers interest in only the
MasterBedroom sharegroup. Upon registering interest, the client will immediately rec
notification of the current children (sub-sharegroups) and properties of MasterBedro

Unlike locks, registered interest is not recursive. So, the client does not receive notific
of the properties of MasterBath. To receive notification of the properties of MasterBath
client would have to also register interest in MasterBath:

If any other client participating in the multi-user simulation adds or removes any
sharegroups or properties to or from MasterBedroom or MasterBath, this client will b
notified of the change so that it can stay up-to-date.

Note that registering and unregistering interest does not affect the distribution of sha
property updates. Suppose a client registers interest in Outside, shares the Sprinkle
property, which belongs to the Outside sharegroup, and then unregisters interest in O
The client will still receive updates made to the Sprinkler property, but will not be noti
if another client removes or adds a property or sharegroup to Outside.

Master Bath

Master Bedroom

Master Bath

Master Bedroom
WorldToolKit Reference Manual 21-13

Chapter 21: Client-Server Networking (Via the World2World Servers)

.

an
n
g one
r.
erties

d to the
selves

f the

re

if at

istent
 of the
he
nt

rver.
You can immediately register interest in new sharegroups upon creation through the
shareflags parameter of the WTsharegroup_new function (see page 21-15), or you can
register interest in existing sharegroups with the WTsharegroup_registerinterest function
(see page 21-20).

Note: By default, every client is NOT interested in the root sharegroup of a connection

Persistent Sharegroups

Sharegroups, like properties, can be flagged as being persistent through the shareflags
parameter of the WTsharegroup_new function. By making a sharegroup persistent, you c
ensure that the sharegroup and its properties will not be removed from the Simulatio
Server, even if all of the clients who are interested in the sharegroup or who are sharin
or more of the sharegroup’s properties have disconnected from the Simulation Serve
Making a sharegroup persistent is equivalent to making each of the sharegroup’s prop
persistent. If a sharegroup is flagged as being persistent, any child sharegroups adde
persistent sharegroup will NOT also be persistent (unless the child sharegroups them
are flagged as being persistent when they are created).

The only way a persistent sharegroup can be deleted from the Simulation Server is i
sharegroup is explicitly removed via a call to WTsharegroup_delete with the forcedelete
parameter set to TRUE. A property of a persistent sharegroup for which no clients a
interested in can be removed from the Simulation Server by calling WTproperty_unshare
with the forcedelete parameter set to TRUE. Note that a sharegroup will be persistent
least one client has specified that the sharegroup is to be persistent.

When a persistent property or persistent sharegroup is hierarchically below a non-pers
sharegroup in the Simulation Server’s data tree, the sharegroups which are ancestors
persistent property or sharegroup are, for all intents and purposes, also persistent. T
sharegroups from the root sharegroup down to the parent sharegroup of the persiste
property (or sharegroup) must be retained on the Simulation Server to maintain the
structural integrity of the sharegroups and properties stored within the Simulation Se
21-14 WorldToolKit Reference Manual

Sharegroup Functions

e

oup

group.
tored

s to
ups
ing
anted
btree

f its

hat
Sharegroup Functions

WTsharegroup_new

WTsharegroup* WTsharegroup_new(

const char *name
WTsharegroup *parent
int shareflags);

This function creates a new sharegroup named name as a child of the specified parent
sharegroup. If a WTconnection is passed in as the parent parameter, then the root
sharegroup of that connection will be used as the parent.

The shareflags parameter can be used to register interest in the sharegroup, lock the
sharegroup, or make the sharegroup persistent immediately upon creation. The thre
options for this argument are:

• WTSHAREFLAG_INTERESTED

• WTSHAREFLAG_LOCK

• WTSHAREFLAG_PERSISTENT

The WTSHAREFLAG_INTERESTED option is used to register interest in the sharegr
so that the local client can be notified of any changes made to the sharegroup on the
Simualtion Server. A notification is sent whenever child sharegroups are added to or
removed from the sharegroup, or if properties are added to or removed from the share
The change notifications make it possible for a client to stay up-to-date with the data s
on the Simulation Server.

The WTSHAREFLAG_LOCK option requests a lock from the Simulation Server so a
prohibit any other user from adding, moving, or removing properties or child sharegro
within the sharegroup’s complete subtree, and to prohibit any other user from modify
the values of any properties contained within the sharegroup’s subtree. If the lock is gr
to the local client, remote clients will not be able to modify the sharegroup and its su
until the local client releases the lock. That is, the lock on a sharegroup is recursive,
affecting not only the properties located directly within the sharegroup, but also any o
child sharegroups and their properties.

The WTSHAREFLAG_PERSISTENT option causes the Simulation Server to make t
sharegroup persistent. By making a sharegroup persistent, you can ensure that the
WorldToolKit Reference Manual 21-15

Chapter 21: Client-Server Networking (Via the World2World Servers)

if all
f the

d to the
selves

ta tree

ise OR
ke the

p

roup

om

oved
leted)
lient.
sharegroup and its properties will not be removed from the Simulation Server, even
of the clients who are interested in the sharegroup or who are sharing one or more o
sharegroup’s properties have disconnected from the Simulation Server. Making a
sharegroup persistent is equivalent to making each of the sharegroup’s properties
persistent. If a sharegroup is flagged as being persistent, any child sharegroups adde
persistent sharegroup will NOT also be persistent (unless the child sharegroups them
are flagged as being persistent when they are created).

The only way a persistent sharegroup can be deleted from the Simulation Server’s da
is through an explicit call to WTsharegroup_delete with the forcedelete parameter set to
TRUE.

These three options can be used independently or can be combined by using the bitw
operator (|). For example, to register interest, request a sharegroup lock, and to ma
sharegroup persistent, set the shareflags parameter to:

(WTSHAREFLAG_LOCK | WTSHAREFLAG_INTERESTED |
WTSHAREFLAG_PERSISTENT).

Set shareflags to 0 if you don’t want to register interest, lock, or make the sharegrou
persistent. For more information on registered interest, see page 21-13. For more
information on locked sharegroups, see page 21-12. For more information on shareg
persistence, see page 21-14.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTsharegroup_delete

FLAG WTsharegroup_delete(

WTsharegroup *shgrp,
FLAG forcedelete);

This function deletes the specified sharegroup. Note that root sharegroups cannot be
deleted. If the forcedelete parameter is set to TRUE, the sharegroup will be removed fr
the Simulation Server even if it is a persistent sharegroup. When a sharegroup is rem
in this manner and there are other clients who have registered interest in this (now de
sharegroup, notification of the sharegroup’s removal will be sent to each interested c
21-16 WorldToolKit Reference Manual

Sharegroup Functions

 a

turn
lly

ription
This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTsharegroup_share

FLAG WTsharegroup_share(
WTsharegroup *group,
int shareflags);

Attempts to share an unshared WTsharegroup. If an asynchronous attempt to create
WTsharegroup fails (WTsharegroup_new returns NULL if a synchronous attempt fails)
you can retry the share with this function. In asynchronous mode, this function will re
TRUE if the request was sent successfully, but doesn’t know if the request will actua
succeed.

The shareflags parameter can be used to register interest in the sharegroup, lock the
sharegroup, or make the sharegroup persistent immediately upon creation. For a desc
of the available options, see WTsharegroup_new on page 21-15.

WTsharegroup_isshared

FLAG WTsharegroup_isshared(
WTsharegroup *group);

This function returns the share status of the WTsharegroup group. Possible return values
are:

0 Share failed

1 Shared

2 Share in progress

WTsharegroup_setdata

void WTsharegroup_setdata(
WTsharegroup *shgrp
void *data);

This function sets the user-defined data field on a sharegroup.
WorldToolKit Reference Manual 21-17

Chapter 21: Client-Server Networking (Via the World2World Servers)

p(s)
WTsharegroup_getdata

void* WTsharegroup_getdata(
WTsharegroup *shgrp

This function returns the user-defined data field on a sharegroup.

WTsharegroup_getconnection

WTconnection* WTsharegroup_getconnection(

WTsharegroup *shgrp);

This function returns the WTconnection on which the specified sharegroup exists.

WTsharegroup_print

void WTsharegroup_print(
WTsharegroup *shgrp

FLAG children
FLAG properties);

This function prints information about the specified sharegroup. If the children parameter
is set to TRUE, information about the sharegroup’s subtree will also be printed. If the
properties parameter is set to TRUE, information about the properties of the sharegrou
will be displayed.

WTsharegroup_getname

char* WTsharegroup_getname(

WTsharegroup *shgrp);

This function returns the name of the specified sharegroup.
21-18 WorldToolKit Reference Manual

Sharegroup Functions

ot
page

d.

, or 0
WTsharegroup_lock

FLAG WTsharegroup_lock(
WTsharegroup *shgrp);

This function requests a sharegroup lock for the local client so that other clients cann
modify this sharegroup’s subtree. For more information on locked sharegroups, see
21-12.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTsharegroup_unlock

FLAG WTsharegroup_unlock(

WTsharegroup *shgrp);

This function requests that a sharegroup that is locked by the local client be unlocke

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTsharegroup_islocked

unsigned int WTsharegroup_islocked(
WTsharegroup *shgrp);

This function returns the id of the client which has a lock on the specified sharegroup
if the sharegroup isn’t locked.

WTsharegroup_islockedbyme

FLAG WTsharegroup_islockedbyme(
WTsharegroup *shgrp);

This function returns TRUE if the specified sharegroup is locked by the local client,
otherwise it returns FALSE.
WorldToolKit Reference Manual 21-19

Chapter 21: Client-Server Networking (Via the World2World Servers)

p for

fied

fied
WTsharegroup_registerinterest

void WTsharegroup_registerinterest(
WTsharegroup *shgrp
FLAG interested);

This function registers interest in the specified sharegroup for the local client if the
interested parameter is set to TRUE and unregisters interest in the specified sharegrou
the local client if the interested parameter is set to FALSE. For more information about
registering interest, see page 21-13.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTsharegroup_getparent

WTsharegroup* WTsharegroup_getparent(
WTsharegroup *shgrp);

This function returns the parent sharegroup of the specified sharegroup. If the speci
sharegroup is a root sharegroup, NULL will be returned.

WTsharegroup_numchildren

int WTsharegroup_numchildren(

WTsharegroup *shgrp);

This function returns the number of sharegroups that are direct children of the speci
sharegroup.

WTsharegroup_getchild

WTsharegroup* WTsharegroup_getchild(
WTsharegroup *shgrp

int childnum);

This function returns the childnum’th child sharegroup of the specified sharegroup.
21-20 WorldToolKit Reference Manual

Sharegroup Functions

id* to
WTsharegroup_findchildbyname

WTsharegroup *WTsharegroup_findchildbyname(
WTsharegroup *group,
const char *name);

Finds an immediate child of group matching name.

WTsharegroup_numproperties

int WTsharegroup_numproperties(
WTsharegroup *shgrp);

This function returns the number of properties of the specified sharegroup.

WTsharegroup_getproperty

char* WTsharegroup_getproperty(

WTsharegroup *shgrp
int propertynum
void **object);

This function returns the name of the propertynum’th property of a sharegroup. Because
properties are specified with an object and a property name, pass in a pointer to a vo
retrieve the object pointer for that property.

Example usage of WTsharegroup_getproperty:

void *object;
char *propname;
propname = WTsharegroup_getproperty(shgrp, 0, &object);

if(propname) {
printf("The object/property is %s:%s\n", WTbase_getname(object),

propname);

}

WorldToolKit Reference Manual 21-21

Chapter 21: Client-Server Networking (Via the World2World Servers)

 is to
t a
ver
gnated
t can
).

erver
 can
 the
e

ss

 a
every
e and

ue
e
n,

to
Network Connections

When a client application starts it will connect to a server where the application’s data
be shared. This process begins with a login call to a World2World Server Manager a
specified port, which determines what simulation this client will be entering. The Ser
Manager then proceeds to direct the client to the Simulation Server that has been desi
to host that particular simulation. Once connected to the Simulation Server, the clien
begin creating sharegroups (see page 21-11) and sharing properties (see page 21-2

To better understand how this process works, see the example provided in the World2World
User’s Guide, Chapter 4, “Starting and Ending World2World.” As the developer of the
simulation, you only need to worry about the host name of the machine on which the S
Manager is located and determining a unique, unused port on that machine that you
associate with your simulation. The system administrator will take care of configuring
World2World servers to ensure that the clients of your simulation are connected to th
appropriate Simulation Server.

The login process involves calling the WTconnection_new function (see page 21-26)
followed by a call to WTconnection_connect (see page 21-28). Because the login proce
is a synchronous process, WTconnection_connect will not return until the client has either
connected to a Simulation Server or timed out trying. Once a client has connected to
Simulation Server, it will be assigned a user name and id. The user name and id for
client in the same simulation (that is, those clients that connect to the same host nam
port, specified by the WTconnection_new function) as the local client can be obtained
through the WTconnection object which is returned from the WTconnection_new function.

Synchronous and Asynchronous Connections

A connection operates in one of two modes, synchronous or asynchronous, specified by the
WTconnection_setsynchronous function (see page 21-30). By default, a connection
operates in asynchronous mode. This mode allows for the client application to contin
executing while requests are being fulfilled by the Simulation Server. For example, th
client can request a property to be shared and continue interacting with the simulatio
being notified at a later time that the property was shared. In synchronous mode, the
connection will wait until that request is fulfilled before allowing the client simulation
continue.
21-22 WorldToolKit Reference Manual

Update Rates

to the
 send

be as
rate

ate
, and

d
f dead

o
.) also
Update Rates

Connections have an update rate, which determines the updates per second for the
connection. This is the number of times per second that the client will send packets
Simulation Server and the number of times per second that the Simulation Server will
packets to the client. The lower the update rate, the lower the packet traffic over the
network.

For modems, or other low-bandwidth mediums, the connection’s update rate should
low as possible. The default behavior is for the connection to match the client frame-
(WTuniverse_getframerate). You can control the connection’s update rate with the
WTconnection_setupdaterate function (see page 21-31). Setting the connection update
frequency to 0 will set the connection’s update rate back to the default client frame-r
matching mode. Any other positive value will be used to override the matching mode
explicitly assign an update rate.

Be aware that reducing the connection’s update rate may require you to employ dea
reckoning techniques to smooth the data updates on receiving clients. An example o
reckoning is provided in the Samples directory of the directory in which you installed
World2World.

Connection Callbacks

Just as changes to property values generate events that you can react to, changes t
Simulation Server data (such as opening new connections, locking sharegroups, etc
generate events that you can react to. These are known as connection events. The actions
that result in the generation of connection events include:

• opening/closing connections

• creating/removing sharegroups

• locking/unlocking sharegroups

• sharing/unsharing properties

• locking/unlocking properties

• adding/removing users

• updating shared property values
WorldToolKit Reference Manual 21-23

Chapter 21: Client-Server Networking (Via the World2World Servers)

vents

rver’s
t might

t
ms to

AL
quest
-local

nts.
Notice that property value changes result in the generation of both property change e
(see page 3-23) and connection events.

You can react to connection events by adding callback functions to connection objects.
These functions are used by the client to understand and react to the Simulation Se
state changes. For example, when a new user enters the Simulation Server, the clien
want to create a geometry node to represent that user.

Callback functions contain a time parameter, which indicates the time at which the even
was generated. This time of event information can be used in dead reckoning algorith
predict the future changes to a property over a specified time frame.

A connection callback function takes the form:

FLAG WTconncb(

WTconnection * conn, connection generating the event

WTconnevent event, event generated

void *data1, see chart below

void *data2, see chart below

double time); time of the event

The table below lists the possible connection events. With the exception of
WTUSER_NEW and WTUSER_DEL, the event types fall into 2 categories: WTLOC
and WTREMOTE. WTLOCAL events are those events that have occurred due to a re
by the local client, whereas WTREMOTE events occur due to requests made by non
clients. WTUSER_NEW and WTUSER_DEL events are fired when anyone (local or
remote) enters or leaves the same entrypoint on the server as this connection.

The return value of the callback function is used only for WTREMOTE_UPDATE eve
For WTREMOTE_UPDATE events, the callback should return TRUE to allow the
network to modify the property value, or FALSE to disallow it.

WTconnevent data1 data2

WTLOCAL_OPENCONN NULL NULL

WTLOCAL_CLOSECONN NULL NULL
21-24 WorldToolKit Reference Manual

Connection Callbacks
WTLOCAL_NEWSHGRP WTsharegroup *sharegrp status
(0=fail, 1=new, 2=existing)

WTLOCAL_DELSHGRP WTsharegroup *sharegrp status
(0=fail, 1=success)

WTLOCAL_LOCKSHGRP WTsharegroup *sharegrp status
(0=fail, >0=userid)

WTLOCAL_UNLOCKSHGRP WTsharegroup *sharegrp status
(0=fail, >0=userid)

WTLOCAL_SHAREPROP WTSHAREINFO *info status
(0=fail, 1=new, 2=existing)

WTLOCAL_UNSHAREPROP WTSHAREINFO *info status
(0=fail, 1=success)

WTLOCAL_LOCKPROP WTSHAREINFO *info status
(0=fail, >0=userid)

WTLOCAL_UNLOCKPROP WTSHAREINFO *info status
(0=fail, >0=userid)

WTLOCAL_ENUMSHGRPDONE WTsharegroup *sharegrp unsigned int enumtreeid

WTREMOTE_UPDATE WTSHAREINFO *info value

WTREMOTE_UPDATEAT WTSHAREINFO *info value

WTREMOTE_NEWSHGRP WTsharegroup *parent char *childname

WTREMOTE_DELSHGRP WTsharegroup *parent char *childname

WTREMOTE_LOCKSHGRP WTsharegroup *sharegrp status
(0=fail, >0=userid)

WTREMOTE_UNLOCKSHGRP WTsharegroup *sharegrp status
(0=fail, >0=userid)

WTREMOTE_SHAREPROP WTsharegroup *parent WTSHAREINFO *info

WTREMOTE_UNSHAREPROP WTsharegroup *parent WTSHAREINFO *info

WTREMOTE_LOCKPROP WTSHAREINFO *info status
(0=fail, >0=userid)

WTconnevent data1 data2
WorldToolKit Reference Manual 21-25

Chapter 21: Client-Server Networking (Via the World2World Servers)

’s list

ified

on

typedef struct _WTSHAREINFO {

WTsharegroup *sharegroup; (NULL for WT*_LOCKPROP, WT*_UNLOCKPROP,

WTREMOTE_UPDATE, WTREMOTE_UPDATEAT)

int objecttype;

char *objectname;
char *propname;
int datatype;

void *object; (NULL for WTREMOTE_SHAREPROP and WTREMOTE_UNSHAREPROP)

} WTSHAREINFO;

Connection Functions

All of the following WTconnection functions will accept NULL as the WTconnection
pointer parameter and tells WTK to use the first WTconnection object on the universe
of connections. This is useful if there is only one connection in the application.

WTconnection_new

WTconnection* WTconnection_new(
const char *host
unsigned short port

const char *usrname
const char *passwrd);

This function defines a new connection to the World2World Server Manager at a spec
port. To connect this connection, call WTconnection_connect (see page 21-28). Based on
the port number, the Server Manager will direct the client to the appropriate Simulati
Server as configured (see the World2World User’s Guide for details on this process). This

WTREMOTE_UNLOCKPROP WTSHAREINFO *info status
(0=fail, >0=userid)

WTUSER_NEW unsigned int userid char *username

WTUSER_DEL unsigned int userid char *username

WTconnevent data1 data2
21-26 WorldToolKit Reference Manual

Connection Functions

timed

 to
ecify

sfor
call is synchronous and will not return until a connection has been made, refused, or
out. The password argument is not currently used.

Note: When choosing a port number for the Server Manager, keep in mind that ports 0
1024 are generally used by your operating system. You will probably want to sp
a number between 1025 and 32,000. Check with your system administrator to
determine whether certain ports are available.

WTconnection_delete

void WTconnection_delete(
WTconnection *c);

This function disconnects and deletes a connection.

WTconnection_setdata

void WTconnection_setdata(
WTconnection *c
void *data);

This function sets the user-defined data field on a connection.

WTconnection_getdata

void* WTconnection_getdata(
WTconnection *c);

This function returns the user-defined data field on a connection.

WTuniverse_getconnections

WTconnection* WTuniverse_getconnections(

void);

This function returns a pointer to the first connection in the universe’s list of connection
the local client. Use WTconnection_next to iterate through the list of connections.
WorldToolKit Reference Manual 21-27

Chapter 21: Client-Server Networking (Via the World2World Servers)

d by
WTconnection_next

WTconnection* WTconnection_next(
WTconnection *c);

This function returns the next connection in the local client’s list of connections. Use
WTuniverse_getconnections to retrieve the first connection in the list.

WTuniverse_deleteconnections

void WTuniverse_deleteconnections(

void);

This function deletes all connections made by the local client.

WTconnection_connect

FLAG WTconnection_connect(
WTconnection *c);

This function attempts to connect to the World2World Server Manager and port
represented by the specified connection object. Returns TRUE if the connection was
successful.

WTconnection_disconnect

FLAG WTconnection_disconnect(
WTconnection *c);

This function disconnects from the World2World Server Manager and port represente
the specified connection object.

WTconnection_getmyid

unsigned int WTconnection_getmyid(

WTconnection *c);

This function returns the local client’s id for the specified connection.
21-28 WorldToolKit Reference Manual

Connection Functions

tency,
.

 called

This
WTconnection_getmyname

const char* WTconnection_getmyname(
WTconnection *c);

This function returns the local client’s name for the specified connection.

WTconnection_getstatus

int WTconnection_getstatus(

WTconnection *c);

This function returns the current status of a connection. Possible return values are
WTCONNSTATUS_CONNECTED, WTCONNSTATUS_DISCONNECTED.

WTconnection_print

void WTconnection_print(
WTconnection *c);

This function prints information about a connection such as status, latency, average la
local user id, local user name, list of all users, and the sharegroup/property hierarchy

WTconnection_update

void WTconnection_update(
WTconnection *c);

This function updates a connection (send and receive packets). This function must be
if the client does not call WTuniverse_go or WTuniverse_go1.

WTuniverse_updateconnections

void WTuniverse_updateconnections(

void);

This function updates all connections of the local client (send and receive packets).
function must be called if the client does not call WTuniverse_go or WTuniverse_go1.
WorldToolKit Reference Manual 21-29

Chapter 21: Client-Server Networking (Via the World2World Servers)

rs).

 time

n the
WTconnection_synch

FLAG WTconnection_synch(
WTconnection *c);

This function waits for pending requests to be fulfilled (returns FALSE if time out occu

WTconnection_getlatency

double WTconnection_getlatency(

WTconnection *c);

This function returns the latency associated with a connection. That is, the amount of
it takes for packets to be transmitted to or from a World2World Simulation Server.

WTconnection_getclockdiff

double WTconnection_getclockdiff(
WTconnection *c);

This function returns the time, in seconds, that the local and World2World Simulation
Server clocks differ.

WTconnection_setsynchronous

void WTconnection_setsynchronous(
WTconnection *c
FLAG synchronous);

If the synchronous parameter is TRUE, this function sets the operating mode of a
connection to synchronous. If FALSE, the operating mode will be asynchronous. By
default, the operating mode of a connection is asynchronous. For more information o
synchronous and asynchronous modes of a connection, see page 21-22.
21-30 WorldToolKit Reference Manual

Connection Functions

turns

ata
nshare
e rate.
ame

for a
WTconnection_issynchronous

FLAG WTconnection_issynchronous(
WTconnection *c);

This function returns TRUE if the operating mode of a connection is synchronous, re
FALSE otherwise.

WTconnection_setupdaterate

void WTconnection_setupdaterate(

WTconnection *c
unsigned short fps);

This function sets the rate at which data packets are sent over the connection. The fps
parameter indicates how many times per second that data packets should be sent. D
packets include such data as property value changes, lock/unlock requests, share/u
requests, etc. By default, a connection’s update rate is set to match the client’s fram
If a fps of 0 is specified, the connection’s update rate will be set to match the client’s fr
rate. For more information about a connection’s update rate, see page 21-23.

WTconnection_getupdaterate

unsigned short WTconnection_getupdaterateq(

WTconnection *c);

This function returns the the number of times per second that data packets are sent
connection. Data packets include such data as property value changes, lock/unlock
requests, share/unshare requests, etc.

WTconnection_addcallback

void WTconnection_addcallback(
WTconnection *c

WTconncb cb);

This function adds a callback to a connection. For more information on connection
callbacks, see page 21-23.
WorldToolKit Reference Manual 21-31

Chapter 21: Client-Server Networking (Via the World2World Servers)
WTconnection_removecallback

void WTconnection_removecallback(
WTconnection *c
WTconncb cb);

This function removes a callback from a connection.

WTconnection_numcallbacks

int WTconnection_numcallbacks(
WTconnection *c);

This function returns the number of callbacks on a connection.

WTconnection_getcallback

WTconncb WTconnection_getcallback(

WTconnection *c
int conncbnum);

This function returns a numbered callback on a connection.

WTconnection_getroot

WTsharegroup* WTconnection_getroot(

WTconnection *c);

This function returns the root sharegroup for a connection.

WTconnection_numusers

unsigned int WTconnection_numusers(
WTconnection *c);

This function returns the number of users on a connection.
21-32 WorldToolKit Reference Manual

Connection Functions
WTconnection_getuserid

unsigned int WTconnection_getuserid(
WTconnection *c
unsigned int usernum);

This function returns a numbered user’s id.

WTconnection_getusername

const char* WTconnection_getusername(
WTconnection *c
unsigned int usernum);

This function returns a numbered user’s name.

WTconnection_getuseridbyname

unsigned int WTconnection_getuseridbyname(
WTconnection *c
const char*username);

Given a user name, this function returns a user’s id.

WTconnection_getusernamebyid

const char* WTconnection_getusernamebyid(
WTconnection *c
unsigned int userid);

Given a user id, this function returns a user’s name.
WorldToolKit Reference Manual 21-33

Chapter 21: Client-Server Networking (Via the World2World Servers)

 of the

t of an
cts

ct
e each
h
Enumeration

Enumeration is the process of a client requesting and receiving a copy, or snapshot,
Simulation Server’s data tree or sub-tree, i.e. its sharegroups and properties. An
enumeration can be requested for any WTsharegroup object on the client. The resul
enumeration is a data tree consisting of a hierarchical arrangement of WTbase obje
which represent the data on the Simulation Server. See Example of an Enumeration Tree
below for more details.

Each enumeration tree is created by calling WTsharegroup_enumerate. Each enumeration
tree is stored on the local client machine and is accessed via the WTconnection obje
which corresponds with the Simulation Server whose data has been enumerated. Sinc
connection can store an unlimited number of enumeration trees simultaneously, eac
enumeration tree is assigned an id number. The enumeration tree id along with the
WTconnection pointer can be passed into the WTconnection_getenumtreebyid function to
return a pointer to the root WTbase object of the corresponding enumeration tree. The
WTbase_* functions such as WTbase_numchildren and WTbase_getchild can be used to
access each element of the enumeration tree.

Example of an Enumeration Tree

WTbase objects ID property Value property

W2WEnumTree enumtreeid=22

ROOT shgrpid=0

users shgrpid=92

USR_15 shgrpid=93

Darts shgrpid=94

Dart15_0:Translation dataid=107 value=-54.01,-38.45,195.00

Dart15_0:Rotation dataid=108 value=0.08,0.09,0.52,0.23

Dart15_1:Translation dataid=109 value=-53.79,-38.3,195.00

Dart15_1:Rotation dataid=110 value=0.08,0.09,0.09,0.93
21-34 WorldToolKit Reference Manual

Example of an Enumeration Tree

ee
e

f
 on the

e

ponds
. The
en it

The W2WEnumTree WTbase object is the WTbase returned by
WTconnection_getenumtree and WTconnection_getenumtreebyid. This object has one
property, enumtreeid, of type WTUINT which contains the enumtreeid for the WTbase tr
it contains. The only child of the W2WEnumTree object is a WTbase representing th
WTsharegroup that was enumerated with a call to WTsharegroup_enumerate; we refer to
it as the root of the enumeration. Under the root of the enumeration is a hierarchy o
WTbase objects representing the sharegroups and properties (if requested) contained
server.

Each WTbase object has an ID property, either shgrpid or dataid of type WTUINT. If the
object has a shgrpid property, it represents a WTsharegroup object, and the name of th
WTbase object corresponds to the name of the WTsharegroup. If the object has a dataid
property, it represents a shared property, and the name of the WTbase object corres
to the name of the object, followed by the name of the property (separated by a colon)
value property on these WTbase objects is the value of the property on the server wh
was enumerated. The datatype of this value property corresponds to the datatype of the
property on the server.

USR_15:msg dataid=95 value=Hi, want to play?

USR_15:url dataid=96 value=http://www.s8.com/bill.wrl

USR_15:Rotation dataid=97 value=0.00,0.00,0.00,1.00

USR_15:Translation dataid=98 value=0.00,-75.00,0.00

USR_16 shgrpid=99

Darts shgrpid=100

Dart16_0:Translation dataid=105 value=0.00,0.00,195.00

Dart16_0:Rotation dataid=106 value=0.22,0.00,0.00,0.97

USR_16:msg dataid=101 value=Sure, hold on...

USR_16:url dataid=102 value=http://www.s8.com/rog.wrl

USR_16:Rotation dataid=103 value=0.00,0.00,0.00,1.00

USR_16:Translation dataid=104 value=0.00,-50.00,0.00

WTbase objects ID property Value property
WorldToolKit Reference Manual 21-35

Chapter 21: Client-Server Networking (Via the World2World Servers)

l
erver.

o be

 tree.

s
ction

cified
WTsharegroup_enumerate(

unsigned int WTsharegroup_enumerate(
WTsharegroup *parent,
FLAG recursive,

FLAG properties);

This function requests an enumeration of the specified parent sharegroup so that the loca
client has a copy or snapshot of the current state of the data tree on the Simulation S
If the recursive parameter is set to TRUE, the specified sharegroup’s sub-tree will als
enumerated. If the properties parameter is set to TRUE, the enumeration tree will also
contain information about the properties contained within the Simulation Server’s data
The return value of this function is the enumeration tree’s id. Use
WTconnection_getenumtreebyid to obtain a pointer to the root WTbase object of the
enumeration tree.

If the WTconnection that the parent sharegroup belongs to is in synchronous mode, thi
function will not return until the enumeration tree has been created or until the conne
times out.

This function is, by default, asynchronous unless the connection’s mode is set to
synchronous. See WTconnection_setsynchronous on page 21-30.

WTconnection_deleteallenumtrees

void WTconnection_deleteallenumtrees(
WTconnection *connection);

This function deletes all of the enumeration trees that are currently stored with the spe
WTconnection object.

WTconnection_deleteenumtreebyid

void WTconnection_deleteenumtreebyid(
WTconnection *connection,
unsigned int enumid);

This function deletes the specified enumeration tree from a WTconnection object.
21-36 WorldToolKit Reference Manual

Example of an Enumeration Tree

on
up

t of the

a
WTconnection_getenumtreebyid

WTbase *WTconnection_getenumtreebyid(
WTconnection *connection,
unsigned int enumid);

This function returns the root WTbase object of the enumeration tree whose enumerati
tree id is enumid. The root WTbase object represents the Simulation Server’s sharegro
which was enumerated via a call to WTsharegroup_enumerate. Children of this WTbase
object are other WTbase objects. The entire WTbase hierarchy represents a snapsho
Simulation Server’s data sub-tree.

WTconnection_numenumtrees

unsigned int WTconnection_numenumtrees(
WTconnection *connection);

This function returns the number of enumeration trees currently stored with a
WTconnection object.

WTconnection_getenumtree

WTbase *WTconnection_getenumtree(

WTconnection *connection,
unsigned int nenumtree);

This function returns the root WTbase object for an enumeration tree of the specified
connection by index. The root WTbase object represents the Simulation Server’s
sharegroup which was enumerated via a call to WTsharegroup_enumerate. Children of this
WTbase object are other WTbase objects. The entire WTbase hierarchy represents
snapshot of the Simulation Server’s data sub-tree.
WorldToolKit Reference Manual 21-37

Chapter 21: Client-Server Networking (Via the World2World Servers)

ou
jects
 pre-
WTconnection_getenumtreeid

unsigned int WTconnection_getenumtreeid(
WTconnection *connection,
unsigned int nenumtree);

This function returns the enumeration tree id for an enumeration tree of the specified
connection by index.

WorldToolKit and World Up Compatible
Properties

If you are developing multi-user applications with both WorldToolKit and World Up, y
may be interested to know that some of the pre-defined properties of WorldToolKit ob
are directly compatible with properties of World Up objects. The table below lists the
defined WorldToolKit property in the left column and the corresponding World Up
property in the right column.

WorldToolKit World Up

WTNODE_BOUNDINGBOX Bounding Box

WTNODE_CHILDREN Children

WTNODE_ENABLED Enabled

WTNODE_ROTATION Rotation

WTNODE_TRANSLATION Translation

WTANCHOR_LOCATION URL

WTFOG_COLOR Color

WTFOG_LINEARSTART Linear Start

WTFOG_MODE Is Exponential

WTFOG_RANGE Range
21-38 WorldToolKit Reference Manual

WorldToolKit and World Up Compatible Properties
WTINLINE_LOCATION Location

WTLIGHT_ANGLE Angle

WTLIGHT_ATTENTUATION Attentuation

WTLIGHT_EXPONENT Exponent

WTLIGHT_INTENSITY Intensity

WTLOD_RANGE Ranges

WTSWITCH_WHICHCHILD Active Child

WTVIEWPOINT_ORIENTATION Orientation

WTVIEWPOINT_PARALLAX Parallax

WTVIEWPOINT_POSITION Position

WTWINDOW_BGRGB Background Color

WTWINDOW_HITHER Hither Clipping

WTWINDOW_ROOTNODE Root Node

WTWINDOW_VIEWPOINT Viewpoint

WTWINDOW_VIEWANGLE View Angle

WTWINDOW_YON Yon Clipping

WTSENSOR_ANGULARRATE Angular Rate

WTSENSOR_MISCDATA Misc Data

WTSENSOR_ROTATION Rotation

WTSENSOR_SENSITIVITY Sensitivity

WTSENSOR_TRANSLATION Translation

WTPATH_DIRECTION Forward

WTPATH_PLAYING Playing

WTPATH_PLAYSPEED Speed

WorldToolKit World Up
WorldToolKit Reference Manual 21-39

Chapter 21: Client-Server Networking (Via the World2World Servers)
WTPATH_RECORDING Recording

WTPATH_RECORDLINK Record From

WorldToolKit World Up
21-40 WorldToolKit Reference Manual

sly
llows

ture.

e
 to
 world.
 are
twork

that

not

 is
.

n on

ding
ject.
22
Multicast Networking

Introduction to Networking in WTK

WTK’s networking capability enables you to build applications that can asynchronou
communicate over an Ethernet between several PCs and UNIX workstations. This a
distributed simulations to be created where a mixture of PCs and UNIX workstations
support a single simulation. Note that additional licenses are required to use this fea

This functionality is provided in the form of calls such as WTnet_open, WTnet_close,
WTnet_additem and WTnet_removeitem. To help you develop an application using thes
calls, WTK provides a demo program called “netdemo.c” which allows multiple users
share the same virtual world. In this demo, each user can see the other people in the
Graphical objects (called “avatars”) represent the other people in the simulation and
located at the other users’ viewpoints. The demo can also measure the amount of “ne
lag” in the simulation at any point in time. This demo is just an example of the many
possibilities enabled by these functions. The following terminology will be used when
discussing distributed simulations:

Local The objects residing on the local computer.

Remote The objects residing on simulation hardware other than
of the local computer.

Private Objects that only exist on the local computer. They are
part of the distributed simulation.

Public Objects that are part of the distributed simulation. They
may be controlled from a single computer, but their state
updated on all computers participating in the simulation

WTK network applications share a common API so that a single application can be ru
both PC and UNIX platforms without modification. However, the procedure for
configuring your Windows system to use the network capability varies greatly depen
on the platform. Please consult your hardware guide for more information on this sub

Chapter 22: Multicast Networking

X or
use.

ng off
een

r

Figure 22-1 illustrates the WTK networking layers that are discussed in this chapter.

Figure 22-1: WTK networking layers.

How the Transport Layer Works

At the transport layer, multiple PCs or UNIX workstations have to be connected with
standard ethernet hardware and cabling. WTK supports only the DEC/Intel/Xerox (DI
referred to as the Bluebook Ethernet) standard. This is what almost all workstations
WTK does not support 802.3/802.5, or Token Ring.

PCs can either have their own physical and independent network, or they can be stru
the same Ethernet line used for the UNIX workstations. Byte-ordering problems betw
PCs and workstations are handled invisibly by WTK (though there are some user
considerations).You must make sure that your PC network is configured in the prope
Ethernet fashion as there are many different methods of fashioning networks for PC
systems. Consult your system administrator if you have any questions or prior to
connecting any new machines to a pre-existing network.

Application Layer

WTK Layer

Transport Layer

Protocol Layer

*

*
*

*

*

22-2 WorldToolKit Reference Manual

How the Protocol Layer Works

ou
the
ternet

ub-
ct on

ations
dress
ion to
that

ween
 These

e
How the Protocol Layer Works

WTK’s networking capability is built upon IP and UDP guidelines. This means that y
can use this capability on top of pre-existing networks without causing problems for
entire network. This also means that it is possible to multicast messages onto the In
for geographically disbursed simulations.

Packets from a particular machine are multicast to the network (UDP) instead of
communicated point-to-point (TCP). Multicasting allows for communication to other s
nets based upon proper routing information. Multicasting also imposes less of an impa
the network than broadcasting.

How the WorldToolKit Layer Works

Networked communications are initialized by a call to WTnet_open. This call does not
check to see if the network is up and running; it assumes this is the case. Communic
with other machines on the network is established by using a valid multicast group ad
(Internet class D address). These range from 224.0.0.0 to 239.255.255.255. In addit
the group address, simulation machines will only communicate with other machines
share identical port addresses. This information is passed to WTK through the WTnet_open
call.

Once connectivity has been achieved, application-specific information is passed bet
machines using discrete message items that are assembled into valid UDP packets.
message items are assembled by the application using the WTnet_additem function, and
sent out onto the network automatically by WTK. (See WTnet_flush on page 22-13 for
information on sending messages outside of the simulation loop.)

The receiving application processes these message items by stripping them out of th
packet using the WTnet_removeitem function.
WorldToolKit Reference Manual 22-3

Chapter 22: Multicast Networking

t are
cur,
r

n and

ple,
t), or
eived

 the
, only
his

y to
ocal

sage

emote
How the Application Layer Works

Communication is limited to the transmittal and receipt of specific message items tha
multicast to the network. While WTK provides the substrate for communications to oc
your application (and not WTK) defines what information these items contain. In othe
words, it is the application’s responsibility to make sense of these pieces of informatio
to do something with them.

In the netdemo.c program, each machine sends individual message items that, for exam
describe the position and orientation of the local viewer (an example of a public objec
describe an application specific event. Each machine also checks whether it has rec
any message items from other machines. If so, it extracts them using the
WTnet_removeitem function (see page 22-11). This information is then used to update
state of the local simulation. Because each machine is running an identical simulation
changes in the state of a particular machine need to be passed to other machines. T
minimizes the information passed across the network.

Sample Transaction

Local Machine

In this example, the local user changes their viewpoint, which moves their virtual bod
a different position and orientation. This avatar (a graphical object representing the l
user) is an example of a local, public object.

When the local machine enters its user-defined action function (see WTuniverse_setactions
on page 2-12), an application function (net_actions) executes. This function uses
WTnet_additem to send the current position and orientation of the local viewer.

In the same net_actions routine on the local machine, the WTnet_next function is called to
see whether any valid message items have arrived from a remote machine. If a mes
item has been received, it is extracted and decoded using the WTnet_removeitem function.
For example, these message items might describe the position and orientation of the r
public objects.
22-4 WorldToolKit Reference Manual

Remote Machines

r
ceived

mote
 the

ing in

n these

t case
end,
ual
Remote Machines

When each of the remote machines reach their net_actions function, they also send
messages that describe the position and orientation of their local public objects (thei
viewpoints in this case). Each remote machine then processes the message items re
from other machines.

When a message item containing the new position and orientation information for a re
user’s viewpoint is received, this information is used to move the avatar representing
remote user to the updated location.

This cycle of sending and receiving application-specific messages is repeated, result
a distributed simulation.

Message Latency

The time it takes for a change in the distributed simulation (such as changing the
appearance of a remote object) to propagate through the entire simulation depends o
factors:

• The number of machines in the simulation

• The current packet traffic

• The frame-rate of the slowest machine in the network

• The network’s communication bandwidth and latency

In a worst case scenario, this latency could be upwards of several seconds. In a bes
scenario, you will experience at least a two-frame propagation delay (one frame to s
one frame to receive, and process/display). Based on this, you can calculate the act
latency or propagation delay in your particular application.
WorldToolKit Reference Manual 22-5

Chapter 22: Multicast Networking

t of
e byte

e of
use the

rage
Byte Ordering

Data is transmitted over the network in “net” order (big-endian byte order). This is no
concern to the user unless data is being transferred to different types of machines. Th
swapping is handled internally by WTK as long as the data type is known. However,
structures containing members that are less than four bytes in size must be declared
differently on different platforms. This is because different platforms handle byte-
alignment and padding differently. (See the discussion about message types in Network
Functions on page 22-7.) Here is an example of declaring such a structure:

#if WIN32 /* Intel and DEC order */
typedef struct xxyyzz {

char cc;

char bb;
short aa;
float dd;

} xxyyzz;
#else /* SGI or SUN order */
typedef struct xxyyzz {

short aa;
char bb;
char cc;

float dd;
} xxyyzz;
#endif /* WIN32 */

WTK’s WTpq structure, which consists of arrays of floating point values, is an exampl
a structure where the storage order is transparently handled between machines, beca
structure members are all 4-byte aligned. The examples under the WTnet_additem and
WTnet_removeitem functions illustrate how to send and receive WTpq’s over the net. You
may need to consult your compiler documentation for more information about data sto
order and alignment on your machine.
22-6 WorldToolKit Reference Manual

Network Functions

ems
er on

e
d 255,
erved

ch
the tag
having

efore

ny
Network Functions

Network communications are established using the concept of individual message it
that are assembled into IP/UDP packets, which are then sent to a specific port numb
the network. Only simulations that are “listening” to the particular port will be able to
receive the packet.

Each message item has a type and tag field associated with it. The type field describes th
contents of the buffer being passed. The value of the type field must be between 1 an
so that the user can define up to 255 different types of messages. The value 1 is res
for char data, and value 2 is reserved for shorts.

The tag field is used as an identifier, for example to identify the WTK object with whi
the message item is associated. The WTK application defines constants to use with
field. Tags may range between 0 and 65535. To distinguish between message items
the same type value, different tag values must be used.

Message items must be at least one byte in length but no more than 256 bytes.

WTnet_open

FLAG WTnet_open(
char *group,
unsigned short port,

unsigned char range);

This function opens up the network if it hasn’t already been opened. It must be called b
other network functions are called. It returns 0 (zero) if WTnet_open has already been
called or if the network could not be opened. If a NULL or zero value is supplied for a
of the parameters, then the default values for those parameters are used.
WorldToolKit Reference Manual 22-7

Chapter 22: Multicast Networking

.88.”
ed. All
r to
 range
eady

ort

ith

fault
cket
alue

). The

d
The group parameter specifies the multicast IP address. The default group is “224.0.0
This parameter must be a valid multicast address that has not been previously assign
machines in the distributed simulation must have the same group parameter in orde
communicate with each other. A valid multicast address must be an IP address in the
from 224.0.0.0 to 239.255.255.255. Within this range the following addresses are alr
assigned (via RFC 1340), and so cannot be used:

224.0.0.0 - 224.0.0.9
224.0.1.0 - 224.0.1.9
224.0.2.1 - 224.0.2.2

224.0.3.0 - 224.0.4.255
224.1.0.0 - 224.2.255.255
232.0.0.0 - 232.255.255.255

The port number specifies which port to talk or listen to on the network. The default p
number is 1233. The range of valid port numbers is (1024-5000). All machines in the
distributed simulation must have the same port parameter in order to communicate w
each other.

The range parameter specifies the Internet Protocol Time to Live value which has a de
value of 1 (one). This parameter determines the life of the packet. Every time the pa
passes through a network gateway, the packet’s life is decremented. Once the life v
reaches zero, the packet “dies” and is no longer propagated through the net. If
communication is to take place only over a subnet, the range value should be 1 (one
range value must be between 1 and 255.

In the following example, WTnet_open is called, and the default values for group, port, an
range are assigned.

/* open the network using all default parameter values */
WTnet_open(NULL, 0, 0);

The following example calls WTnet_open with user-defined parameters:

/* open the network with user defined parameter values */

WTnet_open(“224.3.2.1”, 4567, 2);
22-8 WorldToolKit Reference Manual

Network Functions

tures.

or the
SE is

inable
e of
ferent
d for
LSE

ith
 to be

n

WTnet_close

void WTnet_close(
void);

This function closes the network, if it is currently open, and deletes private data struc

WTnet_additem

FLAG WTnet_additem(

void *item,
int len,
int type,

int tag);

This function adds an item to the packet sent over the network. If the net is not open
item length is greater than 256 or less than 1 (one), then the call is rejected and FAL
returned.

Each message item has a type and tag field associated with it along with the user-def
item buffer. The type field describes the contents of the buffer being passed. The valu
the type field must be between 1 and 255, which means you can define up to 255 dif
types of messages. The value 1 is reserved for char data, and the value 2 is reserve
shorts. If the type value passed in to this function is less than 1 or greater than 255, FA
is returned.

The tag field is an identifier. For example, you can use it to identify the WTK object w
which the message item is associated. Your WTK application should define constants
used for the tag field. Tags may range between 0 and 65535. To distinguish betwee
message items having the same type value, different tag values must be used.

In the following example, a WTpq structure containing viewpoint information is sent out
on the net. An example of retrieving this message is provided under the function
WTnet_removeitem.

/* define message type (can’t use 1 or 2, which are reserved)
so that receiving end knows what type of msg being sent */

#define NETVIEWPOS 5

/* the parameter myid is a unique identifier, which lets the
WorldToolKit Reference Manual 22-9

Chapter 22: Multicast Networking

ction
 type
receiving applications know the msg came from me. */
void net_sendview(int myid)
{

WTpq myview;
WTviewpoint_getposition(WTuniverse_getviewpoints(), myview.p);
WTviewpoint_getorientation(WTuniverse_getviewpoints(), myview.q);

WTnet_additem(&myview, sizeof(WTpq), NETVIEWPOS, myid);
}

WTnet_addstring

FLAG WTnet_addstring(

void *string,
int len,
int type,

int tag);

This function adds an item to be sent over the network, whose data is a string. This fun
allows you to either use the reserve type number 1 for char data, or to use a defined
value other than 1 for sending char data. Otherwise, the function is the same as
WTnet_additem. This is an example that sends char data as type 8:

/* we could use the predefined message type 1
for char data, but we define our own */

#define MYCHARTYPE 8

void send_hello(void)
{

char *msg = “Hello”;

/* note that 1 is added to strlen */
WTnet_addstring(msg, strlen(msg)+1, MYCHARTYPE, 0);

}

22-10 WorldToolKit Reference Manual

Network Functions

s no

ext

.

is the

n of
e
WTnet_next

int WTnet_next(
int *tag,
int *retlen);

This function determines what the next available item is. A return value of zero mean
data is available while a return value greater than zero indicates the type of the next
available item. The tag and retlen parameters are set to the corresponding values of the n
available item.

An example for this function is provided under WTnet_removeitem, below.

WTnet_removeitem

int WTnet_removeitem(
void *item,
int len,

int *tag,
int *retlen);

This function copies the next available item into the buffer specified by the item parameter.
If the length of the item is greater than the len parameter, a return value of -1 is returned
The retlen parameter is set to the length of the item. The tag parameter is set to the tag
associated with the item.

If no item was available, a value of 0 (zero) is returned. If successful, the return value
type of the item.

In the following code fragment, a message item corresponding to the viewpoint locatio
a remote machine is obtained from the network and used to update the location of th
remote user’s avatar. The array of graphical objects representing the users, netobjects, is
assumed to have been set elsewhere in the application.

/* define maximum number of nodes */

#define NUMNODES 16
/* define viewpoint message type */
#define NETVIEWPOS 5

int type, tag, retlen;
WorldToolKit Reference Manual 22-11

Chapter 22: Multicast Networking

e
WTpq remoteview;
WTm4 mview;

WTnode *netobjects[NUMNODES]; /* These are assumed to be movable geometry

nodes */

/* process incoming packets */
while ((type = WTnet_next(&tag, &retlen)) > 0) {

switch (type) {
case NETVIEWPOS:

WTnet_removeitem(&remoteview, sizeof(WTpq), &tag, &retlen);

WTpq_2m4(&remoteview,mview);

/* the tag identifies which remote user packet came from */
if (tag>=0 && tag<NUMNODES) {

WTnode_settransform(netobjects[tag], mview);
}
break;

/* handle other cases as required by application... */

default:
WTnet_skip();

}
}

WTnet_removestring

int WTnet_removestring(

void *item,
int len,
int *tag,

int *retlen);

This function is the same as WTnet_removeitem but is used to get data that is known to b
a string.
22-12 WorldToolKit Reference Manual

Network Functions

after
s

r

 loop,
WTnet_skip

void WTnet_skip(
void);

This function removes the next available item from the input queue. Use this function
a call to WTnet_next if the next item is not needed. An example of using this function i
provided under WTnet_removeitem.

WTnet_flush

void WTnet_flush(

void);

This function ensures that all message items added by previous calls to WTnet_additem and
WTnet_addstring are sent out on the network. There is no need to call this function fo
message items added while the simulation is running (i.e., after calling WTuniverse_go),
since this is handled internally. However, to send a message outside of the simulation
for example, during initialization of a simulation, you must call this function.

WTnet_getrange

FLAG WTnet_getrange(
void);

This function returns the current range (Time to Live) value.

WTnet_getport

unsigned short WTnet_getport(
void);

This function returns the current port value.
WorldToolKit Reference Manual 22-13

Chapter 22: Multicast Networking
22-14 WorldToolKit Reference Manual

l
sor
our
23
Serial Ports

Introduction to the Serial Port Class

The functions described in this chapter simplify the task of communicating over seria
ports. They can be used to communicate with an input device following the WTK sen
driver specification (see Appendix E) or for any other serial communication. Consult y
Hardware Guide for system-specific considerations concerning serial ports.

Serial Port Construction and Destruction

WTserial_new

For Windows 32-bit platforms:

WTserial *WTserial_new(
char *port,
int baud,

char parity,
int databits,
int stopbits,

int buffersize);

For UNIX platforms:

WTserial *WTserial_new(

char *port,
int baud);

Chapter 23: Serial Ports

s

e

assed

 serial
t is

rt of

Arguments:

port A character string that identifies the serial port on your
machine. You may use the platform independent define
SERIAL1, SERIAL2.... as the “port.”

baud Specifies the baud rate at which communication will tak
place over the serial port. Valid values are 1200, 2400,
4800, 9600, 19200, 38400, 57600.

parity Specifies parity. “N” for no parity.

databits Specifies number of data bits. (8 for 8 data bits).

stopbits Specifies number of stop bits. (1 for 1 stop bit).

buffersize Specifies the number of bytes in a circular buffer. This
argument is ignored for now, so a dummy value of 256
should do.

This function creates a serial port object. Once created, the serial port object can be p
in to the generic sensor construction function WTsensor_new (see page 13-7), when you
wish to create a sensor object whose records are obtained by communication over the
port. However, if you are using the device-specific macro to create a sensor object, i
unnecessary to call WTserial_new because the macro creates the serial port object by
calling WTserial_new.

Examples for this function are provided in the device-specific macro definitions in the
sensor.h file in the include directory.

WTserial_delete

void WTserial_delete(

WTserial *serial);

This function frees a serial port object. If you are using the serial port functions as pa
a WTK sensor driver, it is unnecessary to call WTserial_delete when you are done with the
sensor object because WTsensor_delete (see page 13-10) calls WTserial_delete.
23-2 WorldToolKit Reference Manual

Reading and Writing to a Serial Port Object

 into

ware

e retry

ters
es

ead,
 to
rs

ing at
s -1.

cters

Reading and Writing to a Serial Port Object

WTserial_read

short WTserial_read(
WTserial *serial,
char *data,

int length,
FLAG retry);

This function reads a string of a specified length (number of bytes) from a serial port
the buffer called data. It returns the number of characters that were actually read. The
length requested must be no larger than the buffer size for the serial port. Your Hard
Guide describes how this buffer size is set. The serial argument refers to the serial port
object from which you want to read data.

The retry flag is used to specify what should happen if fewer bytes than the requested
number are actually available. This can happen if WTserial_read calls are made in such
rapid succession that the requested number of characters hasn’t had time to arrive. Th
flag is used as follows.

On Windows 32-bit platforms:

If the retry flag is set, WTK polls the serial port until either the desired number of charac
have been read or the clock times out. (The default value for the time-out is three tim
CLOCKS_PER_SEC.) If time-out occurs before the desired number of characters are r
the “data” field contains the characters read so far (if any), but the function returns -1
indicate an incomplete read. If however, WTK is able to read the number of characte
desired (in the allowed time), this function returns the number that were read. If the retry
flag is not set, WTK polls the serial port just once, reads any characters that are wait
the port, and returns the number read. If there are no characters to be read, it return

On UNIX platforms:

If the retry flag is set, WTK polls the serial port to see if the requested number of chara
are there to be read. The port is read only if the number of characters available is greater
than or equal to the number desired. Otherwise, WTserial_read just returns -1 without
reading even the ones that are waiting at the port. If the retry flag is not set, WTserial_read
WorldToolKit Reference Manual 23-3

Chapter 23: Serial Ports

d. It

t. The

 of
t

te

 data
bject,
reads the characters available at the port but NOT greater than the number requeste
returns the number of characters read (-1 if none are read).

WTserial_ntoread

int WTserial_ntoread(
WTserial *serial);

This function determines how many characters are waiting to be read at the serial por
serial argument refers to the serial port object being read.

WTserial_write

short WTserial_write(

WTserial *serial,
char *buffer,
int length);

This function writes a string of a given length to a serial port and returns the number
characters that were successfully written. The serial argument refers to the serial port objec
to which you want to write. The buffer argument contains the string that you want to wri
to the serial port (pointed to by the serial port object, serial). The length argument is the
number of characters to write.

User-specifiable Serial Data

WTserial_setdata

void WTserial_setdata (
WTserial *serial,
void *data);

This function sets a user-defined data field in a serial port object. Private application
can be stored in any structure. To store a pointer to the structure within a serial port o
pass in a pointer to the structure, cast to a void*, as the data argument.
23-4 WorldToolKit Reference Manual

Platform Specific Functions

 cast

WTserial_getdata

void *WTserial_getdata (
WTserial *serial);

This function retrieves user-defined data stored within a serial port object. You should
the value returned by this function to the same type used to store the data with the
WTserial_setdata function.

Platform Specific Functions

The following serial port functions are platform-specific.

Windows 32-bit platforms:

WTserial_setbaud

WTserial_getbaud
WTserial_setbytesize
WTserial_getbytesize

WTserial_setRTS

UNIX platforms:

WTserial_readx
WTserial_setsize

WTserial_setbaud (only on SUN platfporms)

Refer to your platform-specific Hardware Guide for more platform specific serial port
functions.
WorldToolKit Reference Manual 23-5

Chapter 23: Serial Ports
23-6 WorldToolKit Reference Manual

s.
,
de
s, you
orm

code

 use
24
Portability

Providing for Portability

WTK runs on a variety of platforms, including both Windows 32-bit and UNIX system
Most of WTK is portable across every platform, including both source code and data
making cross-system development easy. However, if the rest of your application (co
other than WTK calls) makes assumptions about the operating system on which it run
lose portability. For this reason, WTK provides facilities to handle common cross-platf
needs in a portable way.

Reading the Keyboard

You can use typical system-specific calls to read the keyboard, but if you want your
to be portable, use the following functions provided to handle the keyboard.

WTkeyboard_open

void WTkeyboard_open(
void);

This function initializes the process of reading the keyboard. Once initialized, you can
the functions WTkeyboard_getkey and WTkeyboard_getlastkey to obtain keyboard input.
WTkeyboard_open must be called before any calls are made to these functions. See Can
WTK Detect Keyboard Events? on page A-8 for an example of how to use this function.

On some systems, it may be useful to close the keyboard (using WTkeyboard_close) when
input from the keyboard is no longer needed.

Chapter 24: Portability

 this
alled

ion
is

put
WTkeyboard_getkey

short WTkeyboard_getkey(
void);

This function removes the next key from the keyboard input buffer and returns it. Since
function removes only a single key press event from the input buffer each time it is c
(compared to WTkeyboard_getlastkey, which empties the buffer), it is your responsibility
to call it frequently enough to clear the events from the input buffer.

This function is usually used within a “while” statement in an application’s action funct
(see WTuniverse_setactions on page 2-12), as shown in the following code fragment. Th
example assumes that WTkeyboard_open has been called in the main program before
WTuniverse_go, and that handle_key is a function defined in the application, possibly
containing a “switch” statement as in the example under WTkeyboard_getlastkey (see
below).

short key;

/* use ’while’ statement to process all keyboard events */
while (key = WTkeyboard_getkey()) {

handle_key(key);

}

See Can WTK Detect Keyboard Events? on page A-8 for an example of how to use this
function. See Keyboard Constants on page C-4 for defined constants pertaining to the
extended keyboard.

WTkeyboard_getlastkey

short WTkeyboard_getlastkey(
void);

This function returns the most recently pressed key and discards any others in the in
buffer. For example, if the keys “a”, “b”, and “c” were pressed, it ignores “a” and “b”
(removing them from the input buffer and discarding them) and returns “c.”
24-2 WorldToolKit Reference Manual

Reading the Keyboard

. On
In typical use, WTkeyboard_getlastkey is called in the application’s action function (see
WTuniverse_setactions on page 2-12) and might contain code like the following:

short key;
key = WTkeyboard_getlastkey();
switch (key) {

case ’a’:
WTmessage(“got an ’a’\n”);
break;

case ’q’:
WTmessage(“Quitting application\n”);
WTuniverse_stop();

break;
default:

break;

}

This example assumes that WTkeyboard_open has previously been called in the main
program before WTuniverse_go. See Keyboard Constants on page C-4 for defined
constants pertaining to the extended keyboard.

WTkeyboard_close

void WTkeyboard_close(
void);

This function closes a keyboard. Use this function if you have previously called
WTkeyboard_open (see page 24-1), but no longer need to read input from the keyboard
some systems, this can be important for the efficiency of event processing.
WorldToolKit Reference Manual 24-3

Chapter 24: Portability

 the

 a
ning

each
Reading File Directories

WTK provides a portable facility for reading directories. Its use is demonstrated with
following example, in which a directory is opened and its contents are listed.

WTdirectory *dir;

char *fname;
/* obtain a pointer to a WTdirectory structure for the specified path */
dir = WTdirectory_open(“/wtk/models”);

/* if successfully opened directory, print a list of its contents and close it */
if (dir) {

while ((fname = WTdirectory_getentry(dir)) != NULL)

WTmessage(“%s\n”, fname);
WTdirectory_close(dir);

}

WTdirectory_open

WTdirectory * WTdirectory_open(
char *path);

This function opens a directory for the purpose of reading its contents. If successful,
WTdirectory object is returned, otherwise NULL is returned. When you are done exami
the contents of the opened directory, close the directory by passing the WTdirectory object
to WTdirectory_close (see below).

WTdirectory_getentry

char * WTdirectory_getentry(

WTdirectory *dir);

This function returns the next entry from an opened directory. A filename is returned
time the function is called, until there are no more filenames and NULL is returned.
24-4 WorldToolKit Reference Manual

Messages and Errors

tion.

easily
WTdirectory_close

void WTdirectory_close(
WTdirectory *dir);

This function closes an open directory.

Messages and Errors

Warnings and error messages in WTK provide status information about your applica
A description of possible warnings and errors is provided in Appendix D, Error Messages
and Warnings. WTK also provides functions for the developer to specify application-
specific messages and error conditions.

WTmessage

void WTmessage(

char *format,
....);

This function is similar to the C library function printf; it prints messages from your
application to output. Use this function exactly like printf for printing messages from your
WTK application. The advantage of using WTmessage is that your messages are easily
redirected to the console or to a file using the function WTmessage_sendto (see below).
Also, if directed to the console, your message can print even on platforms that do not
support standard C I/O, such as Windows applications. Using WTmessage instead of printf
therefore increases the portability of your application.

To make the change from printf to WTmessage transparent, you could use the following
definition:

#define printf WTmessage
WorldToolKit Reference Manual 24-5

Chapter 24: Portability

 easily

,

ation

e.
WTwarning

void WTwarning(
char *format,
....);

This function is similar to the C library function printf; it prints messages from your
application to output. Like WTmessage (see above), it takes arguments similar to printf.
However, when you call WTwarning, the arguments are printed preceded by the string WTK
Warning:.The advantage of using WTwarning is that your warning messages are easily
redirected to the console or to a file using the function WTmessage_sendto. Also, if
directed to the console, your warning message can print even on platforms that do not
support standard C I/O, like Windows applications. Using WTwarning instead of printf
therefore increases the portability of your application.

WTmessage_sendto

void WTmessage_sendto(
int type,
int where,

FILE *output_file);

This function redirects messages, warnings and errors from your application to a file
console, or callback function. By default, all messages go to the console.

The type argument indicates the type of message to redirect. It should be one of the
following:

WTMESSAGE_ERROR Error messages.

WTMESSAGE_WARNING Warning message.

WTMESSAGE_USER Messages from your application (using the
WTmessage function).

The where argument indicates where to direct the messages. It should be some combin
of the following:

WTMESSAGE_TONOWHERE Do not send the messages anywhere.

WTMESSAGE_TOCONSOLE Send the messages to the standard consol
24-6 WorldToolKit Reference Manual

Messages and Errors

es

erator

WTMESSAGE_TOFILE Send the messages to a file.

WTMESSAGE_TOCALLBACK Send the messages to a user-specified
callback function.

If WTMESSAGE_TOFILE is given, the output_file argument should point to a valid file
(opened with fopen()). Otherwise, the output_file argument is ignored and the message go
to the console.

The following is an example of sending a warning to nowhere:

/* Do NOT display any WTK warnings */

WTmessage_sendto(WTMESSAGE_WARNING,
 WTMESSAGE_TONOWHERE, NULL);

If WTMESSAGE_TOCALLBACK is given, you should call the WTmessage_setcallback
function to specify the function where you want the messages sent.

You can also direct messages to both the console and a file, using the logical OR op
(‘|’), as illustrated here:

/* Send user message to both the console and a file */

FILE *fp = fopen(“output”, “w”);
WTmessage_sendto(WTMESSAGE_USER,

WTMESSAGE_TOCONSOLE | WTMESSAGE_TOFILE, fp);

WTmessage_setcallback

void WTmessage_setcallback (
void (*callback function) (char *str));

This function sets the destination for message callbacks. The function passed as the
argument should be in this form:

void my_function (char *string)
WorldToolKit Reference Manual 24-7

Chapter 24: Portability

an

nds.
es
te to
WTerror

void WTerror(
char *format,
....);

This function displays an error message and immediately exits the application. Like
WTmessage (see page 24-5), it takes arguments similar to the C function printf. However,
when you call WTerror, the arguments are printed preceded by the string WTK error: and
the application terminates immediately. Use this function to abort your application if
unresolvable problem occurs, such as not being able to load an essential model.

For example:

char *filename;

/* try to load a file, and terminate with error msg if failure */
node = WTnode_load (root, filename, 1.0f);

if (!node)
WTerror(“Couldn’t load ‘%s’”, filename);

Waiting

WTmsleep

void WTmsleep(

int msec);

This function causes the application to “sleep” for a given amount of time in milliseco
The msec argument is the number of milliseconds to sleep. Note that due to differenc
between platforms, this function is not always precisely accurate. It is usually accura
the nearest 1/100 of a second.
24-8 WorldToolKit Reference Manual

Memory Allocation

vate

vate
A typical use for this function is to pause while initializing a sensor. For example:

WTserial *serial;
WTserial_write(serial, “Reset”, 5);
WTmsleep(500); /* Wait for half a second */

Memory Allocation

WTmalloc

void *WTmalloc(
size_t size);

This function is identical in functionality to the C library function malloc, except that in the
multi-pipe/multi-processing version of WTK, shared memory is allocated instead of pri
(non-shared) memory.

Shared memory must be used in these cases:

• To store image data that is passed to WTtexture_replace

• For data that may be used by a task or universe action function

• For window drawing callback functions

Shared memory can be allocated through a call to WTmalloc.

WTcalloc

void *WTcalloc(
size_t num,

size_t size);

This function is identical in functionality to the C library function calloc, except that in the
multi-pipe/multi-processing version of WTK, shared memory is allocated instead of pri
(non-shared) memory.
WorldToolKit Reference Manual 24-9

Chapter 24: Portability

vate
Shared memory must be used in these cases:

• To store image data that is passed to WTtexture_replace

• For data that may be used by a task or universe action function

• For window drawing callback functions

Shared memory can be allocated through a call to WTcalloc.

WTrealloc

void *WTrealloc(

void *old,
size_t newsize);

This function is identical in functionality to the C library function realloc, except that in the
multi-pipe/multi-processing version of WTK, shared memory is allocated instead of pri
(non-shared) memory.

Shared memory must be used in these cases:

• To store image data that is passed to WTtexture_replace

• For data that may be used by a task or universe action function

• For window drawing callback functions

Shared memory can be allocated through a call to WTrealloc.

WTfree

void WTfree(,
void *pointer);

This function is identical in functionality to the C library function free, except that it is used
to free memory that was allocated by calls to WTmalloc, WTcalloc, or WTrealloc.
24-10 WorldToolKit Reference Manual

.

tation
atrix,

tants

r for

ter.
25
Math Library

Introduction

The WTK math library contains functions for managing position and orientation data
These are the data types used in the math library:

• WTp2 2D Vector – array of 2 floating point values. (see page 25-4)

• WTp3 3D Vector – array of 3 floating point values. (see page 25-5)

• WTq Quaternion – array of 4 floating point values. (see page 25-12)

• WTpq Coordinate Frame – structure containing WTp3 and WTq.
(see page 25-19)

• WTm3 3D Matrix – 3x3 array of floating point values. (see page 25-21)

• WTm4 4D Matrix – 4x4 array of floating point values. (see page 25-22)

In WTK, orientation records are stored in quaternion form. If you prefer to work with
matrices or euler angles, or if you are writing a sensor driver for a device that returns
orientation records in matrices or euler angles, then you will need to convert the orien
records into quaternion form. Conversion functions are provided for going between m
euler angle, and quaternion representations of an orientation.

It may be convenient, when indexing mathematical quantities in WTK, to use the cons
X, Y, Z, and W, which have been defined as 0, 1, 2, and 3 respectively.

The functions WTp3_print, WTpq_print, and WTq_print are provided to allow you to easily
print out the value of position and orientation variables, for debugging an application o
other purposes.

Many of the functions in this chapter are actually macros defined in the mathlib.h header
file. These are indicated by “[MACRO]” in the corresponding descriptions in this chap
Be careful not to nest function calls within a macro call as in the following example.

Chapter 25: Math Library

when

wn,
ause it
 the
tion
ht

d.
This example uses the macro WTp3_mults and a function f, which could be any function
returning a floating point value:

WTp3 pos;
WTp3_mults(pos, f(pos)); /* gives incorrect result */

The reason that this gives an incorrect result is that f(pos) is evaluated three times by
WTp3_mults, at the same time that WTp3_mults is changing the components of pos! To
obtain the intended result, you would use the following instead:

WTp3 pos;

float val;
val = f(pos);
WTp3_mults(pos, val); /* gives correct result */

This approach is preferable not just because it gives the correct value, but because
implemented this way, f(pos) is evaluated only once rather than three times.

WTK Math Conventions

The WTK coordinate system has the X axis pointing to the right, the Y axis pointing do
and the Z axis pointing straight ahead. This is a right-handed coordinate system bec
obeys the right-hand rule. Align the fingers of your right hand with the first axis, facing
palm of your hand towards the second axis. Your thumb will point in the third axis direc
(see Figure 25-1). Rotations also obey the right-hand rule. With the thumb of your rig
hand pointing along an axis, positive rotation is in the direction that your fingers ben
25-2 WorldToolKit Reference Manual

WTK Math Conventions

or”).

s

m

ollow
 this

y this
Figure 25-1: An Illustration of the “right-hand rule”.

Rotation operators in WTK operate from right to left. What does this mean? Let’s say you
are working with an orientation that is represented by a 3x3 matrix. When this matrix
multiplies a 3D vector, the 3D vector is rotated (hence the matrix is a “rotation operat
There are two ways to multiply a vector and a matrix to create another vector:

• Either the vector is a column vector and the matrix is to its left (the matrix operate
from left to right)

• Or the vector is a row vector and the matrix is to its right (the matrix operates fro
right to left)

Different results are obtained in these two cases. In WTK, matrices and quaternions f
the convention of operating from right to left. If you have a matrix that does not obey
convention (and it is a unitary matrix), call WTm3_transpose or WTm4_transpose to
generate an acceptable matrix. Similarly, if you have a quaternion that does not obe
convention, call WTq_invert to generate an acceptable quaternion.

Z

X

Y

WorldToolKit Reference Manual 25-3

Chapter 25: Math Library
WTp2: 2D Vectors

A WTp2 is type defined as an array of two floats.

WTp2_init

[MACRO] WTp2_init(
WTp2 p);

This function initializes a 2D vector so that p[X] = p[Y] = 0.0.

WTp2_copy

[MACRO] WTp2_copy(

WTp2 pin,
WTp2 pout);

This function copies pin into pout.

WTp2_mag

[MACRO] WTp2_mag(

WTp2 p);

This function returns the magnitude of p.

WTp2_norm

[MACRO] WTp2_norm(
WTp2 p);

This function normalizes p (scales it to unit length).
25-4 WorldToolKit Reference Manual

WTp3: 3D Vectors
WTp2_dot

[MACRO] WTp2_dot(
WTp2 a,
WTp2 b);

This function returns the dot product of a and b, which is defined to be:

dot = a[X]*b[X] + a[Y]*b[Y]

WTp2_subtract

[MACRO] WTp2_subtract(
WTp2 p1,

WTp2 p2,
WTp2 pout);

This function subtracts vector p2 from p1 and puts the result in pout.

WTp3: 3D Vectors

A WTp3 is type defined as an array of three floats.

WTp3_init

[MACRO] WTp3_init(

WTp3 p);

This function initializes a 3D vector so that p[X] = p[Y] = p[Z] = 0.0.
WorldToolKit Reference Manual 25-5

Chapter 25: Math Library

WTp3_copy

[MACRO] WTp3_copy(
WTp3 pin,
WTp3 pout);

This function copies pin into pout.

WTp3_invert

[MACRO] WTp3_invert(
WTp3 pin,
WTp3 pout);

This function negates a 3D vector. For example, it sets:

pout[X] = - pin[X]; pout[Y] = - pin[Y]; pout[Z] = -pin[Z];

WTp3_mag

[MACRO] WTp3_mag(
WTp3 p);

This function returns the length of a 3D vector.

WTp3_norm

[MACRO] WTp3_norm(
WTp3 p);

This function normalizes a 3D vector, dividing each of its components by the vector’s
length.
25-6 WorldToolKit Reference Manual

WTp3: 3D Vectors
WTp3_add

[MACRO] WTp3_add(
WTp3 p1,
WTp3 p2,

WTp3 pout);

This function adds vectors p1 and p2 and puts the result in pout.

WTp3_subtract

[MACRO] WTp3_subtract(
WTp3 p1,

WTp3 p2,
WTp3 pout);

This function subtracts vector p2 from p1 and puts the result in pout.

WTp3_dot

[MACRO] WTp3_dot(

WTp3 p1,

WTp3 p2);

This function returns the dot product of p1 and p2, which is defined to be:

dot = p1[X]*p2[X] + p1[Y]*p2[Y] + p1[Z]*p2[Z]
WorldToolKit Reference Manual 25-7

Chapter 25: Math Library

rule,
WTp3_cross

void WTp3_cross(
WTp3 p1,
WTp3 p2,

WTp3 pout);

This function finds the cross product of vectors p1 and p2 and puts the result in pout (as
illustrated in Figure 25-2). If you imagine a plane passing through p1 and p2, pout is a
vector normal to, or sticking straight out of, that plane. Note that using the right-hand
p1 and p2 determine pout.

Figure 25-2: An illustration of the cross product: P1 x P2 = Pout.

WTp3_equal

[MACRO] WTp3_equal(

WTp3 p1,
WTp3 p2);

This function tests two 3D vectors for equality. The 3D vectors p1 and p2 are considered
equal if each of their three components is equal within the defined constant WTFUZZ
(0.004). If p1 and p2 are equal then TRUE is returned. Otherwise FALSE is returned.

P2
P1

Pout
25-8 WorldToolKit Reference Manual

WTp3: 3D Vectors

 is
WTp3_exact

[MACRO] FLAG WTp3_exact(
WTp3 p1,
WTp3 p2);

This function tests two 3D vectors for equality. All components of the vectors p1 and p2
must be exactly equal. If p1 and p2 are equal then TRUE is returned. Otherwise, FALSE
returned.

WTp3_rotate

void WTp3_rotate(
WTp3 pin,
WTq q,

WTp3 pout);

This function rotates a 3D vector (specified in pin) through the rotation represented by q,
and puts the result into pout.

WTp3_rotatept

void WTp3_rotatept(
WTp3 pin,

WTq q,
WTp3 pout,
WTp3 point);

This function rotates a 3D vector (specified in pin) around a 3D point by the rotation
represented by a quaternion q, and puts the result into pout.
WorldToolKit Reference Manual 25-9

Chapter 25: Math Library

WTp3_xform

void WTp3_xform(
WTp3 pin,
WTpq *pq,

WTp3 pout);

This function transforms a point (specified in pin) from world coordinates to a local
reference frame (specified in pq). The resulting point is placed into pout.

WTp3_multm3

void WTp3_multm3(
WTp3 v1

WTm3 m,
WTp3 v2);

This function multiplies a direction vector by a WTm3 matrix. The result is placed intov2.

WTp3_multm4

void WTp3_multm4 (

WTp3 v1,
WTm4 m,
WTp3 v2);

This function multiplies a direction vector by a WTm4 matrix. The result is placed into v2.

WTp3_mults

[MACRO] WTp3_mults(
WTp3 p,
float s);

This function multiplies the vector p by the scalar (floating point value) s and places the
result into p.
25-10 WorldToolKit Reference Manual

WTp3: 3D Vectors

. The

lue
rity
WTp3_distance

float WTp3_distance(
WTp3 p1,
WTp3 p2);

This function returns the distance between points p1 and p2.

WTp3_disttovector

float WTp3_disttovector(
WTp3 pt,
WTp3 ptondir,

WTp3 dir);

This function returns the perpendicular distance from a point to a vector in 3D space
point is passed in as pt and the vector is passed in via two components: ptondir is a point on
the vector and dir is the direction of the vector. The direction vector dir must be a unit vector
(i.e. it must normalized).

WTp3_coplanar

short WTp3_coplanar(
WTp3 *verts,

int nverts,
WTp3 normal);

This function tests whether a set of 3D points are coplanar to within the WTK fuzz va
WTFUZZ (0.004). This is the same function that is used internally to check for coplana
when new polygons are created.

The verts argument should be an array of WTp3’s and the nverts argument indicates the
number of elements in the array. The return value is as follows:

0 If the points are not coplanar.

1 If the points are coplanar and the polygon defined by the points is
convex.
WorldToolKit Reference Manual 25-11

Chapter 25: Math Library

on-

e
he

at

s

ree
d
2 If the points are coplanar and the polygon defined by the points is n
convex.

This function also computes the normal vector for this set of points and places it in th
normal argument. If the set of points is not coplanar (i.e., if FALSE is returned) then t
normal that is computed may not be meaningful.

WTp3_print

void WTp3_print(
WTp3 pos,
char *string);

This function prints to WTMESSAGE_USER the value of the specified string, followed by
the value of each element of the WTp3 structure. For example:

WTp3 pos;
WTp3_print(pos, “This is my current view position”);

would generate the following output:

This is my current view position 10.001 56.256 -34.567

This function uses the WTmessage call, so that the output of WTp3_print can be redirected
using WTmessage_sendto (see page 24-6).

WTq: Quaternions

Quaternions in WTK are stored in a WTq, which is type defined as an array of four floats
and is assumed to be normalized to a length equal to 1.0. In order to understand wh
quaternions are and how they are used, a discussion of rotations is in order.

There are 24 conventions for describing an orientation in 3D-space involving rotation
about the cardinal axes. Two examples, YXZ Euler (or body-fixed) and ZXY fixed (or
world-fixed), are in the description of WTeuler_2q. Others include permutations of th
and also only two axes: ZYZ, YXY, etc. Any euler convention is equivalent to the fixe
convention with reversed axis order (EulerYXZ = FixedZXY).
25-12 WorldToolKit Reference Manual

WTq: Quaternions

any
s two
r

 and
80].

third
I/2.

lting
 roll

es
are

ingle-
ngle

ist”.

ver

the
 that
 [-
the

ir raw
n
n
not

),
These conventions are easy to visualize, but have limitations. For each convention,
orientation can still be described by two sets of angles. This is why WTq_2euler return
sets of euler angles; both are correct. For example, in WTK (which uses EulerXYZ, o
"pitch, yaw, then roll"), the default orientation corresponds to looking down the Z axis,
your rotation is [0,0,0]. Looking down the Z axis could also be described as [180,180,1

Also, for a three-axes convention, when the second rotation is +/- PI/2, the first and
rotation are synonymous. For example, in WTK, let us pitch up PI/4, then yaw right P
Now, forgetting how we got there, let's describe the orientation. We are facing right, ti
our head diagonally towards our right shoulder. Did we not pitch, yaw PI/2 right, then
PI/4 right? Did we pitch up PI/2, yaw PI/2 right, then roll PI/4 left? There are infinite
solutions at this point, a situation known as Gimble lock, which is why WTq_2euler
assumes zero pitch when yaw is +/- PI/2. The same Gimble lock happens for two-ax
conventions: when the second rotation is zero, obviously the first and third rotations
indistinguishable.

Instead of describing an orientation by rotations about cardinal axes, there exists a “s
axis” vector around which a rotation will achieve the goal orientation. This vector and a
together are what compose a quaternion.

However, do not confuse this vector and angle pair with the popular term “dir and tw
The direction vector and single-axis vector, and twist angle and single-axis angle are
completely different. The direction vector points out of the nose of the viewpoint whiche
way it is facing, with twist being the roll applied around it. The quaternion comprises
single-axis vector around which you rotated, and the amount of that rotation to get to
orientation. For example, Yaw left by PI/2 and roll left by PI/2. The direction vector is
1,0,0] and the twist is -PI/2. The single-axis vector (before normalization) to achieve
same goal is [1,-1,-1] and the angle is PI/2.

Now, quaternions are more useful than just a compact description of a rotation. In the
form they can be quickly multiplied together (thereby adding rotations as described i
WTeuler_2q), and converted to a rotation matrix in one step: important qualities whe
creating a real-time 3DVR toolkit. However, to gain this functionality, the raw form is
intelligible without knowing how the values are obtained.

The single-axis vector must be normalized, then multiplied by sin(single-axis angle/2
yielding the first three values. The fourth value is cos(single-axis angle/2).

q = [x*sin(a/2), y*sin(a/2), z*sin(a/2), cos(a/2)]
WorldToolKit Reference Manual 25-13

Chapter 25: Math Library

 with
r.

n of
e two
tained

 to
e

ing

2

H
ns

ther

ient

15
The quaternion is therefore a four-dimensional unit vector which is why it is easily
manipulated with four-dimensional math. Because the single-axis vector is combined
a transcendental function, having all values in the quaternion near zero is not an erro

For many applications it is enough to simply think of a quaternion as a representatio
orientation or as a rotation operator. For example, viewpoints and graphical objects ar
WTK object types that have an associated orientation. These orientations can be ob
with WTviewpoint_getorientation and WTnode_getorientation. The quaternion that is
obtained by calling these functions can be thought of as an operator which, if applied
axes initially aligned with the world coordinates axes, would make them align with th
local coordinate frame axes of the viewpoint or object.

For those who would like to learn more about quaternions, we recommend the follow
references:

• Craig, J. Introduction to Robotics, Addison-Wesley, 2nd edition, 1989. Chapter
is an excellent description of spatial transformations including a number of
representations for orientation.

• Shoemake, K., “Animating Rotation with Quaternion Curves”, ACM SIGGRAP
1985, San Francisco, pp. 245-254. The appendix lists a number of conversio
including quaternion-to-rotation matrix, rotation matrix-to-quaternion, euler
angles to quaternion, matrix to euler angles. Also contains good pointers to o
references.

• Funda, J., and Paul, R.P., “A Comparison of Transforms and Quaternions in
Robotics”, 1988 IEEE Robotics and Automation, pp. 886-891. More
mathematical treatment of quaternions as spatial transforms. Describes effic
computational techniques for performing spatial operations.

• Maillot, P.-G., “Using Quaternions for Coding 3D Transformations”, pp. 498-5
in Graphics Gems, A.S. Glassner, ed., Academic Press, 1990.

WTq_init

[MACRO] WTq_init(
WTq q);

This function initializes a quaternion, so that:

q[X] = q[Y] = q[Z] = 0.0; q[W] = 1.0;
25-14 WorldToolKit Reference Manual

WTq: Quaternions

d in

A quaternion q, initialized as above, represents no rotation.

WTq_copy

[MACRO] WTq_copy(
WTq qin,
WTq qout);

This function copies qin into qout.

WTq_invert

[MACRO] WTq_invert(
WTq qin,
WTq qout);

This function inverts a quaternion, setting:

qout[X] = - qin[X]; qout[Y] = -qin[Y]; qout[Z] = -qin[Z];
qout[W] = qin[W];

The inverse of a quaternion corresponds to an inverse rotation.

WTq_mag

[MACRO] WTq_mag(

WTq q);

This function returns the length of a quaternion vector. Note that all quaternions use
WTK are expected to be normalized, that is, have length = 1.0. See the next macro,
WTq_norm.
WorldToolKit Reference Manual 25-15

Chapter 25: Math Library

rnion

E

.

WTq_norm

[MACRO] WTq_norm(
WTq q);

This function normalizes a quaternion, that is, it scales each component of the quate
so that the sum of the squares of the components equals one.

WTq_exact

[MACRO] FLAG WTq_exact(

WTq q1,
WTq q2);

This function tests two quaternions for equality. All components of the quaternions q1 and
q2 must be exactly equal. If q1 and q2 are equal then TRUE is returned. Otherwise, FALS
is returned.

WTq_equal

[MACRO] FLAG WTq_equal(

WTq q1,
WTq q2);

This function tests two quaternions for equality. The quaternions q1 and q2 are considered
equal if each of the four components is equal to within the defined constant WTFUZZ
(0.004). If q1 and q2 are equal, then TRUE is returned. Otherwise, FALSE is returned

WTq_getvector

void WTq_getvector(

WTq q,
WTp3 vec);

This function returns in vec the unit vector which is rotated around by the quaternion.
25-16 WorldToolKit Reference Manual

WTq: Quaternions

n in

input

s
WTq_getangle

float WTq_getangle(
WTq q);

This function returns the angle sweep of the quaternion. This is the amount of rotatio
the quaternion. This angle is returned in radians.

WTq_scale

void WTq_scale(

WTq qin,
WTq qout,
float scale);

This function controls the angle sweep (the amount of rotation) in a quaternion. The
quaternion is specified in qin, the amount by which to scale is specified in the scale
parameter. The resultant quaternion is placed in qout.

WTq_construct

void WTq_construct(
WTp3 vec,
float ang,

WTq qout);

This function composes a quaternion qout from the vector vec and angle ang specified in
radians.

WTq_mult

void WTq_mult(
WTq q1,

WTq q2,
WTq qout);

This function multiplies quaternion q2 into q1 and puts the result into qout. Multiplying
quaternions corresponds to composing rotations. An example of using this function i
WorldToolKit Reference Manual 25-17

Chapter 25: Math Library

ion

provided under the function WTeuler_2q on page 25-27.

WTq_multinv

void WTq_multinv(
WTq q1,
WTq q2,

WTq qout);

This function multiplies quaternion q2 into the inverse of q1 and puts the result into qout.
To understand the purpose of this function, you can think of it as first “undoing” rotat
q1 and then applying rotation q2 to obtain qout. The qout parameter is therefore the rotation
needed to go from orientation q1 to orientation q2.

WTq_interpolate

void WTq_multinv(
WTq q1,

WTq q2,
float u,
WTq qout);

This function finds the spherical linear interpolation using the shortest path between
quaternion q1 and q2, and places the result into qout. The u argument is a factor between 0
(zero) and 1 (one), which specifies the point of interpolation. For example, u = 0.5 would
find a quaternion halfway between q1 and q2.

WTq_dot

[MACRO] WTq_dot(

WTq q1,

WTq q2);

This function returns the dot product of q1 and q2.
25-18 WorldToolKit Reference Manual

WTpq: Coordinate Frame Structure

 C
strate
WTq_print

void WTq_print(
WTq orientation,
char *string);

This function prints to WTMESSAGE_USER the value of the string followed by the value
of each element of the WTq structure. For example:

WTq q;
WTviewpoint_getorientation(WTuniverse_getviewpoint(), q);
WTq_print(q, “This is my current view orientation”);

would generate the following output:

This is my current view orientation -0.025 0.453 0.346 -0.556

This uses a WTmessage call, so WTq_print output is redirected using WTmessage_sendto
(see page 24-6).

WTpq: Coordinate Frame Structure

WTK defines the following type definition for 6D coordinate frame records:

typedef struct _WTpq {
WTp3 p;

WTq q;
} WTpq;

To pass a WTpq to a routine in C, you must take the address of the structure using the
ampersand operator (&) to pass it by address. The following functions and macros illu
the passing in of a WTpq by address.
WorldToolKit Reference Manual 25-19

Chapter 25: Math Library

WTpq_init

[MACRO] WTpq_init(
WTpq *pq);

This function initializes the WTpq structure as follows:

p[X] = p[Y] = p[Z] = 0.0f;

q[X] = q[Y] = q[Z] = 0.0f;
q[W] = 1.0f;

For example, you might have:

/* declare and initialize a WTpq struct */

WTpq pq;
WTpq_init(&pq);

WTpq_copy

[MACRO] WTpq_copy(

WTpq *pqin,
WTpq *pqout);

This function copies the contents of pqin into pqout.

WTpq_print

void WTpq_print(

WTpq *pq,
char *string);

This function prints to WTMESSAGE_USER the value of the string followed by the value
of each element of the WTpq structure. For example:

WTpq viewpq;

WTpq_print(&viewpq, “This is my current viewpoint”);
25-20 WorldToolKit Reference Manual

WTm3: 3D Matrices

ion

 its
would generate the following output:

This is my current viewpoint p: 10.003 5.004 10.123, q: -0.25 0.453 0.346 -0.556

This function uses the WTmessage call, so that the output of WTpq_print can be redirected
using WTmessage_sendto (see page 24-6).

WTm3: 3D Matrices

Besides quaternions, WTK supports 3D matrices which are commonly used for rotat
operations. A WTm3 is type defined as a 3x3 array of floats. If the WTm3 is a rotation
matrix (created by WTeuler_2m3 or WTq_2m3) then it is orthonormal and its inverse is its
transpose.

WTm3_init

[MACRO] WTm3_init(
WTm3 m);

This function sets a matrix equal to the identity matrix. This is a matrix with 1s along
diagonal and 0s everywhere else, corresponding to no rotation (see Figure 25-3).

Figure 25-3: The 3x3 identity matrix.

1

0

0

0

1

10

0

0

WorldToolKit Reference Manual 25-21

Chapter 25: Math Library
WTm3_copy

[MACRO] WTm3_copy(
WTm3 min,
WTm3 mout);

This function copies min into mout.

WTm3_transpose

void WTm3_transpose(
WTm3 min,
WTm3 mout);

This function puts the transpose of min into mout, swapping the rows with the columns.
mout[x,y] = min[y,x]

WTm3_multm3

void WTm3_multm3(

WTm3 m1,
WTm3 m2,
WTm3 mout);

This function performs the matrix multiplication mout = m1 * m2. Matrix mout is the
composite rotation of m1 and m2.

WTm4: 4D Matrices

In addition to WTpq structures, WTK supports 4D transformation matrices. A WTm4 is a
4x4 array of floats. It represents a translation followed by a rotation, and effectively
contains a WTm3 rotation in the upper left 3x3, and a WTp3 translation in the lower left 3x1,
with the remaining far right column containing special values that should not be
manipulated.
25-22 WorldToolKit Reference Manual

WTm4: 4D Matrices

 its
gure
WTm4_init

[MACRO] WTm4_init(
WTm4 m);

This function sets a matrix equal to the identity matrix. This is a matrix with 1s along
diagonal and 0s everywhere else, corresponding to no translation or rotation (see Fi
25-4).

Figure 25-4: The 4x4 identity matrix.

WTm4_copy

[MACRO] WTm4_copy(

WTm4 min,
WTm4 mout);

This function copies min into mout.

WTm4_transpose

void WTm4_transpose

WTm4 min,
WTm4 mout);

This function puts the transpose of min into mout, swapping the rows with the columns.
mout[x,y] = min[y,x]

1

0

0

0

1

10

0

0

0 00

0

0

0

1

WorldToolKit Reference Manual 25-23

Chapter 25: Math Library

the

ed,

ted
an
ode
WTm4_multm4

void WTm4_multm4
WTm4 m1,
WTm4 m2,

WTm4 mout);

This function performs the matrix multiplication mout = m1 * m2. Matrix mout is the
composite transformation of m1 and m2.

WTm4_invert

int WTm4_invert(
WTm4 src,

WTm4 dst);

This function inverts a WTm4 matrix. The matrix to invert is specified in the src argument,
and its inverse is returned in the dst parameter. Matrix src represents a translation then
rotation. The inverse of src, dst, is a transformation that unrotates then untranslates by
same amounts, such that dst*src = identity.

If the matrix has a zero determinant value, it is uninvertable and 0 (FALSE) is return
with a warning to that effect. Otherwise, the function returns 1 (TRUE).

WTm4_xformp3

void WTm4_xformp3(
WTm4 m4,

WTp3 pin,
WTp3 pout);

This function transforms a point pin by the transform matrix in m4. The result is returned
in pout.

WTm4_xformp3 is useful when you want to know the position of a point after it is affec
by a transformation. For example, to determine where a geometry is rendered, you c
transform the geometry's midpoint by the cumulative transformation matrix along the n
path from the root node to the geometry node.
25-24 WorldToolKit Reference Manual

Conversion Functions

ix

is

erent

ined.
hich
 ones
.

Mathematically, pin is taken as a row vector and post-multiplied by the transform matr
m4.

WTm4_rotatep3

void WTm4_rotatep3(
WTm4 m4,
WTp3 pin,

WTp3 pout);

This function rotates a vector pin by a matrix, m4. The result is returned in pout. This
function ignores the translational component of m4, and applies only the rotational part to
the WTp3 vector.

WTm4_rotatep3 is useful when you need to rotate a "ray" by an accumulated
transformation. A ray is a vector representing a direction. If a ray is affected by a
transformation matrix, its new direction is obtained by simply applying the rotational
element to it. That is why WTm4_rotatep3 ignores the translational component and in th
way differs from WTm4_xformp3.

Conversion Functions

This section contains a variety of conversion functions that you can use to convert diff
representations of orientation.

Functions for converting a matrix or quaternion to euler angles are not always well-def
That is, for a given orientation it is possible to find more than one set of euler angles w
would generate that orientation. Therefore, the euler angles retrieved may not be the
used in WTeuler_2q or WTeuler_2m3. However, the eulers will be valid for that orientation
WorldToolKit Reference Manual 25-25

Chapter 25: Math Library

tion
e

se the

t

yield
WTm3_2q

void WTm3_2q(
WTm3 m,
WTq q);

This function converts a 3D rotation matrix to a quaternion.

This conversion routine makes sense only if the matrix passed in is a legitimate rota
operator. If the rows of the matrix are not orthonormal, the function first generates th
closest orthonormal matrix to the one passed in, and then converts that matrix to a
quaternion.

If the quaternion that results is the inverse of what you would expect, it may be becau
matrix passed in is one intended to multiply vectors from the left, whereas the WTK
convention is for matrices to multiply vectors from the right. The functions WTq_invert (see
page 25-15) or WTm3_transpose (see page 25-22) are useful in this case.

If the matrix passed in cannot be interpreted as a rotation operator, it returns the uni
quaternion:

q[X] = q[Y] = q[Z] = 0.0; q[W] = 1.0;

For example, a matrix where the magnitude of one of the row vectors was 0.0 would
the result shown above.

WTq_2m3

void WTq_2m3(
WTq q,

WTm3 m);

This function converts a quaternion to a 3D matrix.
25-26 WorldToolKit Reference Manual

Conversion Functions

n

trix.
 the

o be
WTeuler_2m3

void WTeuler_2m3(
float wx,
float wy,

float wz,
WTm3);

This function constructs a 3D rotation matrix from the given euler angles (specified i
radians).

WTm3_2euler

void WTm3_2euler(

WTm3 m,
WTp3 first,
WTp3 second);

This function extracts euler angles (specified in radians) from the specified rotation ma
The first and second are the two possible sets of euler angles that can be derived from
matrix. The first is the solution with yaw (Y-rotation) between +/- PI/2. The second always
has the magnitude of yaw between PI/2 and PI.

When the Y-rotation is found to be exactly +/- PI/2, the X-rotation (pitch) is assumed t
zero.

WTeuler_2q

void WTeuler_2q(
float wx,
float wy,

float wz,
WTq q);
WorldToolKit Reference Manual 25-27

Chapter 25: Math Library

ler

e

, so

n the
 was

than
ls to

ngles.

rrect

Z is
Y
This function converts euler angles (specified in radians) to a unit quaternion. The eu
angle rotation is defined by right-hand rotations in a body-fixed coordinate frame in the
following order:

• first rotating about the X axis (of the body frame) by the angle wx,

• then about the (rotated body) Y axis by wy,

• and finally about the (rotated body) Z axis by wz.

The body-fixed coordinate frame is similar to the local coordinate system (LCS), with th
following difference. The body-fixed coordinate frame changes orientation when the first
rotation (to the X axis) is applied to it. The body has changed orientation in 3D space
the X, Y, and Z axes are now different in relation to the world coordinate system. Whe
Y rotation is applied (to the now rotated body), it is not rotating on the same axis that
the Y axis originally.

If, instead, the angles are defined with respect to a fixed coordinate frame (e.g., the world
reference frame), then WTeuler_2q applies the rotations in the reverse order, that is:

• first rolling by wz about Z (of the fixed frame),

• then yawing by wy about the (fixed) Y axis,

• and finally pitching by wx about the (fixed) X axis.

If for some reason you have euler angles that must be combined in a different order
described above to produce the correct final orientation, then by making multiple cal
WTeuler_2q, you can produce the appropriate quaternion q.

For example, let’s say you are writing a sensor driver for a device that returns euler a
Suppose these angles either:

• are defined with respect to a body-fixed reference frame and determine the co
orientation when rotation about Y is applied first, then rotation about X, and
finally rotation about Z (i.e., in Y, X, Z order)

• or they are defined with respect to a fixed reference frame (like the world
reference frame), and determine the correct orientation when rotation about
applied first, then rotation about X, and finally rotation about Y. (i.e., in Z, X,
order)
25-28 WorldToolKit Reference Manual

Conversion Functions

nion.
 the

ero.
To obtain the corresponding quaternion q, you could use the following function:

/*
* This function builds up the quaternion q by generating
* the quaternion for rotation about each axis and then

* multiplying them together in the correct order.
*/
void my_euler_2q(wx, wy, wz, q)

float wx, wy, wz;
WTq q;

{

WTq qx, qy, qz;

/* generate the quaternions for rotation about each axis */
WTeuler_2q(wx, 0.0, 0.0, qx);

WTeuler_2q(0.0, wy, 0.0, qy);
WTeuler_2q(0.0, 0.0, wz, qz);

/* Note the order of quaternion multiplication. */

WTq_mult(qz, qx, q);
WTq_mult(q, qy, q);

}

Another example of using this function is provided under WTsensor_rotate on page 13-20.

WTq_2euler

void WTq_2euler(
WTq q,
WTp3 first,

WTp3 second);

This function extracts euler angles, specified in radians, from the specified unit quater
The first and second are the two possible sets of euler angles that can be derived from
quaternion. The first is the solution with yaw (Y-rotation) between +/- PI/2. The second
always has the magnitude of yaw between PI/2 and PI.

When the Y-rotation is found to be exactly +/- PI/2, the X-rotation is assumed to be z
WorldToolKit Reference Manual 25-29

Chapter 25: Math Library

e
it by

int.

), the

 the
WTq_2dir

void WTq_2dir(
WTq q,
WTp3 dir);

This function converts a quaternion into a direction vector. This direction vector is th
vector that results from taking a unit vector along the Z axis (i.e. [0,0,1]) and rotating
q. Given an orientation (like from WTnode_getorientation or WTviewpoint_getorientation)
this function finds the vector pointing out the front of the node, or nose of the viewpo

WTdir_2q

void WTdir_2q(
WTp3 dir,
WTq q);

This function converts a unit vector to a quaternion. In generating q, it is assumed there is
no twist (roll) about the direction vector (otherwise, see WTq_2dirandtwist).

If the specified direction vector is not normalized (i.e., does not have length equal to 1
resulting quaternion will not be valid.

WTq_2dirandtwist

void WTq_2dirandtwist(
WTq q,
WTp3 dir,

float *twist);

This function is similar to WTq_2dir, which converts a quaternion q into a direction vector
dir. WTq_2dirandtwist gets the twist factor (roll) from the quaternion, apart from the
direction. The direction vector is the vector that results from taking a unit vector along
Z axis (i.e. [0,0,1]) and rotating it by q. Given an orientation (like from
WTnode_getorientation or WTviewpoint_getorientation) this function finds the vector
pointing out the front of the node, or nose of the viewpoint.
25-30 WorldToolKit Reference Manual

Conversion Functions

alid

 of
WTdirandtwist_2q

void WTdirandtwist_2q(
WTp3 dir,
float twist

WTq q);

This function converts a vector dir to a quaternion having a twist as specified by the twist
argument. This function is different from WTdir_2q in that it considers the twist (roll) about
the vector direction. It is required for the vector direction to be non-zero to obtain a v
quaternion. This result is placed in q.

WTm4_2pq

void WTm4_2pq(
WTm4 m,

WTpq *pq);

This function converts a WTm4 matrix into a WTpq structure that holds position (p) and
orientation (q) values. The function accepts a pointer to a WTpq structure whose p and q
fields are respectively updated by the calculated position and orientation values.

If the specified matrix is bad, an initialized q (i.e. [0,0,0,1]) is returned as the orientation
part of the WTpq structure. An illegal matrix is one where the first three elements of any
the first three rows are all zero.

WTpq_2m4

void WTpq_2m4(
WTpq *pq,

WTm4 m);

This function converts a WTpq structure with position and orientation fields into a WTm4
matrix. The resultant matrix is returned as m.
WorldToolKit Reference Manual 25-31

Chapter 25: Math Library

the
,

e

WTq_2m4

void WTq_2m4(
WTq q,
WTm4 m);

This function converts a quaternion to a 4x4 matrix, and places the result into m. The
transitional component of m is set to [0,0,0].

WTq_2eulernear

void WTq_2eulernear(
WTq q,
WTp3 nearp,

WTp3 euler);

This function returns an euler that is closest to the specified euler, corresponding to
specified WTq. This WTq, specified in the q argument, can be converted into two eulers
one of which is closer to the specified reference euler, nearp. The closer euler is stored in
the euler parameter.

WTm3_2eulernear

void WTm3_2eulernear(
WTm3 m,

WTp3 nearp,
WTp3 euler);

This function returns an euler that is closest to a specified euler, corresponding to th
specified WTm3 (a 3x3 matrix). This WTm3, specified in the m argument, can be converted
into two eulers, one of which is closer to the specified reference euler, nearp. The closer
euler is stored in the euler parameter.
25-32 WorldToolKit Reference Manual

Floating-point Comparisons

urns
 0.0
nted

fined
WTnormal_2slope

float WTnormal_2slope(
WTp3 normal);

This function takes a normal, like the normal for a polygon or ground surface, and ret
the corresponding slope in radians. The returned value is between 0.0 and PI/2, with
returned for a polygon parallel to the X-Z plane, and PI/2 returned for a vertically-orie
polygon. The normal argument must have unit magnitude for the function to work.

For example, to obtain the slope of a polygon you would call:

WTpoly *poly;

WTp3 normal;
float slope;
WTpoly_getnormal(poly, normal);

slope = WTnormal_2slope(normal);

Floating-point Comparisons

WTzero

[MACRO] WTzero(
float value);

This function returns TRUE if the magnitude of the specified value is less than the de
constant WTFUZZ (0.004). Otherwise, WTzero returns FALSE.

Please refer to the discussion under Roundoff and Scaling on page 6-13 for information
about floating-point tolerances within WTK.
WorldToolKit Reference Manual 25-33

Chapter 25: Math Library

Reference-frame Math Utilities

This section contains functions for converting positions and orientations from one
reference frame to another. More information about reference frames is provided in
Geometry Motion Reference Frames on page 13-19.

WTp3_frame2frame

void WTp3_frame2frame(
WTp3 pin,
WTpq *frame1,

WTpq *frame2,
WTp3 pout);

This function takes frame1’s position (specified in pin) and determines its position relative
to frame2, then places the result into pout.

WTp3_local2worldframe

void WTp3_local2worldframe(

WTp3 pin,
WTpq *frame,
WTp3 pout);

This function takes the frame’s position (specified in pin) and determines its position
relative to the world coordinate frame, then places the result into pout.

WTp3_world2localframe

void WTp3_world2localframe(
WTp3 pin,
WTpq *frame,

WTp3 pout);

This function takes the position of the world coordinate frame (specified in pin) and
determines its position relative to the specified local frame, then places the result into pout.
25-34 WorldToolKit Reference Manual

Reference-frame Math Utilities
WTq_frame2frame

void WTq_frame2frame(
WTq qin,
WTpq *frame1,

WTpq *frame2,
WTq qout);

This function takes the specified orientation qin relative to frame1 and determines its
orientation relative to frame2, then places the result into qout.

WTq_local2worldframe

void WTq_local2worldframe(

WTq qin,
WTpq *frame,
WTq qout);

This function takes the specified orientation qin for the local frame and determines its
orientation relative to the world coordinate frame, then places the result into qout.

WTq_world2localframe

void WTq_world2localframe(
WTq qin,
WTpq *frame,

WTq qout);

This function takes a specified orientation qin for the world coordinate frame and
determines its orientation relative to the local frame, then places the result into qout.
WorldToolKit Reference Manual 25-35

Chapter 25: Math Library

 into

ve to
WTpq_frame2frame

void WTpq_frame2frame(
WTpq *pqin,
WTpq *frame1,

WTpq *frame2,
WTpq *pqout);

This function takes a specified position and orientation pqin for frame1 and determines the
corresponding position and orientation relative to frame2, then places the result into pqout.

WTpq_local2worldframe

void WTpq_local2worldframe(

WTpq *pqin,
WTpq *frame,
WTpq *pqout);

This function takes the specified local frame’s position and orientation pqin, determines its
position and orientation relative to the world coordinate frame, then places the result
pqout.

WTpq_world2localframe

void WTpq_world2localframe(
WTpq *pqin,
WTpq *frame,

WTpq *pqout);

This function takes a position and orientation structure pqin, specified in relation to the
world coordinate frame, determines the corresponding position and orientation relati
the local frame, and places the result into pqout.
25-36 WorldToolKit Reference Manual

ts and
ided
ws

e class
er to

 from
rts,
,
n

In

ionally
me is

old
aph,

.

26
C++ Programming

Introduction

This chapter defines the C++ classes and methods that correspond to the WTK objec
functions described in this programmer’s guide. The C++ class descriptions are prov
to allow you to build your applications in a C++ programming environment, which allo
you to use object-oriented methodologies.

Each class description lists the methods which are applicable to the class. Because th
method names generally correspond to WTK’s C function names, you will need to ref
descriptions of each function elsewhere in this Reference Guide.

To use this chapter, you need to understand how the naming convention in C++ differs
the naming convention in C. In WTK, the C function names are made up of three pa
which helps to identify the purpose of the function. All WTK functions begin with WT
then include a word that identifies the general purpose of the function, followed by a
underscore and a word that identifies the specific purpose. For example,
WTviewpoint_setdirection is a viewpoint function that sets the direction of a viewpoint.
C++, the corresponding class is WtViewPoint and the corresponding method is SetDirection.

For the most part the function names can be understood using this approach. Occas
the C++ method name differs from the function name in C, because the method’s na
more descriptive. For these methods, there are cross references to help you find the
appropriate C function. The cross references are shown to the left of the method in b
print. For example, if you want to use a method get the first motion link in a scene gr
this cross reference would tell you which function to look up.

.

Use the Index in the Reference manual to look up more information for each function

WTuniverse_getmotionlinks static WtMotionLink *GetFirstMotionLink(void);

Chapter 26: C++ Programming
Class Diagrams

The relationship of the C++ classes are shown in figure 26-1 and figure 26-2

.

Figure 26-1: C++ Base and Sensor classes

WtBase

WtFont3d

WtMotionLink

WtMtable

WtNode

WtNodePath

WtPath

WtSensor

WtSerial

WtSound

WtSoundDevice

WtTask

WtViewPoint

WtWindow

WtBird
WtBoom

WtCrystalEyesVR
WtFasttrak

WtGloves5DT
WtIGlasses

WtJoyserial
WtLogitech

WtPinch
WtPolhemus

WtSpaceball
WtSpacecontrol

WtCybermaxx2
WtFormula

WtInsidetrakNT
WtPrecision

WtSpaceballSC

Only for

WIN32

See Figure 2

WtBaron
26-2 WorldToolKit Reference Manual

Class Diagrams
Figure 26-2: WTNode classes

WtAnchor

WtInline
WtRoot

WtXformSep
WtLod

WtSep

WtSwitch

From WtNode
in Figure 1

WtFog

WtGroupWtGeometry WtAmbientLt

WtDirectedLt

WtPointLt

WtSpotLt

WtXForm

WtMovGeometry

WtMovLod
WtMovSep

WtMovSwitch

WtMovDirectedLt

WtMovPointLt

WtMovSpotLt

WtMovable
WorldToolKit Reference Manual 26-3

Chapter 26: C++ Programming

es for
 the
ting
sses
e

e
sses on
Figure 26-3: Stand-alone and Math classes

Classes and their Methods

The classes and their methods are described in the following order: First, the prototyp
global functions are described, beginning on page 26-5. Then the classes shown on
diagram in figure 26-1 are described from left to right (i.e., in alphabetical order), star
with WtFont3d on page 26-6. Each of the classes is described along with all of the cla
below it on the diagram. For example, WtNode also includes all the classes shown in figur
26-2.

After all the classes in figure 26-1 are described, the classes shown in figure 26-3 ar
described, starting with the stand-alone classes on page 26-33 and then the math cla
page 26-39.

Finally, the defines are described, beginning on page 26-45.

Stand-alone Classes Math Classes

WtDir
WtKeyBoard
WtNet
WtScreen
WtTexture
WtUniverse

WtM3
WtM4

WtQ
WtPQ

WtP2
WtP3

WTConnection
WTSharegroup
26-4 WorldToolKit Reference Manual

Prototypes for Global functions

 26-12,
s can
Prototypes for Global functions

extern WtGeometry *GeometryNodeLoad(

char *filename,
float scale);

extern WtNode *NodeLoad(

char *filename,
float scale);

extern WtMovable *MovNodeLoad(

char *filename,
float scale);

Note: The above functions are the same as the methods in the WtGroup class on page
except that the corresponding node which is created has no parent. These node
be added to the scene graph. The following function checks to see whether the
constructor function for the corresponding class was successful or not.

extern FLAG IsValid(
WtBase *base);

char *ValueToString(

WTdatatype dtype,
void *value);

World2World Client C++ Applications

Define W2WCPP in your makefile or project settings.
WorldToolKit Reference Manual 26-5

Chapter 26: C++ Programming
WtBase Classes

WTBASE

Event handler callback function prototype:

typedef void(*WtEventhandler)(
WtBase *object,
const char *propname,

void *value,
double time,
WTeventsource src);

class WtBase
{

WtBase();

WtBase(WtBase *parent);
virtual ~WtBase();
virtual void *GetWTKStructure() {return baseobject;}

/* the following only work on actual WtBase objects created with "new WtBase" */
WtBase *Next();
void AddParent(WtBase *parent);

void RemoveParent(WtBase *parent);
int NumParents();
WtBase *GetParent(int parentnum);

int NumChildren();
WtBase *GetChild(int childnum);
FLAG IsChild(WtBase *child);

WtBase *FindChild(const char *name);
/* The following methods work on WTBASE, WTNODE, WTWINDOW,

 WTVIEWPOINT, WTSENSOR, and WTPATH */

void SetData(void *data) {userdata = data;}
void *GetData() {return userdata;}
int GetType();

void Print();
void SetName(const char *name);

const char *GetName();
26-6 WorldToolKit Reference Manual

WtBase Classes
int NumProperties();
const char *GetProperty(int propnum);
const char *nFindProperty(const char *propname, int ntocmp);

FLAG DeleteProperties();
static WtBase *Find(int type, const char *name);
static WtBase *nFind(int type, const char *name, int ntocmp);

FLAG PropertyNew(const char *propname, WTdatatype dtype);
FLAG PropertyDelete(const char *propname);
FLAG PropertyExists(const char *propname);

void PropertySetData(const char *propname, void *data);
void *PropertyGetData(const char *propname);
WTdatatype PropertyGetDatatype(const char *propname);

unsigned int PropertyGetSizeOfData(const char *propname);
FLAG PropertySet(const char *propname, void *value);
FLAG PropertySeti(const char *propname, int value);

FLAG PropertySetui(const char *propname, unsigned int value);
FLAG PropertySetf(const char *propname, float value);
FLAG PropertySetd(const char *propname, double value);

FLAG PropertySetp2(const char *propname, WTp2 value);
FLAG PropertySetp3(const char *propname, WTp3 value);
FLAG PropertySetq(const char *propname, WTq value);

FLAG PropertySets(const char *propname, const char *value);
FLAG PropertySetp(const char *propname, void *value);
FLAG PropertySetAt(const char *propname, void *value, double time);

FLAG PropertyGet(const char *propname, void *value);
int PropertyGeti(const char *propname);
unsigned int PropertyGetui(const char *propname);

float PropertyGetf(const char *propname);
double PropertyGetd(const char *propname);
FLAG PropertyGetp2(const char *propname, WTp2 value);

FLAG PropertyGetp3(const char *propname, WTp3 value);
FLAG PropertyGetq(const char *propname, WTq value);
char *PropertyGets(const char *propname);

void *PropertyGetp(const char *propname);
char *PropertyGetAsString(const char *propname);
FLAG PropertyAddHandler(const char *propname, WtEventhandler eh);

FLAG PropertyRemoveHandler(const char *propname, WtEventhandler eh);
int PropertyNumHandlers(const char *propname);
WorldToolKit Reference Manual 26-7

Chapter 26: C++ Programming
WtEventhandler PropertyGetHandler(const char *propname, int handlernum);
void PropertyRemoveAllHandlers(const char *propname);
FLAG RemoveAllHandlers();

#if W2WCPP /* The following methods are only available if linking with
 World2World wrapper library */

/* The following methods work on WTBASE, WTNODE, WTWINDOW,

 WTVIEWPOINT, WTSENSOR, and WTPATH */
FLAG PropertyShare(const char *propname, WtSharegroup *shgrp = NULL,

FLAG shareflags = 0);

FLAG PropertyShare(const char *propname, WtConnection *conn = NULL,
FLAG shareflags = 0);

FLAG PropertyUnshare(const char *propname, WtSharegroup *shgrp = NULL,

FLAG forcedelete = 0);
FLAG PropertyIsShared(const char *propname);
int PropertyNumShares(const char *propname);

WtSharegroup *PropertyGetSharegroup(const char *propname, int sharenum);
void PropertySetUpdateFreq(const char *propname, double freq);
double PropertyGetUpdateFreq(const char *propname);

void PropertySendUpdate(const char *propname);
void PropertySetTimeSensitive(const char *propname, FLAG timesensitive);
FLAG PropertyGetTimeSensitive(const char *propname);

FLAG PropertyLock(const char *propname);
FLAG PropertyUnlock(const char *propname);
unsigned int PropertyIsLocked(const char *propname);

FLAG PropertyIsLockedByMe(const char *propname);
FLAG Unshare();
#endif

};
26-8 WorldToolKit Reference Manual

WtBase Classes
WTFONT3D

class WtFont3d : public WtBase
{

WtFont3d(char *filename);
~WtFont3d(void);
FLAG CharExists(char character);

void GetExtents(WtP3 extents[2]);
float GetSpacing(void);
void SetSpacing(float spacing);

};

WTMOTIONLINK

class WtMotionLink : public WtBase
{

WtMotionLink(void *source, void *target, int from_type, int to_type);
~WtMotionLink(void);
FLAG AddConstraint(int dof, float min, float max);

void Enable(FLAG flag);
int GetConstraintFrame(void);
int GetReferenceFrame(void);

FLAG GetSource(void **source, int *type);
FLAG GetTarget(void **target, int *type);
FLAG IsEnabled(void);

WtMotionLink *Next(void);
FLAG RemoveConstraint(int dof);
FLAG SetConstraintFrame(int constraintframe);

FLAG SetReferenceFrame(int frame, WtViewPoint *vpoint);
};

WTfont3d_load
WTfont3d_delete

WTmotionlink_new
WTmot ion link_delete
WorldToolKit Reference Manual 26-9

Chapter 26: C++ Programming
WTMTABLE

class WtMtable : public WtBase
{

WtMtable(char *filename);
WtMtable(int definedprops, int estimatedentries, char *name);
~WtMtable(void);

int CopyEntry(int matid, WtMtable *to);
static WtMtable *GetByName(char *name);
int GetEntryByName(char *name);

char *GetEntryName(int matid);
char *GetName(void);
int GetNumentries(void);

int GetProperties(void);
FLAG GetValue(int matid, float *value, int propertybit);
static WtMtable *Merge(WtMtable *table1, WtMtable *table2);

int NewEntry(void);
FLAG Save(void);
FLAG SetEntryName(int matid, char *name);

FLAG SetName(char *name);
FLAG SetProperties(int definedprops);
FLAG SetValue(int matid, float *value, int propertybit);

};

WTNODE

class WtNode : public WtBase
{

WtMovGeometry *ToMovGeometry(void)
{

return (WtMovGeometry *)(WtMovable *)this;

}
WtMovDirectedLt *ToMovDirectedLt(void)
{

return (WtMovDirectedLt *)(WtMovable *)this;
}
WtMovPointLt *ToMovPointLt(void)

{

WTmtable_load
WTmtable_new

WTmtable_delete
26-10 WorldToolKit Reference Manual

WtBase Classes

de.
return (WtMovPointLt *)(WtMovable *)this;
}
WtMovSpotLt *ToMovSpotLt(void)

{
return (WtMovSpotLt *)(WtMovable *)this;

}

WtMovLod *ToMovLod(void)
{

return (WtMovLod *)(WtMovable *)this;

}
WtMovSep *ToMovSep(void)
{

return (WtMovSep *)(WtMovable *)this;
}
WtMovSwitch *ToMovSwitch(void)

{
return (WtMovSwitch *)(WtMovable *)this;

Note: The above methods typecast a WtNode to the corresponding movable no

}
~WtNode(void);
char *GetName(void);

WtNode *GetParent(int parentum);
int GetType(void);
FLAG HasBBox(void);

FLAG IsEnabled(void);
FLAG IsMovable(void);
int NumParents(void);

void Print(void);
WTpoly *RayIntersect(WtP3 ray, WtP3 origin,

float *distance, WtNodePath **npath);

FLAG Remove(void);
FLAG Save(char *filename, WtViewPoint *vpoint, int filetype, int options);
FLAG SetName(char *name);

};

WTnode_delete

WTnode_hasboundingbox
WorldToolKit Reference Manual 26-11

Chapter 26: C++ Programming
WtGroup

class WtGroup : public WtNode

{
WtGroup(WtGroup *parent);
FLAG AddChild(WtNode *child);

FLAG BBox(FLAG enable);
FLAG CanAddChild(WtNode *child);
FLAG DeleteChild(int childnum);

WtNode *GetChild(int childnum);
FLAG GetExtents(WtP3 &extents);
FLAG GetMidpoint(WtP3 &midpoint);

float GetRadius(void);
WtGeometry *GeometryNodeLoad(char *filename, float scale = 1.f);
FLAG InsertChild(WtNode *child, int childnum);

FLAG LightNodeLoad(char *filename);
WtMovable *MovNodeLoad(char *filename, float scale = 1.f);
WtNode *NodeLoad(char *filename, float scale = 1.f);

int NumChildren(void);
FLAG RemoveChild(int childnum);

};

WtAnchor

class WtAnchor : public WtGroup

{
WtAnchor(WtGroup *parent);
char *Getlocation(void);

FLAG SetLocation(char *link);
};

WtInline

class WtInline : public WtGroup
{

WtInline(WtGroup *parent);
char *Getlocation(void);
FLAG SetLocation(char *link);

};

WTgroupnode_new

WTnode_boundingbox

WTanchornode_new

WTinlinenode_new
26-12 WorldToolKit Reference Manual

WtBase Classes
WtLod

class WtLod : public WtGroup

{
WtLod(WtGroup *parent);
FLAG GetCenter(WtP3 ¢er);

FLAG GetRange(float *range, int num);
int NumRanges(void);
FLAG SetCenter(WtP3 center);

FLAG SetRange(float *range, int num);
};

WtRoot

class WtRoot : public WtGroup
{

WtRoot(void);
WtRoot *Next(void);

};

WtSep

class WtSep : public WtGroup

{
WtSep(WtGroup *parent);
FLAG Enable(FLAG enable);

int GetCullmode(void);
FLAG SetCullmode(int mode);

};

WtSwitch

class WtSwitch : public WtGroup

{
WtSwitch(WtGroup *parent);
int GetWhichChild(void);

FLAG SetWhichChild(int which);
};

WTlodnode_new

WTrootnode_new

WTsepnode_new

WTswitchnode_new
WorldToolKit Reference Manual 26-13

Chapter 26: C++ Programming

e. In
WtXformSep

class WtXformSep : public WtGroup

{
WtXformSep(WtGroup *parent);
FLAG Enable(FLAG enable);

};

WtFog

class WtFog : public WtNode
{

WtFog(WtGroup *parent);

FLAG Enable(FLAG enable);
FLAG GetColor(float &red, float &grn, float &blue, float &alpha);
float GetLinearStart(void);

int GetMode(void);
float GetRange(void);
FLAG SetColor(float red, float grn,float blue,float alpha);

FLAG SetLinearStart(float start);
FLAG SetMode(int mode);
FLAG SetRange(float range);

};

Note: In the WTK C API, there is the concept of a geometry and a geometry nod
the WTK C++ API, however, these are combined into one entity — the
WtGeometry class.

WtGeometry

class WtGeometry : public WtNode
{

WtGeometry(int type, float height, float radius,
int tess, FLAG bothsides, FLAG gouraud);

WtGeometry(int type, float lx, float ly, float lz,

FLAG bothsides);
WtGeometry(int type, float height, float radius, int tess,

FLAG bothsides);

WtGeometry(int type, float radius, int nlat, int nlong,

WTxformsepnode_new

WTfognode_new

WTgeometry_newcylinder

WTgeometry_newblock

WTgeometry_newcone
26-14 WorldToolKit Reference Manual

WtBase Classes
FLAG bothsides,FLAG gouraud);
WtGeometry(int type, float height, float width,

FLAG bothsides);

WtGeometry(int type, float height, float toprad, float baserad,
int tess, FLAG bothsides, FLAG gouraud);

WtGeometry(int type, WtP2 points[],int numpts,float height,

 FLAG bothsides,FLAG gouraud);
WtGeometry(int type);

Note: Check the defines on page 26-45 for the type argument.

WtGeometry(WtFont3d *font3d, char *string);
WtGeometry(WtGeometry *copy);
FLAG BeginEdit(void);

WTpoly *BeginPoly(void);
FLAG BBox(FLAG enable);
FLAG ChangeTexture(char *bitmap, FLAG shaded, FLAG transparent);

FLAG Close(void);
FLAG ComputeVertexNormal(WTvertex *vertex);
FLAG DeletePrebuild(void);

void DeleteTexture(void);
FLAG Enable(FLAG enable);
FLAG EndEdit(void);

FLAG GetExtents(WtP3 & extents);
FLAG GetMidpoint(WtP3 & midpoint);
WtMtable *GetMtable(void);

WTpoly *GetFirstPoly(void);
float GetRadius(void);
int GetRenderingStyle(void);

int GetVertexMatId(WTvertex *vertex);
FLAG GetVertexNormal(WTvertex *vertex, WtP3 & norm);
void GetVertexPosition(WTvertex *vertex, WtP3 & pos);

FLAG GetVertexRGB(WTvertex *vertex, unsigned char *r, unsigned char *g,
 unsigned char *b);

WTvertex *GetFirstVertex(void);

WTpoly *Id2Poly(short id);
WTpoly *Merge(WtGeometry *mergewith);

WTvertex *NewVertex(WtP3 p);

WTgeometry_newsphere

WTgeometry_newrectangle

WTgeometry_newtruncone

WTgeometry_newextrusion

WTgeometry_begin

WTgeometr y_newtext3d

WTgeometry_copy

WTnode_boundingbox
WorldToolKit Reference Manual 26-15

Chapter 26: C++ Programming
int NumPolys(void);
FLAG Prebuild(void);
void RecomputeStats(FLAG clearverts);

void ScaleVerts(float factor, WtP3 center);
FLAG SetMatId(int id);
void SetMtable(WtMtable *table);

FLAG SetRenderingStyle(int modes, int style);
void SetRGB(unsigned char r, unsigned char g, unsigned char b);
FLAG SetTexture(char *bitmap, FLAG shaded, FLAG transparent);

FLAG SetTextureUV(char *bitmap,float (*fu)(WtP3),
float (*fv)(WtP3), FLAG shaded, FLAG transparent);

 FLAG SetUV(float (*fu)(WtP3), float (*fv)(WtP3));

FLAG SetVertexMatId(WTvertex *vertex, int id);
FLAG SetVertexNormal(WTvertex *vertex, WtP3 norm);
FLAG SetVertexPosition(WTvertex *vertex, WtP3 pos);

FLAG SetVertexRGB(WTvertex *vertex, unsigned char r, unsigned char g,
 unsigned char b);

void StretchVerts(WtP3 factors, WtP3 center);

void TransformVerts(WtPQ *xform);
void TransformVerts(WtM4 m4);
void TranslateVerts(WtP3 offSet);

};

WtAmbientLt

class WtAmbientLt : public WtNode
{

WtAmbientLt(WtGroup *parent);
FLAG Enable(FLAG enable);
FLAG GetAmbient(float &r, float &g, float &b);

float GetIntensity(void);
int GetType(void);
FLAG Save(char *filename);

FLAG SetAmbient(float r, float g, float b);
FLAG SetIntensity(float intensity);

};

WTgeometry_scale

WTgeometry_stretch
WTgeometry_transform
WTgeometry_transform
WTgeometry_translate

WTlightnode_newambient
26-16 WorldToolKit Reference Manual

WtBase Classes
WtDirectedLt

class WtDirectedLt : public WtNode

{
WtDirectedLt(WtGroup *parent);
FLAG Enable(FLAG enable);

FLAG GetAmbient(float &r, float &g,float &b);
FLAG GetDiffuse(float &r, float &g,float &b);
FLAG GetDirection(WtP3 &dir);

float GetIntensity(void);
FLAG GetSpecular(float &r, float &g, float &b);
int GetType(void);

FLAG Save(char *filename);
FLAG SetAmbient(float r, float g, float b);
FLAG SetDiffuse(float r, float g, float b);

FLAG SetDirection(WtP3 dir);
FLAG SetIntensity(float intensity);
FLAG SetSpecular(float r, float g, float b);

};

WtPointLt

class WtPointLt : public WtNode
{

WtPointLt(WtGroup *parent);

FLAG Enable(FLAG enable);
FLAG GetAmbient(float &r, float &g, float &b);
FLAG GetAttenuation(float &atten0,float &atten1,float &atten2);

FLAG GetDiffuse(float &r, float &g,float &b);
float GetIntensity(void);
FLAG GetPosition(WtP3 &pos);

FLAG GetSpecular(float &r, float &g, float &b);
int GetType(void);
FLAG Save(char *filename);

FLAG SetAmbient(float r, float g, float b);
FLAG SetAttenuation(float atten0,float atten1,float atten2);
FLAG SetDiffuse(float r, float g, float blue);

FLAG SetIntensity(float intensity);

WTlightnode_newdirected

WTlightnode_newpoint
WorldToolKit Reference Manual 26-17

Chapter 26: C++ Programming
FLAG SetPosition(WtP3 pos);
FLAG SetSpecular(float r, float g, float b);

};

WtSpotLt

class WtSpotLt : public WtNode

{
WtSpotLt(WtGroup *parent);
FLAG Enable(FLAG enable);

FLAG GetAmbient(float &red,float &grn,float &blue);
float GetAngle(void);
void GetAttenuation(float &atten0,float &atten1,float &atten2);

FLAG GetDiffuse(float &red,float &grn,float &blue);
FLAG GetDirection(WtP3 & dir);
float GetExponent(void);

float GetIntensity(void);
FLAG GetPosition(WtP3 &pos);
FLAG GetSpecular(float &red, float &grn, float &blue);

int GetType(void);
FLAG Save(char *filename);
FLAG SetAmbient(float red, float grn, float blue);

FLAG SetAngle(float angle);
FLAG SetAttenuation(float atten0,float atten1,float atten2);
FLAG SetDiffuse(float red, float grn, float blue);

FLAG SetDirection(WtP3 dir);
FLAG SetExponent(float exponent);
FLAG SetIntensity(float intensity);

FLAG SetPosition(WtP3 pos);
FLAG SetSpecular(float red, float grn, float blue);

};

WTlightnode_newspot
26-18 WorldToolKit Reference Manual

WtBase Classes
WtXform

class WtXform : public WtNode

{
WtXform(WtGroup *parent);
WtMotionLink *AddSensor(WtSensor *sensor);

FLAG AxisRotation(int axis, float angle, int frame);
FLAG GetOrientation(WtQ &ori);
FLAG GetRotation(WtM3 &mat);

FLAG GetTransform(WtM4 &mat);
FLAG GetTranslation(WtP3 &pos);
void RemoveSensor(WtSensor *sensor);

FLAG RotateM3(WtM3 m3, int frame);
FLAG RotateM4(WtM4 m4, int frame);
FLAG RotateQ(WtQ rot, int frame);

FLAG Rotation(float angley, float anglex, float anglez, int frame);
FLAG SetOrientation(WtQ ori);
FLAG SetRotation(WtM3 mat);

FLAG SetTransform(WtM4 mat);
FLAG SetTranslation(WtP3 pos);
FLAG Translate(WtP3 pos, int frame);

};

WtMovable

class WtMovable : public WtXform
{

FLAG AlignAxis(int axis, WtP3 dir);

FLAG Attach(WtNode *child, int childnum);
FLAG DeleteAttachment(int childnum);
FLAG Detach(int childnum);

WtNode *GetAttachment(int attachnum);
WtMovable *Instance(WtMovable *parent);
int NumAttachments(void);

FLAG MovAxisRotation(int axis, float angle);
};

WTxformnode_new

WTmovnode_axisrotation
WorldToolKit Reference Manual 26-19

Chapter 26: C++ Programming
WtMovGeometry

class WtMovGeometry : public WtMovable, public WtGeometry

{
WtMovGeometry(int type, float height, float radius,

int tess, FLAG bothsides, FLAG gouraud);

WtMovGeometry(int type, float lx, float ly, float lz,
FLAG bothsides);

WtMovGeometry(int type, float height, float radius, int tess,

FLAG bothsides);
WtMovGeometry(int type, float radius, int nlat, int nlong,

FLAG bothsides,FLAG gouraud);

WtMovGeometry(int type, float height, float width,
FLAG bothsides);

WtMovGeometry(int type, float height, float toprad, float baserad,

int tess, FLAG bothsides, FLAG gouraud);
WtMovGeometry(int type, WtP2 points[],int numpts,float height,

 FLAG bothsides,FLAG gouraud);

WtMovGeometry(int type);
WtMovGeometry(WtFont3d *font3d, char *string);

};

WtMovLod

class WtMovLod : public WtMovable, public WtLod

{
WtMovLod(WtGroup *parent);

};

WtMovSep

class WtMovSep : public WtMovable, public WtSep

{
WtMovSep(WtGroup *parent);

};

WTmovelodnode_new

WTmovsepnode_new
26-20 WorldToolKit Reference Manual

WtBase Classes
WtMovSwitch

class WtMovSwitch : public WtMovable, public WtSwitch

{
WtMovSwitch(WtGroup *parent);

};

WtMovDirectedLt

class WtMovDirectedLt : public WtMovable, public WtDirectedLt

{
WtMovDirectedLt(WtGroup *parent);

};

WtMovPointLt

class WtMovPointLt : public WtMovable, public WtPointLt

{
WtMovPointLt(WtGroup *parent);

};

WtMovSpotLt

class WtMovSpotLt : public WtMovable, public WtSpotLt

{
WtMovSpotLt(WtGroup *parent);

};

WTNODEPATH

class WtNodePath : public WtBase
{

WtNodePath(WtNode *leaf, WtNode *root, int instnum);

~WtNodePath(void);
WtMotionLink *AddSensor(WtSensor *sensor,int frame);
FLAG GetExtents(float ext[2][3]);

WtNode *GetNode(int num);
FLAG GetOrientation(WtQ &ori);

WTmovswitchnode_new

WTmovli ghtnode newdirected

WTmovlightnode_newpoint

WTmovlightnode_newspot

WTnodepath_new
WTnodepath_delete
WorldToolKit Reference Manual 26-21

Chapter 26: C++ Programming
FLAG GetTransform(WtM4 &m4);
FLAG GetTranslation(WtP3 &pos);
int GetTraversal(int *nodes, int max);

FLAG IntersectBBox(WtNodePath *nodepath2);
WtNodePath *IntersectNode(WtNode *node, int occurence);
FLAG IntersectPoly(WtNodePath *nodepath2);

int NumNodes(void);
void RemoveSensor(WtSensor *sensor);

};

WTPATH

class WtPath : public WtBase
{

WtPath(char *filename);

WtPath(WtPath *interpolate, int npoints,int method);
WtPath(WtPath *copy);
WtPath(void);

~WtPath(void);
void AppendElement(WTpathelement *Element);
short GetConstraints(void);

WTpathelement *GetCurrentElement(void);
short GetDirection(void);
WTpathelement *GetFirstElement(void);

short GetMode(void);
int GetPlaySpeed(void);
int GetSamples(void);

FLAG GetVisibility(void);
void InsertElement(WTpathelement *Element);
FLAG IsPlaying(void);

FLAG IsRecording(void);
WtPath *Next(void);
int NumElements(void);

void Play(void);
void Play1(void);
FLAG Record(void);

FLAG Record1(void);
void Rewind(void);

WTpath_load
WTpath_interpolate

WTpath_copy
WTpath_new

WTpath_delete
26-22 WorldToolKit Reference Manual

WtBase Classes
FLAG Save(char *filename);
FLAG Seek(int offSet,int where);
void SetConstraints(short constraints);

FLAG SetCurrentElement(WTpathelement *SetElement);
void SetDirection(short dir);
void SetMode(short mode);

void SetPlaySpeed(int speed);
FLAG SetRecordLink(WtMotionLink *link);
void SetSamples(int frames_per_Element);

void SetVisibility(FLAG flag);
void ShowCurrentElement(void);
void Stop(void);

 };

WTSENSOR

class WtSensor : public WtBase
{

WtSensor(int(* openfn)(WTsensor *), void(* closefn)(WTsensor *),
void(* updatefn)(WTsensor *), WtSerial *serial,
short unit, short location);

WtSensor(int(* openfn)(WtSensor *), void(* closefn)(WtSensor *),
void(* updatefn)(WtSensor *), WtSerial *serial,
short unit, short location);

~WtSensor(void);
float GetAngularRate(void);
void GetLastRecord(WtP3 & absolute_p, WtQ & absolute_q);

int GetMiscData(void);
void *GetRawData(void);
void GetRotation(WtQ & rot);

float GetSensitivity(void);
WtSerial *GetSerial(void);
void GetTranslation(WtP3 & pos);

short GetUnit(void);
WtSensor *Next(void);
void RelativizeRecord(WtP3 absolute_p, WtQ absolute_q,

WtP3 & relative_p, WtQ & relative_q);
void Rotate(WtQ rot);

WTsensor_new

WTsensor_new

WTsensor_delete
WorldToolKit Reference Manual 26-23

Chapter 26: C++ Programming
void SetAngularRate(float v);
void SetLastRecord(WtP3 absolute_p, WtQ aAbsolute_q);
void SetMiscData(int x);

void SetRawData(void *dataptr);
void SetRecord(WtP3 relative_p, WtQ relative_q);
void SetSensitivity(float v);

void SetUpdateFn(void(* updatefn)(WTsensor *));
void SetUpdateFn(void(* updatefn)(WtSensor *));

};

class WtBaron : public WtSensor
{

WtBaron(char *port);

};
class WtBird : public WtSensor
{

WtBird(char *port, int unit);
void AutoHemisphere(void);
void GetAbsoluteRecord(WtP3 absp, WtQ absq);

int GetHemisphere(void);
static FLAG InitERC(char *port);
FLAG SetERCSerial(WtSerial *ert_serial);

void SetHemisphere(int hemi);
 void SetSync(short type);
};

class WtBoom : public WtSensor
{

WtBoom(char *port);

};
class WtCrystalEyesVR : public WtSensor
{

WtCrystalEyesVR(char *port);
};
class WtFastrak : public WtSensor

{
WtFastrak(char *port, int unit);
FLAG AFilter(float F, float FLOW, float FHIGH, float FACTOR);

void AFilterOff(void);
FLAG PFilter(float F, float FLOW, float FHIGH, float FACTOR);

WTbaron_new

WTbird_new

WTboom_new

WTcrystaleyesVR_new

WTfasttrak_new
26-24 WorldToolKit Reference Manual

WtBase Classes
void PFilterOff(void);
};
class WtGeoball : public WtSensor

{
WtGeoball(char *port);
FLAG Present(WtSerial *serial);

};
class WtGlove5DT : public WtSensor
{

WtGlove5DT(char *port);
void CalibrateClosed(void);
void CalibrateOpen(void);

int RawUpdate(void);
void UpdateFingers(void);

};

class WtIGlasses : public WtSensor
{

WtIGlasses(char *port);

int RawUpdate(void);
};
class WtIsotrak2 : public WtSensor

{
WtIsotrak2(char *port, int unit);

};

class WtJoyserial : public WtSensor
{

WtJoyserial(char *port);

float GetDrift(void);
void GetRange(WtP2 range);
int RawUpdate(void);

void ReadCalibrationFile(void);
void SetDrift(float drift);

};

class WtLogitech : public WtSensor
{

WtLogitech(char *port);

};
class WtMouse : public WtSensor

WTgeoball_new

WTglove5DT_new

WTiglasses_new

WTisotrak2_new

WTjoyserial_new

WTlogitech_new
WorldToolKit Reference Manual 26-25

Chapter 26: C++ Programming

ed is
{
WtMouse(void);
void RawUpdate(void);

FLAG InWindow(WtWindow *window);
void SetTrackballDrift(float drift);
void SetTrackballSnap(float snap);

void SetTrackballSnapAngle(float snapangle);
void TrackballReset (void);
void TrackballVPoint(void);

WtWindow *WhichWindow(void);

Note: The following functions should be used only if the update function being us
WTmouse_trackball

float GetTrackballDrift(void);

float GetTrackballSnap(void);
float GetTrackballSnapAngle(void);

};

class WtPinch : public WtSensor
{

WtPinch(char *port, int baud);

void RawUpdate(void);
};
class WtPolhemus : public WtSensor

{
WtPolhemus(char *port);

};

class WtSpaceball : public WtSensor
{

WtSpaceball(char *port);

void Rezero(void);
};
class WtSpacecontrol : public WtSensor

{
WtSpacecontrol(char *port);
void RawUpdate(void);

};

WTmouse_new

WTpinch_ne w

WTpolhemus_new

WTspaceball_new

WTspacecontrol_new
26-26 WorldToolKit Reference Manual

WtBase Classes
Note: The following sensors are for WIN32 systems only.

class WtCybermaxx2 : public WtSensor
{

WtCybermaxx2(char *port);

FLAG RawUpdate(void);
};

class WtFormula : public WtSensor
{

WtFormula(int unit);

void RawUpdate(void);
};
class WtInsidetrakNT : public WtSensor

{
WtInsidetrakNT(short unit);

};

class WtPrecision : WtSensor
{

WtPrecision(char *port);

int RawUpdate(void);
int RawUpdate2(void);

};

class WtSpaceballSC : public WtSensor
{

WtSpaceballSC(char *port);

FLAG Rezero(void);
FLAG SetWindow(WtWindow *window);

};

WTcybermaxx2_new

WTformula_new

WTinsidetrak_ne w

WTprecision_new

WTspaceballSC_ne w
WorldToolKit Reference Manual 26-27

Chapter 26: C++ Programming
WTSERIAL

class WtSerial : public WtBase
{

#if WIN32
WtSerial(char *port, int baud, char parity,

int databits, int stopbits, int buffersize);

#else // Unix
WtSerial(char *port, int baud);

#endif // WIN32/Unix

~WtSerial(void);
short Read(char *data, int length, FLAG retry);
FLAG SetBaud(int baud);

short Write(unsigned char *buffer, int length);
#if WIN32

int GetBaud(void);

int GetByteSize(void);
int NToRead(void);
FLAG SetByteSize(int size);

FLAG SetRTS(FLAG Set);
#else // Unix

short NToRead(void);

short Readx(char *data, int length);
void SetRTS(FLAG Set);
void SetSize(short size);

#endif // WIN32/Unix
};

WTSOUND

class WtSound : public WtBase

{
WtSound(WtSoundDevice *device, char *source);
~WtSound(void);

PFVS GetDoneFn(void);
char *GetName(void);
WtNodePath *GetNodePath(void);

float GetParam(int param);

WTserial_new

WTserial_new

WTserial_delete

WTsound_load

WTsound_delete
26-28 WorldToolKit Reference Manual

WtBase Classes
void GetPosition(WtP3 & pos);
FLAG IsPlaying(void);
WtSound *Next(void);

FLAG Play(void);
void SetDoneFn(PFVS donefn);
FLAG SetNodePath(WtNodePath *npath);

void SetParam(int param, float value);
void SetPosition(WtP3 pos);
FLAG Stop(void);

};

WTSOUNDDEVICE

class WtSoundDevice: public WtBase
{

WtSoundDevice(int type, int nplayable, WtViewPoint *vpoint);
~WtSoundDevice(void);
WtViewPoint *GetListener(void);

float GetParam(int param);
WtSound *GetFirstSound(void);
WtSound *Name2Sound(char *name);

int NumPlayable(void);
FLAG SetListener(WtViewPoint *viewpoint);
void SetParam(int param, float value);

void Update(void);
};

WTTASK

class WtTask : public WtBase

{
WtTask(void *ptr,WTtask_function fptr,float priority = 1.f);
~WtTask(void);

FLAG Add(void);
WTtask_function GetFunction(void);
float GetPriority(void);

FLAG Remove(void);

WTsounddevice_open
WTsounddevice_close

WTtask_new

WTtask_delete
WorldToolKit Reference Manual 26-29

Chapter 26: C++ Programming
FLAG SetPriority(float priority);
};

WTVIEWPOINT

class WtViewPoint : public WtBase

{
WtViewPoint(WtViewPoint *copy);
WtViewPoint(void);

~WtViewPoint(void);
WtMotionLink *AddSensor(WtSensor *sensor);
void AlignAxis(short axis, WtP3 dir);

void GetAxis(short axis, WtP3 & vector);
float GetConvDistance(void);
short GetConvergence(void);

void GetDirection(WtP3 & dir);
void GetDirectionFrame(WtP3 & dir, WtPQ frame);
void GetFrame(WtPQ & frame);

void GetLastOrientation(WtQ & ori);
void GetLastPosition(WtP3 & pos);
void GetOrientation(WtQ & ori);

void GetOrientationFrame(WtQ & ori, WtPQ frame);
float GetParallax(void);
void GetPosition(WtP3 & pos);

void GetPositionFrame(WtP3 & pos, WtPQ frame);
void IntersectPoly(WTpoly *poly, WtNodePath *npath, float distance);
void Local2World(WtP3 pin,WtP3 & pout);

void Move(WtPQ move, short frame);
void MoveFrame(WtPQ move, WtPQ frame);
void MoveTo(WtPQ moveto);

void MoveToFrame(WtPQ moveto, WtPQ frame);
WtViewPoint *Next(void);
void RemoveSensor(WtSensor *sensor);

void Rotate(short axis, float rad, short frame);
void RotateFrame(short axis, float rad, WtPQ frame);
void SetConvDistance(float x);

void SetConvergence(short x);
void SetDirection(WtP3 dir);

WTviewpo int_copy

WTviewpoint_new

WTviewpoint_delet e
26-30 WorldToolKit Reference Manual

WtBase Classes
void SetDirectionFrame(WtP3 dir, WtPQ frame);
void SetOrientation(WtQ ori);
void SetOrientationFrame(WtQ ori, WtPQ frame);

void SetParallax(float x);
void SetPosition(WtP3 pos);
void SetPositionFrame(WtP3 pos, WtPQ frame);

void Translate(WtP3 trans, short frame);
void TranslateFrame(WtP3 trans, WtPQ frame);
void World2Local(WtP3 pin, WtP3 & pout);

};

WTWINDOW

class WtWindow : public WtBase
{

WtWindow(int x0, int y0, int xsize, int ysize, int flags);
~WtWindow(void);
FLAG ContainsPoint(int x, int y);

void Draw2DCircle(float xc, float yc, float radius, int mode);
void Draw2DLine(float x1, float y1, float x2, float y2);
void Draw2DPoint(float x, float y);

void Draw2DRectangle(float x1, float y1, float x2, float y2, int mode);
void Draw2DText(float x, float y, char *text);
void Draw2DTexture(char *name, FLAG transp, WtP2 *xyarray,

int xysize, WtP2 *uvarray, int uvsize);
void Draw3DLines(WtP3 *pts, int npts, int style);
void Draw3DPoints(WtP3 *pts, int npts);

void Enable(FLAG enable);
FLAG Exists(void);
void Get2DTextExtents(char *string, float *width, float *height);

void GetBgRGB(unsigned char *r,unsigned char *g, unsigned char *b);
short GetEye(void);
float GetHitherValue(void);

WTwinidtype GetIdx(void);
FLAG GetImage(int x, int y,int pixels,int scanlines, unsigned char *image);
void GetParams(FLAG eye, float *left, float *right,float *bottom,

float *top, float *nearp, float *farp);
void GetPosition(int *x0, int *y0, int *width, int *height);

WTwindow_new

WTwindow_delete
WorldToolKit Reference Manual 26-31

Chapter 26: C++ Programming
int GetProjection(void);
FLAG GetRay(WtP2 point, WtP3 & rayorigin, WtP3 & ray);
WtRoot *GetRootNode(void);

int GetScreen(void);
float GetViewAngle(void);
WtViewPoint *GetViewPoint(void);

WtViewPoint *GetViewPoint2(void);
float GetYonValue(void);
FLAG IsEnabled(void);

FLAG LoadImage(char *filename, float zval,FLAG swapbuf, FLAG bitmapdel);
WtWindow *Next(void);
int NumPolys(void);

WTpoly *PickPoly(WtP2 pt2D, WtNodePath **npath, WtP3 & pt3D);
FLAG ProjectPoint(int eye,WtP3 pos, WtP2 point);
void Set2DColor(unsigned char r, unsigned char g, unsigned char b);

void Set2DFont(int fontindex);
void Set2DLineStyle(int linestyle);
void Set2DLineWidth(float width);

void Set3DColor(unsigned char r, unsigned char g, unsigned char b);
void Set3DLineStyle(int linestyle);
void Set3DLineWidth(float lnwidth);

void Set3DPointSize(float size);
 void SetBgRGB(unsigned char r, unsigned char g,unsigned char b);

void SetDrawFn(void (*drawfn)(WtWindow *, FLAG));

void SetEye(short eye);
void SetFgActions(void (*fgactions)(WtWindow *, FLAG));
void SetHitherValue(float val);

void SetParams(FLAG eye, float left, float right, float bottom,
float top, float nearf,float farf);

void SetPosition(int x0, int y0, int width, int height);

void SetProjection(int type);
FLAG SetRootNode(WtRoot *rootnode);
void SetViewAngle(float angle);

void SetViewPoint(WtViewPoint *viewpoint);
void SetViewPoint2(WtViewPoint *viewpoint);
void SetYonValue(float val);

void ZoomViewPoint(void);
void ZoomViewToNode(WtNode *zoomnode, int which);
26-32 WorldToolKit Reference Manual

Stand-alone Classes
#if WIN32
WtWindow(HWND parent, int window_config);
static void UseWindow(HWND parent);

#else /* UNIX */
WtWindow(Widget parent, int window_config);
Widget GetWidget(void);

static void UseWindow(Widget parent);
#endif /* WIN32 */
};

Stand-alone Classes

WTDIR

class WtDirectory
{

WtDirectory(char *path);
~WtDirectory(void);
char *GetEntry(void);

};

WTKEYBOARD

class WtKeyboard
{

static void Close(void);
static void Open(void);
static short GetKey(void);

static short GetLastKey(void);
};

WTwindow_newuser

WTwindow_newuser

WTdirectory_open

WTdirectory_close
WorldToolKit Reference Manual 26-33

Chapter 26: C++ Programming
WTNET

class WtNetwork
{

static FLAG AddItem(void *buf, int buflen, int type, int tag);
static FLAG AddString(void *buf, int buflen, int type, int tag);
static void Close(void);

static void Flush(void);
static unsigned short GetPort(void);
static FLAG GetRange(void);

static int Next(int *tag, int *retlen);
static FLAG Open(char *group, unsigned short port, unsigned char range);
static int RemoveItem(void *buf, int buflen, int *tag, int *retlen);

static int RemoveString(void *buf, int buflen, int *tag, int *retlen);
static void Skip(void);

};

WTSCREEN

class WtScreen
{

static int GetYBlank(void);

static FLAG Load(char *filename);
static WTpoly *PickPoly(int screen, WtP2 pt2D,

WtNodePath **npath, WtP3 & pt3D);

static void SetYBlank(int val);
};

WTTEXTURE

class WtTexture

{
static FLAG Cache(char *bitmap,FLAG enable);
static FLAG GetFilter(char *bitmap,int *magfilter,int *minfilter);

static int GetMemory(void);
static FLAG IsCached(char *bitmap);
static unsigned char *Load(char *bitmap, int *width, int *height);

static FLAG Replace(char *bitmap, int format, int width,
26-34 WorldToolKit Reference Manual

Stand-alone Classes
int height, unsigned char *image);
 static FLAG SetFilter(char *bitmap, int magfilter, int minfilter);
};

WTUNIVERSE

class WtUniverse
{

static float AvgFrameRate(int samples);

static void Delete(void);
static void DeleteLink(void *source, void *tarGet);
static WtNode *FindNodeByName(char *name, int occurence);

static int FrameCount(void);
static float FrameRate(void);
static void GetBgRGB(unsigned char *r,unsigned char *g, unsigned char *b);

static int GetCurrScrIdx(void);
static WtWindow *GetCurrWindow(void);
static WTwinidtype GetCurrWinIdx(void);

static short*GetEventOrder(void);
static WtMotionLink *GetFirstMotionLink(void);
static WtPath *GetFirstPath(void);

static WtRoot *GetFirstRootNode(void);
static WtSensor *GetFirstSensor(void);
static WtViewPoint *GetFirstViewPoint(void);

static WtWindow *GetFirstWindow(void);
static WtBase *GetFirstBase(void);
static void GetInitialView(WtPQ & pos);

static int GetOption(int option);
static FLAG GetRendering(void);
static float GetSubfaceOffset(void);

static WtTask *GetTaskByPointer(void *ptr, int whichtask);
static void Go(void);
static void Go1(void);

static void New(int display_config, int window_config);
static void Ready(void);
static void ResetFrameCount(void);

static void ResetTime(void);
static void SetActions(void(* actions)(void));

WTuniverse_delet e

WTuniverse_getmotionlinks
WTuniverse_getpaths

WTuniverse_getrootnodes
WTuniverse_ getsensors

WTuniverse_getviewpoints
WTuniverse_getwindows

WTuniverse_getbases

WTuniverse_ne w
WorldToolKit Reference Manual 26-35

Chapter 26: C++ Programming
static void SetBBoxRGB(float r, float g, float b);
static void SetBgRGB(unsigned char r, unsigned char g,unsigned char b);
static FLAG SetDefaults(int *argc, char **argv);

static FLAG SetEventOrder(short nevents, short * events);
static void SetImages(const char *paths);
static void SetModels(const char *paths);

static void SetOption(int option, int value);
static void SetRendering(FLAG style);
static void SetSubfaceOffset(float val);

static void SetViewPoint(WtViewPoint *vpoint);
static void Stop(void);
static float Time(void);

static void Vacuum(void);
static void ProcessEvents(void);

};

Note: The following classes are only available if linking with the World2World
wrapper library.

WTCONNECTION

WtConnection Callback function prototype:

typedef FLAG(*WtConncb)(

WtConnection *conn,
Wtconnevent event,
void *data1,

void *data2,
double time);

class WtConnection {

WtConnection(const char *host, unsigned short port, const char *username =
NULL, const char *password = NULL);

~WtConnection(void);

virtual void *GetWTKStructure(void) {return (void*)connection;}
void SetData(void *data) {userdata = data;}
void *GetData(void) {return userdata;}

static WtConnection *GetFirst(void);

WTinit_setdefaults

WTinit_setimages
WTinit_setmodels

WTnode_vacuum
26-36 WorldToolKit Reference Manual

Stand-alone Classes
WtConnection *Next(void);
static void DeleteAll(void);
FLAG Connect(void);

FLAG Disconnect(void);
unsigned int GetMyId(void);
const char *GetMyName(void);

int GetStatus(void);
void Print(void);
void Update(void);

static void UpdateAll(void);
void Synch(void);
double GetLatency(void);

double GetClockDiff(void);
void SetSynchronous(FLAG synchronous);
FLAG IsSynchronous(void);

void SetUpdateRate(unsigned short freq);
unsigned short GetUpdateRate(void);
void AddCallback(WtConncb cb);

void RemoveCallback(WtConncb cb);
int NumCallbacks(void);
WtConncb GetCallback(int callbacknum);

WtSharegroup *GetRoot(void);
unsigned int NumUsers(void);
unsigned int GetUserId(unsigned int usernum);

const char *GetUserName(unsigned int usernum);
unsigned int GetUserIdByName(const char *username);
const char *GetUserNameById(unsigned int userid);

void DeleteAllEnumTrees(void);
void DeleteEnumTreeById(unsigned int enumid);
WtBase *GetEnumTreeById(unsigned int enumid);

unsigned int NumEnumTrees(void);
WtBase *GetEnumTree(unsigned int nenumtree);
unsigned int GetEnumTreeId(unsigned int nenumtree);

};
WorldToolKit Reference Manual 26-37

Chapter 26: C++ Programming
WTSHAREGROUP

class WtSharegroup {
WtSharegroup(const char *name, WtSharegroup *parent = NULL,

int shareflags = 0);
WtSharegroup(const char *name, WtConnection *conn = NULL,

int shareflags = 0);

~WtSharegroup(FLAG forcedelete);
virtual void *GetWTKStructure(void) {return (void*)shgrp;}
void SetData(void *data) {userdata = data;}

void *GetData(void) {return userdata;}
void Print(FLAG children, FLAG properties);
WtConnection *GetConnection(void);

const char *GetName(void);
FLAG Lock(void);
FLAG Unlock(void);

unsigned int IsLocked(void);
FLAG IsLockedByMe(void);
void RegisterInterest(FLAG interested);

WtSharegroup *GetParent(void);
int NumChildren(void);
WtSharegroup *GetChild(int childnum);

int NumProperties(void);
const char *GetProperty(int propertynum, void **object);
unsigned int Enumerate(FLAG recursive, FLAG properties);

};
26-38 WorldToolKit Reference Manual

Math Classes

d
Math Classes

WTM3

class WtM3

{

Note: The following constructor creates a WtM3 initialized to the 3x3 array calle
array.

WtM3(float array[3][3]);

WtM3(void);
~WtM3(void);
void Euler2M3(float rx, float ry, float rz);

void M32Euler(WtP3 & first, WtP3 & second);
void M32EulerNear(WtP3 nearp, WtP3 & euler);
void M32Q(WtQ & q);

Note: The following method sets the WtM3 to the identity matrix.

void SetToIndentity(void);
WtM3 Transpose(void);

WtM3 operator*(WtM3 & second);

Note: The following method allows access to matrix elements (e.g., m3[2][2])

Row3 & operator[](int i);

Note: The following method prints a WtM3 (e.g., cout<<M3).

friend ostream & operator<<(ostream & os, WtM3 & print);
};

WTm3_int

WTm3_multm 3
WorldToolKit Reference Manual 26-39

Chapter 26: C++ Programming

d
WTM4

class WtM4
{

Note: The following constructor creates a WtM4 initialized to the 6x6 array calle
array.

WtM4 (float array[4][4]);
WtM4(void);

~WtM4(void);
int Invert(WtM4 & dst);
void M42PQ(WtPQ & pq);

void RotateP3(WtP3 vecin, WtP3 & vecout);

Note: The following method sets the WtM4 to the identify matrix.

void SetToIndentify(void);

void TransformP3(WtP3 pin, WtP3 & pout);
WtM4 Transpose(void);
WtM4 operator*(WtM4 & second);

Note: The following method allows access to matrix elements (e.g., m4[2][2])

Row4 & operator[](int i);

Note: The following method prints a WtM4 (e.g., cout<<M4).

friend ostream & operator<<(ostream & os, WtM4 & print);
};

WTP2

class WtWindow;

class WtP2
{

Note: The following constructor creates a WtP2 initialized to x and y.

WtP2(float x, float y);

WTm4_init

WTm4_multm4
26-40 WorldToolKit Reference Manual

Math Classes

1].
Note: The following constructor creates a WtP2 initialized to 0 (zero).

WtP2(void);

Note: The following constructor creates a WtP2 initialized to array [0] and array [

WtP2 (float array [2]);

~WtP2(void);
void Initialize(void)
double Mag(void);

void Norm(void);

Note: The following method sets a WtP2 to x and y.

void Set(float x, float y);

class WtWindow *WhichWindow(void);
WtP2 operator-(WtP2 & second);

Note: The following method allows access to array elements (e.g., p2[1])

float & operator[](int i);
friend float Dot(WtP2 & first, WtP2 & second);

Note: The following method prints a WtP2 (e.g., cout<<P2).

friend ostream & operator<<(ostream & os, const WtP2 & print);
};

WTP3

class WtP3

{

Note: The following constructor creates a WtP3 initialized to x, y, and z.

WtP3(float x, float y, float z);

Note: The following constructor creates a WtP3 initialized to array[0], array[1],
array[2];

WTp2_subtract
WorldToolKit Reference Manual 26-41

Chapter 26: C++ Programming

WtP3(float array[3]);
WtP3(void);
~WtP3(void);

static short Coplanar(WtP3 *verts, int nverts, WtP3 & normal);
float DistToVector(WtP3 ptondir, WtP3 dir);
void Frame2Frame(WtPQ frame1, WtPQ frame2, WtP3 & pout);

void Initailize(void);
void Local2WorldFrame(WtPQ frame, WtP3 & pout);
double Mag(void);

void Norm(void);
float Normal2Slope(void);
WtP3 Rotate(WtQ rotate);

WtP3 RotatePt(WtQ rotate, WtP3 point);

Note: The following method sets a WtP3 to x, y, and z.

void Set(float x, float y, float z);

void World2LocalFrame(WtPQ frame, WtP3 & pout);
WtP3 Transform(WtPQ xform);
FLAG operator==(WtP3 & second);

WtP3 operator+(WtP3 & second);
WtP3 operator-(WtP3 & second);
void operator+=(const WtP3 & second);

void operator-=(const WtP3 & second);
WtP3 operator~(void);

Note: The following method allows access to array elements (e.g., P3[2]).

float & operator[](int i);
WtP3 operator*(WtM3 & m);
WtP3 operator*(WtM4 & m);

Note: The following method allows multiplication of a WtP3 by a scalar (e.g., P3
*scalar).

WtP3 operator*(float scalar);
WtP3 operator/(float div);

WTp3_init

WTp3_init

WTp3_equal
WTp3_add

WTp3_subtract

WTp3_invert

WTp3_multm3

WTp3_multm4

WTp3_mults
26-42 WorldToolKit Reference Manual

Math Classes

lar

Note: The following method allows multiplication of a scalar by a WtP3 (e.g., sca
*P3).

friend WtP3 operator*(float scalar, WtP3 & vector);
friend WtP3 Cross(WtP3 & first, WtP3 & second);
friend float Dot(WtP3 & first, WtP3 & second);

friend float Distance(WtP3 & first, WtP3 & second);
friend FLAG Equal(WtP3 & first, WtP3 & second);

Note: The following method prints a WtP3 (e.g., cout<<P3).

friend ostream & operator<<(ostream & os, const WtP3 & print);
};

WTQ

class WtQ

{

Note: The following constructor creates a WtQ initialized to x, y, z, and w.

WtQ(float x, float y, float z, float w);

Note: The following constructor creates a WtQ to array[0], array[1], array[2], and
array[3].

WtQ(float array[4]);
WtQ(void);

~WtQ(void);
void Dir2Q(WtP3 dir);
void DirAndTwist2Q(WtP3 dir, float twist);

void Euler2Q(float wx, float wy, float wz);
void Frame2Frame(WtPQ frame1, WtPQ frame2, WtQ & qout);
float GetAngle(void);

void Initialize(void);
void Local2WorldFrame(WtPQ frame, WtQ & qout);
double Mag(void);

void Norm(void);
void Q2Dir(WtP3 & dir);

WTp3_mults

WTq_init

WTq_init
WorldToolKit Reference Manual 26-43

Chapter 26: C++ Programming
void Q2DirAndTwist(WtP3 & dir, float *twist);
void Q2Euler(WtP3 & first, WtP3 & second);
void Q2EulerNear(WtP3 nearp, WtP3 & euler);

void Q2M3(WtM3 & m);
void Q2M4(WtM4 & m);
void Scale(float scale, WtQ & qout);

Note: The following method sets a WtQ to x, y, x, and w.

void Set(float x, float y, float z, float w);
void World2LocalFrame(WtPQ frame, WtQ & qout);

WtQ operator~(void);
WtQ operator*(WtQ & second);

Note: The following method allows access to array elements (e.g.,Q[2]).

float & operator[](int i);
FLAG operator==(WtQ & second);
friend float Dot(WtQ & first, WtQ & second);

friend FLAG Equal(WtQ & first, WtQ & second);
friend WtQ Interpolate(WtQ & first, float u, WtQ & second);
friend WtQ Multinv(WtQ & first, WtQ & second);

Note: The following method prints a WtQ (e.g., cout<<Q).

friend ostream & operator<<(ostream & os, const WtQ & print);
};

WTPQ

class WtPQ
{

WtP3 p;

WtQ q;

Note: The following constructor creates a WtPQ initialized to pthree and que.

WtPQ(WtP3 pthree, WtQ que);

WTq_invert
WTq_mult

WTq_equal
26-44 WorldToolKit Reference Manual

Defines

 and
Note: The following constructor creates a WtPQ with p initialized to 0,0,0, and q
initialized to 0,0,0,1.

WtPQ(void);

Note: The following constructor creates a WtPQ initialized to arrays parray and
qarray.

WtPQ(float parray[3]; float qarray[4]);

~WtPQ(void);
void Frame2Frame(WtPQ frame1, WtPQ frame2, WtPQ & pqout);

Note: The following method sets the p component of WtPQ to 0,0,0, and the q
component of WtPQ to 0,0,0,1.

void Initialize(void);
void Local2WorldFrame(WtPQ frame, WtPQ & pqout);
void PQ2M4(WtM4 & m);

Note: The following method sets the WtPQ to pthree and que.

void Set(WtP3 pthree, WtQ que);
void World2LocalFrame(WtPQ frame, WtPQ & pqout);

Note: The following method prints a WtPQ (e.g., cout<<PQ).

friend ostream & operator<<(ostream & os, const WtPQ & print);
};

Defines

Note: The following defines are used as the “type” argument in the WtGeometry
WtMovGeometry constructors.

#define WTBLOCK 1
#define WTCONE 2

#define WTCUSTOM 3
#defineWTCYLINDER 4

#define WTEXTRUSION 5
WorldToolKit Reference Manual 26-45

Chapter 26: C++ Programming
#define WTHEMISPHERE 6
#define WTRECTANGLE 7
#define WTSPHERE 8

#define WTTRUNCONE 9
26-46 WorldToolKit Reference Manual

l-time
ns on

6

-8

2

A
Frequently Asked Questions

Introduction

WTK Release 6/7 has many advanced features for developing high-performance, rea
3D graphics applications. This appendix provides answers to some common questio
how to use many of these powerful features.

Specifically, it focuses on the following questions:

What Is The Difference Between WTnode_load
And WTgeometrynode_load?.. Page A-3

What Is The Difference Between WTmovnode_load
and WTnode_load? ... Page A-4

How Do I Display Multiple Instances Of An Object? Page A-5

How Do I Pick The Frontmost Polygon At A Specific Point
In A Specific Window?.. Page A-

Can WTK Detect Keyboard Events?... Page A

How Can I Detect Button Events Using
The “Misc Data” Functions? ... Page A-10

How Do I Use Material Tables for Colors? ... Page A-11

How Do I Get Transparencies In A Texture? ... Page A-1

How Do I Dynamically Change The Appearance Of A Geometry? Page A-13

How Do I Create Special Effects:Clouds, Missile Trails, Explosions, Etc. .. Page A-13

How Do I Load Lights As Movables?... Page A-15

How Do I Make An Object Follow A Light? .. Page A-16

How Do I Make An Object Follow The Viewpoint? Page A-16

How Do I Recursively “Walk” Down The Scene Graph? Page A-19

Appendix A: Frequently Asked Questions

0

2

5

5

5

6

9

4

5

8

39
How Do I Get A Pointer To A Node Using Its Name?..................................Page A-2

How Do I Associate A Task With a Particular Object?................................Page A-21

How Do I Handle Portals In This Release?..Page A-2

How Do I Test For Intersections Between The Viewpoint
And The Universe? ..Page A-2

How Do I Test For Objects Intersecting With
Other Objects In The Universe?..Page A-2

How Do I Get The Rendered Position Of An Object?...................................Page A-2

How Do I Create A Simple Animation Using Switch Nodes?Page A-2

How Can I Optimize Performance Using LOD Nodes?Page A-2

What Is Terrain Following?..Page A-31

How Do I Keep An Object Perpendicular To
The Viewpoint Direction At All Times?...Page A-33

How Do I Change The Event Order?..Page A-3

How Do I Integrate A WTK Rendering Window
With A Host–Specific Window?...Page A-3

How Do I Use Orientation-Tracking Sensors (On A Head-Mount-Display)
That Are Not Positioned Along The Central Axis Of The HMD?Page A-36

How Do I Measure Performance On My Machine?Page A-38

On UNIX Platforms, How Do I Get A Pointer To The Display
That WTK Is Using?.. page A-3

How do I use Boston Dynamic's DiGuy with WTK (or any other BDI character
set)?... Page A-
A-2 WorldToolKit Reference Manual

What Is The Difference Between WTnode_load And WTgeometrynode_load?

se
e has

etry
ry
etries

chair,

oned

is
 over

e
lve

uld

.

n
an
ly.
What Is The Difference Between WTnode_load
And WTgeometrynode_load?

Both WTgeometrynode_load (see page 4-46) and WTnode_load (see page 4-46) read in
geometry data from a file. If the file has data concerning a single geometry only, the
functions are equivalent, in that, a single geometry node is created. It is when the fil
definitions for multiple geometries that these functions produce different results.
WTgeometrynode_load merges all the geometries into one and creates a single geom
node. WTnode_load treats each individual geometry separately and creates a geomet
node for each one. This way you have as many geometry nodes as there were geom
in the file.

For example, consider a data file that has geometry information for an office model.
Suppose the file contains a geometry that defines the office layout, a geometry for a
a geometry for a desk, and a table lamp. When you use WTgeometrynode_load to read this
file, you create a single node that contains the polygonal information for all the menti
objects. On the other hand, when you use WTnode_load you are creating a node for the
office, a node for the chair, one for the desk, and one for the table lamp. Knowing th
difference between these two functions, you can decide when to choose one function
the other; the choice is purely application dependent.

You would usually use WTgeometrynode_load to load static geometry. For instance, in th
previous example, after reading in the geometry data, if you wanted the chair to revo
about its axis, it would not have been possible if you had used WTgeometrynode_load.
However, WTnode_load would have created a separate node for the chair and you co
then set a behavior to it, independent of the rest of the objects in the office.

WTgeometrynode_load is unavailable for filetypes that contain hierarchical information
(e.g., MultiGen’s FLT files, and VRML files.) This is because WTgeometrynode_load
creates only geometry nodes; all other node types are ignored and the hierarchical
information is lost.

Use WTnode_load (or WTmovnode_load see page 5-5) for hierarchical filetypes. Also, a
added feature while using WTnode_load is that you can specify the source of data to be
http URL pointing to a VRML file, instead of having to read data off of your local disk on
WorldToolKit Reference Manual A-3

Appendix A: Frequently Asked Questions

 node
ithout

plane
a

u
tion
sform
ot also
sform

.

r

 built-

 is a
n

metry

ditional

des
s one
What Is The Difference Between
WTmovnode_load and WTnode_load?

The basic difference between the WTmovnode_load (see page 5-5) and WTnode_load (see
page 4-46) functions is that WTmovnode_load creates a movable node out of the data it
reads from a file. (See page 5-1, for the structure of a movable node.) Using a movable
is sometimes more convenient because you can add behaviors to the node directly – w
having to introduce additional transform nodes.

To illustrate this, consider the following example. Suppose you have a model of an air
in a data file. When you use WTnode_load to read this file, you are – in effect – creating
geometry node. Since the position and orientation of geometry nodes is effected by
transform nodes you would have to insert a transform node before the geometry if yo
wanted the airplane model to move in your virtual world. You could then apply transla
and rotation functions on the transform node to move the airplane. The use of a tran
node in your scene graph means that you must insure that other geometry nodes are n
affected by the addition of a transform node; i.e. you may need to use separator or tran
separator nodes to prevent the transform node from affecting other geometry nodes

The above task is simplified if you use a movable geometry node in place of a regula
geometry node. If you use WTmovnode_load you are creating a
“movable-airplane.” The advantage of this, is that the movable geometry node has a
in transform component, so the node translation and rotation functions are directly
applicable to the movable. You do not have to insert a transform node. The movable
self-contained entity so you do not have to be concerned about transform informatio
“leaking” to other parts of the scene graph.

If certain geometry nodes do not move during a simulation, you should load those geo
nodes using WTnode_load. This optimizes memory usage, since the movable node’s
separator component and transform component are no longer needed and hence ad
memory is not allocated for those components.

Remember, however, if the data file has multiple geometries in it, WTmovnode_load
creates one movable node representing all the geometries. You still have individual no
for each geometry, but since they are all part of a single movable node, they move a
rigid entity. (See the Movables chapter, starting on page 5-1 for more information.)
A-4 WorldToolKit Reference Manual

How Do I Display Multiple Instances Of An Object?

as

 you

lank

e
e 5-1).

e
ed
o
ances
g of
have
 want
How Do I Display Multiple Instances Of An
Object?

WTK Release 6/7 introduces instancing (see page 4-37 of the Scene Graphs chapter for
more information on this concept). Basically, instancing allows you to use multiple
representations of the same object, without having multiple copies of the object (as w
required in WTK V2.1).

For example, suppose you want to create a fence consisting of 50 planks. Assuming
have the model of the plank, you can use the WTmovnode_load (see page 5-5) function to
load the plank once, and then use the WTmovnode_instance (see page 5-13) function to
create 49 instances. (Compare this to WTK V2.1 where you would have to load the p
50 times, resulting in 50 copies of the identical plank being stored.)

Note the following when using WTmovnode_instance:

• The node that is to be instanced must be a movable node.

• Each instance has its own separator and transform component but shares th
content of the base node, i.e., the node that was instanced, (figure 5-1 on pag

• Since each instance has its own transform component, you can apply uniqu
transformations to each instance, so that each instance appears at the desir
location on the WTK rendering window. If you do not apply transformations t
the individual instances, you would see just the base node, because the inst
would overlap one another. The following function, creates a fence consistin
50 planks and displays them with a spacing of 10 units. It assumes that you
already created the base movable node corresponding to the object that you
to instance (in this case a plank).

EXAMPLE CODE

void Create_Instances(WTnode *base_movable, int num_of_instances)
{

int i;

WTp3 p3;
WTp3_init(p3);
for (i = 0; i < num_of_instances; i++)

{
WorldToolKit Reference Manual A-5

Appendix A: Frequently Asked Questions

may

en, ten
k

e
tance

int in
y you

ating
n

g the
e
WTnode *instance;
instance = WTmovnode_instance(root, base_movable);
p3[X] +=10;

WTnode_settranslation(instance, p3);
}

}

Be careful when instancing. Because you are loading the object multiple times, you
get different results than you expect.

Suppose, you want the fence to be multicolored (i.e., ten red planks, ten blue, ten gre
yellow, and ten white). In the above example code, the color you set for the one plan
applies to all the instances of that plank. Thus, you would not be able to achieve a
multicolored fence with this code. To achieve a multicolored fence, you would load th
plank five times to get five different planks, set the colors of these planks, and then ins
each one nine times to give you ten planks of each color.

How Do I Pick The Frontmost Polygon At A
Specific Point In A Specific Window?

WTK provides two functions, WTscreen_pickpoly (see page 4-91) and WTwindow_pickpoly
(see page 17-20), to let you pick the frontmost polygon rendered at a specified 2D po
a specified screen or window. The difference between these two functions is in the wa
specify the 2D point.

WTscreen_pickpoly takes the 2D point in screen coordinates whereas WTwindow_pickpoly
takes the 2D point in window coordinates. Screen coordinates are specified as 2D flo
point values, with (0.0, 0.0) representing the top-left corner of the screen, and (scree
width-1, screen height-1) representing the bottom-right corner of the screen. Window
coordinates on the other hand are 2D floating point values, with (0.0, 0.0) representin
top-left corner of the WTwindow, and (window width-1, window height-1) representing th
bottom-right corner of the window.
A-6 WorldToolKit Reference Manual

How Do I Pick The Frontmost Polygon At A Specific Point In A Specific Window?

iated

ode

icked.

pass
These functions provide the following information:

• the intersected polygon

• the 3D point (in world coordinates) at which the polygon is intersected

• a node path indicating which instance of the node the picked polygon is assoc
with

If you are not interested in the node path information you can pass in NULL for the n
path argument.

It is often the case where you want to obtain the node corresponding to the polygon p
The following example code retrieves this node using WTscreen_pickpoly and
WTwindow_pickpoly respectively.

Note: If you want to obtain the node corresponding to the polygon picked, you cannot
in NULL for the node path argument.

EXAMPLE CODE

WTnode *Screen_Pickpoly(WTsensor *mouse)
{

WTmouse_rawdata *raw;
WTnodepath *np;
WTpoly *poly;

WTnode *node = NULL;
WTp3 p;
/* gets the mouse raw data structure (note typecasting)*/

raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);

/* returns the polygon under the mouse cursor */

poly = WTscreen_pickpoly(WTuniverse_getcurrscridx(),
raw->pos, &np, p);

/* if a polygon was picked, return the node corresponding to the polygon
picked. This is the last node on the node path, because the node path
starts at the root node and ends at the node that was picked */

if (poly)
WorldToolKit Reference Manual A-7

Appendix A: Frequently Asked Questions

rtain
mo
node = WTnodepath_getnode(np, WTnodepath_numnodes(np)-1);
return node;

}

WTnode *Window_Pickpoly(WTwindow *w)
{

int x0, y0, width, height;

WTnodepath *np;
WTpoly *poly;
WTnode *node = NULL;

WTp3 p;
WTp2 point;
WTwindow_getposition(w, &x0, &y0, &width, &height);

point[X] = width/2.f;
point[Y] = height/2.f;
/* picks the frontmost polygon in the center of the window */

poly = WTwindow_pickpolygon(w, point, &np, p);
/* if a polygon was picked, it returns the node corresponding to the polygon
picked. Again, this is the last node on the node path because the

node path starts at the root node and ends at the node that was picked */
if (poly)

node = WTnodepath_getnode(np, WTnodepath_numnodes(np)-1);

return node;
}

Can WTK Detect Keyboard Events?

Yes, WTK lets you detect keyboard events. This is helpful when you need to trigger ce
events depending on the key pressed. Most of the demonstration programs in the de
directory on your WTK distribution make use of keyboard input to trigger events.
A-8 WorldToolKit Reference Manual

Can WTK Detect Keyboard Events?
The basic steps are as follows:

1. Call WTkeyboard_open (see page 24-1) in your main function before calling
WTuniverse_go (see page 2-7).

2. Call WTkeyboard_getkey (see page 24-2) or WTkeyboard_getlastkey (see page
24-2) in the universe action function.

3. Use WTkeyboard_close (see page 24-3), if you have previously called
WTkeyboard_open, but no longer need to read input from the keyboard.

The following example code illustrates the above concept.

EXAMPLE CODE

int main(int argc, char *argv[])
{

...

...
WTuniverse_setactions(action);

WTkeyboard_open();
WTuniverse_go();
 return 0;

}
void action(void)
{

short key;
key= WTkeyboard_getlastkey();
switch(tolower(key))

{
case 'q':

WTuniverse_stop();

break;
}

}

WorldToolKit Reference Manual A-9

Appendix A: Frequently Asked Questions

aining
.

d

1), and
How Can I Detect Button Events Using the
“Misc Data” Functions?

For those times when you want to perform certain actions based on button events pert
to various sensors, you can use WTK’s WTsensor_getmiscdata function (see page 13-15)

For example you can detect a left-button press on the mouse or a “button transitione
down” event (generated each time a button moves from up to down position) on a
Spaceball.

The following example detects whether the left mouse button was pressed, using the
WTsensor_getmiscdata function.

EXAMPLE CODE

void Read_Mouse_Record(WTsensor *mouse)
{

int buttons;
FLAG leftbutton = FALSE;
/* get button press data */

buttons = WTsensor_getmiscdata(mouse);
/* checks whether left mouse button was pressed */
leftbutton = buttons & WTMOUSE_LEFTBUTTON;

if (leftbutton)
/* add the relevant code here */

}

The WTK defined constants used with WTsensor_getmiscdata for each device are
described in the corresponding sections of the Sensors chapter (starting on page 13-
are also listed in Appendix B, Defined Constants.
A-10 WorldToolKit Reference Manual

How Do I Use Material Tables for Colors?

s only
ery
ntries
s a
d

,
ation

d

ame

How Do I Use Material Tables for Colors?

The concept of a material table is new to Release 6/7. In previous releases, there wa
the concept of an RGB color for each polygon or vertex. In Release 6/7, however, ev
geometry is associated with a material table. The material table for a geometry has e
that correspond to all the colors that the geometry uses. Each polygon (or vertex) ha
material ID that references an entry in the material table. This is the way polygons an
vertices get their colors.

Each ID can have one or more of the following properties: ambient, diffuse, specular
shininess, emissive, and opacity. There is also an ambient–diffuse property (a combin
of the ambient and diffuse properties) which is equivalent to setting the RGB color in
previous versions of WTK (see the Materials chapter, starting on page 8-1, for a detaile
description of all the material properties). You can use the convenient functions
WTpoly_setmatid (see page 7-3) and WTpoly_getmatid (see page 7-3) to set or get the
material ID of a particular polygon. For example, to set the properties of polygon B to that
of polygon A you would do the following:

WTpoly_setmatid(B, WTpoly_getmatid(A));

Note that this yields the desired effects only if both polygons are contained within the s
geometry (that is, if they reference the same material table), or in the case where the
polygons are contained in different geometries, but the geometries refer to the same
material table.

To set the property of the entire geometry, geom, to that of polygon, poly, you would do the
following:

WTgeometry_setmatid(geom, WTpoly_getmatid(poly)); (see page 6-31)

Now consider the following code segment that uses WTpoly_setrgb and WTpoly_getrgb
(see page 7-2),

unsigned char r, g,b;

WTpoly_getrgb(A, &r, &g, &b);
WTpoly_setrgb(B, r, g, b);
WorldToolKit Reference Manual A-11

Appendix A: Frequently Asked Questions

e all

u have
llow.
”
oint

ency
ixels
le the

hose

arent,
The above code segment only copies the ambient–diffuse property of polygon A to that of
polygon B. None of the other polygon properties change. If you want a polygon to hav
the material properties of another polygon, you need to use material IDs.

You can edit a material table to make appropriate changes. For example, suppose yo
a geometry that is red in color and you want some of the geometry’s polygons to be ye
You should use WTmtable_newentry to add a new entry (which corresponds to the “yellow
color) into the material table. Then, set the material IDs of the relevant polygons to p
to this new entry. See the Materials chapter, starting on page 8-1.

How Do I Get Transparencies In A Texture?

WTK lets you enable transparency within portions of a texture. If a texture’s transpar
is enabled, the texture image is not rendered where the portions of the image have p
set to black. So, to make a texture transparent, first color the pixels black, then enab
transparent flag in the appropriate texture application function, such as WTpoly_settexture
(see page 10-11), WTgeometry_settexture (see page 10-12), WTpoly_settextureuv (see
page 10-13), or WTgeometry_settextureuv (see page 10-15).

You can also assign textures to polygons from within 3D file formats, and designate t
textures to be transparent (see Assigning Textures in 3D File Formats on page 10-22).

Further you can set the environment variable WTKALPHATEST to get transparencies in a
texture (see the section on the WTKALPHATEST environment variable in your WTK
Hardware Guide for more information). Note also that textures can be shaded, transp
or both.
A-12 WorldToolKit Reference Manual

How Do I Dynamically Change The Appearance Of A Geometry?

ther.

 your

the
. The

e

le
moke,
ame.
t trails,

f the

ents.
le. To

eated,
play

How Do I Dynamically Change The
Appearance Of A Geometry?

WTK provides functions to edit geometries at the vertex level, thus allowing you to
dynamically change the appearance of a geometry, or to “morph” a geometry into ano
See Vertex-level Geometry Editing on page 6-42.

Keep in mind, that you need to make calls to the vertex editing functions in between
WTgeometry_beginedit and WTgeometry_endedit calls. A call to WTgeometry_beginedit
informs WTK that you are going to edit a particular geometry. A call to
WTgeometry_endedit marks the end of the editing of the geometry and WTK updates
internal state of the geometry, re-calculates polygon normals if necessary, and so on
morph demonstration program (morph.c) in the WTK demo directory contains an exampl
of how to use these functions.

How Do I Create Special Effects: Clouds,
Missile Trails, Exhaust and Explosions

The Missiles demo program (in the demo directory of the CD) provides a few possib
solutions to the problem of creating models of gaseous or particulate effects such as s
explosions and clouds. The demonstration is presented as a simple space combat g
The game shows the use of a 3D star-field, spaceship exhaust plumes, missile exhaus
explosions and clouds of mysterious red gas. The following is a short explanation o
effects and their implementation.

Gas Clouds

The red clumps of gas floating about the scene consist of an array of separate elem
Each element is an OpenGL callback node that draws a textured, translucent rectang
properly composite the numerous translucent polygons that make up a single cloud,
OpenGL calls are required to manipulate the drawing state. When the universe is cr
an initialization function loads the texture and creates an OpenGL display list. The dis
list is a series of OpenGL commands that can be executed multiple times. It is more
WorldToolKit Reference Manual A-13

Appendix A: Frequently Asked Questions

d, the
ger.

metry
 that
lor
nique
ouds
. The
splay
alpha

dded
ition
de and
nts.

er
wn
 from
tructs
g of
acity
on to
rcles
n of
tems,
dation
efficient than executing the commands explicitly every time they are needed. Instea
callback node executes the display list when it is traversed by the scene graph mana
Within the display list, the z-buffer is set to a read-only state. This means that the geo
will be obscured by objects already drawn to the screen but it will not obscure objects
are drawn after it is added to the scene. This allows each element to combine its co
values with all other values drawn before and after it. The disadvantage of this tech
is that the elements are not depth sorted. If all other objects are drawn before the cl
and the elements are very transparent, the lack of depth sorting is not obvious though
blending method is set and the textured rectangle is drawn with OpenGL calls in the di
list as well. The texture is a 32-bit targa image of a cloud with an alpha channel. The
channel is a rough circle with smoothly graduated edges. To finish the effect, a
billboarding task is attached to the node so that it is always facing the viewpoint.

See cloud.c and cloud.h

Missile plumes

The missile plumes are identical to the clouds except for their positioning. A task is a
to the missile node that simply creates a billboarded callback node at the current pos
of the missile each frame. The elements also have a task that tracks the age of the no
removes it after a set time. The texture is the same texture used for the cloud eleme

See trail.c and trail.h

Spaceship exhaust

The spaceship exhaust is handled a little differently from that of the missiles. The us
defined drawing function is used to draw the exhaust. Translucent 3D points are dra
along the path of the emitting object. The points are scaled according to their distance
the viewpoint. Since the points are not members of the scene graph, a linked list of s
tracking the position of clumps of points is maintained. The list also allows the trackin
the structs, or 'puffs' according to their age. A simple algorithm is used to set the op
and color of the puffs in relation to their age in frames since creation. There is an opti
toggle point smoothing on and off. Point smoothing makes points appear as solid ci
instead of squares. Depending upon the hardware and the platform's implementatio
OpenGL, point smoothing may be faster or slower than unsmoothed points. Many sys
however, have an upper limit to the size of smoothed points, which may cause degra
A-14 WorldToolKit Reference Manual

Explosions

 The
pplied

ip
at
 nodes
ting a

nce,
in the
uld

le.

ht

ne
in the appearance of the effect when the viewpoint is very close to the emitting object.
'S' key toggles point smoothing during the demo. The use of many 3D points can be a
effectively to simulate most particle systems such as bubbles and water spray.

See puff.h and puff.c

Explosions

The explosions consist of 3D points and use much of the same code as the spacesh
exhaust. The only real difference is that the emitting nodes are WTmovsepnodes th
behave like shrapnel generated by an explosion. Once the explosion is created, the
move away from the center with a randomly determined speed and direction, genera
stream of puffs behind them. The age of the particle puff determines the color.

See puff.h, puff.c, explosion.h, and explosion.c

You can modify and interchange these techniques to suit your application. For insta
the billboarded polygon technique demonstrated with the missile trails could be used
explosion effect instead of using 3D points. With further modification, the polygons co
change in scale, transparency or color over time.

How Do I Load Lights As Movables?

You can use the WTmovnode_load (see page 5-5) function to load a light file as a movab
However, if you have more than one light in a light file and you use WTmovnode_load to
read in the light file, a single movable containing all the lights is created (and not one
movable per light). So, if you need to create individual movables for each light in a lig
file, you should break the file down into “single–light” files. These files contain only o
light each, and WTmovnode_load can then be called once for each light file to create
individual movable light nodes.

You can also create movable spot, point, and directed lights by calling
WTmovlightnode_newspot (see page 5-4), WTmovlightnode_newpoint (see page 5-3), and
WTmovlightnode_newdirected (see page 5-4), respectively.
WorldToolKit Reference Manual A-15

Appendix A: Frequently Asked Questions

ant a

d

ted

s

rds,
his
ly
How Do I Make An Object Follow A Light?

It is sometimes necessary to have an object follow a light. For example, you might w
cone object to follow a spot-light. The simplest way to do this is to load the light as a
movable and attach the object as an attachment to the movable light node.

The following example code assumes you have the light in a light file called “light” an
you have the object in a file called “object.”

EXAMPLE CODE

void Object_Follow_Light(void)
{

WTnode *spotlight;
WTnode *cone;
spotlight = WTmovnode_load(root, "light", 1.f);

cone = WTnode_load(NULL, "object", 1.f);
WTmovnode_attach(spotlight, cone, 0);

}

Note: If you have more than one light in a light file and you use WTmovnode_load (see page
5-5) to read in the light file, then a single movable containing all of the lights is crea
(not a movable per light). So, if you need to create movables for say three lights
(specified in a light file), you need to separate the light file into three different file
each containing one light and call WTmovnode_load for each light file.

How Do I Make An Object Follow The
Viewpoint?

In some applications, you want an object to move along with the viewpoint. In other wo
you want the object to move such that it is stationary with respect to the viewpoint. T
means that it should translate and rotate along with the viewpoint, so that it is not on
always in view, but also at the same position and orientation in the viewpoint frame.
A-16 WorldToolKit Reference Manual

How Do I Make An Object Follow The Viewpoint?

world

 at all
, of
t,

For example, suppose you are simulating a football game in which the user views the
through the face mask of a helmet. You would want to have the helmet “follow” the
viewpoint such that the helmet remains stationary with respect to the viewpoint, and
times, it appears that the user is viewing the world through the face mask. You could
course, set the viewpoint’s position and orientation to correspond to a moving helme
however, in most applications you want to have the viewpoint controlled by a sensor, and
have the helmet follow it.

The following example code shows how to accomplish this task using the Follow_Viewpoint
function. In this code segment, the object is moved such that it is always facing the
viewpoint and is positioned at 50 units down the z-axis in the viewpoint frame.

EXAMPLE CODE

void Follow_Viewpoint(WTnode *node)
{

WTp3 vpoint_pos, object_offset;
WTq vpoint_q;

/* Step1 : Create the WTp3 offset, which is the object’s position in the
viewpoint frame. In this example, the object is positioned at 50 units
down the z-axis. It is assumed that the object is modelled at the origin.

If not, you need to tune object_offset to get the object to the desired
location */
WTp3_init(object_offset);

object_offset[Z] = 50.0f;

/* Step2 : Get the viewpoint’s position and orientation */

WTviewpoint_getposition(WTuniverse_getviewpoints(),
vpoint_pos);

WTviewpoint_getorientation(WTuniverse_getviewpoints(),

vpoint_q);

/* Step3 : Transform the object_offset into the viewpoint frame */

WTp3_rotate(object_offset, vpoint_q, object_offset);
WTp3_add(object_offset, vpoint_pos, object_offset);

/* Step4 : Apply the translation and the orientation to the object.
WorldToolKit Reference Manual A-17

Appendix A: Frequently Asked Questions

it
 event
lled.
an

y
sensors
The orientation is the same as the viewpoint’s orientation
because you want the object to face the viewpoint. */
WTnode_settranslation(node, object_offset);

WTnode_setorientation(node, vpoint_q);
}

You should call the Follow_Viewpoint function from the universe action function so that
is executed each frame. Keep in mind, however, that you have to change the default
order in WTK, such that the sensor updates are completed before this function is ca
Every frame the viewpoint should be updated by the sensor’s motion before you set
object to follow it. Use the function WTuniverse_seteventorder to change the event order.
(See the How Do I Change The Event Order? on page A-34).

Another way to call the Follow_Viewpoint function every frame is through tasks. This wa
you don’t need to change the event order because by default tasks are executed after
are updated. The example code below illustrates this.

EXAMPLE CODE

WTnode *node;
...
myfunction()

{
...
/* after the node creation code assign the task to it. */

WTtask_new(node, Follow_Viewpoint, 1.0f);
...

}

See the example demonstration program button.c (located in the demo directory on your
WTK distribution) which makes use of task functions for this purpose.
A-18 WorldToolKit Reference Manual

How Do I Recursively “Walk” Down The Scene Graph?

s as
ntify
 the
,
e
How Do I Recursively “Walk” Down The Scene
Graph?

Often you will want to “walk” down the scene graph tree and manipulate certain node
you encounter them. Having a recursive function that parses your scene graph to ide
the relevant nodes helps you in this task. Assume, for example, you want to improve
performance of your application by making use of the geometry optimization feature
WTgeometry_prebuild (see page 6-40). To use this function, you have to identify all th
geometry nodes in your scene and prebuild the geometry in each one of them. The
following code example shows you how to accomplish this. (Also see Scene Graph
Traversal on page 4-78.)

EXAMPLE CODE

void traverse_node(WTnode *node)
{

int nChildren, nAttachments;

/* prebuild if it is a geometry node or a movable geometry node */
 if((WTnode_gettype(node)==WTNODE_GEOM) ||

(WTnode_gettype(node)==WTNODE_MGEOM))

{
WTgeometry_prebuild(WTnode_getgeometry(node));

}

/* if not a geometry node, we have to recurse */
nChildren = WTnode_numchildren(node);
if (nChildren > 0)

{
for(i=0; i<nChildren; i++)
{

traverse_node(WTnode_getchild(node,i));
}

}

/* handle movable node attachments also */
nAttachments = WTmovnode_numattachments(node);
WorldToolKit Reference Manual A-19

Appendix A: Frequently Asked Questions

 that

u are

ve it

ence

ll
if(nAttachments > 0)
{

for(i=0; i<nAttachments; i++)

{
traverse_node(WTmovnode_getattachment(node,i));

}

}
}

How Do I Get A Pointer To A Node Using Its
Name?

If you know the name of a node in your scene graph and you want to get a pointer to
node, use the function WTuniverse_findnodebyname (see page 4-49). If you have multiple
nodes that have the same name, you should inform WTK exactly which occurrence yo
trying to retrieve. For this purpose, WTuniverse_findnodebyname takes an integer, num, as
an argument apart from the string that contains the name. Use num to indicate the
occurrence of the node you want.

For example, if you have a node in your scene graph called “mynode,” you can retrie
by calling:

WTuniverse_findnodebyname(“mynode”, 0);

Since there is only one occurrence of “mynode,” you should pass in “0” for the occurr
number num.

Now suppose you create three nodes A, B and C in that order. And, suppose you name a
three nodes “myname.” To retrieve C, you should use:

 WTuniverse_findnodebyname("myname", 0);

To retrieve B, you should use:

 WTuniverse_findnodebyname("myname", 1);
A-20 WorldToolKit Reference Manual

How Do I Associate A Task With a Particular Object?

use

y” on

se the
mple
 A
And to retrieve A, you should call:

WTuniverse_findnodebyname("myname", 2);

Notice that the nodes are returned in the reverse order in which they are created.
(Occurrence 0 is C not A.)

In developing applications, you will run into several situations where it would help to
WTuniverse_findnodebyname. For example, suppose you have a model of a school
campus, and you want the viewpoint to zoom-in on a geometry node called “laborator
start up. The following code allows you to do that:

node = WTuniverse_findnodebyname("laboratory", 0);
WTwindow_zoomviewtonode(window, node, 0);

How Do I Associate A Task With a Particular
Object?

Tasks are useful when you want to assign behaviors to individual objects. You can u
WTtask_new (see page 11-2) function to associate a task to a particular object. For exa
suppose you wanted to rotate an object about its Y axis by five degrees each frame.
simple way to do this is to associate a task to the object.

The following example code illustrates how to associate a task to an object.

EXAMPLE CODE

int main(int argc, char *argv[])
{

...
/* Create a movable “node” */
..

WTtask_new(node, Rotate_Y, 1.0f);
...

}

WorldToolKit Reference Manual A-21

Appendix A: Frequently Asked Questions

ur in
 When

n the
ociate

ciated
u
 task,

re
.
ich
rld

oint
void Rotate_Y(WTnode *node)
{

WTmovnode_axisrotation(node, Y, 5.f*PI/180.f);
}

Execution of task functions (associated with objects) is one of the four events that occ
each frame (see page 2-9 for more information on the events that occur each frame).
you associate an object with a task, the task function is called once every frame.

You could have implemented the previous example by calling WTmovnode_axisrotation in
the universe action function. However, the usage of tasks is cleaner, particularly whe
task function is not as simple as in the example shown here. It is always better to ass
a task to an object rather than clutter up the universe action function.

An object can have multiple tasks associated with it. You can use the functions
WTtask_remove to remove a task (deactivate it, but not delete it), WTtask_add to add back
a task (activate it), and WTtask_delete to delete a task (see the Tasks chapter, starting on
page 11-1).

Note: Associating a new task to an object does not delete an already existing task asso
with that same object. If you don’t want a previously created task active when yo
create a new task for that object, i.e. you want the new task to replace the previous
you must explicitly delete the previous task.

How Do I Handle Portals In This Release?

You can think of “Portals” as the 3D equivalent of links in a hypertext system. They a
doorways in space that connect the currently displayed world with an alternate world
Earlier versions of WTK provided portalling as a facility— there were functions by wh
you could specify which polygon in the current world was a “doorway,” and which wo
to portal into if the viewpoint crossed that polygon. Once these were specified, WTK
handled the intersection testing and automatically loaded the new world if the viewp
intersected with the portal polygon.
A-22 WorldToolKit Reference Manual

How Do I Handle Portals In This Release?

ther

rrent
ode
ds to

 the

 to
tion
of
The current release of WTK handles portals differently. Any portal information in NFF
files is ignored. WTK now provides a function, WTviewpoint_intersectpoly (see page
16-26), that tests whether the viewpoint’s motion in a particular frame resulted in an
intersection with a specified polygon. So instead of WTK automatically checking whe
a portal was crossed, you now have explicit control over this by calling
WTviewpoint_intersectpoly every frame (in your action function). If the function returns
TRUE, you should have appropriate code in your application to stop processing the cu
world and move into a new world. This is usually done by assigning a different root n
to the WTK window. (This should be the root node of the scene graph that correspon
the new world.) See the demonstration program portal.c (located in the demo directory of
your WTK distribution) for more information on the implementation of portals.

Your application needs to identify the portal polygon and pass this as an argument to
function WTviewpoint_intersectpoly. The demo portal.c loads the model oplan.nff and uses
the polygon with the texture “picture.tga” as the portal polygon. The NFF file is edited
add a polygon id to this polygon, so that the application can identify it using the func
WTgeometry_id2poly. The following example code shows (in brief) an implementation
portals.

EXAMPLE CODE

{
...

node = WTnode_load(root_node1, "oplan.nff", 1.0f);
geom = WTnode_getgeometry(node);
 /* gets the polygon with id=1 */

portal_poly = WTgeometry_id2poly(geom, 1);
 /* creates a node path to the geometry node */
portal_npath = WTnodepath_new(node, root_node, 0);

/* creates a second root node and pre-loads a second world.
This root node is initially unused. */
root_node2 = WTrootnode_new();

WTnode_load(root_node2, "lobby.nff", 1.0f);
}

action_function()
{

if(WTviewpoint_intersectpoly(

vpoint, portal_poly, portal_npath, 0.0f))
WorldToolKit Reference Manual A-23

Appendix A: Frequently Asked Questions

, you
tion

e

 one
. If

ame,

{
/* portal has been crossed. load second root node */
WTwindow_setrootnode(window, root_node2);

/* add code to update portal_poly and portal_npath. These
should now be a part of the new scene graph, so that you can portal
back into the original world */

}
}

How Do I Test For Intersections Between The
Viewpoint And The Universe?

When you fly your viewpoint through the universe (or the world) that you have created
do not want the viewpoint to fall through objects. Thus, you should have collision detec
algorithms that suit your application. WTK does not test for intersections between th
viewpoint and objects in your world. It does, however, provide functions like
WTnode_rayintersect, WTpoly_rayintersect, WTviewpoint_intersectpoly and a host of other
intersection testing functions, that should help you implement your algorithms. See
descriptions for each of these functions (starting on page 4-85) to understand which
would best suit your application. WTK retains the viewpoint’s position in the last frame
your algorithm detects an intersection between the viewpoint and an object in one fr
you can always reset the viewpoint to its position in the previous frame. (See the
WTviewpoint_getlastposition function on page 16-9. To use this function, however, you
have to change the WTK event order appropriately. See the section How Do I Change The
Event Order? on page A-34.)
A-24 WorldToolKit Reference Manual

How Do I Test For Objects Intersecting With Other Objects In The Universe?

s in
 for

for

t for
n the
etails
fferent
ify a
 You

p

u do

here

ined
How Do I Test For Objects Intersecting With
Other Objects In The Universe?

Applications often require you to test whether an object intersected with other object
the world. WTK offers a number of functions to perform collision detection, each suited
a specific case. (Refer to the section Intersection Testing on page 4-85 in the Scene Graphs
chapter.)

To optimize performance, you should organize your scene graph such that you test
intersections only with objects that are relevant. For example, if you are building a
simulation that consists of a car moving along a race track, it would be enough to tes
collisions between the car and the road, the railings along the road, and other cars o
road. It would not be necessary to test for collisions with buildings and other scenic d
alongside the road. Therefore, you should place such irrelevant geometries under a di
sub-tree. For most of the intersection functions that WTK provides, you have to spec
node path indicating a sub-tree below which you want collision detection to be done.
have to make sure that only the geometries that you want the intersection test to be
performed on are contained in the sub-tree.

How Do I Get The Rendered Position Of An
Object?

In the current release of WTK, getting the rendered position of an object is a two ste
process. (In this discussion and in most other parts of this book, an object refers to a
geometry node.) The function WTgeometry_getmidpoint (see WTgeometry_getmidpoint on
page 6-28) returns the midpoint of the geometry contained in a geometry node. If yo
not call functions such as WTgeometry_translate and WTgeometry_transform, the vertex
positions of a geometry never change, and WTgeometry_getmidpoint will always return the
same coordinates for the midpoint.

To move an object around during a simulation you should use transform nodes. WTK
“parses” the scene graph noting all the transform nodes that affect an object. The
cumulative transformation matrix of these transform nodes is then used to determine w
the object is rendered. (OpenGL multiplies each vertex position by the cumulative
transform matrix and renders the object accordingly.) The geometry information conta
WorldToolKit Reference Manual A-25

Appendix A: Frequently Asked Questions

red
t you

ct is
a

ical to
uch

s
cycle
 your
in the object is therefore not altered. That is why the position returned by
WTgeometry_getmidpoint never changes, though the object may not actually be rende
there, as it is influenced by transform nodes. To get the rendered midpoint of the objec
have to multiply the geometry midpoint by the cumulative transformation matrix. The
following example code demonstrates this.

EXAMPLE CODE

/* This example assumes that “mynode” is either a geometry node or a movable
geometry node.*/

WTgeometry_getmidpoint(mynode, midpoint);
/* create a node path from the root node to mynode. This is required to obtain
the cumulative transform matrix that affects mynode. */

npath = WTnodepath_new(mynode, root_node, 0);
/* get the transform matrix along this path */
WTnodepath_gettransform(npath, matrix);

/* now transform the midpoint with this matrix */
WTm4_xformp3(matrix, midpoint, rendered_midpoint);

Note: If you model your geometry such that its midpoint is at the origin, it simplifies the
above task. The translational part of the transform matrix tells you where the obje
rendered. Moreover, if your geometry is modeled at the origin, and the object is
movable node not affected by any external transform nodes, simply call
WTnode_gettranslation. This gives you the rendered position.

How Do I Create A Simple Animation Using
Switch Nodes?

When you animate (that is, move, resize, or reshape) an object, it is not always pract
do it programmatically. For simple animations, as shown in Figure A-1 below, it is m
easier to use a flipbook method. You can accomplish this using switch nodes.

Switch nodes allow you to determine which of several children are processed. This i
particularly useful if you are creating an animation sequence, in which case you can
through the switch node’s children – switching once for each frame. You should break
A-26 WorldToolKit Reference Manual

How Do I Create A Simple Animation Using Switch Nodes?

d
switch

tially

ode.
 in
 as

ions.

rm

on’s
. You

s the
ave
animation sequence down into a finite set of distinguishable frames. Next, you shoul
create a geometry node that corresponds to each frame, and add it as a child to the
node. Then, every frame you can use the function WTswitchnode_setwhichchild (see page
4-57) to “select” one of the switch node’s children to be processed. This way, sequen
switching between the switch node’s children, you can build an animation.

Figure A-1 shows a three frame animation. The first step is to create a new switch n
Then add the three geometries that you want the switch node to “flip” through. (Keep
mind, that by default, the switch node does not process any of its children.) Then, it’s
simple as telling the node which child it should process.

Note: If your geometry is large (e.g., 1 MB+), you should not use this method for animat
It wouldn't be practical to have 30 frames for 1 MB geometry.

In certain cases, you can even optimize memory usage by only including transfo
nodes below the switch node. For example, assume you are animating a person
walking. When you are building the animation sequence for the motion of the pers
legs, you do not have to create a geometry node for every distinct position of a leg
can instead have one geometry node that represents the leg, and have multiple
transform nodes below the switch node. Each of these transform nodes transform
leg into a different, distinct position. So, cycling through the transform nodes you h
an animation with an optimized usage of memory.
WorldToolKit Reference Manual A-27

Appendix A: Frequently Asked Questions
Figure A-1: An Illustration of Simple Animation

EXAMPLE CODE

switch_node= WTswitchnode_new(root);

/* Child 0 */
geom = WTgeometry_newsphere(0.1f,8,8,FALSE,FALSE);
WTmovgeometrynode_new(switch_node, geom);

new_pos[X] = new_pos[Z] = 0.0f;
new_pos[Y] = 1.0f;
WTgeometry_translate(geom, new_pos);

/* Child 1 */
geom = WTgeometry_newsphere(0.3f,8,8,FALSE,FALSE));

WTmovgeometrynode_new(switch_node, geom);

/* Child 2 */

geom= WTgeometry_newsphere(0.5f,8,8,FALSE,FALSE));
WTmovgeometrynode_new(switch_node, geom);
A-28 WorldToolKit Reference Manual

How Can I Optimize Performance Using LOD Nodes?

way
l as if
ailed
the

here
 the
the
y the

 an
new_pos[Y]= -1.0f;
WTgeometry_translate(geom,new_pos);
. . .

int current_child = 0;
WTswitchnode_setwhichchild(switch_node, 0);
while (1)

{
/*time_to_move is an arbitrary timing function*/
if (time_to_move())

{
current_child++;
/*Loop through the children from first to last*/

if (current_child > WTnode_numchildren(switch_node))
current_child = 0;
WTswitchnode_setwhichchild(switch_node, current_child);

}
}

How Can I Optimize Performance Using LOD
Nodes?

To improve performance (i.e., to obtain a higher frame rate), it is often necessary to
trade–off the visual quality of objects in your scene. As your viewpoint moves farther a
from your objects, it is no longer necessary to render those objects in as much detai
they were placed directly in front of you. You can use LOD nodes to switch to less det
versions (i.e., lower quality) of an object as your viewpoint moves further away from
object.

Figure A-2 and the example code below show three different levels of detail for a sp
object. The term “range” is often used in the context of LOD nodes. Range indicates
distance between the viewpoint and the center of the LOD node. (Remember that if
LOD node is affected by transform nodes, its center is correspondingly transformed b
cumulative matrix. The default value for the LOD center is [0.0,0.0,0.0].)

A range therefore represents a “switch–out” distance. You specify a set of ranges to
LOD node by passing an array of floats to the function WTlodnode_setrange (see page
WorldToolKit Reference Manual A-29

Appendix A: Frequently Asked Questions

irst
(is
cond

t only
d to
 child

nd
odel

 than
an six
4-55). The first range value indicates the distance from the LOD center at which the f
child switches out (i.e., is not processed anymore) and the second child switches in
processed). Similarly, the second range value indicates the distance at which the se
child switches out and the third child switches in.

In the example below, the LOD node has three children. That is why you need to se
two ranges, because, for all distances beyond the second range, you want the third chil
be processed. In other words, you don’t set an upper limit on the distance, so the third
can’t switch out.

Figure A-2: An Illustration of Three Different Levels of Detail

Figure A-2 shows three spheres with varying detail. Model 1 has the highest detail a
Model 3 has the least detail. An LOD node is used to switch between these models. M
1 is processed when the distance between the LOD center and the viewpoint is less
three units. Model 2 is processed when this distance is greater than three but less th
units. Model 3 is processed for all distances greater than six units.

Sphere Model 1 Sphere Model 2 Sphere Model 3
A-30 WorldToolKit Reference Manual

What Is Terrain Following?

r the
ome
ing
s

ses
EXAMPLE CODE

WTnode *lod_node;

WTgeometry *geom;
float range[2]= {3.0f,6.0f};
lod_node= WTlodnode_new(root);

/* Child 0. This is displayed for ranges less than 3.0
since it has the highest detail.*/

geom = WTgeometry_newsphere(1.0f,30,30,FALSE,FALSE));
WTmovgeometrynode_new(lod_node,geom);

/* Child 1. This geometry has medium detail. Displayed for ranges between
3.0 and 6.0. */
geom = WTgeometry_newsphere(1.0f,20.20,FALSE,FALSE));

WTmovgeometrynode_new(lod_node,geom);

/* Child 2. This geometry has the least detail.

Displayed for ranges beyond 6.0.*/
geom = WTgeometry_newsphere(1.0f,10,10,FALSE,FALSE));
WTmovgeometrynode_new(lod_node,geom);

WTlodnode_setrange(lod_node,range,2);

What Is Terrain Following?

Terrain following means flying over a terrain at a constant height. If your viewpoint,
controlled by a sensor, is moved around over a terrain, it will at times fly too high ove
terrain and might also sometimes fall through the terrain. This kind of motion may bec
very distracting to the user. If your application incorporates some sort of a terrain follow
algorithm, the viewpoint would glide over the surface at a constant height. This make
flying easier and also more pleasant.

WTK does not provide any automatic means for terrain following. You should use
functions such as WTnode_rayintersect (see page 4-88) and WTpoly_rayintersect (see page
4-88) and implement an algorithm of your own. A brief example is shown below that u
WorldToolKit Reference Manual A-31

Appendix A: Frequently Asked Questions

e
the function WTnode_rayintersect to maintain the viewpoint at a height of ten units abov
a terrain.

EXAMPLE CODE

/* This example assumes that no other geometry apart from the terrain, is
below the root node. We intend shooting rays straight down from the viewpoint

position to get the distance to the terrain. */
WTp3 ray, origin;
float distance;

/* initialize the ray to point straight down */
ray[X] = 0.0; ray[Y] = 1.0; ray[Z] = 0.0;

/* set the origin of the ray to be the viewpoint's current position */
WTviewpoint_getposition(vpoint, origin);

if(WTnode_rayintersect(root_node, ray, origin, &distance, NULL)) {

/* intersected the terrain below. 'distance' has the actual distance
between the viewpoint and the terrain. If this is not 10 you should
reset the viewpoint's position appropriately */

if(distance < 10.0) {
origin[Y] += (10 - distance);
WTviewpoint_setposition(vpoint, origin);

} else {
origin[Y] -= (distance - 10);
WTviewpoint_setposition(vpoint, origin);

}
} else {
 /* the ray did not intersect the terrain. Either the viewpoint has gone

 off the edge of the terrain or has fallen through it. In either case
 set it back to previous position */
 WTviewpoint_getlastposition(vpoint, origin);

 WTviewpoint_setposition(vpoint, origin);
 }
A-32 WorldToolKit Reference Manual

How Do I Keep An Object Perpendicular To The Viewpoint Direction At All Times?

ve been

point

nt (a
ar to
g an

t when

to the
Note that the above code segment expects that the sensor updates for this frame ha
completed. Because the function WTviewpoint_getlastposition is used, you should change
the default event order such that the universe action function is called after the view
has been updated by the sensor. (See the section How Do I Change The Event Order? on
page A-34).

How Do I Keep An Object Perpendicular To The
Viewpoint Direction At All Times?

It is sometimes desirable that an object, whenever in view, always faces the viewpoi
billboard effect, for example). You can achieve this by keeping the object perpendicul
the viewpoint at all times. For example, suppose in your application you are simulatin
explosion by displaying a sequence of textures on a rectangular polygon. Assume tha
you are navigating, you want the explosion to always face you (in other words, the
rectangular polygon should face you).

The following example code ensures that a particular object is always perpendicular
viewpoint, and then assigns it as a task to the object.

EXAMPLE CODE

void Perpendicular_Viewpoint(WTnode *node)
{

WTq vq;
 WTviewpoint_getorientation(WTuniverse_getviewpoints(), vq);
WTnode_setorientation(node, vq);

}

WTnode *node;

int main(int argc,char *argv[])
{

...

node = WTmovgeometrynode_load(root, WTgeometry_newrectangle(1,1,TRUE));
WTgeometry_settexture(WTnode_getgeometry(node),

"explosion", TRUE, FALSE);
WorldToolKit Reference Manual A-33

Appendix A: Frequently Asked Questions

rse
tached
 mode
re

er is the

. WTK

de

ensors

his
WTtask_new(node, Perpendicular_Viewpoint, 1.f);
WTwindow_zoomviewpoint(WTuniverse_getwindows());
...

}

How Do I Change The Event Order?

Every frame, before rendering into the windows, WTK first executes the user’s unive
action function. Then, the graphical objects and viewpoints are updated by sensors at
to them, the task functions are executed, and lastly the paths that are in record or play
are stepped. (See Simulation Management on page 2-5.) These are the four events that a
processed: actions, sensors, tasks and paths, and the default event–processing ord
order in which they have been mentioned above.

Certain applications may need to have these events processed in a different sequence
provides for this through the function WTuniverse_seteventorder (see page 2-9). For
example, if you are using functions like WTviewpoint_intersectpoly, you need to have the
sensor updates done before the actions function is called. The following example co
segment shows how you can do this.

EXAMPLE CODE

{

short event_array[4] = { WTEVENT_OBJECTSENSOR,
WTEVENT_ACTIONS,
WTEVENT_TASKS,

WTEVENT_PATHS };

WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT;

WTuniverse_seteventorder(4, event_array);
}

If the event order is set using this code, objects and viewpoints are updated by the s
that control them before the universe action function is called. Note that though
WTuniverse_seteventorder takes an argument for the number of events, WTK requires t
to be 4.
A-34 WorldToolKit Reference Manual

How Do I Integrate A WTK Rendering Window With A Host-Specific Window?

a new
How Do I Integrate A WTK Rendering Window
With A Host-Specific Window?

You can use the WTinit_usewindow (see page 17-6) function and the WTwindow_newuser
(see page 17-7) function to integrate a WTK rendering window with a host–specific
window. All you need to do is specify the ID of the host–specific window (HWND for a
Windows application and Widget for UNIX applications).

If you do not specify WTDISPLAY_NOWINDOW in your call to WTuniverse_new (see page
2-2), WTK creates a system specific drawing area and renders into it. The functions
WTinit_usewindow and WTwindow_newuser (see page 17-7) inform WTK to use the
user-specified HWND (or Widget) as the rendering area. WTK then, does not create
window on Windows platforms, and does not create a new drawing area on UNIX
platforms. WTK renders into the window you specified.

There is, however, a minor difference between these two functions. WTwindow_newuser
creates an internal structure, a WTwindow, and updates this structure to recognize the
user-specified window as the drawing area.

WTinit_usewindow does not do this. It does not create a WTwindow, so WTK is not yet
aware that a drawing area has been specified. It is only when you call WTuniverse_new
(with an argument other than WTDISPLAY_NOWINDOW) that WTK creates the internal
WTwindow and recognizes the drawing area you provided earlier.

The following example code illustrates how you use WTinit_usewindow.

EXAMPLE CODE

/* On Windows platfoms ‘mywindow’ will be an HWND and on UNIX
platforms, ‘mywindow’ will be a Widget */

WTinit_usewindow(mywindow);
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
WorldToolKit Reference Manual A-35

Appendix A: Frequently Asked Questions

r that
se of
r the
y be
e of

eturn
etect
Or, if you want to customize your window using WTwindow_new,

WTuniverse_new(WTDISPLAY_NOWINDOW, WTWINDOW_DEFAULT);
WTinit_usewindow(mywindow);
WTwindow_new(x_pos, y_pos, x_size, y_size, custom_flags);

The following example code illustrates how you use WTwindow_newuser.

EXAMPLE CODE

/* On Windows platforms ‘mywindow’ will be an HWND and on UNIX
platforms,’mywindow’ will be a Widget */

WTuniverse_new(WTDISPLAY_NOWINDOW, WTWINDOW_DEFAULT);
WTwindow_newuser(parent, custom_flags);

WTwindow_newuser should always be called after WTuniverse_new.

Orienting Sensors Differently

How Do I Use Orientation-Tracking Sensors (On A Head-
Mount-Display) That Are Not Positioned Along The
Central Axis Of The HMD?

If you are using a head-mount display, such as the Vissette from Virtuality, the senso
tracks orientation may not be positioned along the central axis of the HMD. In the ca
the Vissette, this sensor is an InsideTRAK, with the receiver built-in somewhere nea
user’s left ear (rather than directly on top of the user’s head). Further, the sensor ma
oriented in such a way that its reference frame does not align with the reference fram
the user’s head. For example, if the receiver is incorporated in such a way that it is
positioned sideways (that is rotated around its local z-axis by 90 degrees), it will not r
correct rotations. When the user moves his/her head from left to right, the sensor will d
a pitch rather than a yaw. To correct this, use the function WTsensor_rotate (see page
13-20). The following example code shows how this is done.
A-36 WorldToolKit Reference Manual

Example Code
EXAMPLE CODE

/* You have to know the exact orientation of the receiver. This can be found in the

instruction manual that accompanies the HMD device that you are using. If the
user's head is positioned upright, x-axis is to the user's right, y-axis goes
straight down, and the z-axis is straight ahead. You should obtain the rotations

(in radians) that should be applied to the user’s reference frame to transform it
into the sensor’s reference frame. In this example these are taken to be
X_ROT, Y_ROT and Z_ROT. */

#define X_ROT xx /* fill in the rotations in radians */
#define Y_ROT yy
#define Z_ROT zz

WTq qx,qy,qz,q;
WTsensor *inside_trak;

{

/* initialize the insidetrak sensor that is incorporated into the head mount display */
inside_trak = WTinsidetrak_new(1);

/* constrain sensor translations */

WTsensor_setconstraints(inside_trak, WTCONSTRAIN_X | WTCONSTRAIN_Y |
WTCONSTRAIN_Z);

/* convert the eulers to quaternions */

 WTeuler_2q(X_ROT, 0.0, 0.0, qx);
WTeuler_2q(0.0, Y_ROT, 0.0, qy);

 WTeuler_2q(0.0, 0.0, Z_ROT, qz);

 /* next multiply the quaternions together to get the cumulative rotation */
 WTq_mult(qx, qy, q);

WTq_mult(q, qz, q);

 /* now call WTsensor_rotate with this resultant quaternion */
 WTsensor_rotate(inside_trak, q);

 }
WorldToolKit Reference Manual A-37

Appendix A: Frequently Asked Questions

) to

g a

want

e
y3d.

se
nd at

d

ion

s X
ter to
Note: WTK supports these kinds of HMD devices (i.e., ones that have built-in sensors
track orientation only. That is, you have to constrain translational output from the
sensor. In this example, since we are considering the Vissette, the sensor is an
InsideTRAK receiver. You should include translations in your application by usin
Joystick or some other device.

How Do I Measure Performance On My
Machine?

There are two aspects to measuring performance on your machine. First, you might
to gauge the general performance of your video card (and its driver), and your CPU
performance with the system memory you have. You can accomplish this by using th
benchmark program called Indy3D which can be found at http:\\www.sense8.com/ind
Compare the results on your machine with those that EAI/SENSE8 provides for each
platform.

Secondly, you might want to quantify the performance of one of your applications. U
WTuniverse_framerate (see page 2-23) to get the average number of frames per seco
which your application is running. You can use the function WTwindow_numpolys (see
page 17-25) to determine how many polygons are being rendered in a window. This
function’s return value does not include polygons whose geometries have been culle
(because they are out of view).

On UNIX Platforms, How Do I Get A Pointer To
The Display That WTK Is Using?

Most Xt calls require a pointer to the display that WTK is using. WTK provides a funct
WTwindow_getwidget (see page 17-29) that can help you in obtaining the display. By
passing in a pointer to a WTK window into this function you can retrieve the window’
id (that is, the corresponding widget). Once you have the widget, you can get a poin
the display by calling XtDisplay.

 Display = XtDisplay(Widget);
A-38 WorldToolKit Reference Manual

How do I use Boston Dynamic's DiGuy with WTK (or any other BDI character set)?

uch
ston
arty
f your
hat

ctive
nd is
 ther
 easy
ration
e

eloper
ed with

 These
to
How do I use Boston Dynamic's DiGuy with
WTK (or any other BDI character set)?

The introduction of the OpenGL callback node in WTK release 9 has allowed for a m
simpler integration of 3rd party OpenGL based products into a WTK application. Bo
Dynamic's DiGuy human animation system is a good example of how WTK and 3rd p
vendors can combine to create a great application. In the /demo/diguy subdirectory o
WTK installation you will find an example program on how to develop an application t
uses both WTK and DiGuy. The example file, wtkdiguy.c, can be used either as a
demonstration program for users with DiGuy, or as an application template for intera
simulations. The code for this application is written in a very approachable manner a
commented heavily so that users that are not so familiar with WTK or DiGuy can have
application up and running within a manner of minutes. The example code is also very
to extend and has been written in a very flexible manner. Note: To use this demonst
application you must either (1) own a licensed copy of both WTK and DiGuy or (2) b
evaluating either or both products with the appropriate evaluation licenses.

When attempting to use the demonstration code there are a few places where the dev
must make changes to the demonstration source code, these places have been mark
appropriate comments and require changes that would take at most a minute or two.
changes are related only to setting the proper environment variables to allow DiGuy
function properly on the user's machine.
WorldToolKit Reference Manual A-39

Appendix A: Frequently Asked Questions
A-40 WorldToolKit Reference Manual

. For
our

rol
les in
stem
s to

ther
ly.

ES

sure
rly.

th
as in
B
Environment Variables

WorldToolKit uses environment variables to customize its operation on your computer
example, you can set new paths for image and model files, set the Z-buffer size for y
graphics card, etc. To add environment variables in Windows NT 3.51, choose Cont
Panel from the Main Program group, then select System. To add environment variab
Windows NT 4.0 choose Settings, Control Panel from the Start menu then select Sy
and click the Environment tab. On UNIX platforms, you can add environment variable
your unix shell using the setenv or set command.

The examples below all assume you have installed WorldToolKit into the C:\Program
Files\wtk directory on the Windows platform. If you have installed the program to ano
directory or drive, or if you are on the UNIX platform, modify the examples according

WTKCODES

The WTKCODES environment variable is used to specify the file path to the WTKCOD
file which contains your system-specific software license code. By setting the WTKCODES
environment variable to the file path where your WTKCODES file exists, you can en
that WorldToolKit will always be able to find the software license code and run prope
For example:

Variable WTKCODES
Value c:\Program Files\wtk

To specify multiple file paths for the WTKCODES environment variables, separate the pa
names with a semicolon (;) [on UNIX platforms separate path names with a colon (:)]
the following example, which sets the WTKCODES environment variable to patha and
pathb:

Variable WTKCODES

Value patha;pathb

Appendix B: Environment Variables

ths
the
 be

s.

th
as in

ory,
order
 patha

et
WTK first searches for the file in the current working directory, and then along the pa
specified in the corresponding environment variable, in the order that they occur. In
example above, the current directory will be searched ahead of patha and patha will
searched before pathb.

WTIMAGES

By default, WorldToolKit looks in the current directory to search for texture image file
To set additional file paths for image files, use the environment variable WTIMAGES to
specify a path to your texture images subdirectory. For example:

Variable WTIMAGES
Value c:\Program Files\wtk\images

To specify multiple file paths for the WTIMAGES environment variables, separate the pa
names with a semicolon (;) [on UNIX platforms separate path names with a colon (:)]
the following example, which sets the WTIMAGES environment variable to patha and
pathb:

Variable WTIMAGES
Value patha;pathb

When an image is loaded, WTK first searches for the file in the current working direct
and then along the paths specified in the corresponding environment variable, in the
that they occur. In the example above, the current directory will be searched ahead of
and patha will be searched before pathb.

WTMODELS

By default, WorldToolKit looks in the current directory to search for model files. To s
additional file paths for model files, use the environment variable WTMODELS to specify
a path to your models subdirectory. For example:

Variable WTMODELS
Value c:\Program Files\wtk\models
B-2 WorldToolKit Reference Manual

WTKZBUFFERSIZE

th
as in

ory,
order
 patha

hics

g the
ficant

hose
nd

ified
 want
To specify multiple file paths for the WTMODELS environment variables, separate the pa
names with a semicolon (;) [on UNIX platforms separate path names with a colon (:)]
the following example, which sets the WTMODELS environment variable to patha and
pathb:

Variable WTMODELS
Value patha;pathb

When a model is loaded, WTK first searches for the file in the current working direct
and then along the paths specified in the corresponding environment variable, in the
that they occur. In the example above, the current directory will be searched ahead of
and patha will be searched before pathb.

WTKZBUFFERSIZE

WTK performs its calculations assuming that a Z-buffer of depth 24 exists. Some grap
cards only support 16-bit (or less) Z-buffers. If you don’t set this value correctly, the
hardware graphics card may not function properly or may be disabled entirely causin
default software OpenGL implementation to be used instead and can result in a signi
drop in performance. You can avoid this by setting WTKZBUFFERSIZE to the depth of the
actual hardware Z-buffer. For example:

Variable WTKZBUFFERSIZE
Value 16

WTKALPHATEST

This environment variable is used to set the transparency threshold of pixels. Pixels, w
final computed transparency value (after factoring in the polygon’s material opacity a
texture alpha values) is below this threshold value (0-255) will not be written to the
framebuffer. This will ensure that all pixels whose transparency value is below a spec
threshold value to be treated as completely transparent. This can be useful when you
to have a "cookie-cutter" effect with your textures. For example:

Variable WTKALPHATEST
Value 24
WorldToolKit Reference Manual B-3

Appendix B: Environment Variables

t in
te
ure

ht are

ned
mple:
The default is 78 on UNIX platforms while the default is 0 on Windows platforms.

WTKMAXTEXSIZE

Texture images will be scaled down, if necessary, so that the image width and heigh
pixels will not exceed this value. By setting this environment variable to an appropria
value you can help ensure that your application does not exceed your hardware text
memory limits. For example:

Variable WTKMAXTEXSIZE
Value 256

The default is 1024 (this is also the maximum).

WTKSQRTEX

Texture images will be scaled down, if necessary, so that the texture's width and heig
equal. The possible values are 0 (zero) and 1 (one), where 0 = off. For example:

Variable WTKSQRTEX
Value 1

The default is off (zero).

WTKPROXY

http proxy server (hostname:port). Used when reading VRML files, i.e., URLs contai
in anchor and/or inline nodes are relative to the proxy server specified here. For exa

Variable WTKPROXY
Value BATMOBILE:8080
B-4 WorldToolKit Reference Manual

WTKALPHAENABLE

iable

r
vice
nger
ify to
e

f
tion
"Bird

owed
WTKALPHAENABLE

Depth of alpha buffer to allocate. Valid values range from 0 to 8. This environment var
can only be used on systems which have alpha buffer hardware. For example:

Variable WTKALPHAENABLE

Value 8

The default is 0.

WTBIRDDELAY

This environment variable is used with Ascension's Bird, Motionstar, 6DOF Mouse o
Flock of Birds sensor device. Occasionally, WTK is unable to communicate with the de
during the initialization process. This happens when the Flock of Birds takes a little lo
to respond than usual. In such cases you may use this environment variable to spec
WTK, an additional amount of time to wait before polling the serial port for a respons
from the bird.

You must specify the value for WTBIRDDELAY in milliseconds. In most cases a value o
1500 is sufficient for the bird to respond. This variable is used only during the initializa
process. You do not need to set this variable unless you get a WTK Warning saying
not responding".

Variable WTKBIRDDELAY

Value 500

WTKLS

Used to specify the location of the WTK license server daemon when WTK’s floating
license option is used. (Note that the license server daemon can only be run on SGI
platforms.) The license server location is specified by the IP address of the server, foll
by a colon, followed by the port number.

Variable WTKLS

Value 130.20.152.24:2000
WorldToolKit Reference Manual B-5

Appendix B: Environment Variables

(Pixel
ms
e a
nsure
will

e a
ore

ns
y be
sors

1, 2,
cs
WTKNOSTEREO

By default, WTK requests a stereo capable visual on UNIX and a stereo capable PFD
Format Description) on Windows platforms. Because of this, on some graphics syste
such as ELSA, applications which do not need or use stereo windows can experienc
performance degradation. If your application does not use stereo windows, you can i
maximum graphics performance by setting this environment variable to 1. Doing so
force WTK to use a non-stereo capable visual/PFD.

Variable WTKNOSTEREO

Value 1

WTKMULTISAMPLE

Available on SGI platforms only and specifies the anti-aliasing sampling rate (must b
power of 2). A higher sampling rate will result in a better quality image but will take m
processing time. For example:

Variable WTKMULTISAMPLE

Value 16

The default is 0.

WTKCPU

Available only on the SGI Multi-pipe/Multi-processor version. Though WTK MP/MP ru
multi-process, by default it does not lock processes to particular processors. You ma
able to improve performance by locking the WTK processes down to specific proces
using the WTKCPU environment variable.

This is a numeric variable. For example:

setenv WTKCPU 0123

locks down the first four processes that WTK spawns to the processor numbered 0,
and 3, respectively. This is an appropriate setting for WTK running on a three graphi
B-6 WorldToolKit Reference Manual

WTKDISPLAY

 and

r

ne

For
ells

NIX/
pipeline computer with four processors, since WTK has a single application process
one process for each screen (or virtual screen).

The syntax for the value field of the environment variable is:

setenv WTKCPU [application processor] [screen0 processor] [screen1 processor] ...

with up to nine digits, one digit for the application processor, and up to eight digits fo
screen processors. The digit value must be one of the following:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

If this environment variable is not set, it is possible the application will bounce from o
CPU to another each frame. Each pipe may also bounce from CPU to CPU.

WTKDISPLAY

Available only on the SGI Multi-pipe/Multi-processor version and on the PRO-1000. (
usage on the PRO-1000 refer to the PRO-1000 Installation and Hardware Guide.) T
WTK MP/MP which X display to associate with each screen. For example:

setenv WTKDISPLAY 'earth:0,wind:0.1,earth:1.0,fire.sense8.com:0.0'

results in the following association:

WTWINDOW_SCREEN0 the default screen of the machine "earth"
WTWINDOW_SCREEN1 the :0.1 screen of the machine "wind"

WTWINDOW_SCREEN2 the :1.0 screen of the machine "earth"
WTWINDOW_SCREEN3 the default screen of the machine "fire.sense8.com"

For more information on this environment variable, see Using Multiple Screens on U
X Windows in the SGI Installation and Hardware Guide.
WorldToolKit Reference Manual B-7

Appendix B: Environment Variables

ory
f shared

tion
WTKSHMEM

Available only on the SGI Multi-pipe/Multi-processor version. Amount of shared mem
to allocate in megabytes. Your swap space must be at least as large as the amount o
memory allocated. This is a numeric variable. For example:

setenv WTKSHMEM 128

The default is 64 MB. For more information on this environment variable, see Applica
Memory Allocation and Shared Memory in the SGI Installation and Hardware Guide.
B-8 WorldToolKit Reference Manual

 more

C
Defined Constants

You can use WTK’s constant definitions to make your applications easier to read and
portable. These are declared in the respective header files in the include directory.

They are listed here alphabetically.

Constraint Constants

Used with the function WTpath_setconstraints (see page 14-20) and as returned by the
function WTpath_getconstraints (see page 14-21) for the path class. Also used with the
functions WTmotionlink_addconstraint (see page 15-11) and
WTmotionlink_removeconstraint (see page 15-12) for the motion link class. Declared in
sensor.h.

WTCONSTRAIN_X
WTCONSTRAIN_XROT
WTCONSTRAIN_Y

WTCONSTRAIN_YROT
WTCONSTRAIN_Z
WTCONSTRAIN_ZROT

Appendix C: Defined Constants
Display Constants

Declared in other.h.

WTDISPLAY_CYRSTALEYES

WTDISPLAY_DEFAULT
WTDISPLAY_DIRECT3DFX (only for WTK Direct – full screen mode)
WTDISPLAY_DIRECTFULLSCREEN (only for WTK Direct – 3Dfx device)

WTDISPLAY_MONO
WTDISPLAY_NOWINDOW
WTDISPLAY_NEEDSTENCIL

WTDISPLAY_RBSTEREO
WTDISPLAY_STEREO
WTDISPLAY_STEREOWINDOW

Drawing Constants

Used with the functions WTwindow_draw2Dcircle (see page 19-3) and
WTwindow_draw2Drectangle (see page 19-3). Declared in other.h.

WTDRAW2D_HOLLOW
WTDRAW2D_SOLID

Used with the function WTwindow_draw3Dlines (see page 19-10). Declared in other.h.

WTLINE_CLOSE
WTLINE_CONNECTED
WTLINE_SEGMENTS
C-2 WorldToolKit Reference Manual

Event Order Constants

on
Event Order Constants

Used with the function WTuniverse_seteventorder (see page 2-9) and as returned by the
function WTuniverse_geteventorder (see page 2-10). Declared in other.h.

WTEVENT_ACTIONS

WTEVENT_OBJECTSENSOR
WTEVENT_PATHS
WTEVENT_TASKS

Eye Constants

Used with the function WTwindow_seteye (see page 17-12) and as returned by the functi
WTwindow_geteye (see page 17-12). Declared in other.h.

WTEYE_LEFT
WTEYE_RIGHT

Filetype Constants

Used with the functions WTnode_save (see page 4-48) and WTgeometry_save (see page
6-26). Declared in other.h.

WTFILETYPE_BFF (SENSE8 Binary NFF)
WTFILETYPE_DXF (AutoCAD DXF format)

WTFILETYPE_NFF (SENSE8 Neutral File Format)
WTFILETYPE_WRL (VRML 1.0)
WorldToolKit Reference Manual C-3

Appendix C: Defined Constants
Frames of Reference Constants

Declared in vr.h.

WTFRAME_LOCAL

WTFRAME_PARENT
WTFRAME_VPOINT
WTFRAME_WORLD

Keyboard Constants

As returned by the functions WTkeyboard_getkey (see page 24-2), and
WTkeyboard_getlastkey (see page 24-2). Declared in sensors.h.

WTKEY_BACKSPACE
WTKEY_DOWNARROW

WTKEY_END
WTKEY_ENTER
WTKEY_ESC

WTKEY_F1
WTKEY_F2
WTKEY_F3

WTKEY_F4
WTKEY_F5
WTKEY_F6

WTKEY_F7
WTKEY_F8
WTKEY_F9

WTKEY_F10
WTKEY_F11
WTKEY_F12

WTKEY_HOME
WTKEY_LEFTARROW
WTKEY_MIDDLE

WTKEY_PAGEDOWN
WTKEY_PAGEUP

WTKEY_RIGHTARROW
C-4 WorldToolKit Reference Manual

Light Type Constants
WTKEY_TAB
WTKEY_UPARROW

Light Type Constants

As returned by the function WTlightnode_gettype (see page 12-18). Declared in other.h.

WTLIGHTTYPE_AMBIENT
WTLIGHTTYPE_DIRECTED
WTLIGHTTYPE_POINT

WTLIGHTTYPE_SPOT

Material Table Property Constants

Used with the functions WTmtable_new (see page 8-7), WTmtable_setvalue (see page
8-15), WTmtable_getvalue (see page 8-15), and WTmtable_setproperties (see page 8-9),
and as returned by the function WTmtable_getproperties (see page 8-11). Declared in
other.h.

WTMAT_AMBIENT

WTMAT_AMBIENTDIFFUSE
WTMAT_DIFFUSE
WTMAT_EMISSION

WTMAT_OPACITY
WTMAT_SHININESS
WTMAT_SPECULAR
WorldToolKit Reference Manual C-5

Appendix C: Defined Constants
Mathematical Constants

Declared in vr.h.

PI, PID2, PID4, PID6, PIT2(PI = 3.14..., PI divided by 2, PI divided by 4, PI divided

by 6, and PI times 2)
TRUE=1, FALSE=0
U=0, V=1

WTFUZZ=0.004
WTzero(x) (ABS(x) < WTFUZZ)
X=0, Y=1, Z=2, W=3

Message Constants

Used with the function WTmessage_sendto (see page 24-6). Declared in other.h.

Message types:

WTMESSAGE_ERROR
WTMESSAGE_USER

WTMESSAGE_WARNING

Message destinations:

WTMESSAGE_TOCALLBACK
WTMESSAGE_TOCONSOLE

WTMESSAGE_TOFILE
WTMESSAGE_TONOWHERE
C-6 WorldToolKit Reference Manual

Motion Link Source and Target Constants
Motion Link Source and Target Constants

Used with the functions WTmotionlink_new (see page 15-3), and as returned by the
functions WTmotionlink_getsource (see page 15-6), and WTmotionlink_gettarget (see page
15-6). Declared in other.h.

Motion link sources:

WTSOURCE_PATH

WTSOURCE_SENSOR

Motion link targets:

WTTARGET_MOVABLE
WTTARGET_NODEPATH

WTTARGET_TRANSFORM
WTTARGET_VIEWPOINT

Node Constants

As returned by the function WTnode_gettype (see page 4-50). Declared in other.h.

WTNODE_ANCHOR
WTNODE_FOG
WTNODE_GEOMETRY

WTNODE_GLNODE
WTNODE_GROUP
WTNODE_ILLEGAL

WTNODE_INLINE
WTNODE_LOD
WTNODE_LIGHT

WTNODE_MGEOMETRY
WTNODE_MLIGHT
WTNODE_MLOD

WTNODE_MSEP
WTNODE_MSWT

WTNODE_ROOT
WorldToolKit Reference Manual C-7

Appendix C: Defined Constants

WTNODE_SEP
WTNODE_SWT
WTNODE_WTOBJECT

WTNODE_XFORM
WTNODE_XFORMSEP

Used with the function WTfognode_setmode (see page 4-66) and as returned by the
function WTfognode_getmode (see page 4-66).

WTFOG_EXP

WTFOG_EXPSQUARED
WTFOG_LINEAR
WTFOG_NONE

Used with the function WTsepnode_setcullmode (see page 4-57) and as returned by
WTsepnode_getcullmode (see page 4-57).

WTNODE_CULLAUTO
WTNODE_CULLOFF
WTNODE_CULLON

Used with the function WTswitchnode_setwhichchild (see page 4-57) and as returned by
WTswitchnode_getwhichchild (see page 4-58).

WTSWITCH_ALL
WTSWITCH_NONE

Used with the function WTmovnode_attach (see page 5-11).

WTNODE_APPEND
C-8 WorldToolKit Reference Manual

Option Constants
Option Constants

Used with WTuniverse_setoption (see page 2-24), and as returned by the function
WTuniverse_getoption (see page 2-27). Declared in other.h.

WTOPTION_3DSCHGTEXEXT

WTOPTION_MGENREADVCOLOR
WTOPTION_NEWMGENREAD
WTOPTION_NFFWRITE12

WTOPTION_NFFWRITEUV
WTOPTION_NFFWRITEV21
WTOPTION_NOAUTOALPHA

WTOPTION_NOPOSTQUIT
WTOPTION_OLD3DS
WTOPTION_OLDTEXTROT

WTOPTION_OLDWFRONT
WTOPTION_USEWTPUMP
WTOPTION_VERTWARN

WTOPTION_XFORMSCALE

Path Constants

Used with the function WTpath_interpolate (see page 14-6). Declared in other.h.

WTPATH_BEZIER

WTPATH_BSPLINE
WTPATH_LINEAR

Used with the function WTpath_seek (see page 14-18). Declared in other.h.

WTPATH_CURRENT

WTPATH_FIRST
WTPATH_LAST

Used with the function WTpath_setdirection (see page 14-19) and as returned by the
function WTpath_getdirection (see page 14-20). Declared in vr.h.
WorldToolKit Reference Manual C-9

Appendix C: Defined Constants

on
WTDIRECTION_BACKWARD
WTDIRECTION_FORWARD

Used with the function WTpath_setmode (see page 14-21) and as returned by the functi
WTpath_getmode (see page 14-22). Declared in vr.h.

WTPLAY_CONTINUOUS

WTPLAY_OSCILLATE
WTPLAY_TOEND

Projection Type Constants

Used with the function WTwindow_setprojection (see page 17-14). Declared in other.h.

WTPROJECTION_ASYMMETRIC

WTPROJECTION_GENERAL
WTPROJECTION_ORTHOGRAPHIC
WTPROJECTION_SYMMETRIC

Rendering Constants

Used with the function WTgeometry_setrenderingstyle (see page 6-33).

WTRENDER_ALLMODES
WTRENDER_DEFAULT

Used with the functions WTuniverse_setrendering (see page 2-18) and
WTgeometry_setrenderingstyle (see page 6-33), and as returned by the functions
WTuniverse_getrendering (see page 2-20) and WTgeometry_getrenderingstyle (see page
6-35). Declared in other.h.

WTRENDER_ANTIALIAS

WTRENDER_BEST
WTRENDER_GOURAND
WTRENDER_LIGHTING

WTRENDER_NOSHADE
WTRENDER_PERSPECTIVE
C-10 WorldToolKit Reference Manual

Sensor Constants
WTRENDER_SMOOTH
WTRENDER_TEXTURED
WTRENDER_WIREFRAME

Sensor Constants

Used with the function WTsensor_new (see page 13-7). Declared in sensor.h.

WTSENSOR_DEFAULT

All the constants for a particular sensor are declared in sensor.h.

ANY STANDARD MOUSE

As returned by the function WTsensor_getmiscdata (see page 13-15).

Mouse button is currently down.

WTMOUSE_LEFTDOWN
WTMOUSE_MIDDLEDOWN
WTMOUSE_RIGHTDOWN

Mouse button has just been pressed.

WTMOUSE_LEFTBUTTON
WTMOUSE_MIDDLEBUTTON
WTMOUSE_RIGHTBUTTON

Mouse button has just been released.

WTMOUSE_LEFTUP
WTMOUSE_MIDDLEUP
WTMOUSE_RIGHTUP

Mouse button has been double clicked.

WTMOUSE_LEFTDBLCLK
WorldToolKit Reference Manual C-11

Appendix C: Defined Constants

re
WTMOUSE_MIDDLEDBLCLK
WTMOUSE_RIGHTDBLCLK

ASCENSION BIRD, FLOCK OF BIRDS, AND EXTENDED RANGE BIRD

Used with the function WTbird_sethemisphere (see page 13-43) and as returned by the
function WTbird_gethemisphere (see page 13-43).

WTBIRD_AFT

WTBIRD_FORWARD
WTBIRD_LEFT
WTBIRD_LOWER

WTBIRD_RIGHT
WTBIRD_UPPER

As returned by the function WTsensor_getmiscdata (see page 13-15). These constants a
for Ascension’s 6DOF mouse.

WTBIRD_LEFTBUTTON

WTBIRD_MIDDLEBUTTON
WTBIRD_RIGHTBUTTON

CIS GRAPHICS GEOMETRY BALL , JR.

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTGEOBALL_LEFTBUTTON
WTGEOBALL_RIGHTBUTTON

FAKESPACE MONOCHROME BOOM, TWO-COLOR BOOM2C, AND
FULL-COLOR BOOM3C

For BOOMs with joystick feature.

WTBOOM_DOWN

WTBOOM_LEFT
WTBOOM_RESET
C-12 WorldToolKit Reference Manual

Sensor Constants
WTBOOM_RIGHT
WTBOOM_UP

For BOOMs with left and right buttons, as returned by the function WTsensor_getmiscdata
(see page 13-15).

WTBOOM_LEFTBUTTON

WTBOOM_RIGHTBUTTON

FAKESPACE PINCH GLOVE SYSTEM

As returned by the function WTsensor_getrawdata (see page 13-15).

Pinch Glove fingers (common constant for left and right fingers).

WTPINCH_FINGERS

WTPINCH_INDEX
WTPINCH_MIDDLE
WTPINCH_PINKIE

WTPINCH_RING
WTPINCH_THUMB

Pinch Glove individual fingers (different constants for left and right fingers).

WTPINCH_LINDEX

WTPINCH_LMIDDLE
WTPINCH_LPINKIE
WTPINCH_LRING

WTPINCH_LTHUMB
WTPINCH_NOTOUCH
WTPINCH_RINDEX

WTPINCH_RMIDDLE
WTPINCH_RPINKIE
WTPINCH_RRING

WTPINCH_RTHUMB
WorldToolKit Reference Manual C-13

Appendix C: Defined Constants
FIFTH DIMENSION TECHNOLOGIES’ 5DT GLOVE

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTGLOVE5DT_ALL (WTGLOVE5DT_THUMB & WTGLOVE5DT_INDEX &

WTGLOVE5DT_MIDDLE & WTGLOVE5DT_RING &
WTGLOVE5DT_PINKY)

WTGLOVE5DT_CLOSED

WTGLOVE5DT_INDEX
WTGLOVE5DT_MIDDLE
WTGLOVE5DT_OPEN

WTGLOVE5DT_PINKY
WTGLOVE5DT_RING
WTGLOVE5DT_THUMB

LOGITECH 3D MOUSE (RED BARON)

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTLOGITECH_FLAGBIT
WTLOGITECH_FLYING

WTLOGITECH_FRIBIT
WTLOGITECH_LEFTBUTTON
WTLOGITECH_MIDDLEBUTTON

WTLOGITECH_OUTBIT
WTLOGITECH_PEDESTALBUTTON
WTLOGITECH_RIGHTBUTTON

WTLOGITECH_SUSPENDBUTTON
C-14 WorldToolKit Reference Manual

Sensor Constants
LOGITECH SPACE CONTROL MOUSE (MAGELLAN)

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTSPACECONTROL_BUTTON1

WTSPACECONTROL_BUTTON2
WTSPACECONTROL_BUTTON3
WTSPACECONTROL_BUTTON4

WTSPACECONTROL_BUTTON5
WTSPACECONTROL_BUTTON6
WTSPACECONTROL_BUTTON7

WTSPACECONTROL_BUTTON8
WTSPACECONTROL_BUTTONA

POLHEMUS STYLUS

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTFASTRAK_STYLUSBUTTON_DOWN

SPACETEC IMC SPACEBALL

As returned by the function WTsensor_getmiscdata (see page 13-15).

Spaceball button is being held down.

WTSPACEBALL_BUTTON1

WTSPACEBALL_BUTTON2
WTSPACEBALL_BUTTON3
WTSPACEBALL_BUTTON4

WTSPACEBALL_BUTTON5
WTSPACEBALL_BUTTON6
WTSPACEBALL_BUTTON7

WTSPACEBALL_BUTTON8
WTSPACEBALL_PICKBUTTON
WTSPACEBALL_BUTTONS
WorldToolKit Reference Manual C-15

Appendix C: Defined Constants
Spaceball button has just been pressed.

WTSPACEBALL_BUTTON1_DOWN
WTSPACEBALL_BUTTON2_DOWN
WTSPACEBALL_BUTTON3_DOWN

WTSPACEBALL_BUTTON4_DOWN
WTSPACEBALL_BUTTON5_DOWN
WTSPACEBALL_BUTTON6_DOWN

WTSPACEBALL_BUTTON7_DOWN
WTSPACEBALL_BUTTON8_DOWN
WTSPACEBALL_PICKBUTTON_DOWN

WTSPACEBALL_BUTTONS_DOWN

Spaceball button has just been released.

WTSPACEBALL_BUTTON1_UP
WTSPACEBALL_BUTTON2_UP

WTSPACEBALL_BUTTON3_UP
WTSPACEBALL_BUTTON4_UP
WTSPACEBALL_BUTTON5_UP

WTSPACEBALL_BUTTON6_UP
WTSPACEBALL_BUTTON7_UP
WTSPACEBALL_BUTTON8_UP

WTSPACEBALL_PICKBUTTON_UP
WTSPACEBALL_BUTTONS_UP

SPACETEC IMC SPACEBALL SPACECONTROLLER

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTSPACEBALLSC_BUTTON1
WTSPACEBALLSC_BUTTON2
WTSPACEBALLSC_BUTTONS
C-16 WorldToolKit Reference Manual

Serial Port Constants
THRUSTMASTER SERIAL JOYSTICK

As returned by the function WTsensor_getmiscdata (see page 13-15).

WTJOYSERIAL_BOTTOMDOWN

WTJOYSERIAL_HATDOWN
WTJOYSERIAL_HATLEFT
WTJOYSERIAL_HATRIGHT

WTJOYSERIAL_HATUP
WTJOYSERIAL_SIDEDOWN
WTJOYSERIAL_TOPDOWN

WTJOYSERIAL_TRIGGERDOWN
WTJOYSERIAL_WCS1
WTJOYSERIAL_WCS2

WTJOYSERIAL_WCS3
WTJOYSERIAL_WCS4
WTJOYSERIAL_WCS5

WTJOYSERIAL_WCS6
WTJOYSERIAL_WCS7
WTJOYSERIAL_WCSTOGGLEA

WTJOYSERIAL_WCSTOGGLEB

Serial Port Constants

Used for the port argument to the sensor macros, (e.g., WTspaceball_new – see page
13-102). Declared in serial.h.

SERIAL1

SERIAL2
WorldToolKit Reference Manual C-17

Appendix C: Defined Constants
Sound Constants

Used with the function WTsound_setparam (see page 20-12). Declared in other.h.

WTSOUND_DOPPLER

WTSOUND_FBPAN
WTSOUND_LOOPS
WTSOUND_LRPAN

WTSOUND_PITCH
WTSOUND_PLAYRATE
WTSOUND_PRIORITY

WTSOUND_SPATIALIZE
WTSOUND_VOLUME

Used with the function WTsound_setparam (see page 20-12) for setting the
WTSOUND_PLAYRATE parameter. Declared in other.h.

WTSAMPLERATE_8KHZ

WTSAMPLERATE_11KHZ
WTSAMPLERATE_16KHZ
WTSAMPLERATE_22KHZ

WTSAMPLERATE_32KHZ
WTSAMPLERATE_44KHZ
WTSAMPLERATE_48KHZ

Used with the function WTsound_setparam (see page 20-12) for setting the

WTSOUND_SPATIALIZE parameter. Declared in other.h.

WTSPATIALIZE_OFF
WTSPATIALIZE_ON
C-18 WorldToolKit Reference Manual

Sound Device Constants
Sound Device Constants

Used with the function WTsounddevice_open (see page 20-3). Declared in other.h.

WTSOUNDDEVICE_CRE

WTSOUNDDEVICE_DS
WTSOUNDDEVICE_DWSTK
WTSOUNDDEVICE_SGI

WTSOUNDDEVICE_VSI
WTSOUNDDEVICE_WINMM

Used with the function WTsounddevice_setparam (see page 20-5). Declared in other.h.

WTSOUNDDEVICE_ABSORBDIST

WTSOUNDDEVICE_OUTPUT
WTSOUNDDEVICE_ROLLOFF
WTSOUNDDEVICE_ROLLOFFEXP

WTSOUNDDEVICE_SPATIALIZE

Used with the function WTsounddevice_setparam (see page 20-5) for setting the
WTSOUNDDEVICE_OUTPUT parameter. Declared in other.h.

WTOUTPUT_HEADPHONE
WTOUTPUT_STEREO

WTOUTPUT_SURROUND

Used with the function WTsounddevice_setparam (see page 20-5) for setting the

WTSOUNDDEVICE_SPATIALIZE parameter. Declared in other.h.

WTSPATIALIZE_OFF
WTSPATIALIZE_ON
WorldToolKit Reference Manual C-19

Appendix C: Defined Constants

on
Texture Constants

Used with the function WTtexture_setfilter (see page 10-25), and as returned by the functi
WTtexture_getfilter (see page 10-27). Declared in other.h.

WTFILTER_LINEAR

WTFILTER_LINEARMIPMAPLINEAR
WTFILTER_LINEARMIPMAPNEAREST
WTFILTER_NEAREST

WTFILTER_NEARESTMIPMAPLINEAR
WTFILTER_NEARESTMIPMAPNEAREST

Used with the function WTtexture_replace (see page 10-16). Declared in other.h.

WTIMAGE_RGBA

User Interface Constants

Declared in wtkuio.h.

Size and position (some UI objects only).

WTUIATT_HEIGHT
WTUIATT_LEFT

WTUIATT_TOP
WTUIATT_WIDTH

Label type (for UI objects created with WTuilabel_new only).

WTUI_FILE

WTUI_TEXT

Scrolled list type (for UI objects created with WTuiscrolledtext_new only).

WTUI_EDITABLE
WTUI_NOTEDITABLE
C-20 WorldToolKit Reference Manual

Window Constants
Menu-item state (for UI objects created with WTuimenuitem_new only).

WTUI_DIM
WTUI_UNDIM

Window Constants

Constants used to set window characteristics. Declared in other.h.

WTWINDOW_DEFAULT
WTWINDOW_INTERLACEEVENODD
WTWINDOW_INTERLACEODDEVEN

WTWINDOW_NOBORDER
WTWINDOW_SCREEN1
WTWINDOW_SCREEN2

WTWINDOW_SCREEN3
WTWINDOW_SCREEN4
WTWINDOW_SCREEN5

WTWINDOW_SCREEN6
WTWINDOW_SCREEN7
WTWINDOW_SCREEN8

WTWINDOW_RBSTEREO
WTWINDOW_STEREO
WTWINDOW_STEREOVSPLIT

Other Constants

A forward slash (/) on UNIX, a backward slash (\) on Windows 32-bit systems.

WTFILE_DELIM

A colon (:) on UNIX, a semicolon (;) on Windows 32-bit systems.

WTFILE_PATHDELIM
WorldToolKit Reference Manual C-21

Appendix C: Defined Constants
The maximum length of a filename (which includes the full pathname).

WTPATHLEN

See your Hardware Guide for constants that are specific to your computer platform.
C-22 WorldToolKit Reference Manual

sage.
fatal
ded.

s for
 here,
,

 file

 you

ed
D
Error Messages and Warnings

In some circumstances, a WTK application may terminate with a diagnostic error mes
These fatal errors signify a condition that should not occur in application code. In non-
situations, when WTK encounters an unusual condition, a warning message is provi
You can suppress or redirect error messages and warnings with the WTmessage_sendto
function (see page 24-6).

The following sections list the WTK error and warning messages, and offer suggestion
what corrective actions you can take. If you obtain an error message that’s not listed
please contact SENSE8 Technical Support. For support information, see Appendix L
Technical Support.

Error Messages

Correct code not found in the WTKCODES file

To run a WTK application on some platforms, a system-specific code is required in a
called WTKCODES. If you also get one of the warnings “Couldn’t find file of security
codes, WTKCODES” or “Couldn’t open file of security codes, WTKCODES”, then the
problem is that the file could not be found or opened. Otherwise, the problem is that
are missing the correct code, and you should contact your distributor.

Couldn’t get mode for <device>

On a UNIX platform, WTserial_new had problems with the device name that you attempt
to use as a serial port.

Appendix D: Error Messages and Warnings

s the

 get
n

ort,
ich

 with

e is

g
es
Couldn’t find file WTKLS. Is environment variable WTKLS properly set?

On UNIX platforms, with certain license types, a file called WTKLS is required for
interactions with the license server. This file must be located in the same directory a
WTK executable.

Error <n> initiating contact with license server

This error indicates a problem obtaining a license from the WTK license server. If you
this error, it will usually have been preceded by a warning which provides informatio
about the specific problem.

Incorrect license type? This library is for a class <x> license.

The library you are using is inappropriate for your system. Contact your distributor.

Internal fault <num>

WorldToolKit has encountered a prohibited condition internally. Please file a bug rep
including the error number <num> and as detailed a description of the conditions wh
produced the problem as you are able to provide.

Invalid texture name: <texture name>

Texture names, when supplied from as a DXF layer name or in an NFF file, must begin
one of the strings: “_S_”, “_T_”, “_V_” to signify that the texture is to be shaded,
transparent, or plain vanilla. When textures are supplied by a call to WTpoly_settexture or
WTgeometry_settexture, the texture name should not contain the prefix, as texture typ
given by other arguments to the texture function.

Make_arc - too many verts in arc

There is currently a restriction of 512 vertices for any arc specified in a DXF file bein
loaded into WorldToolKit. Change your DXF file geometry to limit the number of vertic
in any arc.
D-2 WorldToolKit Reference Manual

Error Messages

g

r
he

ntity
ur

nsure
rrupt

d. You
at you
e in,
No Z-buffer available

To run WTK on some platforms (for example, SGI), a Z-buffer (or software Z-bufferin
capability) is required.

OUT OF MEMORY!

An attempt to allocate more dynamic memory from the heap has failed, because you
computer has exhausted its free memory. Either you are loading models too big for t
amount of physical memory in your computer, or are running other programs that are
occupying too much memory.

Polyline has more than <num> vertices

There is a restriction on the number of vertices which can be present in any polyline e
in a DXF file being loaded into WorldToolKit. This is currently set to 512. Change yo
DXF file geometry to limit the number of vertices in any polyline.

Scan.l - group code problem

The DXF parser has encountered a syntactic anomaly with the DXF file being read. E
the DXF file can be read by AutoCAD. It is possible that the contents of the file are co
or that it was generated by a third party DXF output program that does not generate
standard DXF.

Serial port being deleted is invalid

You will only see this error if you are passing an uninitialized pointer to WTserial_delete.

Serial port <port>: data overflow

When a serial port is created, a buffer is created to hold characters as they are receive
should make the buffer large enough to handle the maximum number of characters th
expect will ever be waiting for processing. If the buffer is full and more characters com
this message is printed and the application immediately terminates.
WorldToolKit Reference Manual D-3

Appendix D: Error Messages and Warnings

ed on,

to

er of
Spaceball not responding

The Spaceball device is not returning data as expected. Check that the unit is power
and check your serial cable and baud rate.

Unable to open serial port <devicename>

On a UNIX platform, WTserial_new had problems with the device which you attempted
use as a serial port.

Unrecognized baud rate <n>

The supported baud rates on UNIX platforms are 1200, 2400, 4800, 9600, 19200,
and 38400, ... baud.

Write to device timed out

A problem was encountered during a WTserial_write. A hardware fault or memory
corruption is indicated.

WTserial read - requested more than buffer size

When serial ports are created with a call to WTserial_new, a buffer size is supplied to
indicate the size of the input buffer to create. An attempt to read more than this numb
bytes with a call to WTserial_read is not meaningful, and results in this error message.
D-4 WorldToolKit Reference Manual

Warnings

d.

with
ored.

s.

rts.

 a call
Warnings

<n> open POLYLINE entities ignored

or

<n> POLYLINE3D entities ignored

The DXF reader ignores open POLYLINE entities and non-coplanar POLYLINE3D
entities in a DXF file. This warning lets you know that some POLYLINEs were ignore

<n> polygons were ignored.

The NFF and Wavefront file readers ignore invalid polygons, for example, polygons
fewer than three vertices and non-coplanar polygons, and report how many were ign

<n> unused vertices were removed

When creating objects, WTK removes vertices that aren’t referenced by any polygon

All serial ports in use

The Windows 32-bit versions of WTK only support a maximum of four open serial po

Already opened serial port

This message is produced by the function WTserial_new when a serial port is being opened
that has already been opened by your application and has not yet been deleted with
to WTserial_delete. You cannot open the same serial port twice.
WorldToolKit Reference Manual D-5

Appendix D: Error Messages and Warnings

k that

,

n, and

erial

rtices.
Bad Group Address

or

Bad Port

or

Bad Range

Please check your arguments to WTnet_open.

Baron not responding

The Logitech 3D Mouse (Red Baron) sensor is not returning data as expected. Chec
the unit is powered on, and check your serial cable and baud rate.

Bird unit 1 must be opened first.

The Bird sensors in a Flock of Birds must be opened in order of their Bird addresses
starting with Bird 1.

Boom not responding

The Boom sensor is not returning data as expected. Check that the unit is powered o
check your serial cable and baud rate.

Can’t initialize the spaceball.

The SGI version of WTK uses the SGI-supplied Spaceball support. If this Spaceball
support fails to find and initialize the Spaceball, this warning results. Check that the s
port to which the Spaceball is attached is configured for a Spaceball.

Can’t make geometry - too few vertices

An object must have at least one polygon, which means it must have at least three ve
Attempting to create an object with less than three vertices results in this warning.
D-6 WorldToolKit Reference Manual

Warnings

eck
eck

 Irix

ther

 a

d.

 file
Can’t open image file <image>

The SGI version of WTK is having trouble opening an image file (.rgb file). Please ch
that the file is present either in the current directory or on the WTIMAGES path. Also ch
that it is in the correct file format, e.g., verify that the image can be viewed using the
image utility “ipaste.”

Could not bind socket

When initializing networking, the port you attempted to use was possibly in use by ano
application. You could use the netstat command to find ports in use.

Could not create receive socket

See your network administrator for an explanation of why WTK was unable to create
socket for networking.

Could not find host name

Make sure that your WTHOSTS points to a valid hosts file.

Could not join group

Another application may be using the group address (see WTnet_open on page 22-7).

Couldn’t configure serial port for Bird

The SGI version of WTK is having trouble with the serial port when initializing the Bir

Couldn’t find 3D font file <filename>

The WTfont3d_load function was unable to find the specified file. Please check that the
is in the current directory or on the WTMODELS path.
WorldToolKit Reference Manual D-7

Appendix D: Error Messages and Warnings

 file

you

specific

re
pired.
Couldn’t find file of security codes, WTKCODES

or

Couldn’t open file of security codes, WTKCODES

To run a WTK application on some platforms, a system-specific code is required in a
called WTKCODES. If you also get one of the warnings “Couldn’t find file of security
codes, WTKCODES” or “Couldn’t open file of security codes, WTKCODES”, then the
problem is that the file could not be found or opened. Otherwise, the problem is that
are missing the correct code, and you should contact your distributor.

Couldn’t get first Boom record.

Couldn’t get first record for Bird unit <n>.

Couldn’t get first record from CrystalEyesVR device.

Couldn’t get first record from Logitech.

Couldn’t get first record from Red Baron.

Couldn’t open CrystalEyesVR device.

Couldn’t open Logitech.

Couldn’t open Red Baron.

For any of the messages above, please check the connections and baud rate for the
device.

Couldn’t get license

The WTK license server was unable to obtain a license. It may be that all licenses a
already in use, or that your license isn't properly installed, or that your license has ex
D-8 WorldToolKit Reference Manual

Warnings

nsure
rrupt

AK
.

ed on

.

Current node is invalid

You are trying to play a path which does not have any current element. This should
normally not occur.

Do not have a valid group address

See WTnet_open on page 22-7 for a description of valid group addresses.

DXF file line <n>, _yytext <text>

The DXF parser has encountered a syntactic anomaly with the DXF file being read. E
the DXF file can be read by AutoCAD. It is possible that the contents of the file are co
or that it was generated by a third party DXF output program that does not generate
standard DXF.

Fastrak does not have a unit <n>

FASTRAKs only have up to four units, and as few as one may be available.

Fastrak does not have receiver <n>

The application attempted to open a receiver (sensor unit number) which the FASTR
doesn’t have. The sensor unit number for a FASTRAK must be a number from 1 to 4

Fastrak not responding

The FASTRAK sensor is not returning data as expected. Check that the unit is power
and check your serial cable.

Fastrak unit 1 must be opened first.

The receiver units of a FASTRAK must be opened in order, starting with unit 1 (one)
WorldToolKit Reference Manual D-9

Appendix D: Error Messages and Warnings

ining
ave

 file

jects

ake
ion.
File <filename> doesn’t contain usable 3D letters

The function WTfont3d_load didn’t find any 3D character objects in the file. See NFF 3D
Font Files on page 9-5 for a description of the format of 3D font files.

File <filename> has no readable objects

The NFF or 3DS reader encountered a file with no objects, or at least no objects conta
geometry from which a WTK object could be constructed. An NFF or 3DS file should h
at least one object.

File <filename> is not a path file

WTpath_load was called for a file that is not a path file (i.e., saved by WTpath_save).

File does not have correct image format: <filename>

Check that the specified file is the correct rgb file format. Verify, for example, that the
can be viewed using the Irix image utility “ipaste.”

Font file <filename> contains more than one object for character <n>

WTfont3d_load encountered a duplicate object for some character (for instance, two ob
named “char81”). In this case, the first object for this character is used.

Font file <filename> contains <n> non-character objects

WTfont3d_load encountered object with names not beginning with “char.”

Function WTuniverse_go is not reentrant

or

Function WTuniverse_go1 is not reentrant

These functions can not be called recursively, i.e., from inside the simulation loop. M
sure you aren’t calling them from the universe action function or an object task funct
D-10 WorldToolKit Reference Manual

Warnings

 is

 code

ine.

h

, not
Geoball not responding

The Geometry Ball, Jr. sensor is not returning data as expected. Check that the unit
powered on, and check your serial cable.

Illegal host address <address>

A host address in your hosts file was not a legal internet address.

Incorrect Bird configuration format line <n>

The file bird.dat should be 37 lines, each with an ascii decimal number representing a
to send to the Bird.

Incorrect license type for your machine?

You may be trying to run a version of WTK which is intended for a different class mach
Contact your distributor.

Invalid interrupt <n> for serial port creation

Please check the value you are passing to the WTserial_new call. It must be a valid serial
port interrupt.

Invalid quaternion passed to <function>

A common mistake is to initialize a quaternion with q[X] = q[Y] = q[Z] = q[W] = 0 whic
is not a valid quaternion. Use of an invalid quaternion like this produces unstable,
undesirable results, so a warning is reported. To initialize a quaternion, set q[W] to 1
0. See the function WTq_init on page 25-14.

License server initialization error

If this is a floating license, check whether the wtklsd daemon is running. If this is a
nodelocked license, check that your license is properly installed.
WorldToolKit Reference Manual D-11

Appendix D: Error Messages and Warnings

eck

ctions

exists

heck
Logitech device: diagnostics failed

The CrystalEyesVR or Logitech Head Tracker device is having trouble initializing. Ch
all connections on the device, and power cycle if necessary.

Logitech not responding...

The Logitech Head Tracker device is not returning data as expected. Check all conne
on the device.

Mouse not found

WorldToolKit could not communicate with the mouse. Be sure your mouse driver is
loaded, and that the mouse is properly cabled to your computer.

Net is already open

You should only open the network once.

No comprehensible geometry in DXF file

A DXF file must contain some 3D surfaces in order for WTK to load it; a DXF file
containing only 2D and line entities can not be loaded.

No serial port found

An attempt was made to open a serial port using the WTserial_new call, but the requested
serial port hardware was not found. Be sure that the serial port you are trying to open
on your computer.

Polhemus not responding

The Polhemus ISOTRAK or ISOTRAK II sensor is not returning data as expected. C
that the unit is powered on, and check your serial cable and baud rate.
D-12 WorldToolKit Reference Manual

Warnings

ree
s

-
-

ons

lution
tion

ber
nger

cur if
Polygon <n> has only <n> verts!

The NFF writer (WTgeometry_save or WTnode_save) found a polygon with fewer than
three vertices, which is not valid and indicates degenerate geometry. If you see this
warning, please file a bug report.

Polygon <x> has <n> vertices -- outside [3,256]

In WorldToolKit, polygons may not be degenerate; all polygons must have at least th
vertices. The maximum number of vertices allowed is 256 (although for DXF files it i
512). A polygon with a number of vertices outside of this range is rejected.

Polygon vertices are not coplanar

Polygon vertices are expected to lie in a plane. A small amount of inaccuracy or non
planarity is tolerated (within the WTFUZZ value), but a polygon is rejected if it is too non
planar.

Red Baron Flag bit bad in 1st record

The Logitech 3D Mouse (Red Baron) is having trouble initializing. Check all connecti
on the device, and power cycle if necessary.

Requested resolution not supported.

In order to use the RGB 800x600 and PAL hi-resolution modes, you must set the reso
with the 860mode utility so that the high resolution is the default resolution at applica
start-up.

Serial read timed out

Upon call to WTserial_read, a specified time can elapse for arrival of the requested num
of bytes before the read fails with this error message, indicating the transmitter is no lo
alive. The time-out value is currently set s to three seconds. The time-out can only oc
the retry flag argument for WTserial_read is set to TRUE.
WorldToolKit Reference Manual D-13

Appendix D: Error Messages and Warnings

red on,

ES

e file
o

Spaceball has funny packet

or

Spaceball not responding

The Spaceball sensor is not returning data as expected. Check that the unit is powe
and check your serial cable.

Texture <texturename> not found

Make sure that the specified texture file is in your current directory or on the WTIMAG
path.

Unable to parse 3D Studio file <filename>

A problem was encountered attempting to parse a 3D Studio file. You could check th
for validity by attempting to load it with 3D Studio itself. If the file loads with 3D Studi
but not with WTK, please report the file to technical support.

Window functions are not supported on this platform

The application attempted to call WTwindow functions on a platform for which WTK does
not support window management.

WTK 1.01 binary format is no longer supported.

The file you are trying to load was probably created by the old universe_save or
object_save functions, which creates a binary format that cannot be read by current
versions of WTK.
D-14 WorldToolKit Reference Manual

ice
ons
E
Writing a Sensor Driver

If you do not want to use WTK’s prepackaged driver functions (the openfn, closefn, and
updatefn functions provided for each sensor supported in WTK), or if you have a dev
that is not yet supported in WTK, then you will need to provide your own driver functi
as described in this chapter.

Writing a sensor driver in WTK consists of providing arguments to the function
WTsensor_new. This call, which creates a sensor object, has the format:

WTsensor *WTsensor_new(

int (*openfn)(WTsensor*),
void (*closefn)(WTsensor*),
void (*updatefn)(WTsensor*),

WTserial *serial,
short unit,
short location);

where

• openfn is a function that initializes the device

• closefn is a function that closes the device and cleans up

• updatefn is a function that gets records from the device

• serial is a serial port object as returned by the function WTserial_new

• unit is the Nth unit for multi-unit devices

• location is a value that should simply be set to WTSENSOR_DEFAULT.

Appendix E: Writing a Sensor Driver

ons

vice

ored
ur
will
ew

t to
ry

nion
e

s. If

k.
Overview

WTK Math Conventions

The data read from your device must be made consistent with WTK’s math conventi
(see the Math Library chapter, starting on page 25-1). In particular, keep in mind the
following:

• You may have to transform the position and orientation records from your de
to be consistent with WTK’s coordinate convention.

• In WTK, orientation records, including those stored with sensor objects, are st
in quaternion form. If you prefer to work with matrices or euler angles, or if yo
device returns orientation records in one of these representations, then you
need to convert these records into quaternion form as part of generating a n
sensor record. Conversion functions WTm3_2q (see page 25-26) and WTeuler_2q
(see page 25-27) are provided as part of the WTK math library.

• Orientation records must be stored in such a way that they operate from righ
left. If you have a matrix that does not obey this convention (and it is a unita
matrix), call either WTm3_transpose (see page 25-22) or WTm4_transpose (see
page 25-23) to generate an acceptable matrix. Similarly, if you have a quater
which does not obey this convention, call WTq_invert (see page 25-15) to generat
an acceptable quaternion.

Sensor Records Must Be Relative

All devices in WTK are expected to generate relative position and orientation record
your device returns absolute records, then the driver function updatefn will have to compute
the change in position and orientation since the last time the sensor was read. WTK
provides the function WTsensor_relativizerecord (see page 13-24) that simplifies this tas
E-2 WorldToolKit Reference Manual

Constraining Sensor Records

ns

n be
 the

tiply

vice

ble to
mple,
oint. In
e turn
uld

the
ge

The
any
Constraining Sensor Records

If you want the ability to apply constraints to your sensor input – see the WTK functio
WTsensor_setconstraints (see page 13-21) and WTmotionlink_addconstraint (see page
15-11) – then your sensor driver, namely the function updatefn should generate a sensor
record that is consistent with the constraint flags set for the sensor.

There are 6 constraint flags, 3 for constraining translations (WTCONSTRAIN_X,
WTCONSTRAIN_Y, and WTCONSTRAIN_Z) and 3 for constraining rotations
(WTCONSTRAIN_XROT, WTCONSTRAIN_YROT, and WTCONSTRAIN_ZROT).

Scaling Sensor Records

Two scale factors, one for translations and one for rotations, are stored in the WTsensor
structure. The WTK calls WTsensor_setsensitivity (see page 13-11) and
WTsensor_setangularrate (see page 13-12) are provided so that these scale factors ca
modified. For example, in many WTK applications, sensitivity values are scaled with
size of graphical entities in the universe.

If you wish to take advantage of this feature when writing your sensor driver, then mul
the translational values returned by your device by the value returned by
WTsensor_getsensitivity (see page 13-12), and the angular values returned by your de
by the value returned by WTsensor_getangularrate (see page 13-13).

If your device returns absolute (rather than relative) records, then it may not be desira
scale rotation records, although scaling translation records may still be useful. For exa
suppose your device is an absolute sensor worn on the head, used to track the viewp
a realistic simulation, a 360 degree turn of the head should correspond to a 360 degre
in the virtual world. If this is what is desired, then rotational input from the device sho
not be scaled by the value returned by WTsensor_getangularrate. Sensor input will still
have to be relativized, however, as described in the section below on updatefn.

It may also be useful to scale input from the sensor by the largest value returned by
device. For translation records, then, the resulting scaled values would be in the ran [-
sensitivity, sensitivity], where sensitivity is the value returned by the function
WTsensor_setsensitivity, which is in the same units as distances in the graphical world.
advantage of this is that sensitivity can then be interpreted as a maximum speed along
axis, as described under the function WTsensor_setsensitivity. The same applies for
rotation records and the value returned by WTsensor_getangularrate.
WorldToolKit Reference Manual E-3

Appendix E: Writing a Sensor Driver

d to the
late
t any

riting
ct.

K,
When a new sensor object is created (with WTsensor_new), the following default values
are set:

WTsensor_setsensitivity(sensor, 1.0);
WTsensor_setangularrate(sensor, PI/36.0); /* 5 degrees, in radians */

If sensor values are scaled in the manner described above, and the device is attache
viewpoint object, then each time through the simulation loop, the viewpoint will trans
at most 1 (one) distance unit along any axis and will rotate at most five degrees abou
axis. These rates can be changed with calls to WTsensor_setsensitivity and
WTsensor_setangularrate. The example shown in Example 3: Update Function for
Absolute Device (Pseudocode) on page E-15 illustrates how to incorporate these scale
factors into a sensor driver.

Talking to the Serial Port

Many sensors are serial peripheral devices. WTK contains routines for reading and w
to serial ports. See the Serial Ports chapter (starting on page 23-1) for more on this subje

Include Files

Your sensor driver should have the following include statement:

#include “wt.h”

Assuming your compiler can find the path to this include file, which is supplied with WT
all required type defines (such as that for WTsensor) should be found.
E-4 WorldToolKit Reference Manual

Driver Functions

e first

g

 kept
e the
re

value.
Driver Functions

You only need to refer to the driver functions openfn, closefn, and updatefn when you pass
them in to the sensor object constructor function (WTsensor_new). Otherwise, you should
not refer directly to the driver functions in your program.

openfn

int openfn(
WTsensor *sensor);

The purpose of openfn is to initialize the device.

If the device you are using returns absolute position and orientation records, obtain th
sensor record and store it with the sensor object, using this call:

WTsensor_setlastrecord(sensor, p, q);

where p is of type WTp3, and q is of type WTq (quaternion). Of course, p and q must be
consistent with WTK’s math conventions as described above. If your device returns
orientation records in either matrix form or as euler angles, then the functions WTm3_2q
(see page 25-26) and WTeuler_2q (see page 25-27) can be used to obtain the correspondin
quaternion q.

(The absolute position/orientation record stored with the sensor object with the call
WTsensor_setlastrecord is used in updatefn to generate a relative position/orientation
record.)

Finally, if the device is to be polled each time through the simulation loop rather than
streaming data continuously, then you should request the next record before exiting openfn.

On some platforms, certain serial devices require that the serial port’s RTS signal be
in either a high or low state or the device will not communicate with the serial port. Se
function WTserial_setRTS on page 23-5 for more information. Also consult your hardwa
guide for other system-specific considerations concerning serial ports.

If you successfully managed to open the device, you should return a non-zero integer
If you had problems in opening the device, you should return NULL or zero.
WorldToolKit Reference Manual E-5

Appendix E: Writing a Sensor Driver

re, so

ning

h the

s

cal

ested.
closefn

void closefn(
WTsensor *sensor);

The function closefn is called by WTK when you call WTsensor_delete (see page 13-10)
or WTuniverse_delete (see page 2-5) (which in turn calls WTsensor_delete).
WTsensor_delete calls the closefn before calling WTserial_delete (see page 23-2) (which
frees the sensor’s serial port object) and before freeing the sensor’s raw data structu
that if necessary the serial port object and raw data can still be accessed from the closefn.

If your device is a serial port device, then with this function you can retrieve any remai
data that was sent from the device to the serial port. It is unnecessary to call WTserial_delete
from the closefn because WTsensor_delete calls WTserial_delete.

updatefn

void updatefn(

WTsensor *sensor);

This function obtains a new sensor record. It is called automatically each time throug
simulation loop by the WTK simulation manager for all WTK sensor objects.

The function updatefn has four parts:

1. A new data record is obtained from the device.

2. The new record is used to generate relative position (p) and orientation (q) values,
where p is a WTp3 and q is a WTq (quaternion). These values may be scaled, a
described in Scaling Sensor Records on page E-3.

3. p and q are stored with the sensor object by calling

WTsensor_setrecord(sensor, p, q);

p and q make up the new sensor record. If the sensor is attached to a graphi
object, for example, then p and q are used to change the object’s position and
orientation.

4. If the sensor is a serial port device and is being polled, the next record is requ
E-6 WorldToolKit Reference Manual

Driver Functions

s

ting

r
tton

his
 Y

may
ribed

 and

rix

tive
tored

ast

, for
Steps 1 and 4 require that you know how to “talk to” the sensor device. WTK provide
utility functions for reading and writing to a serial port (see the Serial Ports chapter for a
description of these functions). Or, you may provide your own routines for communica
with the device.

Step 3 simply involves calling WTsensor_setrecord exactly as shown above.

That leaves Step 2, that is, how to generate p and q from the data read from your device.
How p and q are generated from the data read from the device is really up to you. Fo
example, your input device might generate only X and Y coordinate information and bu
presses. (This is what the typical mouse device returns.) Example 1: Update Function for
the Mouse on page E-8 is an example of a typical update function for such a device. T
update function generates yaws from button presses, forward and back motion from
screen values, and left and right motion from X screen values. (For more information
specific to use of the mouse, see the Sensors chapter, starting on page 13-1.)

If your device returns position or orientation records that are three-dimensional, you
need to convert the data so that it is consistent with the WTK math conventions desc
above.

Then, if the resulting record is relative (that is, it corresponds to a change in position
orientation rather than an absolute position and orientation), you need only store this
information in p and q and you are done with Step 2. If your orientation record is in mat
or euler angle form, then q may be obtained by calling WTm3_2q or WTeuler_2q.

If, on the other hand, the sensor record is absolute, you will need to turn it into a rela
record. To do so, first convert the orientation record into a quaternion if not already s
that way. Then call:

WTsensor_relativizerecord(sensor, absolute_p, absolute_q, p, q);

where absolute_p and absolute_q are the absolute records passed in, and p and q are the
relative records returned, which can then be passed in to WTsensor_setrecord.

Since the WTsensor_relativizerecord function uses the absolute sensor record from the l
time through the simulation loop (which was stored with the call to
WTsensor_setlastrecord), you need to call these functions with the new absolute record
use next time through the loop. In other words, after the call to WTsensor_relativizerecord,
you should call

WTsensor_setlastrecord(sensor, absolute_p, absolute_q);
WorldToolKit Reference Manual E-7

Appendix E: Writing a Sensor Driver

nsor
 as a

e
ction
if your device returns absolute records.

An alternative approach to writing an update function for a device returning absolute
records is outlined in Example 3: Update Function for Absolute Device (Pseudocode) on
page E-15.

Finally, you may wish to store other kinds of data such as button presses with the se
object. This information might be used, for example, in the universe’s action function
trigger of activity (see the function WTuniverse_setactions on page 2-12). To store this data
with the sensor, use the call

WTsensor_setmiscdata(sensor, x);

where x is a int. This data can then be retrieved with the call

x = WTsensor_getmiscdata(sensor);

If your driver is for a device supported in WTK, then you may wish to use the defined
constants for button press and other data given in Appendix C.

Example 1: Update Function for the Mouse

This example provides an illustration of taking the input from a device that does not
generate 3D position or orientation data and converting it into such a record. On som
platforms, to have a mouse cursor appear as part of your mouse sensor driver, a fun
WTmouse_drawcursor must be called. Please consult your Hardware Guide.

/*
* Example of a mouse update function.
* This update function first obtains the raw screen coordinates

* and button presses from the mouse device by calling
* WTmouse_rawupdate.
*

* The sensor translation record p is then computed, with X screen
* values used to generate left/right motion, and Y screen values
* used to generate forward/back motion.

*
* The sensor rotation record is obtained from left and right button
E-8 WorldToolKit Reference Manual

Example 1: Update Function for the Mouse
* presses. Left button presses generate yaw left; right button presses
* generate yaw right.
*/

void mouse_myupdate(WTsensor *sensor)
{

float wy; /* to store yaw value, in radians */

int buttons; /* stores button press data */
FLAG lbutton, rbutton; /* left and right button presses */
WTmouse_rawdata *raw;/* raw mouse x,y record */

WTp3 p; /* for call to WTsensor_setrecord */
WTq q; /* for call to WTsensor_setrecord */
float speed; /* sensor sensitivity value */

WTwindow *w;
int x, y, width, height;
/* get new raw data record from device */

WTmouse_rawupdate(sensor);

/* determine window mouse is in */
w = WTmouse_whichwindow(sensor);

if (!w) {
WTp3_init(p);
WTq_init(q);

WTsensor_setrecord(sensor, p, q);
return;

}

/* get new window height and width */
WTwindow_getposition(w, &x, &y, &width, &height);

/* get raw x and y mouse values in screen coordinates */

raw = (WTmouse_rawdata *)WTsensor_getrawdata(sensor);

/* transform raw screen values to translation record.
Scale the values to lie between -speed and +speed */

speed = WTsensor_getsensitivity(sensor);
WTp3_init(p);
WorldToolKit Reference Manual E-9

Appendix E: Writing a Sensor Driver

. The
s and
/* are any buttons currently down? */
buttons = WTsensor_getmiscdata(sensor);
lbutton = buttons & WTMOUSE_LEFTDOWN;

rbutton = buttons & WTMOUSE_RIGHTDOWN;

/* generate yaw value using button presses, and scaled
by the sensor’s angular rate */

/* left button press */
if (lbutton && !rbutton) {

wy = -WTsensor_getangularrate(sensor);

WTeuler_2q(0.0, wy, 0.0, q);
}
/* right button press */

else if (rbutton && !lbutton) {
wy = WTsensor_getangularrate(sensor);
WTeuler_2q(0.0, wy, 0.0, q);

}
else {

WTq_init(q);

}

/* store the record with the sensor */
WTsensor_setrecord(sensor, p, q);

}

Example 2: Driver for the Geometry Ball Jr.

This is an example of a complete sensor driver for a device returning relative records
Geometry Ball Jr. is a desktop device produced by CIS Graphics, Inc. It senses force
torques and returns relative x, y, z, roll, pitch, yaw records.

/*

 * geoball.c: interface to the Geometry Ball jr.
 * initialization; termination; calibration
 * This is an example of writing a WTK device driver.

 * This is not a standalone application.
 *
E-10 WorldToolKit Reference Manual

Example 2: Driver for the Geometry Ball Jr.
 * Copyright (c) 1990-1997 SENSE8 Corporation
 */

#include “wt.h”

#define ESC 0x1b /* hex value of ESC character */
#define WTGEOBALL_NBYTES 1/* 12 bytes for binary pos/orientation record */
#define WTGEOBALL_MAXVAL 128/* maximum value returned by geoball */

/* command buffer - sent to ball */
static char cmd[3] = {ESC};

/*

 * Called to initialize the geoball
 */
int WTgeoball_open(WTsensor *sensor)

{
WTserial *serial;
char geoball[WTGEOBALL_NBYTES];

/* get pointer to serial object */
serial = WTsensor_getserial(sensor);

/* allocate raw data struct */

WTsensor_setrawdata(sensor, (void *)malloc(sizeof(WTgeoball_rawdata)));

/* set Geoball polling mode to request */
cmd[1] = 'R';

WTserial_write(serial, cmd, 2);
WTmsleep(300);

/* set Geoball output mode to binary */

cmd[1] = 'P';
cmd[2] = 'C';
WTserial_write(serial, cmd, 3);

WTmsleep(300);

/* request Geoball test record */

cmd[1] = 0x05;
WorldToolKit Reference Manual E-11

Appendix E: Writing a Sensor Driver
WTserial_write(serial, cmd, 2);
WTmsleep(150);

/* read Geoball test record */

if (WTserial_read(serial, geoball, WTGEOBALL_NBYTES, TRUE) == -1) {
WTwarning(“Geoball not responding.\n”);
return FALSE;

}

/* request 1st Geoball record */
WTserial_write(serial, cmd, 2);

return TRUE;
}

/*

 * All done; free the geoball
 */
void WTgeoball_close(WTsensor *sensor)

{
/* no special shutdown required */

}

/*
 * acquire a new record
 */

void WTgeoball_update(WTsensor *sensor)
{

WTserial *serial;

static char geoball[WTGEOBALL_NBYTES];

/* rotation angles about x,y,z */
float wx,wy,wz;

float trans_factor,ang_factor;
WTgeoball_rawdata *raw;
WTpq l6d;

static short got_bytes = 0;
E-12 WorldToolKit Reference Manual

Example 2: Driver for the Geometry Ball Jr.
/* allow 5 frames to get a complete record */
static short count = 0;
short need, got;

/* get pointers to serial object and raw data */
serial = WTsensor_getserial(sensor);
raw = (WTgeoball_rawdata *)WTsensor_getrawdata(sensor);

/* read up to the needed # of bytes at the serial port */
need = WTGEOBALL_NBYTES - got_bytes;
got = WTserial_read(serial, geoball+got_bytes, need, FALSE);

got_bytes += got;
if (got!=need) {

/* if incomplete record at serial port, initialize sensor record */

WTpq_init(&l6d);
WTsensor_setrecord(sensor, l6d.p, l6d.q);
WTsensor_setmiscdata(sensor, 0);

WTp3_init(raw->p);
WTp3_init(raw->w);
count++;

if (count==5) {
count = 0;
WTwarning(“Geoball not responding...\n”);

/* request a new record */
WTserial_write(serial, cmd,2);
got_bytes = 0; /* reset byte counter to start over */

}
return;

}

count = 0;
got_bytes = 0; /* reset byte counter now that have complete record */

/* put raw position data into raw data struct */

raw->p[X] = geoball[4];
raw->p[Y] = geoball[5];
raw->p[Z] = geoball[6];

raw->w[X] = geoball[7];
raw->w[Y] = geoball[8];
WorldToolKit Reference Manual E-13

Appendix E: Writing a Sensor Driver

e
raw->w[Z] = geoball[9];

/* button presses */
WTsensor_setmiscdata(sensor, geoball[3]);

/* scale geoball inputs to get velocities in range */
trans_factor = WTsensor_getsensitivity(sensor)/WTGEOBALL_MAXVAL;
ang_factor = WTsensor_getangularrate(sensor)/WTGEOBALL_MAXVAL;

/* position */
l6d.p[X] = (float) geoball[4] * trans_factor;
l6d.p[Y] = (float) -geoball[5] * trans_factor;

l6d.p[Z] = (float) -geoball[6] * trans_factor;

/* orientation */
wx = (float) geoball[7] * ang_factor;

wy = (float) -geoball[8] * ang_factor;
wz = (float) -geoball[9] * ang_factor;

WTeuler_2q(wx,wy,wz,l6d.q);

/* store translational and rotational information */
WTsensor_setrecord(sensor, l6d.p, l6d.q);

/* request next record */

WTserial_write(serial, cmd, 2);
}

Note: Constraints apply to Sensors as well as Motion Links. If you need to constrain th
sensor as a whole, use WTsensor_setconstraints (see page 13-21); whereas, if you
need to constrain the motion of an entity that is attached to a sensor, use
WTmotionlink_addconstraint (see page 15-11).
E-14 WorldToolKit Reference Manual

Example 3: Update Function for Absolute Device (Pseudocode)

vice
icate
Example 3: Update Function for Absolute Device
(Pseudocode)

This example illustrates an alternative approach to writing an update function for a de
returning absolute position and euler angle records. The italicized function names ind
functions which would have to be written before this function could be used.

void pseudocode_update(WTsensor *sensor)
{

WTp3 abs_p, abs_w; /* current absolute record */
WTp3 last_abs_p, last_abs_w;/* last absolute record */
WTp3 p, w; /* current relative record */

WTq q; /* for WTsensor_setrecord */
float trans_factor, ang_factor;

/* read current absolute p, w */
read_sensor(absolute_p, absolute_w);

/* function to obtain prior absolute p, w, perhaps from the
 raw data storage (see WTsensor_getrawdata on page 13-15) */
get_last(last_abs_p, last_abs_w);

/* calculate relative p, w */
WTp3_subtract(abs_p, last_abs_p, p);

WTp3_subtract(abs_w, last_abs_w, w);

/* get scale factors */
trans_factor = WTsensor_getsensitivity(sensor)/MAXSENSORVAL;

ang_factor = WTsensor_getangularrate(sensor)/MAXSENSORVAL;

/* scale factor to relative record - note that you might
not want to scale the rotation records */

p[X] = p[X] * trans_factor;
w[X] = w[X] * ang_factor;

/* convert from XYZ relative euler angles to relative quat

(see the documentation under WTeuler_2q on page 25-27) */
WTeuler_2q(w[X], w[Y], w[Z], q);
WorldToolKit Reference Manual E-15

Appendix E: Writing a Sensor Driver
/* store relative translation and rotation record */
WTsensor_setrecord(sensor, p, q);

/* store current absolute translation and rotation record,

perhaps to raw storage (see WTsensor_setrawdata on page 13-26) */
save_last(abs_p, abs_w);

}

E-16 WorldToolKit Reference Manual

etry.

ed
ck

ts

he
-bit.)

F
WTK Neutral File Format

The NFF Format

The SENSE8 neutral file format (NFF) is a generic representation for polygonal geom
NFF files are written in ASCII format.

In the NFF file, objects are represented as sets of polygons, and polygons are order
collections of vertices. The format specifies polygon color and texture application, ba
face rejection, vertex normals, object names, and polygon IDs.

To save out a geometry node in the NFF format, use the defined constant
WTFILETYPE_NFF as the filetype argument to the WTnode_save function (see page 4-48).

To save out a geometry in the NFF format, use the defined constant WTFILETYPE_NFF as
the filetype argument to the WTgeometry_save function (see page 6-26).

To read in a geometry from a file in NFF format, simply call WTnode_load or
WTgeometrynode_load with the filename of the file you wish to load (and other argumen
as appropriate), and WTK will automatically detect whether the file is indeed in NFF
format.

The BFF Format (Binary NFF)

WTK’s NFF format is now supported in binary (BFF). The BFF format is identical to t
NFF version, with the exception that 12-bit colors are not supported. (All colors are 24

To save out a geometry node in the BFF format, use the defined constant
WTFILETYPE_BFF as the filetype argument to the WTnode_save function (see page 4-48).

To save out a geometry in the BFF format, use the defined constant WTFILETYPE_BFF as
the filetype argument to the WTgeometry_save function (see page 6-26).

Appendix F: WTK Neutral File Format

ts

lier

y
ible
 words

 CR-
 isn’t

 3.0.

ified
To read in a geometry from a file in BFF format, simply call WTnode_load or
WTgeometrynode_load with the filename of the file you wish to load (and other argumen
as appropriate), and WTK will automatically detect whether the file is indeed in BFF
format.

NFF Syntax

The following describes the current version of the NFF format. For changes from ear
versions, see NFF Version History, Backward Compatibility on page F-9.

NFF files contain a header and a set of one or more object specifications.

NFF files may have comments placed on any line. The characters “//” introduce a comment.
All characters on the line following the “//” are ignored. The comments are not retained b
WTK and are therefore not written out to an NFF file. The NFF reader is also very flex
with white space; any number of tabs or spaces are allowed before, between and after
in the file.

All lines must be terminated by a line feed character, but the PC end-of-line convention
LF (carriage return - line feed) is also supported. (Note that the CR-LF is read in, but
written out. Only LFs are written out to an NFF file, since this maintains compatibility
across platforms).

NFF Header

The file must begin with a line containing the string token nff. This is used by WTK to
determine the type of the file.

The second line in the file should be the NFF version number. The current version is
Although the version number is optional, providing it ensures that the file will be read
correctly even if the NFF format changes in the future. The optional viewpoint is spec
as two lines with the tokens viewpos and viewdir. These specify the viewpoint’s location
and view direction respectively.
F-2 WorldToolKit Reference Manual

NFF Objects

Here is the entire header syntax:

nff
[version n.nn]
[viewpos x y z]

[viewdir x y z]

Here is an example of an NFF header:

nff
version 3.0

viewpos 0.000 0.000 0.000
viewdir 0.000 0.000 1.000

NFF Objects

Each object specification starts with a line of text giving the object’s symbolic name,
followed by the description of the geometry of the object. The syntax is as follows:

<objectname>
<material table reference>
<number of vertices>

<first vertex>
...
<last vertex>

<number of polygons>
<first polygon>
...

<last polygon>

An NFF file can contain any number of objects, each described by its own name and
geometry. The file structure is:

<NFF header>
<first NFF object>

...
<last NFF object>
WorldToolKit Reference Manual F-3

Appendix F: WTK Neutral File Format

 WTK

st

h
lygon
try in

 point

single
tes,

e real
s or

rmal
.
NFF Materials

After the name of the object, there is a reference to (i.e., the name of) a material table.
parses the specified material table and associates it with the NFF object.

The values for each of the materials used with a geometry are contained in its material
table. A material table is a collection of “robust” colors. These colors are termed robu
because they include more reflectance information than the ambient-diffuse color
reflectance available in previous versions of WTK.

Material tables are indexed from 0 (zero) to the number of materials in the table. Eac
polygon or vertex contains an index into the material table. This means that each po
or vertex has a number — not a color — attached to it. This number references an en
the material table.

More than one geometry may point to the same material table, and a geometry may
to different tables depending on the effect you need. For more information, see the
Materials chapter, starting on page 8-1.

NFF Vertices

After the NFF object name and the material table reference, the next line should be a
integer value defining the total number of vertices in the object. Vertex X, Y, Z coordina
as real numbers, follow one per line. The vertex coordinate lines should contain thre
numbers (as could be read in C with a “%f %f %f” format string). One or more space
tabs must separate the numbers.

If your hardware supports Gouraud-shaded polygons, you can optionally specify a no
vector for each vertex (this is used to calculate the shading intensity for each vertex)

The vertex normal is introduced by the keyword “norm” and is defined as three real
numbers. Here is the vertex definition syntax:

<number of vertices>
x y z [<norm x y z>]
...

x y z [<norm x y z>]
F-4 WorldToolKit Reference Manual

NFF Vertices

ng:

rtex
hose
rgb”
 with
white

n 3.0
color.
rtex’s

ices
ertex
nt
Here is an example of defining three vertices with vertex normals for Gouraud-shadi

3 // number of vertices to be defined
0.00 0.00 0.00 norm 0.707 0.707 0.00
-100.00 0.00 0.00 norm 1.00 0.00 0.00

0.00 100.00 0.00 norm -0.707 -0.707 0.00

If your hardware supports vertex colors, you can optionally specify a vertex color. If ve
colors are provided for all the vertices of a polygon, the polygon will be rendered with t
colors instead of the polygon's color. The vertex color is introduced by the keyword “
and takes the form 0xrrggbb, a hexadecimal number in the range 0x000000 to 0xffffff,
8 bits each for red, green, and blue. For example, red is 0xff0000, black is 0x000000,
0xffffff and yellow 0xffff00.

This is an example of a vertex color:

0.00 2.00 0.00 rgb 0x0000ff // a blue vertex

Note that specifying the vertex colors in this format is not accepted in NFF files versio
and later. In version 3.0 files, you should use material indices for each vertex that has
The vertex is colored according to the material table entry that is referenced by the ve
index.

This is an example of a vertex color in a version 3.0 file:

1.00 0.00 0.00 matid 2

It is assumed that the material table referenced by this geometry has an entry that
corresponds to index=2.

A vertex may also specify an explicit texture coordinate (u,v). If present for all the vert
of a polygon, these (u,v) coordinates will precisely define the texture mapping. The v
(u,v) values are introduced by the keyword “uv” and take the form of two floating-poi
numbers.

This is an example of a vertex uv value:

1.00 0.00 0.00 uv 0.5 0.5 // a uv coordinate
WorldToolKit Reference Manual F-5

Appendix F: WTK Neutral File Format

s in

the

 it is
 for
sed

try

ed.

uring
m the
re and
tures
s are
re is
NFF Polygons

After defining the vertices, the next line in the NFF file contains the number of polygon
the object. Polygon specification lines follow, one for each polygon.

Each polygon specification line is in this form:

<#vertices><verticies><matid>[both] [<texture>[<attributes>]] [id=n] [<portal>]

The polygon specification line starts with an integer giving the number of vertices in
polygon. Following that is a list of vertex indices for the current polygon, with zero
referring to the first vertex in the object’s vertex list. For back face rejection purposes
important to note that the front face of a polygon is defined as the side of the polygon
which the vertices go around counter-clockwise. Back face rejection is further discus
below where the “both” flag is described.

After the list of vertex indices is a color designator that is specified by the keyword matid
(for material index). matid is followed by an interger that associates a polygon with an en
in the geometry’s material table. Earlier versions of NFF files (prior to 3.0) used
hexadecimal numbers to specify colors, ranging from 0x0 to 0xffffff.

The optional string “both” indicates that both sides of the polygon are to be visible. If
“both” is not specified, then only front facing polygons, as defined above, are render

Optionally, a texture name and attributes can be specified for the polygon. When text
is on, color is ignored for the textured polygons since the surface properties come fro
texture. The texture name specifies the file containing the bitmap to be used as a textu
also specifies whether the texture is to be plain, shaded, or transparent. Shaded tex
have their brightness affected by the lights present in the model. Transparent texture
rendered so that all black pixels in the source bitmap are transparent when the textu
applied to a polygon. Texture names begin with the character “_”; the character following
the “_” indicates the type of texture, according to the following:

v plain vanilla texture (no shading)

s shaded texture

t transparent texture

u shaded and transparent texture
F-6 WorldToolKit Reference Manual

NFF Polygons

d after

 used
ay be

 in the

very

e

int'.

on
ally
For example, a texture named _v_rug causes a texture from a file named rug to be used. A
texture named _s_rug would apply the same texture, but is shaded based on lighting.

You can specify texture attributes in two ways:

• By providing uv mapping coordinates for the vertices using the uv keyword as
described in NFF Vertices on page F-4

• By using the following keywords in the polygon specification:
[rot <value>] [scale <value>] [trans <value> <value>] [mirror]

for texture rotation, scaling, translation, and mirroring respectively.

Rotations are specified in radians, and all operations are performed in u,v texture
coordinate space. Any or none of these attributes may appear, but they must be place
the texture name.

If every vertex in the polygon has uv coordinates specified, then these uv values are
to determine the mapping of the texture onto the polygon, and any keywords which m
present (rot, scale, trans) are ignored.

Regardless of the order of the attributes, when the polygon is loaded they are applied
following order:

• mirroring

• rotation

• scaling

• translation

Since the NFF file’s description of these texture attributes does not uniquely specify e
possible transformation, if you require that files saved by WTK to retain their exact
transformation when loaded back in, either apply your attributes in the same order
(mirroring, rotation, scaling, and translation) before saving, or save your file using th
vertex uv option (see WTuniverse_setoption on page 2-24).

The polygon's material color will be blended with the texture if you use the keyword 't
By default, blending does not take place, which means the polygon's color does not
contribute to the texture. The keyword 'tint' may be used anywhere on the polygon
specification line after the polygon's 'matid' has been specifed. Using 'tint' for a polyg
that is not textured will not have any effect, even if the polygon is textured programatic
by the application.
WorldToolKit Reference Manual F-7

Appendix F: WTK Neutral File Format

an
 in

ter.

ear
 a
e, and
e

atic

hich

s case,
fter

ut so
Using the optional polygon ID token id=n, you can assign an integer value n to any polygon
in your NFF file (for example: id=567). Then, from within your WTK application, you c
use the WTpoly_getid function (see page 7-7) to retrieve the ID number for the polygon
question. You can use this feature to “link” polygons in your NFF file with polygons in
your application using the function WTgeometry_id2poly (see page 6-33).

Earlier versions of NFF files had portal information. This is ignored in version 3.0 and la
See How Do I Handle Portals In This Release? on page A-22.

This is a sample polygon specification, illustrating all possible options:

5 0 1 2 3 4 0xffff00 both _s_rug rot 1.0 scale 0.5 trans 1.0 1.0 id=5

This polygon has five vertices and is colored yellow, although the yellow will not app
unless you are rendering without textures. Both sides of the polygon are visible, and
shaded rug texture is applied. The rug texture is rotated one radian, scaled to half-siz
translated by (1.0,1.0) in (u,v) space. The polygon‘s ID number is set to five and if th
viewpoint crosses this polygon, the universe “rugworld” will be loaded (if using WTK
version 2.1 functions).

NFF Format Extensions

Automatic Normal Generation

Since adding vertex normals by hand can be difficult, WorldToolKit supports an autom
normal generation procedure for NFF files (this doesn’t work for DXF or other file
formats). To use this feature, you would add an “N” at the end of any vertex line for w
you wanted WorldToolKit to calculate the normals. When the file is read into
WorldToolKit, the “N” is replaced with an approximate vertex normal, based on the
average of the polygons surrounding that vertex. This approximation may lead to an
incorrect normals if the polygons are defined haphazardly. You may also encounter
problems if some vertices are shared by polygons that are not Gouraud-shaded. In thi
you will have to make duplicate vertices - one with a vertex normal and one without. A
reading in an object with automatic normals, you may want to write the object back o
that the next time it is read in, the normals are already calculated.
F-8 WorldToolKit Reference Manual

NFF Version History, Backward Compatibility

ut

tion

.

on.
NFF Version History, Backward Compatibility

3.0 added reference to a material table used by the geometries; colors are no
longer accepted as hexadecimal numbers. matids are used to associate vertices and
polygons with entries in a material table; portal information is ignored.

2.1 no changes
2.09 binary nff file format introduced

added “rgb” keyword for vertex colors

added “uv” keyword for vertex texture mapping coordinates
added _u_ designation for textures which are both shaded and transparent

2.0 added “norm” keyword to introduce vertex normals; allow 24-bit color for

polygons
1.9 no changes
1.7 changed object shading to =on and =off instead of =flat and =none

1.6 first numbered version

To produce more compact files, texture application information is by default written o
using the rot, scale, trans, and mirror parameters described under NFF Polygons on page
F-6. (The same was true under WTK Version 2.0.) To have texture application informa
written out as vertex uv values instead, you must call:

WTuniverse_setoption(WTOPTION_NFFWRITEUV,TRUE);

before saving out your objects, or set the writeuv parameter to TRUE using the resource
facility described in Resource Files on page 2-28. This option also pertains to BFF files

The rot, scale, trans, and mirror values are only set by calls to WTpoly_rotatetexture,
WTpoly_scaletexture, WTpoly_translatetexture, and WTpoly_mirrortexture.

If you make any calls to WTpoly_settextureuv, WTpoly_setuv or WTpoly_stretchtexture, or
if your textured objects were originally created using u,v information, write out your
objects with the writeuv option set to TRUE to preserve the texture application informati
WorldToolKit Reference Manual F-9

Appendix F: WTK Neutral File Format
A Sample NFF File

The following is an example of a NFF file containing simple cube structures. Some
polygons of the first cube are textured and some are not.

nff // This is the first word of any NFF file.
version 3.0

// The following two lines are optional.

viewpos 0.0 0.0 0.0 // Viewpoint is at the origin
viewdir 0.0 0.0 1.0 // and looking straight forward.

SimpleCube // Name of the object.

mtable mt1 //The material table referenced.
8 // Number of vertices.
3.0 3.0 -3.0 // Vertex info.

3.0 -3.0 -3.0
-3.0 -3.0 -3.0
-3.0 3.0 -3.0

3.0 3.0 3.0
3.0 -3.0 3.0
-3.0 -3.0 3.0

-3.0 3.0 3.0
6 // Number of polygons.
4 0 1 2 3 matid 0 both // id 0 of material table mt1 referenced

4 7 6 5 4 matid 0 both // “both” sides of the cube’s faces are visible,
4 0 4 5 1 matid 0 both // so it is visible even from inside the cube.
4 1 5 6 2 matid 0 both _S_wings// A shaded texture called “wings”

4 2 6 7 3 matid 0 both _T_fish rot 1.0// A rotated, transparent fish texture
4 3 7 4 0 matid 0 both _V_kproom -kproom

// a portal to universe “kproom”

// with a texture called “kproom”

SecondObject // Name of the object.
8 // Number of vertices.

9.0 9.0 -9.0 uv 0.0 0.0 // Vertex info, including texture uv.
9.0 -9.0 -9.0 uv 1.0 0.0
F-10 WorldToolKit Reference Manual

A Sample NFF File
-9.0 -9.0 -9.0 uv 1.0 0.5
-9.0 9.0 -9.0 uv 0.0 0.5
9.0 9.0 9.0 rgb 0xff0000

9.0 -9.0 9.0 rgb 0xff8800 // orange
-9.0 -9.0 9.0 rgb 0x0000ff
-9.0 9.0 9.0 rgb 0xff0000

6 // Number of polygons.
4 0 1 2 3 0xff0000 both _T_fish// Texture is applied using vertex uv’s

// to apply bottom half of texture to polygon

4 7 6 5 4 0x00ff00 both // Note that this polygon will use vertex colors
// instead of the polygon color!

4 0 4 5 1 0x0000ff both

4 1 5 6 2 0xffff00 both
4 2 6 7 3 0xffffff both
4 3 7 4 0 0x000000 both
WorldToolKit Reference Manual F-11

Appendix F: WTK Neutral File Format
F-12 WorldToolKit Reference Manual

, its
g your
r

nt

is

plish

6/
the
h

ed
G
Transitioning From

Version 2.1 To Release 6/7/8/9

Introduction

While WTK Release 6/7/8/9 introduces many significant improvements and features
new architecture and paradigms require a shift in the way you think about developin
real-time, 3D applications. This release offers backward compatibility support for you
simulations created in WTK V2.1; simply recompile them and they will run correctly.
However, if you want to modify the simulation or create a new simulation, it’s importa
to first understand how the paradigm has changed.

This chapter provides key information to smooth your transition from WTK V2.1 to th
release. The main sections of this chapter are as follows:

• Paradigms of this Release – briefly describes the major new features of this
release. (see page G-2)

• Mapping 2.1 Functions to this Release – lists WTK V2.1 functions and their
corresponding current release function. (see page G-9)

• Details on Mapping WTK V2.1 Functions to this Release – where there is not a
direct mapping, this section discusses and guides you through how to accom
the task in the current release. (see page G-22)

• New Functions to Facilitate Incorporation of WTK V2.1 Applications into the R
R7/R8/R9 Paradigm – lists the new functions that have been added to facilitate
incorporation of WTK V2.1 applications into the Release 6/7/8/9 scene grap
paradigm. (see page G-34)

Note: Throughout this chapter, the words “this release” and “the current release” are us
to denote Release 6, Release 7, Release 8 and Release 9.

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

ou to
nts,
ion

 other
.
er
y
 you
s that

nes.

ional
 is the
ed. You
d the

. If
TK
Paradigms of this Release

There are many new concepts and features in WTK. This section briefly introduces y
some of the major concepts, specifically the new scene graph and its content eleme
instancing, materials, lights, special effects, 3D sound, user-interface elements, mot
links, switch nodes, and level-of-detail nodes.

The Scene Graph

The scene graph is the most important addition to this release and affects many of the
new features. It provides a very powerful scene structure for real-time 3D simulation
Specifically, it provides the hierarchical framework for easily grouping objects togeth
spatially. This is essential for maintaining performance in scenes which contain man
individual objects. Because you can group objects together in a positional hierarchy,
are able the use the scene graph to easily construct and maintain efficient simulation
contain individual moving parts. See Chapter 3, Scene Graphs, for a detailed discussion on
scene graph concepts and how to use WTK’s functions to build your hierarchical sce

WTK lets you build a scene (simulation) by assembling geometries, lights, and posit
information into a hierarchical structure (known as a scene graph). The scene graph
structure that holds all of the current scene data, and dictates how the scene is render
can think of the scene graph as an upside down tree, where the root is on the top an
branches and leaves are on the bottom.

In WTK V2.1 objects existed in the universe in a flat hierarchy as shown in figure G-1
you wanted to attach objects together, you specifically called each object and told W
how and where to attach it.
G-2 WorldToolKit Reference Manual

The Scene Graph

ged in
e

he

s other
quire
Figure G-1: Objects in WTK V2.1

This release provides a much broader range of nodes which are hierarchically arran
the scene graph and each of which represent part of the simulation. Now, objects ar
replaced by geometries, which are part of the scene graph as shown in figure G-2.

Figure G-2: Geometries in Current Release

In this release, a geometry must be attached to a scene graph to become visible in t
simulation. This is a two-step process; first you create a geometry, then you create a
geometry node so that you can attach it to the scene graph. The scene graph contain
parts of the simulation, like lights, LOD nodes, switches, etc. Only geometry nodes re

Universe

Objects in the Universe

Root Node

Separator Node

Geometries

Universe
WorldToolKit Reference Manual G-3

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

can be

ents
ple,

ould
 user
s
rtals.

 that
uping/

tail

ives

arts

the two-step process of creation and attachment. All other scene graph components
created in a single step by creating a node of the appropriate type.

Multiple scene graphs are also possible. This allows you to create different environm
in a simulation and only display the environment that is currently being used. For exam
if your simulation includes both an indoor and an outdoor environment, the universe w
contain two scene graphs, each with different lighting and different geometries. As the
moves from the indoor to the outdoor environment, the outdoor scene graph become
active. Previously, this transition between environments was accomplished using Po
Portals are no longer needed. See Changes in Reading/Writing NFF Files on page G-24.
Also see How Do I Handle Portals In This Release? on page A-22.

THE NODE

The node is the fundamental element of the scene graph, it is the basic building block
you use to construct scene graphs. A node is simply an element of content, or a gro
organizational element used to maintain scene hierarchy. A node can serve several
purposes. It can:

• represent an element of the simulation, like a geometry or light

• represent controlling elements in a simulation, like a switch node or level-of-de
node

• function as an unseen element in the simulation, like a transform node that g
position and orientation information

• prevent information about one part of the scene graph from influencing other p
of the scene graph, like separator node

In WTK V2.1, many of the functions were object (WTobject_xx) functions. These functions
are now node (WTnode_xx) functions.

See in the The Node on page 4-5 of the Scene Graphs chapter for more information on node
types.
G-4 WorldToolKit Reference Manual

Instancing

to
tances
 of one
oad at
ces of

 to
ch
tions

rties:

n.

is

lar
hts

lue,
8
ight

ich
Instancing

One of the advantages of a scene graph is the ability to instance a node. An instance is a
reference to the original node. Instancing means you have only one object loaded in
memory, but you can make as many references to it as you need. Each of these ins
usually has a unique position in the scene graph. For example, you can have a model
car that is instanced several places in the simulation, resulting in several cars on the r
the same time, all of which look the same. In a scene graph which has multiple instan
the same car model, a node path can be used to identify a specific instance of the car model.
See the Motion Links chapter (starting on page 15-1), the Scene Graphs chapter (starting on
page 4-1), and Node Paths on page 4-79 of the Scene Graphs chapter for more information.

Materials

While WTK V2.1 supported RGB color for objects, this release expands the concept
materials for geometries. A material is a combination of light and color attributes whi
you use to define the appearance of a geometry or collection of geometries. WTK func
let you create, edit, and save material information. Materials have the following prope

• Ambient: The color reflected from the material without regard to light directio

• Diffuse: The color reflected from the material as a function of light direction. Th
“diffuse” color corresponds directly with the WTK V2.1 concept of color.

• Specular: The color reflected from the highlights of the geometry. The specu
material property is what makes a geometry appear to be “shiny” with highlig
appearing on its surface.

• Shininess: The narrowness of focus of specular highlights. The higher the va
the shinier the appearance of the material. Shininess can range from 0 to 12
(floating point). The lower the shininess value, the more “spread out” the highl
is; the higher the shininess value, the sharper the highlight is.

• Emissiveness: The color of light produced (not reflected) by the material even
when there is no light.

• Opacity (Translucency): The extent to which the color value of a pixel is
combined with the color value behind. For example, a window has very little
opacity, so it will pass the color of the objects behind it more than a wall, wh
is entirely opaque.
WorldToolKit Reference Manual G-5

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

ts in
terial
s, as

ing
terials

 up
ts

des.
which

 scene
 place
ject

 fog
e
of fog
These material properties offer a substantial improvement over simple color for objec
WTK V2.1. Materials are contained in material tables. Each geometry that uses a ma
has its own material table, which stores its ambient, diffuse, and specular RGB value
well as the other material properties. See the Materials chapter, starting on page 8-1,
Changes in Reading/Writing NFF Files on page G-24, and How Do I Use Material Tables
for Colors? on page A-11.

Note that you do not need to specify all of the material properties for a geometry. Us
fewer fields can generate moderate improvements in performance. Also note that ma
are not nodes.

Lights

In WTK R6/7/8/9, lights, along with geometries, positional information, and fog, make
the content elements (nodes) you use to build your scene. This release handles ligh
differently than WTK V2.1. One conceptual difference between the way WTK V2.1
handled lights and the way they are handled now, is that lights are now treated as no
This means when you create lights in your scene you have to specify a parent below
to add the light node.

In this release, a light node affects the elements that are to the right and below it in the
graph. Thus, when you build your scene as a hierarchy of nodes, it matters where you
your light nodes in the scene graph. In WTK V2.1, however, lights illuminated every ob
in the universe. See Handling of Lights in This Release on page G-26, the Lights chapter
(starting on page 12-1), the Scene Graphs chapter (starting on page 4-1), and How Do I
Associate A Task With a Particular Object? on page A-21 for detailed information on
lights.

Special Effects (Fog)

As mentioned above, fog nodes are content elements of a scene graph. You can use
nodes to simulate special effects like fog, haze, smog, mist, smoke, and clouds in th
atmosphere or general cloudiness for underwater simulations. You set the attributes
nodes to obtain these special effects.
G-6 WorldToolKit Reference Manual

3D Sound

 the
d, and
ether

to the

point

 your

h or a
, and a
Fog obscures distant objects in the scene more than closer objects. You can control
amount that objects are obscured, the distance at which objects begin to be obscure
the distance at which objects are totally obscured by the fog. You can also specify wh
the fog increases in a linear or exponential manner. See the Scene Graphs chapter (starting
on page 4-1) for detailed information on fog nodes.

3D Sound

You can now enhance the realism of your scenes using 3D sound. 3D sound refers
spatial characteristics of sound. See the Sound chapter, starting on page 20-1.

Multiple Windows

Multiple windows are not new to this release, but they are easier to implement. A view
must be associated with each window in the universe. See the Windows chapter, starting on
page 17-1.

User-Interface (UI) Objects

You can now add user interface features, like pushbuttons, toolbars, or menu bars to
simulations. Since WTK’s UI functionality is cross-platform, you can design these UI
elements to work both in Microsoft Windows and X/Windows. UI elements can pass
information back, call child windows, and perform other functions associated with a
graphical user interface (GUI) environment. See the Adding User-Interface (UI) Objects
chapter, starting on page 18-1.

Motion Links

A motion link connects a source of position and orientation information with a target that
moves to correspond with that changing set of information. The source can be a pat
sensor, and there are four types of targets: a viewpoint, a movable node, a node path
transform node. See Moving from WTxx_addsensor to Motion Links on page G-27, the
Motion Links chapter (starting on page 15-1), the Scene Graphs chapter (starting on page
4-1), and the Paths chapter (starting on page 14-1) for more information.
WorldToolKit Reference Manual G-7

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

ow

:

.
.

ow
ee

re

ee
Switches and Level of Detail Nodes

Switch nodes and level-of-detail (LOD) nodes are procedural elements that control h
portions of the scene graph are processed. See Scene Graph Concepts in Detail on page 4-5.

Replaced Features

Several features of WTK V2.1 have been replaced with new features. These include

portals Portals existed to transition between one universe and
another. For example, to move from indoors to outdoors
This transition is now done using multiple scene graphs
(See Changes in Reading/Writing NFF Files on page G-24,
or the portal.c demonstration program in the demo
directory of your WTK distribution. Also see How Do I
Handle Portals In This Release? on page A-22.)

animation Animation consisted of calling several objects in
succession (that is, an animation sequence). You can n
use a switch node now to accomplish the same thing. (S
Animation on page G-31, and How Do I Create A Simple
Animation Using Switch Nodes? on page A-26.)

terrain Terrains are still supported in old universe files that we
created in WTK V2.1. In new universe files, use a
geometry and scale it to the size needed for a terrain. S
What Is Terrain Following? on page A-31.
G-8 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release

lease
right
one
milar
Mapping WTK V2.1 Functions To This Release

Where there is a fairly direct one-to-one mapping between a function in this current re
and a WTK V2.1 function, the corresponding current release function is listed in the
column of table G-1. For those WTK V2.1 functions that do not have a direct one-to-
mapping to a function in this release, the right column refers you to a function that is si
in functionality to the WTK V2.1 function. Also see the notes following table G-1.

Table G-1: Version 2.1 functions mapped to current release

Version 2.1 Function Current Release Function

WTanimation_* See WTswitchnode_new.

See Animation on page G-31, and see How
Do I Create A Simple Animation Using
Switch Nodes? on page A-26.

WTfont3d_textobject WTgeometry_newtext3d

WTgeometry_load WTgeometrynode_load

See Loading In Objects on page G-22 and
How Do I Get A Pointer To A Node Using
Its Name? on page A-20.

WTgroup_* See WTgroupnode_new.

See The Lack of WTgroup_* Functions on
page G-32.

WTlight_add WTlightnode_new

WTlight_addsensor See WTmotionlink_new.

See Moving from WTxx_addsensor to
Motion Links on page G-27.

WTlight_delete WTnode_delete

WTlight_deleteall See How Do I Associate A Task With a
Particular Object? on page A-21.

WTlight_getambient WTlightnode_getintensity
WorldToolKit Reference Manual G-9

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9
WTlight_getambientrgb WTlightnode_getambient

WTlight_getangle WTlightnode_getangle

WTlight_getattenuation WTlightnode_getattenuation

WTlight_getdata WTnode_getdata

WTlight_getdirection WTlightnode_getdirection

WTlight_getexponent WTlightnode_getexponent

WTlight_getintensity WTlightnode_getintensity

WTlight_getposition WTlightnode_getposition

WTlight_getrgb See WTlightnode_getambient,
WTlightnode_getdiffuse, and
WTlightnode_getspecular.

WTlight_gettype WTlightnode_gettype

WTlight_load WTlightnode_load

WTlight_newdirected WTlightnode_newdirected

WTlight_newpoint WTlightnode_newpoint

WTlight_newspot WTlightnode_newspot

WTlight_next See How Do I Associate A Task With a
Particular Object? on page A-21.

WTlight_remove WTnode_remove

WTlight_removesensor WTmotionlink_delete

WTlight_save WTlightnode_save

WTlight_setambient WTlightnode_setintensity

WTlight_setambientrgb WTlightnode_setambient

WTlight_setangle WTlightnode_setangle

WTlight_setattenuation WTlightnode_setattenuation

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
G-10 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release
WTlight_setdata WTnode_setdata

WTlight_setdirection WTlightnode_setdirection

WTlight_setexponent WTlightnode_setexponent

WTlight_setintensity WTlightnode_setintensity

WTlight_setposition WTlightnode_setposition

WTlight_setrgb See WTlightnode_setdiffuse,
WTlightnode_setambient, and
WTlightnode_setspecular.

WTobject_add See WTnode_addchild, Note #1.

WTobject_addperformer (not needed)

WTobject_addsensor See WTmotionlink_new.

See Moving from WTxx_addsensor to
Motion Links on page G-27.

WTobject_addvertex WTgeometry_newvertex

WTobject_alignaxis WTmovnode_alignaxis

WTobject_alignwithworldaxes WTmovnode_alignaxis

WTobject_attach WTmovnode_attach

See Attaching Objects To One Another on
page G-25.

WTobject_begin WTgeometry_begin

WTobject_beginedit WTgeometry_beginedit

WTobject_boundingbox See WTnode_boundingbox.

WTobject_changecolor See WTmtable_setvalue

WTobject_changergb See WTmtable_setvalue.

WTobject_close WTgeometry_close

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
WorldToolKit Reference Manual G-11

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9
WTobject_copy WTgeometry_copy

WTobject_delete WTnode_delete

WTobject_deleteperformer (not needed)

WTobject_deleteprebuild WTgeometry_deleteprebuild

WTobject_deletetask WTtask_delete

See Differences in Applying Tasks on page
G-29.

WTobject_deletetexture WTgeometry_deletetexture

WTobject_detach WTmovnode_detach

WTobject_endedit WTgeometry_endedit

WTobject_getanimation See WTswitchnode_new.

See Animation on page G-31, and How Do
I Create A Simple Animation Using Switch
Nodes? on page A-26.

WTobject_getaxis See WTnode_gettransform, Note #2.

WTobject_getchildren WTnode_getchild

WTobject_getcolor See WTpoly_getrgb.

WTobject_getdata WTnode_getdata

WTobject_getextents WTnode_getextents

WTobject_getgeometry WTnode_getgeometry

WTobject_gethandle See WTgeometry_getmidpoint.

See Pivot Points And Handles on page
G-32.

WTobject_getmidpoint WTnode_getmidpoint

WTobject_getname WTnode_getname

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
G-12 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release
WTobject_getpathnode See WTpath_getmarker

WTobject_getorientation WTnode_getorientation

WTobject_getpivot See Pivot Points And Handles on page
G-32.

WTobject_getpolys WTgeometry_getpolys

WTobject_getposition WTnode_gettranslation

WTobject_getsensorframe WTmotionlink_getreferenceframe

WTobject_getvertexposition WTgeometry_getvertexposition

WTobject_getvertexnormal WTgeometry_getvertexnormal

WTobject_getradius WTnode_getradius

WTobject_getrendering WTgeometry_getrenderingstyle

WTobject_getrgb See WTpoly_getrgb.

WTobject_getshading WTgeometry_getrenderingstyle

WTobject_gettask WTuniverse_gettaskbypointer

WTobject_getvertexrgb WTgeometry_getvertexrgb

WTobject_getvertices WTgeometry_getvertices

WTobject_getvisibility See WTnode_isenabled.

WTobject_id2poly WTgeometry_id2poly

WTobject_insimulation See WTnode_getparent, Note #1.

WTobject_intersect WTnodepath_intersectbbox

WTobject_levelofdetail See WTlodnode_new.

WTobject_local2world See WTnodepath_gettransform.

WTobject_move See WTnode_translate and
WTnode_rotate.

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
WorldToolKit Reference Manual G-13

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9
WTobject_moveto WTnode_settransform

WTobject_ncolors See WTmtable_getnumentries.

WTobject_new WTgeometrynode_new

WTobject_newblock WTgeometry_newblock

WTobject_newcone WTgeometry_newcone

WTobject_newcylinder WTgeometry_newcylinder

WTobject_newextrusion WTgeometry_newextrusion

WTobject_newhemisphere WTgeometry_newhemisphere

WTobject_newrectangle WTgeometry_newrectangle

WTobject_newsphere WTgeometry_newsphere

WTobject_newtruncone WTgeometry_newtruncone

WTobject_next See WTrootnode_next.

See Traversing the Scene Graph Tree on
page 4-9.

WTobject_nextremoved See WTnode_getparent, Note #1.

WTobject_npolygons WTgeometry_numpolys

WTobject_prebuild WTgeometry_prebuild

WTobject_recomputestats WTgeometry_recomputestats

WTobject_remove WTnode_remove, Note #1.

WTobject_removesensor See WTmotionlink_delete.

WTobject_rotate WTnode_rotateaxis

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
G-14 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release
WTobject_rotatepoint See WTgeometry_transform.

See Notes on Using
WTgeometry_translate and
WTgeometry_transform to Change the
Vertex Postions on page G-28.

WTobject_save WTnode_save

WTobject_scale WTgeometry_scale

WTobject_setalpha See WTgeometry_setmatid.

WTobject_setaxes See WTnode_settransform, Note #2.

WTobject_setcolor WTgeometry_setrgb

WTobject_setdata WTnode_setdata

WTobject_sethandle See WTgeometry_translate, Note #3.

See Notes on Using
WTgeometry_translate and
WTgeometry_transform to Change the
Vertex Postions on page G-28.

WTobject_setname WTnode_setname

WTobject_setorientation WTnode_setorientation

WTobject_setpivot See WTgeometry_translate.

See Pivot Points and Handles on page
G-32.

WTobject_setpostion WTnode_setposition

WTobject_setrendering WTgeometry_setrenderingstyle

WTobject_setrgb WTgeometry_setrgb

WTobject_setsensorframe WTmotionlink_setreferenceframe

WTobject_setshading WTgeometry_setrenderingstyle

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
WorldToolKit Reference Manual G-15

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9
WTobject_setsensorframe WTmotionlink_setreferenceframe

WTobject_settask WTtask_new

See Differences in Applying Tasks on page
G-29.

WTobject_settextureuv WTgeometry_settextureuv

WTobject_setuv WTgeometry_setuv

WTobject_setvertexnormal WTgeometry_setvertexnormal

WTobject_setvertexposition WTgeometry_setvertexposition

WTobject_setvertexrgb WTgeometry_setvertexrgb

WTobject_setvisibility See WTnode_enable.

WTobject_stretch WTgeometry_stretch

WTobject_translate WTnode_translate

WTobject_world2local See WTnodepath_gettransform, Note #2.

WTpath_getobject WTpath_getrecordlink

WTpath_setnodeobject WTpath_setmarker

WTpath_setobject WTpath_setrecordlink

WTpathnode_getobject See WTpath_getmarker

WTpoly_begin WTgeometry_beginpoly

WTpoly_getcolor WTpoly_getrgb

WTpoly_getobject WTpoly_getgeometry

WTpoly_getportal See Note #3.

WTpoly_gettexturetype WTpoly_gettexturestyle

WTpoly_intersectobject WTpoly_intersectnode

WTpoly_intersectobjpolys See WTpoly_intersectnode, Note #4.

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
G-16 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release
WTpoly_intersectpoly WTpoly_intersectpolygon

WTpoly_intersectuniverse See Note #4.

WTpoly_intersectunivpolys See Note #4.

WTpoly_setcolor WTpoly_setrgb

WTpoly_settexturetype WTpoly_settexturestyle

WTportal_* See Note #3.

WTuniverse_getanimations See WTswitchnode_new.

See Animation on page G-31, and How Do
I Create A Simple Animation Using Switch
Nodes? on page A-26.

WTuniverse_getbgcolor WTuniverse_getbgrgb

WTuniverse_getentryfn See WTuniverse_setactions, Note #3.

WTuniverse_getexitfn See WTuniverse_setactions, Note #3.

WTuniverse_getextents WTnode_getextents

WTuniverse_getframe See WTnodepath_gettransform, Note #2.

WTuniverse_getintersectedpolys See Note #4.

WTuniverse_getlights See How Do I Associate A Task With a
Particular Object? on page A-21.

See Handling of Lights in This Release on
page G-26.

WTuniverse_getmidpoint WTnode_getmidpoint

WTuniverse_getname WTnode_getname

WTuniverse_getobjects See WTuniverse_getrootnodes.

WTuniverse_getpolys See WTgeometry_getpolys.

WTuniverse_getportaling See Note #3.

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
WorldToolKit Reference Manual G-17

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9
WTuniverse_getradius WTnode_getradius

WTuniverse_getremovedobjects See WTnode_getparent, Note #1.

WTuniverse_getviewpoint WTuniverse_getviewpoints

WTuniverse_id2poly WTgeometry_id2poly

WTuniverse_intersect See Note #4.

WTuniverse_load WTnode_load

See Loading In Objects on page G-22.

WTuniverse_name2object WTuniverse_findnodebyname

How Do I Get A Pointer To A Node Using
Its Name? on page A-20

WTuniverse_npolygons WTwindow_numpolys

WTuniverse_pickobject WTwindow_pickpoly

See Picking on page G-31 and How Do I
Pick The Frontmost Polygon At A Specific
Point In A Specific Window? on page A-6.

WTuniverse_pickpolygon WTwindow_pickpoly

See Picking on page G-31 and How Do I
Pick The Frontmost Polygon At A Specific
Point In A Specific Window? on page A-6.

WTuniverse_save WTnode_save

WTuniverse_setbgcolor WTuniverse_setbgrgb

WTuniverse_setentryfn See WTuniverse_setactions, Note #3.

WTuniverse_setexitfn See WTuniverse_setactions, Note #3.

WTuniverse_setname WTnode_setname

WTuniverse_setportaling See Note #3.

WTuniverse_vacuum WTnode_vacuum

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
G-18 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release
WTvertex_delete See WTgeometry_recomputestats, Note
#5.

WTvertex_getnormal WTgeometry_getvertexnormal

WTvertex_getposition WTgeometry_getvertexposition

WTvertex_new WTgeometry_newvertex

WTvertex_setnormal WTgeometry_setvertexnormal

WTvertex_setposition WTgeometry_setvertexposition

WTvertex_setrgb WTgeometry_setvertexrgb

WTviewpoint_addsensor See WTmotionlink_new.

WTviewpoint_getasymmetric WTwindow_getprojection

WTviewpoint_gethithervalue WTwindow_gethithervalue

WTviewpoint_getviewangle WTwindow_getviewangle

WTviewpoint_getwindowparams WTwindow_getparams

WTviewpoint_getyonvalue WTwindow_getyonvalue

WTviewpoint_removesensor See WTmotionlink_delete.

WTviewpoint_setasymmetric WTwindow_setprojection

WTviewpoint_sethithervalue WTwindow_sethithervalue

WTviewpoint_setviewangle WTwindow_setviewangle

WTviewpoint_setwindowparams WTwindow_setparams

WTviewpoint_setyonvalue WTwindow_setyonvalue

WTviewpoint_zoomall WTwindow_zoomviewpoint

WTwindow_getbgcolor WTwindow_getbgrgb

WTwindow_pickpolygon WTwindow_pickpoly

WTwindow_setbgcolor WTwindow_setbgrgb

Table G-1: Version 2.1 functions mapped to current release (continued)

Version 2.1 Function Current Release Function
WorldToolKit Reference Manual G-19

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

ion.
ely
t is
 to a
e
ely

 root
odes
 an
ys

t’s
raph,

s for
nd
ctly

rtal

NOTES

1. WTobject_add, WTobject_insimulation, WTobject_nextremoved,
WTobject_remove, WTuniverse_getremovedobjects:

WTK V2.1 allowed for objects to be created and yet be inactive in the simulat
This release also allows for entities (nodes) to be inactive. A node is effectiv
inactive if it is not contained within the scene graph of any root node (i.e., if i
not directly or indirectly connected to a root node). A node that is connected
root node may also be inactive if its root node is not associated with an activ
window. While the current release allows inactive nodes, WTK does not activ
track them. If it’s necessary for you to track inactive nodes, you can create a
node that is not associated with any window and then associate all inactive n
with the “inactive” root node. For example, whenever you remove nodes from
active root node, you can attach them to the inactive root node, thereby alwa
keeping track of the inactive nodes.

2. WTobject_getaxis, WTobject_setaxes, WTobject_world2local,
WTuniverse_getframe:

WTK V2.1 allowed for objects to be independently defined in their own
coordinate frame and therefore required functions for manipulating an objec
coordinate frame. The current release incorporates the concept of a scene g
so the coordinate frame of each object in the scene graph is relative to the
coordinate frame of its parent node. Because of this, the current release allow
the creation and modification of transformation nodes to affect the position a
orientation of objects and therefore eliminates the need for functions that dire
manipulate coordinate frames. (See Notes on Using WTgeometry_translate and
WTgeometry_transform to Change the Vertex Positions, on page G-28 and
Rotating A Movable About Its Midpoint on page G-28.)

3. WTpoly_getportal, WTportal_*, WTuniverse_getentryfn, WTuniverse_getexitfn,
WTuniverse_getportaling, WTuniverse_setentryfn, WTuniverse_setexitfn,
WTuniverse_setportaling:

One significant change from WTK V2.1 to this release involves portals. All po
information in NFF files is now ignored. WTK no longer associates a polygon
with a portal. (See Changes in Reading/Writing NFF Files on page G-24. Also see
How Do I Handle Portals In This Release? on page A-22.)
G-20 WorldToolKit Reference Manual

Mapping WTK V2.1 Functions To This Release

ts,

he
cts
bject

to one
ome

does
t of

e

hus,
ou

4. WTpoly_intersectobjpolys, WTpoly_intersectuniverse, WTpoly_intersectunivpolys,
WTuniverse_getintersectedpolys, WTuniverse_intersect:

WTK provides a number of functions for testing the intersection of two objec
either on the polygon or the bounding box level. (See Intersection Testing on page
4-85. Also see How Do I Test For Objects Intersecting With Other Objects In T
Universe? on page A-25.) The intersection functions require that the two obje
you are testing be contained within a common scene graph, and that neither o
is a subset of the other object (i.e., the scene graph sub-tree corresponding
object does not also contain the scene graph sub-tree of the other object). S
WTK V2.1 functions like WTpoly_intersectobjpolys returned a list of all polygons
of the object that intersected with the specified polygon. The current release
not have any functions that return a list of polygons. If you need to obtain a lis
intersected polygons, do it by calling WTpoly_intersectnode to test whether a
polygon intersects an object, and if so, then manually test each polygon of th
object to see if it intersects the specified polygon (see WTpoly_intersectpolygon on
page 4-85).

5. WTvertex_delete: The current release does not allow you to directly delete
vertices from geometries. WTK does allow, however, geometries to contain
unused vertices (i.e., no polygons within the geometry reference the vertex). T
you shouldn’t worry about extra unused vertices within your geometries. If y
want to remove a vertex from an existing polygon, you can use the
WTgeometry_beginpoly function to create a new polygon and then use the
WTpoly_addvertex function to add only those vertices which are still needed.

You can then use WTpoly_delete to delete the previously defined polygon. If you
then call WTgeometry_recomputestats with the clearverts flag set to TRUE, WTK
removes all unused vertices from the specified geometry.
WorldToolKit Reference Manual G-21

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

g the

Details on Mapping WTK V2.1 Functions to
This Release

This section discusses and guides you through how to accomplish certain tasks usin
paradigms of this current release. It explains the following topics:

• loading in objects

• changes in reading and writing NFF files

• attaching objects to one another

• handling of lights in this release

• moving from WTxx_addsensor to motion links

• rotating a movable about its midpoint

• using WTgeometry_translate and WTgeometry_transform to change the vertex
positions

• differences in applying tasks

• positioning and moving objects in your scene

• picking

• animation

• the lack of WTgroup_* functions

• Pivot Points and Handles

• Coordinate Frames

Loading In Objects

To load in your objects in this release, you might use WTnode_load, WTmovnode_load, or
WTgeometrynode_load. The following sections provide some important “tips” on using
these functions to import objects.
G-22 WorldToolKit Reference Manual

Loading In Objects

g

o
d for
y node
?

.1

 each
 that
d

each

is
te that
s
r to
hat

WTNODE_LOAD

The WTnode_load function creates individual nodes for each geometry in the file bein
read. If your file has only one geometry this is equivalent to WTgeometrynode_load.
WTnode_load maintains the hierarchical information present in the file. If the file has n
hierarchical information (e.g., it just lists a bunch of geometries), then a node is create
each geometry and added to the specified parent. You could then move each geometr
independently of the other. Also see How Do I Get A Pointer To A Node Using Its Name
on page A-20.

WTMOVNODE_LOAD

The WTmovnode_load function loads movables; it is the best way to simulate WTK V2
object behavior. When using WTmovnode_load, however, you need to be careful if you
have a file containing multiple objects and you want to move these independently of
other. If that is what you require, you would need to break it down into multiple files so
each file contains a single object. You have to do this because multiple objects loade
through WTmovnode_load move together, as they are assumed to be associated with
other to form a single entity. How Do I Get A Pointer To A Node Using Its Name? on page
A-20

WTGEOMETRYNODE_LOAD

When using WTgeometrynode_load, if the file being imported has multiple geometries, th
function merges all geometries into a single one and returns one geometry node. No
this would be meaningless for filetypes that maintain hierarchical information (such a
MultiGen and VRML). Therefore, this function is not available for these filetypes. Refe
the Scene Graphs chapter (starting on page 4-1) for more information on the filetypes t
this function supports. Also see How Do I Get A Pointer To A Node Using Its Name? on
page A-20.

GENERAL NOTES

Once you load your object, you can position it in your scene using the
WTnode_settranslation, WTnode_setrotation, and WTnode_orientation functions. Keep in
mind that the WTp3 you pass into the WTnode_settranslation function may not be the same
as you would have passed to WTobject_setposition. This is because WTobject_setposition
sets the object’s position to that value irrespective of its initial position.
WorldToolKit Reference Manual G-23

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

ent
u

 your

n the
 NFF

h

tices

e
ions

e this
uld
y
eds
ability
 to
 file
WTnode_settranslation, on the other hand, acts on a transform node or the transform
component of a movable node, and therefore, adds the value to the geometry’s curr
position. For example, if you position a geometry at 15 units along the x-axis, and yo
apply a +15 unit translation through a WTnode_settranslation to it, it ends up at 30 units
along the x-axis.

Note: The functions WTgeometry_translate and WTgeometry_transform change the
geometry’s vertex positions, so you can also use these to position geometries in
scene without having to deal with transform nodes.

Changes in Reading/Writing NFF Files

The transition from WTK V2.1 to the current release has resulted in some changes i
way NFF files are read. The major differences between the way this release handles
files and the way they were handled in WTK V2.1 are the following:

• Portal information in NFF files is now ignored.

• You can’t save out NFF files of your universe that have multiple objects whic
were grouped previously as a WTgroup. You still have the ability, however, to
save out single geometries as NFF files.

• This release uses material table information to give color to polygons and ver
rather than hexadecimal color values.

The first significant change involves portals. All portal information in NFF files is now
ignored. WTK no longer associates a polygon with a portal. This obviously affects th
behavior of your earlier applications. You can correct this by adding code in your act
function to check whether your viewpoint has crossed a portal polygon.

WTK now has a function, WTviewpoint_intersectpoly (see page 16-26), that tests whether
the viewpoint has crossed a given polygon due to its motion in the current frame. Sinc
function checks for intersection with the polygon on a frame by frame basis, you sho
call WTviewpoint_intersectpoly in your actions function, so that it is executed once ever
frame. This is not done by default within WTK to give you more control over what ne
to be done if a portal is crossed. Also, from a performance perspective, you have the
to turn off the test depending on where the viewpoint is. To determine which polygon
perform the test on, you should mark the portal polygon with a Polygon ID in your NFF
and retrieve it in your application. (See the example demonstration program portal.c,
located in the demo directory of your WTK distribution. Also see How Do I Handle Portals
In This Release? on page A-22.)
G-24 WorldToolKit Reference Manual

Attaching Objects To One Another

e

r
 this
ical
 all of
ber

e
ve

s. In
2-bit
o give
table.
 uses.
terial
op of

t with
ached

:

try
Another change is that this release does not have the concept of WTgroup. If you load in
your objects into WTK using WTnode_load, you will not be able to use WTgroup functions
like WTgroup_saveobjects. This prevents you from writing out NFF files of your univers
that have multiple objects which were grouped previously as a WTgroup. You still have the
ability, however, to save out single geometries as NFF files. You have two options fo
saving out a scene graph with multiple geometries. The more intuitive way, as far as
release is concerned, is to save it out as a VRML file. This option keeps the hierarch
structure intact, and preserves the different node types. The other option is to merge
the geometries into one file, and then save the file in an NFF or DXF format. Remem
that when you save a file using this option, and read it back in, you will have only on
geometry with no hierarchy. (See the example on how to take into account the relati
positions of the geometries before using WTgeometry_merge on page 6-27.)

The last major change in the way NFF files are read is with the use of material table
WTK V2.1 NFF files, you associated polygons and vertices with colors specified as 1
or 24-bit hexadecimal numbers. The current release uses material table information t
colors to polygons and vertices. WTK now associates each geometry with a material
The material table has entries for every color and material property that the geometry
Each polygon (and vertex, if the geometry has vertex colors) is associated with a Ma
ID (matid) that references an entry in the material table. If the version number at the t
your NFF file says 3.0 or greater, the NFF reader will not accept hexadecimal colors
specified for each polygon and vertex.

Attaching Objects To One Another

WTK V2.1 provided a function called WTobject_attach, which you could use to create a
hierarchical relationship between objects. For example, you could have a base objec
one or more objects “attached” to it, so that when the base object moved, all of the att
objects moved along with it, as one entity.

In this release, the WTmovnode_load (see page 5-5) function lets you create such a
hierarchical relationship between geometrical entities. The basic steps are as follows

1. Create your base object as a movable (using WTmovnode_load or
WTmovgeometrynode_new).

2. Use WTmovnode_attach (see page 5-11) to attach any other movable or geome
node to this movable base object.
WorldToolKit Reference Manual G-25

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

tity. The
f the

ove

d

her

y are
ghts in

 scene
 place
ject

hich
o
 scene
The following example illustrates how to attach geometrical entities:

{
earth = WTmovnode_load(rootnode, “earth.nff", 1.0f);
moon = WTnode_load(NULL, "moon.nff", 1.0f);
WTmovnode_attach(earth, moon, 0);

}

After the attachment is made, the base node and the attached nodes move as one en
individual attachments can still move independently of each other, but a movement o
base node moves all of the attached nodes, as if they were rigidly connected.

You can create complex hierarchical structures through multiple calls to
WTmovnode_attach. (See the example demonstration program arm.c, located in the demo
directory of the WTK distribution.)

When a node in the hierarchy moves, all of the nodes that are hierarchically below it m
with it. Nodes that are hierarchically above this node are not affected by its motion.
(Remember, the bounding box of the base node now encompasses all of the attache
nodes.)

Refer to the Movables chapter, starting on page 5-1, for more information about the ot
functions that concern movable node attachments. Also see How Do I Associate A Task
With a Particular Object? on page A-21.

Handling Of Lights In This Release

One conceptual difference between the way WTK V2.1 handled lights and the way the
handled now, is that lights are now treated as nodes. This means when you create li
your scene you have to specify a parent below which to add the light node.

In this release, a light node affects the elements that are to the right and below it in the
graph. Thus, when you build your scene as a hierarchy of nodes, it matters where you
your light nodes in the scene graph. In WTK V2.1, however, lights illuminated every ob
in the universe.

You can take advantage of this state-dependent lighting to produce lighting effects w
were not possible using WTK V2.1. You can use a separator node (see page 4-21) t
constrain the areas that a light node may illuminate. A separator node placed (in the
G-26 WorldToolKit Reference Manual

Moving from WTxx_addsensor to Motion Links

nt

o, the

 (see

s. This
 of the

 links

es with

ell as

 you
ing
graph) above a light node does not allow light information to “seep” past it to its pare
node or to the parent node’s sibling nodes.

In the current release, WTK does not maintain a list of light nodes that are created. S
WTK V2.1 function WTuniverse_getlights is no longer applicable. You will have to
traverse through your scene graph and get a pointer to the light nodes as necessary
Traversing the Scene Graph Tree on page 4-9).

An added feature in this release is that you can load and create your lights as movable
gives you the ability to move light nodes around, attach nodes to them, and apply any
transform functions to them. See How Do I Associate A Task With a Particular Object? on
page A-21.

Moving from WTxx_addsensor to Motion Links

WTK V2.1 did not have the concept of motion links. Subsequent releases use motion
to associate a sensor with a viewpoint (or a transform node or a movable node). The
advantage to this approach is you have more control over the way a sensor associat
an entity.

For example, previously if a viewpoint and an object were controlled by a sensor,
constraints applied on the sensor would affect the behavior of both the viewpoint as w
the object. By replacing the following two lines of code:

WTviewpoint_addsensor(view, sensor);
WTobject_addsensor(object, sensor);

with

link1 = WTmotionlink_new(sensor, view, WTSOURCE_SENSOR,
WTTARGET_VIEWPOINT);

link2 = WTmotionlink_new(sensor, node, WTSOURCE_SENSOR,

 WTTARGET_MOVABLE);

you have more control over the way the sensor moves each entity. You can apply
constraints on each motion link rather than the sensor itself.

WTK maintains a list of the motion links that have been created in your application. If
need to modify or manipulate a particular motion link, you can access this list by call
WorldToolKit Reference Manual G-27

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

 (i.e.,

t” is

rtex
re
hould
the WTuniverse_getmotionlinks (see page 2-17) function to access the first motion link.
You can call WTmotionlinks_next to traverse this list. For more information on related
functions, see the Motion Links chapter, starting on page 15-1.

Note: For backward compatibility, and ease-of-use in certain situations, the function
WTsensor_setconstraints is still available.

Rotating A Movable About Its Midpoint

To simulate the WTK V2.1 WTobject_alignaxis function, you can use the new
WTmovnode_alignaxis (see page 5-8) function. This function rotates the movable node
about its midpoint in such a way that the specified axis of the movable now aligns with
points in the same direction as) the direction vector. Note that this function is not available
for regular transform nodes or geometry nodes.

The following example aligns a graphical object with a light (it assumes that “flashligh
a movable created with WTmovnode_load, and “lightnode” is a directional light node):

{

WTp3 dir;
 WTlightnode_getdirection(lightnode, dir);

/* X axis assumed to point along flashlight length */

WTmovnode_alignaxis(flashlight, X, dir);
}

Changing Vertex Positions

This section discusses using WTgeometry_translate and WTgeometry_transform to change
vertex positions. Before using these functions, keep in mind that they change the ve
positions of a geometry and do not retain the original vertex positions. Thus, if you a
planning on saving out your scene graph and then reading the saved file back in, you s
not use these functions in place of a function such as WTobject_setposition.
G-28 WorldToolKit Reference Manual

Differences in Applying Tasks

 not

tries
ertain

. You

r
as
 want
Also, WTgeometry_translate is not the same as WTnode_translate, since the latter just
updates a transform node’s matrix without modifying the vertex positions. You should
have calls to either WTgeometry_translate or WTgeometry_transform in your action
function. This is because

1. it slows down your application (recalculating every vertex’s position, and
updating the geometry’s extents), and

2. for such purposes, you should be using a transform node with a call to
WTnode_translate.

In summary, you should use these functions as utility functions to modify your geome
and save them out, rather than having to make use of a modeler. However, if you are c
that altering the geometry’s vertex positions will have no undesirable results, these
functions become very useful in positioning static geometry in a scene as necessary
could then eliminate the need for loading static geometries as movables.

Differences in Applying Tasks

The function WTobject_settask has been replaced with WTtask_new. This gives you more
flexibility in creating tasks and assigning them to objects.

The WTobject_settask function imposed the restriction of associating only one task pe
object. You can now repeatedly call WTtask_new on an object and assign as many tasks
necessary to it. Note that this requires you to explicitly delete tasks that you no longer
active. In WTK V2.1, however, this was done for you since the new task replaced an
existing one.

The following line:

WTobject_settask(object, taskptr);

should be replaced with:

WTtask_new(node, taskptr, 1.0);

Use WTtask_delete to delete tasks.

See How Do I Associate A Task With a Particular Object? on page A-21.
WorldToolKit Reference Manual G-29

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

 V2.1

ject
ulate

ce
a
ph. If
e the
uld

rm
e

 your

s,

aths to
Positioning And Moving Objects In Your Scene: WTobject
and WTgeometry

There is a fundamental difference between the concept of an object as used in WTK
and the concept of a geometry as used now. Both WTobject and WTgeometry contain the
geometric details of the graphical entity they represent. In WTK V2.1, to move an ob
around in the universe, you directly manipulated its position and orientation. To manip
a geometry, however, you use transform nodes.

A geometry consists of vertices and their positions, polygonal information, and surfa
definitions. A geometry by itself cannot be a part of a scene graph. After you create
geometry, a “geometry node” is built with this geometry and added into the scene gra
this node is not affected by any transformation nodes, it will be rendered exactly wher
vertex positions are defined. To alter the rendering position of the geometry, you sho
insert a transform node before it, and call translate or rotate functions on the transfo
node. You cannot move a geometry node directly because there are no functions lik
WTobject_setposition (or WTobject_move) that can be applied on a geometry node.

If you have a static geometry (a geometry that does not move during a simulation) in
scene and you want to position it at a particular spot, you could use WTgeometry_translate
(or WTgeometry_transform). Keep in mind that these functions alter the vertex position
and saving out the scene graph results in the geometry being saved with these new
positions. These functions are useful for geometries that are not going to move.

The process of creating a transform node for every geometry is simplified by using
movables. Movables have “built-in” transform components, so all transform node
functions are applicable to movable nodes as well. In converting your WTK V2.1
applications to this release, your task will become easier if you make all your objects
movables. Refer to the Movables chapter (starting on page 5-1) for more information.

It is possible that a geometry node is affected by more than one transform node. TheScene
Graphs chapter (starting on page 4-1) describes the use of separator nodes to block
transformations. It also describes how transforms accumulate and the use of node p
obtain the resultant (transformation) matrix for a series of transform nodes.
G-30 WorldToolKit Reference Manual

Picking

to a

vant

as
path to
renced

of the

ing

 your

ular
ren, so
e

e a

 the
Picking

WTK V2.1 provided for selecting of polygons and objects based on their projection on
2D window through functions such as WTuniverse_pickpolygon and
WTuniverse_pickobject.

There are two main differences in the way you perform picking in this release. The rele
functions are WTwindow_pickpoly and WTscreen_pickpoly. Both of these functions return
the polygon that was picked. They do not return a pointer to the object (node) that w
selected because, in a hierarchical structure, it makes more sense to return a node
that node, rather than the node itself. This is because it is possible that the node is refe
multiple times in the scene graph, and a node path tells you exactly which instance
node was picked. You should pass in a non-NULL node path as an argument to
WTwindow_pickpoly or WTscreen_pickpoly, which will be appropriately filled in by WTK.
You can then obtain the last node (the one that was selected) on this node path.

Also, in WTK V2.1, the picking functions returned NULL if the universe was being
rendered in wireframe mode. This is no longer true. Both WTwindow_pickpoly and
WTscreen_pickpoly return the selected polygon, if it is visible, irrespective of the render
mode.

See How Do I Pick The Frontmost Polygon At A Specific Point In A Specific Window? on
page A-6.

Animation

This release does not offer an automated procedure for animations. You have to build
animation sequences with the help of switch nodes. See the Scene Graphs chapter (starting
on page page 4-1) for more information about these node types.

A switch node allows you to determine which of its children is to be rendered in a partic
frame. You can create a switch node with a sequence of geometry nodes as its child
that each child corresponds to a frame in an animation sequence. You can then cycl
through the children, switching once for every frame.

We have also included a code example to show how to use switch nodes to generat
simple animation (see How Do I Create A Simple Animation Using Switch Nodes? on page
A-26). Apart from switch nodes, you might also use WTK pathing functions to record
motion of either the viewpoint, or an object, and play it back.
WorldToolKit Reference Manual G-31

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

rm a

 have
 a

. These

s

 This
iption

ntially.

 the
thing
e

e
 this

te

The Lack of WTgroup_* Functions

In a hierarchical structure, every sub-tree of your scene graph is a group. Typically,
separator nodes and group nodes are used to collect related nodes below them to fo
group. See the Scene Graphs chapter, starting on page 4-1.

A change to the sub-tree at the head affects all the nodes below it. For example, if you
a transform node as the first child in a sub-tree, you can move the whole sub-tree as
collective entity, by just altering this transform node. You can also build a group by
creating a movable separator node that has a number of associated nodes as children
nodes can then be moved independently of each other, as well as one rigid entity.

WTgroup_saveobjects was a useful function to save multiple objects into a file. This ha
been replaced with WTnode_save, which can save the entire sub-tree below a specified
node into a VRML file, maintaining the scene structure and hierarchical information.
Another useful function is WTgeometry_merge which merges two geometries into one.
Using node paths you can maintain the relative positions of the merged geometries.
way you can write out multiple objects as one geometry. (See page 6-27 for a descr
of the WTgeometry_merge function and an example.)

Calls to WTgroup_getobjects and WTgroup_nextobject should be replaced with the code
that recursively traverses the relevant sub-tree and returns the geometry nodes seque
(See Traversing the Scene Graph Tree on page 4-9 and How Do I Measure Performance
On My Machine? on page A-38.)

Pivot Points And Handles

In WTK V2.1, geometries were moved and oriented around a midpoint (the center of
bounding box of the object) by default. If you wanted to rotate an object around some
other than the default pivot point (the center of the bounding box), you had to use th
WTobject_setpivot function.

The most “natural” way to move a geometry, however, is to do it in reference to som
coordinate reference frame. Typically, the object’s coordinate frame is used. Keeping
point in mind, geometries are usually created in what becomes their “local” coordina
frame (i.e., the origin in the modeling software defines this local coordinate reference
frame).
G-32 WorldToolKit Reference Manual

Pivot Points And Handles

f the
 most

d.
way
this

e
mply

e
using
ify
riate

efore
This release uses this new, more natural paradigm, which will simplify your code and
improve efficiency. In this release, when you load a geometry, what was the origin o
model becomes the local coordinate reference frame (and therefore the pivot point). In
instances, you will not need to change the pivot point.

This new approach may require you to take a look at the way geometries are modele
Instead of setting the pivot point, you may need to model your geometries in such a
that its pivot coincides with the geometry’s local coordinate reference frame origin. If
is not possible, you can use WTgeometry_transform or WTgeometry_translate to reposition
the geometry so that its “pivot” point coincides with its local coordinate reference fram
origin. In the past, most geometries were drawn by artists (not by engineers), who si
didn’t care about the location of the origin.

EXAMPLE: SIMULATING WTOBJECT_SETPIVOT

To simulate WTobject_setpivot, you can use code similar to the following:

/*If mynode is your movable geometry node*/
WTp3_invert(pivot, invpivot);

WTgeometry_translate(WTnode_getgeometry(mynode), invpivot);
WTnode_translate(mynode, pivot, WTFRAME_LOCAL);

SIMULATING WTOBJECT_SETHANDLE

There is no function in this release that directly corresponds to the WTK V2.1
WTobject_sethandle function. WTobject_sethandle was used so that subsequent calls to
WTobject_setposition and WTobject_moveto would be relative to that handle rather than th
midpoint of the object. In this release, however, you move an object or set its position
transform nodes, which will affect a geometry’s vertices. Therefore, you need to mod
the translational part of the transform nodes in order to position an object in its approp
place.

If you want to move an object with a predefined offset, you can add a transform node b
the object with the desired offset.
WorldToolKit Reference Manual G-33

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

es.

on of

Coordinate Frames

Similar to WTK V2.1, this release provides local, world, and viewpoint coordinate fram

For example, to get mynode’s position in world coordinates, use:

mynodepath = WTnodepath_new(mynode, WTuniverse_getrootnodes(), 0);

WTnodepath_gettranslation(mynodepath, worldpos);

See Using Frames of Reference (Coordinate Frames) on page 4-32.

New Functions to Facilitate Incorporation of
WTK V2.1 Applications into the R6/R7/R8/R9
Paradigm

This section lists the new functions that have been added to facilitate the incorporati
WTK V2.1 applications into the Release 6/7/8/9 scene graph paradigm.

Scene Graphs and Nodes

WTobject nodes are provided for backward compatibility with versions of WTK prior to
Release 6/7/8/9. If you call any of the WTobject constructor functions (WTobject_new,
WTterrain_new, WTobject_newcylinder, etc.), WTK constructs the WTobject and also
automatically creates a WTobject node.
G-34 WorldToolKit Reference Manual

Material Colors

e

at

her
le

ent;

the
The node created by WTK in the WTobject constructor function can be obtained using th
function WTobject_getnode.

WTobject_getnode

WTnode *WTobject_getnode(
WTobject *obj);

Returns the (automatically created) node associated with the specified object.

WTnode_getobject

WTobject *WTnode_getobject(

WTnode *node);

This function returns a pointer to the WTobject associated with the specified node. Note th
WTobjects are only associated with those nodes that WTK automatically created to
correspond to newly created WTobjects.

Material Colors

The functions below all create a new material of the specified color; defined fields ot
than diffuse will be filled with default values. These functions are backwardly compatib
for existing applications. These functions should not be used in new WTK developm
users should work directly with the material table functions instead.

These functions have no effect on a material table which has neither the diffuse nor
ambient-diffuse material property set.

• WTpoly_setcolor

• WTvertex_setcolor

• WTobject_setcolor

• WTvertex_setrgb

• WTobject_setrgb
WorldToolKit Reference Manual G-35

Appendix G: Transitioning From Version 2.1 To Release 6/7/8/9

bject
ame

ered
When you call one of these functions, WTK generates a new material for the polygons
whose colors are being set, rather than editing the material that the polygon/vertex/o
is referring to. This is to isolate changes to the intended entities. Multiple “sets” of the s
color will re-use the same material; i.e., if WTpoly_setcolor(white) is called on six polygons
in an object, only one new material will be created.

Note: Textures function independently from materials; texture information is not consid
to be part of the material.
G-36 WorldToolKit Reference Manual

9
s)

ons

 make
se the

 and

have
s have
em.
H
Transitioning From Release 6 To

Release 7/8/9

To ensure WTK’s consistency and ease-of-use, Release 7, Release 8 and Release
introduce some new functions (which directly correspond to existing Release 6 function
in the areas of WTK UI, transformations, and C++ wrappers. Since these new functi
replace the Release 6 functions, the WTK Release 7/8/9 documentation (that is, the
Reference Manual and PDF files) only describes the Release 7/8/9 version.

If your application uses any of the equivalent Release 6 functions, you do not need to
any changes. However, when creating new applications, it is recommended that you u
new functions. The following section provides a listing (by area) of the new functions
the equivalent Release 6 functions.

Changed Functions from Release 6 to
Release 7/8/9

WTK User-Interface (UI) Functions

The names of all the UI constructor functions (i.e., functions that create a UI object)
changed. Further the prototypes of certain functions have changed. Certain argument
been removed because they were either ignored or it did not make sense to have th

Appendix H: Transitioning From Release 6 To Release 7/8/9
Table H-1 lists the functions whose names have changed only.

Table H-1: UI Functions Whose Names Have Changed in This Release

New Function Equivalent R6 Function

WTui* WTuiform_new(
WTui *parent,
char *title,
...);

WTui* WTui_newform(
WTui *parent,
char *title,
...);

WTui *WTuilabel_new(
WTui *parent,
char *label,
FLAG labeltype,
...);

WTui *WTui_newlabel(
WTui *parent,
char *label,
FLAG labeltype,
...);

WTui *WTuipushbutton_new(
WTui *parent,
char *label,
..);

WTui *WTui_newpushbutton(
WTui *parent,
char *label,
...);

WTui *WTuiscale_new(
WTui *parent,
char *label,
int minimum,
int maximum,
int decimal_points,
int value,
...);

WTui *WTui_newscale(
WTui *parent,
char *label,
int minimum,
int maximum,
int decimal_points,
int value,
...);

WTui* WTuiscrolledlist_new(
WTui *parent,
char *label,
char *items[],
int nitems,
...);

WTui* WTui_newscrolledlist(
WTui *parent,
char *label,
char *items[],
int nitems,

...);

WTui* WTuiscrolledtext_new(
WTui *parent,
char *text,
FLAG editable,
...);

WTui* WTui_newscrolledtext(
WTui *parent,
char *text,
FLAG editable,
...);
H-2 WorldToolKit Reference Manual

WTK User-Interface (UI) Functions
Table H-2 lists the UI functions whose names and prototypes have changed.

WTui* WTuitextfield_new(
WTui *parent,
char *text,
...);

WTui* WTui_newtextfield(
WTui *parent,
char *text,
...);

WTwindow *WTuiwtkwindow_new(
WTui *form,
int window_config);

WTwindow *WTui_newwtkwindow(
WTui *form,
int window_config);

Table H-2: UI Functions whose Names and Prototypes have Changed in this Release

New Function Equivalent R6 Function

WTui *WTuifileselection_new(
WTui *parent,
char *title,
char *file,
char *pat);

WTui *WTui_newfileselection(
char *title,
char *file,
char *pat);
...);

WTui *WTuimessagebox_new(
WTui *parent,
char *message,
char *title);

WTui *WTui_newmessagebox(
WTui *parent,
char *message,
char *title);
...);

WTui* WTuitextinput_new(
WTui *parent,
char *msg);

WTui* WTui_newtextinput(
WTui *parent,
char *msg,
FLAG modal,
...);

WTui* WTuimenubar_new(
WTui *parent);

WTui* WTui_newmenubar(
WTui *parent,
...);

Table H-1: UI Functions Whose Names Have Changed in This Release

New Function Equivalent R6 Function
WorldToolKit Reference Manual H-3

Appendix H: Transitioning From Release 6 To Release 7/8/9

e
e
Transformations

In WTK Release 6, there were several functions that required angle parameters to b
specified in degrees. WTK Release 7/8/9 introduces some new functions which behav
similarly, except that now all angles are specified in radians. Thus, in Release 7/8/9, all
functions requiring angle parameters are now specified in radians.

Table H-3 lists the transformation functions that have changed in this release.

WTui* WTuimenupopup_new(
WTui *parent,
char *label);

WTui* WTui_newmenupopup(
WTui *parent,
char *label,
...);

WTui* WTuimenuitem_new(
WTui *parent,
char *label);

WTui* WTui_newmenuitem(
WTui *parent,
char *label,
...);

WTui* WTuitoolbar_new(
WTui *parent,
int items,
char **bitmap_files);

WTui* WTui_newtoolbar(
WTui *parent,
int items,
char **bitmap_files,
...);

Table H-3: Release 7/8/9 Transformation Functions that are Now Specified in Radians

New Function
(angles in radians)

Equivalent R6 Function
(angles in degrees)

FLAG WTmovnode_axisrotation(
WTnode *movnode,
int axis,
float angle);

FLAG WTmovnode_rotateaxis(
WTnode *movnode,
int axis,
float angle);

Table H-2: UI Functions whose Names and Prototypes have Changed in this Release

New Function Equivalent R6 Function
H-4 WorldToolKit Reference Manual

Transformations

ns.
C++ WRAPPERS

Table H-4 lists the C++ wrapper functions for the above three transformation functio

FLAG WTnode_axisrotation(
WTnode *node,
int axis,
float angle,
int frame);

FLAG WTnode_rotateaxis(
WTnode *node,
int axis,
float angle,
int frame);

FLAG WTnode_rotation(
WTnode *node,
float angley,
float anglex,
float anglez,
int frame);

FLAG WTnode_rotate(
WTnode *node,
float angley,
float anglex,
float anglez,
int frame);

Table H-4: C++ Wrapper Functions for the above Transformation Functions

New Method
Equivalent R6

Method
Class

FLAG
MovAxisRotation(
int axis,
float angle);

FLAG MovRotateAxis(
int axis,
float angle);

WtMovable

FLAG AxisRotation(
int axis,
float angle,
int frame);

FLAG RotateAxis(
int axis,
float angle,
int frame);

WtXform

Table H-3: Release 7/8/9 Transformation Functions that are Now Specified in Radians

New Function
(angles in radians)

Equivalent R6 Function
(angles in degrees)
WorldToolKit Reference Manual H-5

Appendix H: Transitioning From Release 6 To Release 7/8/9
FLAG Rotation(
float angley,
float anglex,
float anglez,
int frame);

FLAG Rotate(
float angley,
float anglex,
float anglez,
int frame);

WtXform

Table H-4: C++ Wrapper Functions for the above Transformation Functions

New Method
Equivalent R6

Method
Class
H-6 WorldToolKit Reference Manual

rsion
des a
ing

xtures
I
 K,
I
Third-party Software

This chapter contains information from other software providers for both image conve
and modeling packages. WTK also has a sister product, called World Up, which inclu
built-in Modeler. The World Up Modeler converts images to the NFF format by import
the file and then saving it in the NFF format. The World Up Modeler supports the file
formats shown in table I-1:

You can also use the World Up Modeler to create new images, apply materials and te
to the model, and do real-time rendering. World Up runs on NT/Windows 95 and SG
platforms. For more information, contact SENSE8 using the information in Appendix
Technical Support.

Table I-1: File formats supported by the World Up Modeler

File Extension Description

NFF SENSE8 Neutral File Format

BFF SENSE8 Binary Neutral File Format

3DS 3D Studio file format

WRL VRML file format

FLT MultiGen Flight file format

DXF AutoCAD file format

OBJ Wave Front file format

GEO Videoscape file format

SLP ProEngineer “RENDER” file format

Appendix I: Third-party Software

g a
re
Image Conversion (SGI)

We recommend using the Iris image utilities included with IRIX in the eoe2.sw.imagetools
subsystem.

The Irix operating system comes with approximately 100 image utilities for performin
variety of image operations and converting between various image formats. These a
installed on your system in /usr/sbin when you load the subsystem of Irix called
eoe2.sw.imagetools.

One particularly useful utility is the one called ipaste, which displays a .rgb image in a
window on your monitor. The syntax for this command is:

ipaste image.rgb

Table I-2 lists image conversion products.

Image Conversion (Windows 32-bit Platforms)

Table I-2: Image conversion (Windows 32-bit Plafforms)

Product Comments Manufacturer

HiJaak Pro Converts between more
than 85 2D and 3D
graphics formats including
TGA, GIF, BMP, JPG, IFF,
and EPS.

Quarterdeck Systems
(800) 525-2580
(510) 548-0393 fax
web site:
www.Quarterdeck.com

Image Alchemy Image Alchemy converts
over 75 different image
formats and includes all
colorspace and
compression variations of
each format.

Handmade Software, Inc.
PC/Sun/SGI
(408) 358-1292,
(408) 356-4143 fax
web site:
www.handmadesw.com
I-2 WorldToolKit Reference Manual

Model Conversion
Table I-3 lists model conversion products.

Model Conversion

Table I-4 lists 3D modelers.

3D Modelers

Table I-3: Model conversion

Product Comments Manufacturer

InterChange Also available as a 3D Studio IPAS plug-in.

Converts between: 3D Studio, Lightwave,
Imagine, Wavefront, Alias polysets,
SENSE8 NFF, RenderWare, Inventor, Vista
Pro DEM, CADKey, DXF, Stereolithography,
Sculpt, Envisage, Prisms, Vertigo,
StyleGuide, POV, PLG, Swivel (some
conversions are read only, others write-
only).

Syndesis
235 South Main St.
Jefferson, WI 53549
(414) 674-5200
(414) 674-6363 fax
web site:
www.threedee.com

Table I-4: 3D modelers

Product Platform Comments Manufacturer

3D
Design
“Plus”

MSWin CSG and polygonal modeling,
optional raytracing, imports and
exports DXF (but not very well).

Native format: “mdl”, binary,
proprietary.

ComputerEasy
International, Inc.
414 E. Southern
Avenue
Tempe, AZ 85282
(800) 522-3279
(602) 829-9616 fax
WorldToolKit Reference Manual I-3

Appendix I: Third-party Software
3D Studio MSDOS Modeler/non-realtime renderer.
Triangular polygons only.

Supports texture applications for
WTK.

Native formats: ASC (ASCII) and
3DS (“mesh” binary, proprietary).

Also reads DXF and .flm (“Filmroll”
files), and writes DXF.

Autodesk, Inc.
111 McInnis
Parkway
San Rafael,
California 94903
(800) 964-6432
(415) 507-5000
(415)507-5100 fax
web site:
www.autodesk.com

Blob
Sculptor

MSDOS,
other
platforms
in
progress

Freeware. Allows you to model 3D
objects through the use of blobs.

Output formats: Blob Sculptor
(native), POV, Polyray, Rayshade,
“RAW” polygons, “CTDS - Connect
The Dots System”, DXF

Input: native Blob format

Contact authors at
Pi Square BBS
(301) 725-9080

Pioneer
Pro and
trueSpace
/2 and
trueSpace
/SE

MSWin,
Amiga

Modeler/renderer, can mix splines
and faces and output DXF with
color information

Caligari
Corporation
1959 Landings Dr.
Mountain View, CA
94043
(415) 390-9600
(415) 390-9755 fax
web site:
www.caligari.com

CyberVisi
on

SGI, DEC-
Alpha

Modeling and walkthrough
rendering, native format: .cyb,
imports AND exports: OBJ, NFF
(non-SENSE8), DXF, SGI's “.sgm”
and “.bin” formats, Inventor, DTED,
Multigen/Modelgen support at
extra cost

Computer
Explorations Inc.
(800) 443-8278

Table I-4: 3D modelers (continued)

Product Platform Comments Manufacturer
I-4 WorldToolKit Reference Manual

3D Modelers
LightWave MSWin,
Amiga

Modeler and non-realtime
renderer.

Reads and writes its own 3D file
format, Lightwave. Also reads
Videoscape files.

Converters are provided for
importing DXF 11 or higher,
3DStudio, PICT, Swivel.

NewTek, Inc.
1200 SW
Executive Dr.
Topeka, Kansas
66615
(800) 847-6111
(800) 854-7111 fax
web site:
www.newtek.com

Multigen,
ModelGen

SGI only Reads and writes their own .flt
“flight” format which is readable by
WTK-SGI.

Supports textures in WTK.

Imports DXF

MultiGen Inc.
550 South
Winchester Blvd.,
Suite 500
San Jose, CA
95128
(408) 261-4100
(408) 247-4326 fax
web site:
www.multigen.com

Polywog MSWin,
Amiga

Freeware wireframe 3D modeler;
no solid rendering or application of
colors/textures.

Reads and writes SENSE8 NFF,
GEO (VScape), and PLG (VR386).

Author contact:
iguana@crl.com

Ray
Dream
Designer
and Ray
Dream
Studio

Mac,
MSWin

Integrated modeler/non-realtime
renderer, can output usable DXF
files

Fractal Design
Corporation
P.O. Box 66959
Scotts Valley, CA
95067-6959
(800) 846-0111
web site:
www.fractal.com

Table I-4: 3D modelers (continued)

Product Platform Comments Manufacturer
WorldToolKit Reference Manual I-5

Appendix I: Third-party Software
3Design SGI only Entertainment-based modeler that
integrates NURBS, polygon, and
metaball modeling functions within
a single easy-to-use package.

Uses ASCII formats: .obj for object
geometry, .mtl for material list/
descriptions.

There is also the .Geo format,
which is inherited from the TDI
Explore package.

They have translators from
3Design to DXF or IGES (DXF will
be the most accurate because of
polygons but it seems that it will
not write out color layers.

Reads: OBJ, IGES, DXF, SDRC,
STL, Catia, ProE SLA (use sla_obj
command), 3DS (3DS conversion
done by Inner Space Labs).

Writes: OBJ (.obj)

Wavefront
Technologies, A
Silicon Graphics
Company
110 Richmond
Street East
Toronto Ontario
Canada
(800) 441-2542
(416) 362-0630 fax
web site:
www.aw.sgi.com

World
Render
3D

MSWin Wireframe modeler and translator.

Reads and writes: 3DS, 3D
Workshop, DXF, Envisage 3D,
Imagine, Lightwave, NapCad 3D,
NFF, “RAW”, Sculpt 3D/4D,
VideoScape, Wavefront, native
“World Render 3D” format.

Writes: DBW 2.0, POV-Ray 1.0,
TART, Vivid 2.0. Demo version on
the net and on CI$also.

MAZAR software
corp.
1801 NE 197
Terrace N. Miami
Beach, FL 33179
(305) 936-9290

Table I-4: 3D modelers (continued)

Product Platform Comments Manufacturer
I-6 WorldToolKit Reference Manual

an
ular
J
Sources of Components

This appendix lists the manufacturers of a variety of products used with WTK. You c
contact the manufacturers listed here to determine the appropriateness of any partic
component for use with WTK.

Input Devices

Table J-1: Input devices

Manufacturer Product

Ascension Technology Corporation,
P.O. Box 527, Burlington, VT 05402
(802) 860-6440
email:ascension@world.std.com

Ascension Bird, Flock of Birds (6D
magnetic tracker)

Fakespace, 4085 Campbell Ave.
Menlo Park, CA 94025
(415) 688-1940

Pinch Glove System

General Reality Company (Distributor)
124 Race St.
San Jose, CA 95126
Phone: 408-289-8340
e-mail: sales@genreality.com

5DT Glove

Logitech, Inc., 6505 Kaiser Drive,
Fremont, CA 94555 (510) 795-8500

3D Mouse (Red Baron), Space Control
Mouse (Magellan), Head Tracker

Polhemus Inc., P.O. Box 560,
Colchester, VT 05446 (802) 655-3159

ISOTRAK, ISOTRAK II, InsideTRAK and
FASTRAK 6D magnetic trackers

Precision Navigation, 1235 Pear Ave.,
Ste. 111, Mountain View, CA 94043
(415) 962-8777

Precision Navigation Wayfinder-VR

Appendix J: Sources of Components
Output Devices

Spacetec IMC Corporation, 100 Foot of
John Street, Lowell, MA 01852 (508) 970-
0330

Spaceball and Spaceball SpaceController

ThrustMaster, Inc.
7175 N.W. Evergreen Parkway, #400,
Hillsboro, OR 97124
(503) 615-3200

Serial Joystick and Formula T2 Steering
Console

Table J-2: Output devices

Manufacturer Product

Fakespace, 4085 Campbell Ave.,
Menlo Park CA 94025 (415) 688-1940

BOOM (monochrome and color stereo
viewers on articulated arm)

StereoGraphics, Corp.,
2171-H East Francisco Blvd.,
San Rafael, CA 94901 (415) 459-4500

CrystalEyes and CrystalEyesVR LCD
Shutter Glasses (stereo viewing
glasses and head-tracking)

Virtual Research, 2326 Walsh Ave.,
Santa Clara, CA 95051, (408) 748-8712

VR4 (head mounted display), and FS5
(head mounted display)

Crystal River Engineering,
4245 Technology Drive, Fremont, CA 94538
(800) 317-TRON

Beachtron, Alphatron, Acoustetron II
(3D sound system)

Virtual i-O, 1000 Lenora St., Suite 600,
Seattle, WA 98121
(206) 382-7410

i-glasses! (Head-mounted display)

VictorMaxx, 510 Lake Cook Rd., Suite 100,
Deerfield, IL 60015
(708) 267-0007

CyberMaxx2 HMD (head-mounted
display)

Table J-1: Input devices (continued)

Manufacturer Product
J-2 WorldToolKit Reference Manual

Video Accelerators
Video Accelerators

Table J-3: OpenGL graphics accelerators

Graphics card Manufacturer Comments

Artists 2000 I Artists Graphics, Inc.

Gloria-4, Gloria-8 ELSA, Inc. 8 MB Texture Memory

12.5 MPixels/sec Fill Rate

Freedom Graphics Evans & Sutherland, Inc.
600 Komas Drive
Salt Lake City, Utah 84108
USA
(801) 588-1000

1MB - 16MB Texture Mem

8 MPixels/sec Fill Rate

Sapphire 2SX Fujitsu Microelectronics,
Inc.
30 Rio Robles
San Jose, CA 95134-1807
(408) 922-9000

PCI Glint Video 1 RPI Advanced Technology No Texture Acceleration

Eclipse 100 RSR Engineering, Inc. 4 MB - 21 MB Texture Mem

30MPixels/sec Tex Fill
Rate

Eagle Creative Labs
1523 Cimarron Plaza,
Stillwater, OK 74075
U.S.A.
(800) 998-1000

GLiNT-based

Hardware Texture
Acceleration

Millennium Matrox
1025 St. Regis Blvd.
Dorval, Quebec
Canada H9P 2T4
(800) 804-6243
FAX: (514) 969-6273
WorldToolKit Reference Manual J-3

Appendix J: Sources of Components
Fire GL SPEA Software AG DM5000

15MPixels/sec Fill Rate

No Texture Acceleration

Table J-3: OpenGL graphics accelerators (continued)

Graphics card Manufacturer Comments
J-4 WorldToolKit Reference Manual

th
the
TK

'
s
 are:
K
The WTK Users’ Group

A WorldToolKit Users’ Group (SIG-WTK) has been organized by WTK customers wi
assistance from EAI/SENSE8. SIG-WTK provides a world-wide electronic forum for
discussion of WTK-related issues. In addition to the electronic forum, several SIG-W
users’ group meetings have been held and additional regular meetings are planned.

Participating in SIG-WTK

The following material comes from the original SIG-WTK chairman, Terry Fong.

Greetings, fellow WTK user!

I would like to cordially invite you to participate in SIG-WTK, the WorldToolKit Users
Group. This group provides a contact point for users of EAI’s SENSE8 Product Line'
WorldToolKit to discuss and exchange information on a variety of topics. Among these

• 3D objects: modeling, importing/exporting to WTK NFF, sharing.

• Sensor drivers: development, reducing lag and latency.

• Managing user interaction.

• Efficient development of virtual environments with WTK.

• Distribution and sharing of virtual environments.

• Improving simulation performance (e.g., frame rate, quality).

• Platform-specific issues (e.g., GL queues on SGI machines).

• Advocating WTK improvements/changes to EAI/SENSE8.

Appendix K: The WTK Users’ Group

ways
Communicating with SIG-WTK

To subscribe or unsubscribe, send e-mail to:

sig-wtk-request@sense8.com

In the body of the message, type the word subscribe or unsubscribe without any white space
preceding the word.

To get help, or a list of possible commands, send e-mail to:

majordomo@sense8.com

In the body of the message, type the word help.

To send a message to all SIG-WTK members, please address it to:

sig-wtk@sense8.com

SIG-WTK:Email Archives

If you are interested in looking through the archives of sig-wtk email, there are several
to do this:

By Thread (Oldest Thread Listed First):

http://www.sense8.com/support/archive/sig-wtk.archive/threads.html

By Date (Most Recent Messages Listed First):

http://www.sense8.com/support/archive/sig-wtk.archive/maillist.html

By Text Search:

http://www.sense8.com/support/AT-SigWTKquery.html.
K-2 WorldToolKit Reference Manual

ods
ase

ial
save
fore
asked

l

L
Technical Support

If you encounter problems installing or using WTK, EAI/SENSE8 offers several meth
for getting your problems answered. If the problem needs immediate assistance, ple
contact your EAI/SENSE8 authorized reseller or EAI/SENSE8 directly for Technical
Support.

Whenever contacting EAI/SENSE8 for technical support, please have your WTK ser
number ready. It’s printed on your CD-ROM jewel case (or distribution tape). You can
yourself time and effort by reading the WTK support page on the World Wide Web be
you call. It has links to download the latest patches and answers to FAQs (frequently
questions) about WTK. The URL is listed below.

U.S. Technical Support

USA Headquarters

EAI’s SENSE8 Product Line

100 Shoreline Highway, Suite 282

Mill Valley, CA 94941

Sales/Product Information: (415) 339-3200

Facsimile: (415) 339-3201

Technical Support (phone): (415) 339-3392

Technical Support (e-mail): support@sense8.com

WTKCODES (e-mail): wtkcodes@sense8.com

Web site: www.sense8.com

Web site (for Technical Support questions): www.sense8.com/wtksupport/index.htm

Web site (for WTKCODES): www.sense8.com/wtklicense.html

Appendix L: Technical Support

your
tact

rch
m
ing

Non-US Technical Support

Please contact your WTK reseller directly. They can provide you with local support in
time zone. If you have difficulties getting support from your dealers, then please con
USA headquarters.

SIG-WTK Users’ Group

A WorldToolKit Users' Group (SIG-WTK) has been set up at the NASA Ames Resea
Center in Mountain View, California. SIG-WTK provides a world-wide electronic foru
for the discussion of WTK-related issues as well as an anonymous ftp site for upload
and downloading WTK-related data. More information about SIG-WTK is provided in
Appendix J, The WTK Users’ Group.
L-2 WorldToolKit Reference Manual

M
Glossary

3x3 Matrix A 3x3 array of floats that is type defined in WTK as WTm3.
A 3x3 matrix is a mathematical entity that can be used to
represent position and orientation in 2D space.

3D Sound Spatialized sound that appears to the end-user to have a
distinct location in the simulation.

3DS The native file format of Autodesk’s 3D Studio. You can
use this binary file format to represent 3D geometry,
lighting, and animation.

4x4 Matrix A 4x4 array of floats that is type defined in WTK as WTm4.
A 4x4 matrix is a mathematical entity that can be used to
represent position and orientation in 3D space.

6D Sensor Sensors that have six degrees of freedom of movement.
That is, they can control movement in the X, Y, and Z
direction as well as control pitch, yaw, and roll.

Absolute Record Sensor values that correspond to a specific absolute
spatial location (i.e. the position and orientation of the
sensor). See also Relative Record.

Ambient Color The material property that represents the color reflected
from a material in ambient white light, specified in red,
green, and blue floats in a range from 0.0 to 1.0.

Ambient Light Background light that illuminates all surfaces equally,
regardless of their position or orientation.

Ambient Light Node A scene graph node used to store ambient light.

Ancestor Node Any node whose sub-tree contains a node (N), is
considered to be an ancestor of that node (N).

Chapter M: Glossary
Anchor Node A scene graph group node that contains a string property
(URL) used to retrieve a data file. The data file associated
with an anchor node will NOT be automatically loaded.

Anti-aliasing Lines or edges, especially nearly horizontal or nearly
vertical ones, appear jagged due to screen resolution.
This jaggedness is called aliasing and anti-aliasing refers
to techniques used to reduce this jaggedness.

API Application Programmers Interface.

Aspect Ratio The ratio of the horizontal and vertical drawing
dimensions. This ratio is used to correct for any monitor or
pixel distortion that causes round objects to look elliptical
or square objects to look rectangular.

Asymmetric Projection A window projection type. Asymmetric projection is useful
in some stereo viewing configurations. By changing the
viewpoint convergence distance, geometries can be made
to appear either in front of or behind the display device
(e.g., the screen). A geometry in the 3D world closer to the
viewpoint than the convergence distance appears to be in
front of the screen, while a geometry that is farther from
the viewpoint than the convergence distance appears to
be behind the screen. See also Projection Type.

Attenuation The degree to which a point or spot light’s intensity
decreases with increasing distance from the position of
the light.

Axis One of the reference lines of a coordinate system.

BFF The binary version of SENSE8’s neutral file format used
for representing 3D geometry. See NFF.

Back Face Rejection The elimination of a single-sided polygon (that is, a
polygon that can only be viewed from one side) from the
rendering process. In the back face rejection process,
those polygons whose normals face away from the
viewpoint are not rendered.

Baud Rate Data transmission speed in bits per second.
M-2 WorldToolKit Reference Manual

Bothsides
(of a polygon)

Polygons have front and back sides (or faces). The side
facing in the direction of the polygon normal is considered
to be the front facing side. You can choose to display just
the front side of a polygon or bothsides of a polygon. If a
polygon is bothsided, it can be viewed from either side.

Bounding Box Also known as Extents Box (smallest box that surrounds
an object). The term bounding box sometimes refers to
the fact that extents boxes can be made visible in the
scene.

Callback Handler
Function

A scheme used in event-driven programs where the
program registers a callback handler for a certain event.
The program does not call the handler directly but when
the event occurs, the handler is called, possibly with
arguments describing the event.

Centroid The centermost position of a three-dimensional object.

Child Node A scene graph node that is a direct descendent of another
(parent) node. A child node can inherit state information
from its ancestor nodes.

Collision Detection Intersection testing of objects at either the bounding box
level or at the polygon level.

Concave Polygons Any polygon that has at least one interior greater than 180
degrees.

Constraining Motion Movement of objects is generally allowed in all 6 degrees
of freedom. Sometimes it is desirable to disallow
movement in one or more degrees of freedom. This
limitation is called a constraint.

Constructor Functions Any WTK function used to construct new geometries,
viewpoints, etc. For example, WTviewpoint_new, which
creates a new viewpoint is a constructor function.

Content Nodes Containers for the four basic elements of a scene:
geometry, light, position, and fog.

Convergence A horizontal offset in pixels, which is applied to both the
left and right eye images. This offset is subtracted from the
left eye and added to the right eye. See
WTviewpoint_setconvergence on page 16-21.
WorldToolKit Reference Manual M-3

Chapter M: Glossary
Convergence Distance The distance where a stereoscopic image is perceived to
exist. This parameter determines the perceived location of
an object relative to the plane of the computer screen.

Coordinate System A positional system, containing X, Y, and Z components,
by which three-dimensional entities can be described. See
Local Coordinate System, Parent Coordinate System, and
World Coordinate System.

Coplanar Polygon Polygon surfaces that overlap and lie in the same plane.

Culling See Hierarchical Culling.

Cylindrical Mapping A technique for applying texture mapping coordinates so
that the image appears to be wrapped around the object in
a tube-like fashion. The application of a label to a can or
bottle is an example of cylindrical mapping.

Descendant Node Any node that is contained in the sub-tree of another node
is considered to be a descendant of that node.

Diffuse Color The material property that represents the color reflected
from a material in diffuse white light, specified in red,
green, and blue floats in a range from 0.0 to 1.

Diffuse Light Positional or directional light that illuminates polygons as a
function of the angle between the light direction and the
polygon (or vertex) normal.

Directed Light A light source that has direction but no (finite) position. A
directed light can be used to emulate the effects of
sunlight.

Distributed Simulation An application that is shared between more than one
computer over an Ethernet network.

DOF Degrees of freedom. See 6D Sensor.

DXF Drawing Interchange Format. This file format was
developed by Autodesk, Inc. as a way to transfer
geometric data from one design application to another.

Emissive A material property that represents the color of light
produced (not reflected) by the material, even when there
is no light. Emissive materials do not illuminate other
objects.
M-4 WorldToolKit Reference Manual

Euler A mathematical representation of a position and
orientation in three-dimensional space.

Event Order The order in which the simulation loop processes the
universe’s events.

Extents Box The extents box is the smallest box that fits around an
object. See also Midpoint and Radius.

Extrusion The 3D outline or object created by taking a 2D contour
and extending it into three dimensions.

Filtering Textures
(mipmapping)

The process of (automatically) scaling down a texture so
that it can be appropriately applied to a polygon
regardless of the polygon’s screen resolution.

Floating License A WTK software license designed to be used on a
network. See also Node-locked License.

FLT ProEngineer file format used for representing 3D
geometry.

Fog Node A scene graph node used to simulate fog, smoke, etc.

Frame An individual rendering loop during which each active
window is redrawn after updating sensor input, path
information, user-defined actions, and any foreground
details. See also Simulation Loop.

Frame Rate The number of times per second that WTK completes the
simulation loop, i.e. renders a frame.

General Projection A window projection type. Provides the greatest flexibility;
useful when the viewer is not always perpendicular to the
display surface, like in CAVE environments.

Geometry A collection of polygons (composed of vertices) used to
model physical objects.

Geometry Node A scene graph node used to associate a geometry to a
node, so that the geometry can be made part of the scene.

Geometry Optimization A technique used to optimally organize the contents of a
geometry so that it can be rendered in the shortest amount
of time. Once a geometry has been optimized (using
WTgeometry_prebuild) edits to the geometry will have no
effect.
WorldToolKit Reference Manual M-5

Chapter M: Glossary
Gouraud Shading A technique used for shading a 3D graphical object
composed of polygons, by interpolating light intensities at
the vertices of each polygon’s face, rendering a smooth
surface.

Graphics Pipeline Many high performance systems utilize specialized
graphics hardware (aka graphics pipeline) to substantially
increase the system’s ability to process and render
geometric polygons.

Group Node A scene graph node that has children, but no other
properties.

Grouping Nodes Grouping (organizational) nodes contain no content
directly, however they are the essential structuring nodes
used in building a scene graph. Grouping nodes, such as
the group node, the separator node and the transform
separator node, let you group together and encapsulate a
set of nodes that share common states, such as position
or lighting effects.

GUI Acronym for graphical user interface. Also called user
interface (UI).

Head Mounted Display A display device that is worn on the head, which
sometimes permits position and orientation tracking.

Heads Up Display The static portion of an image rendered on a display
device.

Hierarchy Used in the context of scene graphs, hierarchy refers to
how the nodes in a scene graph are organized and the
relationship of one node to another.

Hierarchical Culling WTK’s automatic process of quickly and efficiently
eliminating objects that are not visible from the current
viewpoint so that they are not unnecessarily processed
during the rendering process.

Hither Clipping Plane The physical range in front of the viewpoint, before which
objects are not rendered in that window. That is, objects
that appear between the viewpoint and the hither clipping
plane are not rendered. Objects are rendered only in the
area between the hither clipping plane and the yon
clipping plane. The hither clipping value is a window
parameter.
M-6 WorldToolKit Reference Manual

Inline Node A scene graph group node that contains a string property
(URL) used to retrieve a data file. The data file associated
with an inline node will NOT be automatically loaded
unless the inline node is read in from a VRML file.

Instance WTK’s scene graph hierarchy allows nodes to be
referenced multiple times within a single scene graph.
Since it is sometimes necessary to identity a particular
occurrence of a node to distinguish it from other
occurrences, each occurrence is called an instance. The
ability to use instances (instancing) saves system memory
(since only one copy of each object is necessary) and
therefore improves performance.

Interpolation The method of determining a new value using two or more
existing values. WTK uses interpolation when new paths
are created from previously defined paths.

Intersection Testing See Collision Detection.

Iterators Functions used to “walk through” lists of objects of a given
type. For example, WTwindow_next gets the next window
in the universe’s list of windows.

Leaf Node A scene graph node that has no descendants.

Level of Detail (LOD)
Node

A scene graph node used to automatically select between
different representations (levels of detail) of an object
based upon the distance between the object and the
viewpoint position.

Level of Detail Switch-
ing

The process of swapping less detailed objects for more
detailed objects as the distance between the viewpoint
and the object decreases (or vice-versa).

Light Node A scene graph node used to specify a WTK light (ambient,
point, directional, or spot).

Local coordinate sys-
tem

The coordinate system specific to a particular object,
usually the one in which the object was modeled.

Material A material is used to define the appearance of graphical
objects and consists of the following material properties:
ambient color, diffuse color, specular color, shininess,
emissive, and opacity.
WorldToolKit Reference Manual M-7

Chapter M: Glossary
Material Table Used to store the material properties of any number of
materials. Each geometry references a number of
materials from the material table that is associated with
that geometry.

Matrix See 4x4 Matrix and 3x3 Matrix.

Midpoint The center of a node’s extents box. See also Extents Box
and Radius.

Mipmapping See Filtering Textures.

Motion Link Used to connect a source of position and orientation
information (a path or sensor) with a target that moves to
correspond with that changing set of information. A target
can be a movable node, a node path, a transform node, or
a viewpoint.

Movable Node A scene graph node that represents self-contained entities
that can be easily moved around in the scene. The three
basic components of a movable node are a separator, a
transform, and a content (which corresponds to either a
Geometry, Light, Separator, Switch, or LOD node).

Network Daemon The daemon “wtklsd” is required for the floating license
version of WTK.

NFF Neutral File Format, SENSE8’s neutral ASCII file format
used for representing 3D geometry. It is a very compact
format, which WTK can use to store geometric data.

Node The fundamental element or building block used to
construct a scene graph. A node is simply an element of
content or a grouping/procedural element used to
maintain scene hierarchy.

Node path An entity that represents the path through a scene graph
from the root node to another node.

Node-locked License A WTK software license designed to be used on a stand-
alone computer. See also Floating License.
M-8 WorldToolKit Reference Manual

Normal A direction vector used for shading and rendering.
Normals can be applied at both the vertex and polygon
level. A polygon normal is perpendicular to the polygon
surface and extends outward from the visible side of the
polygon. A vertex normal represents the direction that is
perpendicular to the tangent vector at the vertex position
of the polygon.

Normalized A normalized vector is a vector whose magnitude is 1.0.

NTSC Acronym for National Television Standards Committee
and the standard defining the television video signal
format used in the USA. The UK equivalent is PAL.

OBJ Wavefront/Alias file format used for representing 3D
geometry.

Opacity A material property that dictates the extent to which the
material is opaque/transparent. An opacity value of 0.0
indicates that the material is completely transparent, while
an opacity value of 1.0 implies that the material is
completely opaque.

OpenGL Coordinate
Conventions

The WTK coordinate convention differs from the OpenGL
convention. (The WTK convention has X pointing to the
right, Y pointing down, and Z pointing straight ahead.)
WTK coordinates are obtained by simply negating Y and Z
OpenGL coordinate values. See also Right-hand Rule.

Orphaned Nodes Nodes that are not associated with any scene graph
cannot be rendered and are considered to be orphaned
nodes.

Orthographic Projec-
tion

Orthographic projection is a window projection type that is
useful for plan views or anytime a perspective distortion is
not desired; parallel lines remain parallel regardless of
viewpoint position. Translations in the X and Y directions
work as before, but translations along the Z-axis do not
affect the scene.

Parallax The distance between the left eye and the right eye
position when using a stereo viewing device.

Parent coordinate
system

The coordinate system of the parent object in the scene
graph.
WorldToolKit Reference Manual M-9

Chapter M: Glossary
Parent Node A node’s direct ancestor in the scene graph.

Parity Bit An extra bit added to a byte or word to reveal errors in
transmissions over a serial port.

Path Stores a series of position and orientation records in
absolute world coordinates. A path can be used to pre-
program a flight path through a scene, or to pre-define the
motion of an object within the scene.

Path Element A single position and orientation record. A sequence of
path elements defines a path.

Picking The ability to select the front-most rendered polygon in a
window.

Pitch The orientation of an object about the X axis.

Pixel A contraction of “picture element,” it refers to one point in
a graphics image on a computer display. A standard VGA
display might have 640 x 480 pixels. The number of bits
per pixel determines how many colors can be represented
on the image. VGA displays typically have eight bits per
pixel. “Truecolor” displays typically use 24 bits per pixel.

Planar Mapping A technique for applying texture mapping coordinates so
that the image appears to be projected onto a surface.
This type of mapping is used to create buildings, pictures,
signs, and many other graphical entities.

Planar Polygon Polygons whose vertices are all positioned within the
allowable distance (defined by the WTK constant
WTFUZZ (0.004)) from the plane passing through the
vertices.

Point Light An omni-directional source of lighting capable of being
positioned by the user.

Polygon A flat plane figure with multiple sides. It is the basic
building block of geometries.

Polygon ID Polygon ID’s are read from and written to NFF files, and
are set with the function WTpoly_setid. Polygon ID’s
provide a handy way of obtaining pointers to polygons,
which can then be passed in to other functions.

Polygon Normal See Normal.
M-10 WorldToolKit Reference Manual

Port A logical channel in a communications system. See also
Serial Port.

Portability The ability to move an application built on one hardware
platform to another platform without having to make
extensive changes to the application source code.

Portals An outdated concept from older versions of WTK. Portals
allowed users to move from one universe to another. This
is now accomplished by using multiple scene graphs.

Position The current X, Y, and Z coordinates of an object.

Predecessor Node Any node in a scene graph that directly affects how a
specific node (N) is processed is considered to be a
predecessor of that node (N), even though that node is not
an ancestor node.

Primitive (Geometric) A three-dimensional basic geometric form (such as a
block, sphere, or cylinder) stored as a collection of
polygons.

Projection Type Defines how the scene is projected onto the display
device. The projection type is either symmetric,
asymmetric, general, or orthographic. The default is
symmetric.

Propagation
of state

When traversing a scene graph tree, the lighting and
transformation state created by each transform and light
node accumulates (propagates) as the remainder of the
scene graph is traversed. See Separator Nodes for a
description of how to avoid propagation of state.

Quads Four-sided polygons.

Quaternion A mathematical representation of an orientation.

Radiosity
Preprocessing

A radiosity preprocessor program takes a model and a
light source specification as input and generates a new
model with lighting information (such as for shadows or
reflections) built into it.

Radius The distance from the midpoint of a node’s extents box to
a corner of the box. This is the same as the length of the
extents vector. See also Extents Box and Midpoint.
WorldToolKit Reference Manual M-11

Chapter M: Glossary
Ray Casting A ray is a vector representing a direction. Ray casting is
the process of calculating a ray that emanates from a
position (for example, a viewpoint) and which then passes
through a specified point. Ray casting can be used for
terrain following or intersection testing.

Real-time Simulation A 3D application that responds to input and displays the
corresponding change (almost) instantly. When measured
in frames per second, real-time usually means at least 10
fps.

Relative Record Sensor values that correspond to a sensor’s change in
spatial location (position and orientation) since the last
time through the simulation loop. See also Absolute
Record.

Rendering Generation of a graphical image from mathematical
models of three-dimensional objects, i.e. a scene.

Rendering Flags Rendering options for displaying geometries in a
simulation. Types of rendering include wireframe,
textured, smooth, etc. Rendering options can be set
globally for the universe or individually for geometries

Resource File Sets certain parameters from a file when your application
starts up. For example, you can specify background color,
viewing angle, window size, and window position this way.

RGB RGB stands for the red, green, and blue components of a
color specification. Valid values for color components
range from 0 to 255. An RGB triple of (255, 0, 0)
represents the color red while an RGB triple of (255, 255,
0) is yellow.

Right-hand Rule The WTK coordinate system obeys the right-hand rule.
The default coordinate system has the X axis pointing to
the right, the Y axis pointing down, and the Z axis pointing
straight ahead.

Roll The orientation of an object about the Z axis.

Root Node A scene graph node that is the top most node in any
scene graph. Each scene graph has only one root node.
All other nodes in the scene graph are descendants of the
root node.
M-12 WorldToolKit Reference Manual

Rotation The turning of an object so that it has a different
orientation.

RTS signal On some platforms, certain serial devices require that the
serial port’s RTS signal be kept in either a high or low
state or the device will not communicate with the serial
port.

Scene The virtual world being displayed.

Scene Graph A scene graph is a hierarchical arrangement of nodes
(such as geometry, light, fog, and positional information)
representing objects in a simulation. A universe can
contain more than one scene graph.

Scene Graph Tree The scene graph is arranged as an upside down tree,
where the root is on the top and the branches and leaves
are on the bottom.

Sensor A device that responds to physical movement and that
transmits the resulting position and (possibly) orientation
information.

Separator Nodes A scene graph node that prevents lighting and
transformation state information from propagating from its
descendant nodes to its sibling nodes.

Serial Port A connector on a computer where you can attach a serial
line connected to peripherals that communicate using a
serial protocol.

Shading The process of rendering polygons, especially when using
lighting effects.

Shininess A material property that controls the narrowness of focus
of specular highlights. Shininess can range from 0.0 to
128.0. The lower the shininess value, the more “spread
out” the highlight is; the higher the shininess value, the
sharper (shinier) the highlight.

Sibling Node Children of the same parent node are siblings.

Simulation Your WTK application.
WorldToolKit Reference Manual M-13

Chapter M: Glossary
Simulation Loop When a WTK application is running, the simulation loop is
repeatedly executed. WTK reads input sensors, executes
universe action functions, updates objects with sensor
input, executes object tasks, steps any paths, and renders
a new view of your scene onto the display during each
pass through the simulation loop. Each pass through the
simulation loop is called a frame.

Six Degrees of
Freedom

See 6D Sensor.

SLP Pro/Engineer file format used for representing 3D
geometry.

Spatialized Sound See 3D Sound.

Specular Color A material property that represents the color of the
highlights that are reflected off a shiny surface.

Spherical Mapping A technique for applying texture mapping coordinates so
that the image appears to be wrapped around the object in
a spherical fashion. A good example of spherical mapping
would be a world globe.

Spot Light A light that illuminates a small area, within a cone of
specified angle. For example, an automobile headlight.

State Refers to the accumulated lighting and transformation
state that results during the traversal of a scene graph.
The scene graph state affects how and where geometry is
rendered at any particular point in the scene graph.

Stereoscopic Viewing The visual effect achieved when part of your scene
appears to be in front of your display screen, and part of
the scene appears to be behind your display screen,
giving the illusion that the image is a 3 dimensional image.

Stipple Pattern The 2D or 3D line style. The default line style is solid.

Stop Bits In serial communications, where each bit of the message
is transmitted in sequence, stop bits are extra “1” bits that
follow the data and any parity bit. They mark the end of a
unit of transmission (normally a byte or character).
M-14 WorldToolKit Reference Manual

Subfaces ModelGen and MultiGen permit “subfaces,” polygons that
generally are oriented in the same plane as another
polygon, but that are intended to appear as if they are on
top of the other polygon. When polygons with subfaces
are translated literally into the WTK viewing format, Z-
buffer roundoff becomes pronounced, resulting in
flickering between the coplanar faces as the object is
rendered. When WTK encounters subfaces in an
OpenFlight file, it translates them by a constant amount in
the direction of the parent polygon’s normal vector.

Sub-tree A node and all its descendants in the scene graph is
called a sub-tree of the overall scene graph tree.

Switch Node A scene graph node that allows the user to control which
of its children to traverse.

Switch-out Distances An array of floats that specify the distances where WTK
will switch to a lower level of detail when using an LOD
node. By default, an LOD node has no switch-out (range)
values.

Symmetric Projection A window projection type. Commonly used projection,
especially for monoscopic and flat screen displays. This is
the default projection type.

Task A user-defined function assigned to WTK or user objects.

Tessellation Refers to the manner in which the surface of a geometric
object is modeled via polygons. Finer tessellations usually
require the use of more polygons than a rough
tessellation. For example, a cone that was tessellated
using 100 polygons would, when rendered, appear much
superior to a cone that was tessellated using only 10
polygons, since the 10 polygon tessellated cone would
appear very faceted.

Texels A contraction of “Texture element”, it refers to the
individual texture elements of a texture image.

Text Fields A text field user interface object is a simple object that
allows a user to enter text using the keyboard. Text field
objects are normally used as a single line data entry field.
It gives the user text editing capabilities and also provides
the point and click functionality expected of GUI
applications.
WorldToolKit Reference Manual M-15

Chapter M: Glossary
Texture A bitmap image usually created for the purpose of
applying complex images to simple polygons to increase
performance of 3D graphics applications.

Texture Draping The process of applying a texture bitmap image stored in
a file to a polygon or an entire geometry.

Texture Mapping The process of applying a digitized image onto a polygon
or structure composed of polygons.

Texture uv
Coordinates

WTK allows you to specify how the texture is mapped onto
a polygon, by allowing you to specific texture (uv)
coordinates in polygon definitions.

Toolbars A toolbar object is a group of push buttons, each painted
with an appropriate bitmap.

TPS Triangles per second. A commonly used statistic used to
compare performance characteristics of graphics
hardware.

Transform Node A scene graph node used to specify position and
orientation information.

Transform Separator
Node

A scene graph node used to “encapsulate” the effects of
all transform nodes below it in the scene graph. In other
words, the transform nodes below a transform separator
only affect the portion of the scene graph below the
transform separator, and nowhere else.

Transformation Matrix See 4x4 Matrix and 3x3 Matrix.

Translation A change in position.

Transparency If a texture is transparent, you will be able to see through
portions of the geometry to which the texture is applied.
Transparency is achieved by not rendering black texels.

Traversal Order The order in which nodes in a scene graph are processed
while the simulation is running. WTK starts at the root
node and traverses the scene graph tree from top to
bottom and left to right.

Universal Resource
Locator (URL)

String properties used in VRML files to specify a file
location and file name that contains data to be imported.
M-16 WorldToolKit Reference Manual

Universe The container of all entities considered by the
WorldToolKit simulation manager – including graphical
objects and other entities: lights, sensors, viewpoints, etc.

Universe Action
Function

 The action function is a user-defined function that is
called by the simulation manager each time through the
simulation loop. Using the action function, you can specify
actions involving any WTK objects, graphical or otherwise.
For example, program termination, or simulation activities
like terrain-following, object manipulation, intersection
testing, or changes to rendering parameters like lighting
conditions or background color can be modified through
this function.

Vertex A single point in three-dimensional space that defines a
corner of a polygon. A sequence of vertices defines a
polygon.

Vertex Normals A direction vector used for shading and rendering. You
can generate vertex normals with a modeling program or
use the NFF automatic normal generation feature. When
WTK reads a vertex with a normal associated with it, it
automatically renders the associated polygon as Gouraud-
shaded. See also Normals.

Viewpoint The observer’s point of view (position and orientation)
from which the scene is viewed.

VRML 1.0 An acronym for Virtual Reality Modeling Language. A
specification for the design and implementation of a
platform-independent language for virtual reality scene
description.

Window Projection
Types

See Projection Type.

Wireframe A rendering style in which textures, materials, and shading
is not visible because only the outlines of polygons will be
rendered, i.e. polygons will not be solid-filled. Rendering
using the wireframe style typically achieves the highest
frame rate of any of the rendering styles.

World coordinate
system

A coordinate system used to notate a world or universe.
The origin (0,0,0) of the WCS is typically located at the
center of a world or universe.
WorldToolKit Reference Manual M-17

Chapter M: Glossary
World Origin Defined as 0, 0, 0 in X, Y, Z world coordinates. The world
origin is the default location of new geometries.

WRL The VRML 1.0 file format used for representing
hierarchical 3D geometry and other data.

WTK Coordinate
System

The WTK coordinate convention has X pointing to the
right, Y pointing down, and Z pointing straight ahead. See
also Right-hand Rule.

WTK Tolerance Factor The WTK tolerance factor is specified with WTFUZZ (a
defined constant equal to 0.004).

X Resources On UNIX platforms, WTK provides the ability to set certain
parameters from an X Resources file when your
application starts up. For example, you can specify
background color, viewing angle, window size, and
window position this way.

Yaw The orientation of an object about the Y axis.

Yon Clipping Plane The physical range in front of the viewpoint, beyond which
objects are not rendered in that window. That is, objects
appearing beyond the yon clipping plane are not rendered.
Objects are rendered only in the area between the hither
clipping plane and the yon clipping plane.

Z-buffer A software or hardware buffer that stores Z coordinate
information.
M-18 WorldToolKit Reference Manual

6

4

3

5
3

6
6
5

-1
3
3
4
4
6
6
6
5

4

9
16

5
5
1
4
-2

2
9

Index
2D
graphical entities 17-24
vectors .. 25-4
window points, usage example A-6

2D fonts .. 17-24
WTwindow_draw2Dtext 19-7
WTwindow_get2Dtextextents 19-7
WTwindow_set2Dfont 19-6

3D
geometry .. 6-1
matrices .. 25-21
vectors .. 25-5

3D fonts
3D font file ... 9-5
ASCII character set 9-6
base points6-20, 9-3, 9-6
character placement 6-20
creating text strings 6-20
default spacing 9-5
diagram, extents box 9-4
diagram, origin and spacing 9-2
extents definition 9-4
origin .. 6-20
overview ... 9-1
spacing ..6-20, 9-3
WTfont3d_charexists 9-5
WTfont3d_delete 9-3
WTfont3d_getextents 9-4
WTfont3d_getspacing 9-3
WTfont3d_load 9-2
WTfont3d_setspacing 9-3
WTgeometry_newtext3d 6-20

3D matrix functions
WTm3_init ... 25-21
WTm3_multm3 25-22
WTm3_transpose 25-22

3D Mouse
defined constants 13-76
list of functions 13-8
manufacturer ...J-1
overview ... 13-73
raw data .. 13-74
scaling records 13-75
suspend button 13-76
update function 13-76
warning message D-6, D-13

WTbaron_update 13-7
3D sound

see Sound support library
3D Studio

3DS file format 6-2
warning message D-10, D-1

4D matrix functions
WTm4_copy 25-2
WTm4_init ... 25-23
WTm4_invert 25-24
WTm4_multm4 25-24
WTm4_rotatep3 25-2
WTm4_transpose 25-2
WTm4_xformp3 25-24

5DT Glove
calibrating .. 13-6
changing the hand model 13-6
defined constants 13-6
list of functions 13-8
manufacturer ...J
overview .. 13-6
raw data .. 13-6
scaling records 13-6
update function 13-6
WTglove5dt_calibrateclosed 13-6
WTglove5dt_calibrateopen 13-6
WTglove5dt_loadhandmodel 13-6
WTglove5dt_rawupdate 13-6
WTglove5DT_update 13-64
WTglove5dt_updatefingers 13-6

6D
coordinate frame structure 25-1
sensors .. 13-

A
Absolute sensor records

definition .. 13-2
generating relative records for 13-2
setting ... 13-2

Accessing ... 13-7
Accumulated transformation 4-8
Acoustetron .. 20
Action function .. 2-7

setting ... 2-1
stopping the simulation 2-

B Index

4

8
1
9
5
4
3
9
5
2
2
5
6
2
2
5
5
5
4
2
4
-4
0
1
1
2

8
-8
-2

27
8
1
-6

-4

8

1

3

2
9

with keyboard function24-2, 24-3
Ambient light node

and performance 12-4
creating ... 12-5
definition .. 12-1

Ancestor node .. 4-7
Anchor nodes

description .. 4-13
functions ... 4-63
overview ... 4-28
setting the URL path 4-62
WTanchornode_getlocation 4-63
WTanchornode_setlocation 4-63

Angular rate
getting from a sensor 13-13
setting for a sensor 13-12

Animation
example using switch nodes A-26

Anti-aliasing
definition ...M-2
enabling .. 6-34
WTgeometry_setrenderingstyle 6-33

Appearance of geometries
changing (example of) A-13

Application development process 1-13
Ascension Bird

see Bird
Ascension Extended Range Bird

see Extended Range Bird
Ascension Flock of Birds

see Flock of Birds
Aspect ratio

and viewpoints 16-18
and windows .. 17-5
definition ...M-2

Asynchronous connections 21-22
WTconnection_issynchronous 21-31
WTconnection_setsynchronous 21-30

AutoCAD ... 6-1
Automatic normal generation

with NFF files .. F-8

B
Back faces

also see Polygons
and geometry-constructor functions 6-11
default .. 6-23

definition .. 6-14
rejection 6-10, 6-1

Backward compatibility
aligning object axisG-2
animation ...G-3
assigning tasks to objectsG-2
attaching objectsG-2
coordinate framesG-3
diagram, new vs. old universeG-
equivalent functionsG-
group files in NFFG-2
group functionsG-3
handles ...G-3
instancing ...G-
lights ... G-6, G-2
loading objectsG-2
mapping 2.1 functionsG-2
material colorsG-3
materials ...G-
materials in NFFG-2
new functionsG-3
new paradigmsG-
NFF files ..G-2
nodes ..G
object axes ...G-2
overview ..G-
picking ...G-3
pivot points ..G-3
positioning and moving objects G-23, G-30
positioning static objectsG-2
replaced featuresG
scene graph conceptsG
sensors ..G-
terrains ...G-
Version 2.1 to Release 6/7/8/9G-

Base points6-20, 9-3, 9
Baud rates

error message ...D
Benchmarks

obtaining ..A-3
BFF

also see NFF
binary file format 6-3
overview .. F-

Billboard effect
usage exampleA-3

Bird
constants ..C-1
DIP switch settings 13-3
Index-2 WorldToolKit Reference Manual

Index C

9
7
7

-4
-5
3

9
6
3

3

0

6

3
6
2
2
3

1
8
7
6
6
8
2

7
7
7
7
8
0

9
2
9
1

interference .. 13-42
list of functions 13-7
manufacturer ...J-1
overview ... 13-39
raw data .. 13-41
scaling records 13-41
setting Bird hemisphere 13-43
sychronization with CRT 13-42
update function 13-42
warning message D-7, D-11
WTbird_getabsoluterecord 13-41
WTbird_gethemisphere13-43, 13-44
WTbird_sethemisphere 13-43
WTbird_setsync 13-42
WTbird_update 13-42

Blocks (boxes)
creating ... 6-15

Bluebook Ethernet standard 22-2
BOOM

BOOM2C versus BOOM3C 13-55
defined constants 13-57
example .. 13-55
joystick ... 13-58
list of functions 13-7
manufacturer ...J-2
overview ... 13-55
raw data .. 13-56
scaling records 13-56
update function 13-57
warning message D-6
WTboom_update 13-57
WTsensor_getmiscdata 13-57

Boston Dynamic’s DiGuy, using with WTK ...
A-39

Bounding boxes
also see Intersection testing
making visible 4-73
overview ... 4-72

C
C++ wrappers

transitioning from R6 to R7/8/9 H-1
using ... 26-1

CADMOVER program 6-3
Callback functions 2-7
Center of gravity

definition .. 7-5

example .. 7-
of a texture ... 10-2

Child node .. 4-
CIS Graphics Geometry Ball Jr.

see Geometry Ball Jr.
Classes

access methods 1
constructors/destructors 1
WTK classes .. 1-

Client-server networking (via World2World) .
21-1

Close functions for sensors
closefn .. 13-
customizing ..E-

Clouds ..A-1
Collision detection

see Intersection testing
Color

also see Materials
as related to light 12-
setting background color from a file 2-28

Composite transformations 4-3
Cones

creating .. 6-1
Connections

callbacks .. 21-2
functions .. 21-2
overview .. 21-2
synchronous vs. asynchronous 21-2
update rates .. 21-2
WTconnection_addcallback 21-3
WTconnection_connect 21-2
WTconnection_delete 21-2
WTconnection_deleteallenumtrees 21-3
WTconnection_deleteenumtreebyid .. 21-3
WTconnection_disconnect 21-2
WTconnection_getcallback 21-3
WTconnection_getclockdiff 21-30
WTconnection_getconnections 21-2
WTconnection_getdata 21-2
WTconnection_getenumtree 21-3
WTconnection_getenumtreebyid 21-3
WTconnection_getenumtreeid 21-3
WTconnection_getlatency 21-3
WTconnection_getmyid 21-28
WTconnection_getmyname 21-2
WTconnection_getroot 21-3
WTconnection_getstatus 21-2
WTconnection_getupdaterate 21-3
WorldToolKit Reference Manual Index-3

C Index

7
7
7
7
2
6
3
5
1

0
9
2
7

-3

3
3
2

16
4

7
9

2
1
5

2

-2

0

-2
8
9
8
9
0

WTconnection_getuserid 21-33
WTconnection_getuseridbyname 21-33
WTconnection_getusername 21-33
WTconnection_getusernamebyid 21-33
WTconnection_issynchronous 21-31
WTconnection_new 21-26
WTconnection_next 21-28
WTconnection_numcallbacks 21-32
WTconnection_numenumtrees 21-37
WTconnection_numusers 21-32
WTconnection_print 21-29
WTconnection_remove 21-32
WTconnection_setdata 21-27
WTconnection_setsynchronous 21-30
WTconnection_setupdaterate 21-31
WTconnection_synch 21-30
WTconnection_update 21-29
WTconnection_updateconnections 21-29
WTsharegroup_getconnection 21-18
WTuniverse_deleteconnections 21-28

Constants
 also see WTCONSTANTS by name
appendix ...C-1
X, Y, Z, and W defined values 25-1

Constraining
sensor input .. 13-21
sensor records ..E-3
through constantsC-1

Constraint frame
setting for a motion link 15-10

Constructor functions
creating custom geometries 6-21
creating predefined geometries 6-14

Content nodes
definition .. 4-5
encountering ... 4-10
fog .. 4-11
geometry .. 4-11
light .. 4-11
transform .. 4-11

Convergence distance
diagram .. 16-22
getting for a display 16-21
getting for a viewpoint 16-23
setting for a display 16-21
setting for a viewpoint16-4, 16-22

Conversion functions
4D matrix to pq 25-31
direction vector to quaternion .25-30, 25-31

euler to matrix 25-2
euler to quaternion 25-2
getting a quaternion’s rotation 25-1
matrix to euler 25-2
matrix to euler (nearest) 25-3
matrix to quaternion 25-2
normal to slope (radians) 25-3
overview .. 25-2
pq to 4D matrix 25-3
quaternion to 3D matrix 25-26
quaternion to 4D matrix 25-32
quaternion to direction vector 25-3
quaternion to euler 25-2
quaternion to euler (nearest) 25-3
setting a quaternion’s rotation 25-1

Conversion programs
geometries .. 6

Coordinate
conventions .. 17-2
frame example 4-3
frames .. 4-3
sensor coordinate axes 13-
systems, definitionM-
transformations for viewpoints 16-24

Coordinate frame structures
see Math library

Coordinate systems
local ...M-
parent ..M-
world ...M-17

Coplanar
polygons ... 6-1
testing ... 25-1

CRE sounds ... 20-1
CRT

CRT based-device (BOOM) 13-55
interference .. 13-4

Crystal River Engineering
manufacturer ...J

CrystalEyesVR
defined constants 13-11
list of functions 13-8
manufacturer ...J
overview .. 13-10
raw data .. 13-10
reference frame diagram 13-10
scaling records 13-10
update function 13-11
with Logitech tracker 13-77
Index-4 WorldToolKit Reference Manual

Index D

6

1

3
4
4

1
8
-1
4
-7

6
6
1

9

0
4

8
-2

-2

1
8
1

-3

2
2

WTcrystaleyesVR_update 13-110
Culling

overview ..4-4, 4-56
Cullmode constantsC-8
Current element

pointer .. 14-17
Current node

pointer .. 14-16
Current viewpoint 14-28
Custom graphical objects 6-1
Custom sensor drivers

writing .. 13-24
Customer support

 see Technical support
CyberGlove

introduction 13-123
Cyberglove

accessing bend angle data 13-132
accessing graphical hand model objects

13-130
calibration .. 13-126
defined constants 13-134
graphical hand model 13-127
graphical hand model visibility 13-130
initialization 13-124
on windows platforms 13-135
WTcybglove_deletehandmodel 13-129
WTcybglove_getanglearray 13-132
WTcybglove_getfingers 13-131
WTcybglove_getforearm 13-130
WTcybglove_getpalm 13-131
WTcybglove_new 13-124
WTcybglove_setvisibility 13-130
WTcybglove_showcalibrationpanel 13-126
WTcybglove_usehandmodel 13-127

CyberMaxx2 HMD 13-119
example .. 13-119
list of functions 13-9
manufacturer ...J-2
overview ... 13-119
raw data .. 13-120
scaling records 13-120
WTcybermaxx2_rawupdate 13-121
WTcybermaxx2_update 13-120

Cylinders
creating ... 6-15

D
Data types for properties

listing of ... 3-14
WTproperty_getdatatype 3-1

Debugging
math print functions 25-

Default
color of polygons 6-2
geometry rendering constant 6-3
material-table entry 8-1
sampling rate of viewpoint position and

orientation 14-14
sensor sensitivity 13-1
universe rendering options 2-1

Defined constantsC
Depth-first traversal of scene graph 4-8
Descendant node .. 4
Device-specific constructor functions

example .. 13-
overview .. 13-

Directed light ... 4-1
Directed light node

definition .. 12-1
Direction constantsC-
Direction vector

convert to quaternion 25-3
Directories, reading 24-
Display

 also see Windows
characteristics 2-1
manufacturers ...J
WTDISPLAY constants 2-2, C-2

Distributed simulations
see Networking

Documentation
available for WTK 1-7

Drawing constantsC
Drawing functions

2D .. 19-
3D .. 19-
user-defined ... 19-

DXF
and WTuniverse_getinitialview 2-16
error message D-2, D
file format .. 6-2
texture specification 10-2
warning message D-9, D-1
WorldToolKit Reference Manual Index-5

E Index

6
1
6
1
4

8
.

3

0

2
2
3
5
9
8

..

4
.

5
..

2

E
Electromagnetic sensors

overview ... 13-2
Enumeration

overview ... 21-34
WTconnection_deleteallenumtrees 21-36
WTconnection_deleteenumtreebyid .. 21-36
WTconnection_getenumtree 21-37
WTconnection_getenumtreebyid 21-37
WTconnection_getenumtreeid 21-38
WTconnection_numenumtrees 21-37
WTsharegroup_enumerate 21-36

Environment VariablesB-1
Error messages

appendix .. D-1
application function 24-8

Ethernet ...22-1, 22-2
Euler angles, converting 25-25

 also see Conversion functions
Event order constantsC-3
Events

detecting keyboard events A-8
event handlers 3-23
overview ... 3-23
WTbase_removeallhandlers 3-26
WTproperty_addhandler 3-25
WTproperty_gethandler 3-26
WTproperty_numhandlers 3-25
WTproperty_removeallhandlers 3-26
WTproperty_removehandler 3-25
WTuniverse_processevents 3-26

Explosions ... A-15
Extended Range Bird

constants ...C-12
list of functions 13-7
overview ... 13-51
raw data .. 13-52
scaling records 13-52
update function 13-53

Extents
3D font ... 9-4

Extents box
defined ... 4-52
radius .. 4-52

Extruded geometry
creating ... 6-19

Eye constants ...C-3

F
Fakespace BOOM

see BOOM
Fakespace Pinch Glove System

see Pinch Glove
FALSE constant ...C-
FAQs ..A-

animation exampleA-2
associating a task with an objectA-2
changing the event orderA-3
detecting button events using "misc data"

functionsA-10
detecting keyboard eventsA-
displaying multiple instances of an object ..

A-5
dynamically changing a geometry’s

appearanceA-1
explanation of WTmovnode_load versus

WTnode_loadA-4
getting a pointer to a nodeA-2
getting pointer to a WTK displayA-38
getting the object positionA-25
getting transparencies in a textureA-1
handling portalsA-2
keeping an object perpendicularA-3
loading lights as movablesA-1
LOD exampleA-2
measuring performanceA-3
objects following a lightA-16
objects following the viewpointA-16
orienting sensors differentlyA-36
picking the frontmost polygonA-6
recursively walking down the scene graph

A-19
terrain followingA-31
testing for intersections between viewpoint

and universeA-2
testing for objects intersecting with objects

A-25
using material tables for colorA-11
window usageA-3
WTmovnode_load versus WTnode_load ..

A-4
WTnode_load versus

WTgeometrynode_loadA-3
FASTRAK

adaptive filtering 13-95
DIP switch settings 13-9
Index-6 WorldToolKit Reference Manual

Index G

6
6
5
5
6
6
5

1

-2
1
2
2
2

3

-4
1
2
6

0
23

1

-8
1
2
9

9
9

error message .. D-9
list of functions 13-8
manufacturer ...J-1
overview ... 13-92
raw data .. 13-93
scaling records 13-94
signal filtering 13-94
unit argument 13-9
update function 13-94
warning message D-9
WTfastrak_afilter 13-95
WTfastrak_afilteroff 13-95
WTfastrak_pfilter 13-95
WTfastrak_pfilteroff 13-95
WTfastrak_update 13-94

Field sequential mode, stereo viewing 2-34
Fifth Dimension Technologies’ 5DT Glove

see 5DT Glove
File formats

loading unsupported ones 6-3
used with WTgeometrynode_load 4-47
used with WTK 6-2

File selection box object
see User interface

Filetype constantsC-3
Filtering (mipmapping)

textures overview 10-24
Flashing

between coplanar surfaces6-12, 6-13
Flipbook method, animation A-26
Floating point

comparisons 25-33
tolerances ... 6-13

Flock of Birds
constants ...C-12
Extended Range Bird 13-51
list of functions 13-7
manufacturer ...J-1
overview ... 13-51
unit argument 13-9
warning message D-6

FLT file format .. 6-3
Fog

attributes ... 4-64
constants ...C-8
construction functions 4-45
overview ... 4-64
WTfognode_getcolor 4-65
WTfognode_getlinearstart 4-67

WTfognode_getmode 4-6
WTfognode_getrange 4-6
WTfognode_new 4-4
WTfognode_setcolor 4-6
WTfognode_setlinearstart 4-6
WTfognode_setmode 4-6
WTfognode_setrange 4-6

Fog nodes
 see Fog
description .. 4-1

Fonts
see 2D fonts
see 3D fonts

Form object
see User interface

Formula T2
list of functions 13-8
manufacturer ...J
overview .. 13-11
raw data .. 13-11
scaling records 13-11
update function 13-11
WTformula_drive 13-112
WTformula_rawupdate 13-11

Frame of reference
constants ..C
description .. 4-3
overview .. 4-3
rotating sensor input 13-1
viewpoint functions 16-14

Frame rate
back face rejection 6-1

Frames per second 2-
Frequently Asked Questions

see FAQs ..A-
Front faces

see Polygons

G
Gameport Joystick 13

defined constants 13-7
range .. 13-7
raw data .. 13-6
reinitializing 13-73
scaling records 13-6
update functions 13-6
WTjoystick_fly 13-70
WorldToolKit Reference Manual Index-7

G Index

1
6
5
8
8
0

-6

5
7

3
3
8
4
4
1

5
4

9

1

-9
8

-4

-3

4

3

3

3
3
3
3
3
4

WTjoystick_getdrift 13-73
WTjoystick_getrange 13-72
WTjoystick_rawupdate 13-71
WTjoystick_readcalibrationfile 13-73
WTjoystick_setdrift 13-72
WTjoystick_walk 13-70
WTjoystick_walk2 13-70

Gas Clouds .. A-13
GEO

file format .. 6-3
Geographically disbursed simulations

see Networking
Geometry

3D text string 6-20
also see WTGeometry functions by name
animating .. A-26
back faces ... 6-14
blocks (boxes) 6-15
bounding box extents 6-29
cones .. 6-16
construction functions 4-44
constructor functions 6-11
creating custom geometries 6-21
creating predefined types 6-14
creation and deletion 6-26
cylinders ... 6-15
dynamic construction 7-10
editing (example of) A-13
extents box ... 4-51
extents,radius, and midpoint diagram .. 4-52
extrusions ... 6-19
functions ... 6-14
getting rendered position of A-25
hemispheres ... 6-17
midpoint4-51, 6-28
modification ... 6-37
moving example A-25
nodes .. 6-1
optimization ... 6-39
overview ... 6-1
prebuild .. 6-39
properties4-51, 6-28
pyramid .. 6-16
radius .. 4-51
rectangles ... 6-17
referencing vertices 7-10
spheres ... 6-16
static and dynamic 4-2
stretching and scaling 6-37

terrain exampleA-3
tetrahedon .. 6-1
triangular prisms 6-1
truncated cones 6-1
using materials tables with 8-1
using materials with 6-3
vertex-level editing 6-42
warning messageD
WTnode_load versus

WTgeometrynode_loadA-3
Geometry Ball Jr.

defined constants 13-5
example .. 13-1
list of functions 13-7
overview .. 13-5
raw data .. 13-5
reference frame diagram 13-1
scaling records 13-5
update function 13-5
warning messageD-1
writing a driverE-10
WTgeoball_present 13-5
WTgeoball_update 13-5

Geometry motion reference frames
rotating sensor input 13-1

Geometry nodes
description .. 4-1

Global options
constants ..C
rendering parameters 2-1

Gouraud shading6-8, F
Graphic boards

manufacturers ...J
Group movable nodes

creation .. 5-
see also Movables

Group node
description .. 4-1

Grouping nodes
anchor .. 4-1
definition .. 4-6
group .. 4-1
inline .. 4-1
level of detail 4-1
root ... 4-1
switch ... 4-1
transform separator 4-1

GUI elements
see User interface
Index-8 WorldToolKit Reference Manual

Index H

-1

14

-1
0
1
1
1
1

7
-5

-4
-4
7

7
6
6

-2
3
3
3

-6

5
4
6
6

5
6
8
8
9

H
Hardware Guides 1-10
Head Tracker

defined constants 13-81
diagram .. 13-79
overview ... 13-77
raw data .. 13-79
scaling records 13-80
update function 13-80
WTlogitech_update 13-80

Head-mounted display
setting convergence 16-21
with viewpoint paths 14-20

Heads-up display
creating ... 17-24

Helmet orientation
with Logitech tracker (diagram) 13-79

Hemispheres
creating ... 6-17

Hither clipping 17-18
Host-specific window

usage example A-35
Http

specifying a link to 4-46
support for .. 4-46

I
i-glasses!

list of functions 13-9
manufacturer ...J-2
overview ... 13-121
raw data .. 13-122
scaling records 13-122
update function 13-122
WTiglasses_rawupdate 13-123
WTiglasses_update 13-122

Image file
conversion ... I-2
loading into window 17-25
warning message D-7, D-10

Image flashing
overlapping polygons 6-12

Inline nodes
description .. 4-13
functions ... 4-63
overview ... 4-28
setting the URL path 4-62

WTinlinenode_getlocation 4-64
WTinlinenode_setlocation 4-63

Input sensors
 also see Sensors
manufacturers ...J
supported by WTK 1-12

Inside surfaces of geometries 6-
InsideTRAK

list of functions 13-8
manufacturer ...J
overview .. 13-9
raw data .. 13-9
scaling records 13-9
update function 13-9
WTinsidetrak_update 13-9

Instance
defined ... 4-3
usage example ..A

Instancing
backward compatibilityG-5
node types supported 6
scheme supported 6
with the scene graph 4-3

Interlaced mode, stereo viewing
hardware interlaced 2-3
overview .. 2-3
stencil interlaced 2-3

Internal fault
error message ...D

Internet ... 22-
IP and UDP guidelines 22-
TCP .. 22-

Internet protocol
time to live value 22-8

Interpolating
paths .. 14-1, 14

Intersection testing
collision detection exampleA-25
during simulation loop 2-11
overview .. 4-8
usage exampleA-2
using bounding boxes 4-8
using node instances 4-8
using polygons 4-8
using polygons in node paths 4-8
using rays and nodes 4-8
using rays and polygons 4-8
using viewpoints 4-8
using WTviewpoint_getlastposition 16-9
WorldToolKit Reference Manual Index-9

K Index

-7

-2
-2
1
-8

2

-5
5
1
1
3
4
1
3

-5
4

1
4

2
1
-4

9
1
8
-1

9
8

0

6

Introduction
what is WorldToolKit? 1-1

Invalid
polygons (warning message) D-5
quaternion (warning message) D-11
texture name (error message) D-2

Invert a 4D matrix
WTm4_invert 25-24

IP address
default .. 22-8

ipaste (Iris utility) .. I-2
ISOTRAK

DIP switch settings 13-85
list of functions 13-8
manufacturer ...J-1
overview ... 13-85
raw data .. 13-86
reference frame diagram 13-86
scaling records 13-86
update function 13-88
WTpolhemus_update 13-88

ISOTRAK II
DIP switch settings 13-88
list of functions 13-8
manufacturer ...J-1
overview ... 13-88
raw data .. 13-89
scaling records 13-89
update function 13-90
WTisotrak2_update 13-90

K
Keyboard .. 24-1

constants ...C-4
example .. 24-3
input buffer .. 24-2
using to detect events A-8
WTkeyboard_close 24-3
WTkeyboard_getkey 24-2
WTkeyboard_getlastkey 24-2
WTkeyboard_open 24-1

L
Label object

see User interface
Latency

see Networking
Leaf node ... 4
Level of detail

 see LOD nodes
License

server (error message)D
type (error message)D
type (warning message)D-1
warning messageD

Light nodes
see Lights

Lights
attributes .. 12-
backward compatibilityG-6
constants ..C
constructing light nodes 4-43, 12-
description .. 4-1
directed .. 4-1
direction ... 12-1
disabling ... 12-
example file 12-1
intensity .. 12-
list of light nodesG-27
loading lights from file 12-9
management ... 12
maximum number 12-
object following a lightA-16
overview .. 12-
performance impact 12-
point light ... 4-11
properties ... 12-1
saving to a file 12-1
shadows .. 12
specifying ambient lighting 12-10
specifying directed lights 12-
spot light .. 4-1
spot light diagram 12-
types ... 12
WTlightnode_getambient 12-15
WTlightnode_getangle 12-1
WTlightnode_getattenuation 12-1
WTlightnode_getdiffuse 12-16
WTlightnode_getdirection 12-13
WTlightnode_getexponent 12-2
WTlightnode_getintensity 12-14
WTlightnode_getposition 12-12
WTlightnode_getspecular 12-1
WTlightnode_gettype 12-18
WTlightnode_load 12-9
Index-10 WorldToolKit Reference Manual

Index M

1

1
8

2
3
3
3
4
2
2
2
1
-2
-2

4

-5
4
9
4
7
5
9
6
2
1

8
3

WTlightnode_newambient 12-5
WTlightnode_newdirected 12-6
WTlightnode_newpoint 12-7
WTlightnode_newspot 12-8
WTlightnode_save 12-11
WTlightnode_setambient 12-14
WTlightnode_setangle 12-19
WTlightnode_setattenuation 12-17
WTlightnode_setdiffuse 12-15
WTlightnode_setdirection 12-13
WTlightnode_setexponent 12-19
WTlightnode_setintensity 12-14
WTlightnode_setposition 12-12

Links
see Motion Links

List
of paths14-8, 14-10
of sensors ... 13-10
of vertices ... 7-10
of viewpoints .. 16-4
of windows ... 17-8

Local coordinate system
defined ..M-7

Local networks
see Networking

Locked properties
description .. 21-3
WTproperty_islocked 21-10
WTproperty_islockedbyme 21-11
WTproperty_lock 21-10
WTproperty_unlock 21-10

Locked sharegroups
description .. 21-12
WTsharegroup_islocked 21-19
WTsharegroup_islockedbyme 21-19
WTsharegroup_lock 21-19
WTsharegroup_unlock 21-19

LOD nodes
description .. 4-13
overview ... 4-26
usage example A-29
WTlodnode_getcenter 4-56
WTlodnode_getrange 4-55
WTlodnode_numranges 4-56
WTlodnode_setcenter 4-56
WTlodnode_setrange 4-55

Logitech 3D Mouse
see 3D Mouse

Logitech Head Tracker

see Head Tracker
Logitech Magellan

see Space Control Mouse
Logitech Red Baron

see 3D Mouse
Logitech Space Control Mouse

see Space Control Mouse

M
Magellan

see Space Control Mouse
Material ID

usage exampleA-1
Material index table entries

WTgeometry_getvertexmatid 6-48
WTgeometry_setmatid 6-3
WTgeometry_setvertexmatid 6-4
WTpoly_getmatid 7-3
WTpoly_setmatid 7-3

Material properties
ambient .. 8-
ambient-diffuse 8-
calculations made for color 8-
determining color 8-
diagram .. 8-
diffuse .. 8-
emissive ... 8-
opacity .. 8-
overview .. 8-
shininess ... 8
specular .. 8
with 3DS files .. 6-2
WTmtable_newentry 8-1

Material tables
constants ..C
entry functions 8-1
file formats used 8-1
NFF .. F-
out-of-range indices 8-1
overview .. 8-
results of creating a table 8-
sample material file 8-
saving ... 8-1
usage exampleA-1
WTmtable_copyentry 8-14
WTmtable_delete 8-
WTmtable_getbyname 8-1
WorldToolKit Reference Manual Index-11

M Index

2
1
3

5
3

3
4
5
4
4
7
1
6
8
1

7
8
9
4

6

6

0
6

9
9
7

1
0
6

2
0

WTmtable_getdata 8-13
WTmtable_getentrybyname 8-17
WTmtable_getentryname 8-16
WTmtable_getname 8-13
WTmtable_getnumentries 8-8
WTmtable_getproperties 8-11
WTmtable_getvalue 8-15
WTmtable_load 8-11
WTmtable_merge 8-8
WTmtable_new 8-7
WTmtable_newentry 8-14
WTmtable_save 8-12
WTmtable_setdata 8-13
WTmtable_setentryname 8-16
WTmtable_setname 8-12
WTmtable_setproperties 8-9
WTmtable_setvalue 8-15
WTpoly_getmatid 7-3
WTpoly_setmatid 7-3

Materials
advanced topics 8-17
backward compatibility G-5
material tables .. 8-5
overview ... 8-1
properties ... 8-1

Math conventions
overview ... 25-2
used with custom sensor driversE-2

Math library
 also see Conversion functions
2D vectors .. 25-4
3D matrices .. 25-21
3D vectors .. 25-5
4D matrices .. 25-22
conversion functions 25-25
floating point comparisons 25-33
math data types 25-1
overview ... 25-1
WorldToolKit conventions 25-2
WTdir_2q ... 25-30
WTdirandtwist_2q 25-31
WTeuler_2m3 25-27
WTeuler_2q 25-27
WTFUZZ ... 25-33
WTm3_2euler 25-27
WTm3_2eulernear 25-32
WTm3_2q .. 25-26
WTm3_copy 25-22
WTm3_copyt 25-22

WTm3_init ... 25-21
WTm3_multm3 25-22
WTm3_transpose 25-2
WTm4_2pq .. 25-3
WTm4_copy 25-2
WTm4_init ... 25-23
WTm4_invert 25-24
WTm4_multm4 25-24
WTm4_rotatep3 25-2
WTm4_transpose 25-2
WTm4_xformp3 25-24
WTnormal_2slope 25-3
WTp2_copy ... 25-
WTp2_dot .. 25-
WTp2_mag .. 25-
WTp2_norm ... 25-
WTp3_add ... 25-
WTp3_coplanar 25-1
WTp3_copy ... 25-
WTp3_cross ... 25-
WTp3_distance 25-1
WTp3_disttovector 25-11
WTp3_dot .. 25-
WTp3_equal .. 25-
WTp3_exact ... 25-
WTp3_frame2frame 25-3
WTp3_init .. 25-5
WTp3_invert .. 25-
WTp3_local2worldframe 25-34
WTp3_mag .. 25-
WTp3_multm3 25-10
WTp3_multm4 25-10
WTp3_mults 25-1
WTp3_norm ... 25-
WTp3_print .. 25-12
WTp3_rotate .. 25-
WTp3_rotatept 25-
WTp3_subtract 25-
WTp3_world2localframe 25-34
WTp3_xform 25-10
WTpq_2m4 .. 25-3
WTpq_copy 25-2
WTpq_frame2frame 25-3
WTpq_init .. 25-20
WTpq_local2worldframe 25-36
WTpq_print .. 25-20
WTpq_world2localframe 25-36
WTq (quaternions) 25-1
WTq_2dir ... 25-3
Index-12 WorldToolKit Reference Manual

Index M

-6
5
5
8
-5
-6
6

8
5

4

0
5

4

0

2

2

-3
2

9

-8

4
3
3

3
-7
3
2
2
9

8

WTq_2dirandtwist 25-30
WTq_2euler 25-29
WTq_2eulernear 25-32
WTq_2m3 .. 25-26
WTq_2m4 .. 25-32
WTq_construct 25-17
WTq_copy ... 25-15
WTq_dot .. 25-18
WTq_equal ... 25-16
WTq_exact ... 25-16
WTq_frame2frame 25-35
WTq_getangle 25-17
WTq_getvector 25-16
WTq_init .. 25-14
WTq_interpolate 25-18
WTq_invert .. 25-15
WTq_local2worldframe 25-35
WTq_mag .. 25-15
WTq_mult .. 25-17
WTq_multinv 25-18
WTq_norm ... 25-16
WTq_print .. 25-19
WTq_scale ... 25-17
WTq_world2localframe 25-35
WTzero .. 25-33

Mathematical constantsC-6
Matrix

3D functions 25-21
4D functions 25-22
conversion, see Conversion functions
diagram .. 4-35

Maximum angular rate
sensors .. 13-13

Maximum rotation
sensors .. 13-12

Memory
efficiency ... 6-13

Menu bar object
see User interface

Menu item button object
see User interface

Menu pop-up button object
see User interface

Mesh file (3DS) ... 6-2
Meshing color information

radiosity preprocessing 6-10
Message box object

see User interface
Messages

constants ..C
latency .. 22-
overview .. 24-
WTerror ... 24-
WTmessage .. 24
WTmessage_sendto 24
WTwarning .. 24-

Midpoint
of a geometry 6-2
usage exampleA-2

Mipmapping
also see Filtering
textures ... 10-2

Miscellaneous data
example of detecting button eventsA-1
sensors 13-15, 13-2

Missile plumes ...A-1
Modeling

3DS file format 6-2
back face rejection 6-1
BFF file format 6-3
considerations for geometries 6-
converting files6-11, I-3
coplanar considerations 6-1
DXF file format 6-2
error message 24-8, D
file formats supported 6-
FLT file format 6-3
generating vertex normals 6-
GEO file format 6-3
gouraud shading 6
NFF file format 6-3
OBJ file format 6-2
scale factor ... 6-1
scaling factors 6-1
setting model paths (resource files) 2-3
SLP file format 6-3
software programs I-
subface considerations 6
texture uv considerations 10-1
textures in model files 10-2
using textures 10-
vertex colors ... 6-
vertex colors with FLT files 2-25
VRML file format 6-3
with a CAD program 6-7
World Up Modeler I-1

Monitor distortion
correcting ... 16-1
WorldToolKit Reference Manual Index-13

M Index

8

9
9
1
7
7
2

8
8
6
9

-8

1
2
3
-4
5
5
-4
2
2
1
4

-3
9
3
5
7
3
1
3
8
8
4
..

3
4

4

Monoscopic viewing
diagram .. 17-6

Morph
usage example A-13

Motion Links
constants ...C-7
constraints .. 15-3
default constraint frames 15-11
example of constraining 15-13
functions ... 15-3
reference frames15-2, 15-4
sources ... 15-1
targets ... 15-1
valid constraint frames 15-10
valid reference frames 15-8
WTmotionlink_addconstraint 15-11
WTmotionlink_delete 15-5
WTmotionlink_enable 15-5
WTmotionlink_getconstraintframe 15-11
WTmotionlink_getdata 15-6
WTmotionlink_getreferenceframe 15-9
WTmotionlink_getsource 15-6
WTmotionlink_gettarget 15-6
WTmotionlink_isenabled 15-5
WTmotionlink_next 15-8
WTmotionlink_removeconstraint 15-12
WTmotionlink_setconstraintframe 15-10
WTmotionlink_setdata 15-6
WTmotionlink_setreferenceframe 15-8
WTpath_setrecordlink 14-15
WTuniverse_deletelink 2-17
WTuniverse_getmotionlinks 2-17

Mouse
cursor ...E-8
defined constants 13-33
example of update functionE-8
list of functions 13-7
overview ... 13-26
platform-independent sensor macro ... 13-26
raw data .. 13-27
scaling records 13-27
screen location 13-27
update functions 13-28
using as a trackball 13-36
warning message D-12
WTmouse_close 13-7
WTmouse_drawcursor 13-28
WTmouse_gettrackballdrift 13-37
WTmouse_gettrackballsnap 13-39

WTmouse_gettrackballsnapangle 13-3
WTmouse_inwindow 13-35
WTmouse_move2D 13-2
WTmouse_moveview1 13-2
WTmouse_moveview2 13-3
WTmouse_new 13-
WTmouse_open 13-
WTmouse_rawupdate 13-3
WTmouse_settrackballdrift 13-37
WTmouse_settrackballsnap 13-3
WTmouse_settrackballsnapangle 13-3
WTmouse_trackball 13-3
WTmouse_trackballreset 13-3
WTmouse_trackballvpoint 13-37
WTmouse_whichwindow 13-35

movable node constantsC
Movable Nodes

see Movables
Movables

attaching to parent node 5-1
components .. 5-
creating .. 5-
creating group nodes 5
creating LOD nodes 5-
creating movable switch nodes 5-
creating separator nodes 5
deleting attachments 5-1
detaching child nodes 5-1
diagram .. 5-
directed light nodes 5-
following a lightA-16
geometry nodes 5
hierarchies .. 5-
instancing ... 5-1
loading movable nodes 5-
node position and orientation 5-
number of attachments 5-1
overview .. 5-
point light nodes 5-
rotate about midpoint 5-
rotating movable nodes 5-
spot light nodes 5-
WTmovenode_load versus WTnode_load

A-4
WTmovgeometrynode_new 5-
WTmovgeometrynode_newdirected 5-
WTmovgeometrynode_newpoint 5-3
WTmovgeometrynode_newspot 5-
WTmovlodnode_new 5-5
Index-14 WorldToolKit Reference Manual

Index N

-5
1

1
8
7
6
6
8
2

7
7
7
7
8
0

9
2
9
1
3
3
3
3
1
6
8
2
7
2

2
7
0
1
0
9
9
8
9
8

7

7
9
9

WTmovnode_alignaxis 5-8
WTmovnode_attach 5-11
WTmovnode_axisrotation 5-8
WTmovnode_deleteattachment 5-12
WTmovnode_detach 5-12
WTmovnode_getattachment 5-13
WTmovnode_instance 5-13
WTmovnode_load 5-5
WTmovnode_numattachments 5-13
WTmovsepnode_new 5-4
WTmovswitchnode_new 5-5

Multicast networking 22-1
Multicasting ... 22-3

IP address ... 22-8
MultiGen/ModelGen Flight file 6-5

format ... 6-3
subfaces .. 6-7

MultiPipe/Multi-Processor
introduction .. 1-6

Multi-user simulations
see Networking

N
Naming conventions

WTK functions1-1, 1-4
Networking, client-server

connection callbacks 21-23
connection functions 21-26
connections .. 21-22
enumeration 21-34
locked properties 21-3
locked sharegroups 21-12
overview ... 21-1
persistent properties 21-3
persistent sharegroups 21-14
property sharing functions 21-5
registered interest 21-13
Server Manager 21-1
sharegroup functions 21-15
sharegroups .. 21-11
sharing properties 21-2
Simulation Server 21-2
time-sensitive properties 21-4
unsupported object types 21-5
update frequencies for properties 21-3
update rates for connections 21-23
World Up compatible properties 21-38

WTbase objects 21
WTbase_unshare 21-1
WTconnection_addcallback 21-3
WTconnection_connect 21-2
WTconnection_delete 21-2
WTconnection_deleteallenumtrees 21-3
WTconnection_deleteenumtreebyid .. 21-3
WTconnection_disconnect 21-2
WTconnection_getcallback 21-3
WTconnection_getclockdiff 21-30
WTconnection_getconnections 21-2
WTconnection_getdata 21-2
WTconnection_getenumtree 21-3
WTconnection_getenumtreebyid 21-3
WTconnection_getenumtreeid 21-3
WTconnection_getlatency 21-3
WTconnection_getmyid 21-28
WTconnection_getmyname 21-2
WTconnection_getroot 21-3
WTconnection_getstatus 21-2
WTconnection_getupdaterate 21-3
WTconnection_getuserid 21-3
WTconnection_getuseridbyname 21-3
WTconnection_getusername 21-3
WTconnection_getusernamebyid 21-3
WTconnection_issynchronous 21-3
WTconnection_new 21-2
WTconnection_next 21-2
WTconnection_numcallbacks 21-3
WTconnection_numenumtrees 21-3
WTconnection_numusers 21-3
WTconnection_print 21-29
WTconnection_removecallback 21-3
WTconnection_setdata 21-2
WTconnection_setsynchronous 21-3
WTconnection_setupdaterate 21-3
WTconnection_synch 21-3
WTconnection_update 21-2
WTconnection_updateconnections 21-2
WTproperty_getsharegroup 21-
WTproperty_gettimesensitive 21-
WTproperty_getupdatefreq 21-
WTproperty_islocked 21-10
WTproperty_islockedbyme 21-11
WTproperty_isshared 21-
WTproperty_lock 21-10
WTproperty_numshares 21-
WTproperty_sendupdate 21-
WTproperty_settimesensitive 21-
WorldToolKit Reference Manual Index-15

N Index

3
3
3
1
7
1
2
3

-7
1

8

4
1
2

1
-2

4

4
6
1
6

0
2
2
1
9
9
4

2
0

1
4
5
0
9
8
3
2
3

WTproperty_setupdatefreq 21-8
WTproperty_share 21-5
WTproperty_unlock 21-10
WTproperty_unshare 21-7
WTsharegroup_delete 21-16
WTsharegroup_enumerate 21-36
WTsharegroup_findchildbyname 21-21
WTsharegroup_getchild 21-20
WTsharegroup_getconnection 21-18
WTsharegroup_getdata 21-18
WTsharegroup_getname 21-18
WTsharegroup_getparent 21-20
WTsharegroup_getproperty 21-21
WTsharegroup_islocked 21-19
WTsharegroup_islockedbyme 21-19
WTsharegroup_isshared 21-17
WTsharegroup_lock 21-19
WTsharegroup_new 21-15
WTsharegroup_numchildren 21-20
WTsharegroup_numproperties 21-21
WTsharegroup_print 21-18
WTsharegroup_registerinterest 21-20
WTsharegroup_setdata 21-17
WTsharegroup_share 21-17
WTsharegroup_unlock 21-19
WTuniverse_deleteconnections 21-28

Networking, multicast
asynchronous communication 22-1
byte ordering22-2, 22-6
default address 22-8
functions ... 22-7
group address 22-3
latency .. 22-5
local .. 22-1
net_actions22-4, 22-5
netdemo.c22-1, 22-4
network layers diagram 22-2
private .. 22-1
public ... 22-1
remote .. 22-1
sample transaction 22-4
tag field22-7, 22-9
type field22-7, 22-9
UDP ... 22-3
UDP packets .. 22-3
warning message D-7, D-12
WTnet_additem 22-9
WTnet_addstring 22-10
WTnet_close .. 22-9

WTnet_flush 22-1
WTnet_getport 22-1
WTnet_getrange 22-1
WTnet_next 22-1
WTnet_open .. 22-
WTnet_removeitem 22-1
WTnet_removestring 22-1
WTnet_skip .. 22-1

Networks
warning messageD

NFF ... 2-16, 6-
3D font files ... 9-5
automatic normal generation F-
backward compatibilityG-24
both (NFF keyword) F-6
both flag .. 6-11, 7-
convenience of 6-1
end-of-line conventions F-
file format .. 6-3
file structure ... F-
header format ... F
ID (NFF token) F-8
material tables .. F-
multi-object file 9-5
norm keyword .. F-
number of polygons F-
overview .. F-
polygon color ... F-
polygon ID ... 7-6
sample file .. F-1
syntax ... F-
texture specification 10-2
using a 3D font 9-
version history F-
vertex normals 6-
vertices ... F-
viewdir token ... F-2
viewpos token .. F-
warning messageD-1

Node path
diagram .. 4-8
getting an accumulated transformation 4-8
intersection testing 4-8
locating a node 4-8
overview .. 4-7
WTnode_rayintersect 4-8
WTnodepath_addsensor 4-9
WTnodepath_delete 4-8
WTnodepath_getextents 4-8
Index-16 WorldToolKit Reference Manual

Index N

1
3

4
0
8
4
0
8
9
0
3

0
0
6

..

7
7
8
6
5
4
2
1
2
1
1
8
1
9
0
0
8
9
9
6
9
7
1
2
9
7

3

-5
WTnodepath_getnode 4-82
WTnodepath_getorientation 4-85
WTnodepath_gettransform 4-84
WTnodepath_gettranslation 4-84
WTnodepath_gettraversal 4-83
WTnodepath_intersectbbox 4-87
WTnodepath_intersectnode 4-87
WTnodepath_intersectpoly 4-86
WTnodepath_new 4-81
WTnodepath_numnodes 4-82
WTnodepath_removesensor 4-93
WTpoly_intersectnode 4-86
WTpolyintersectbbox 4-86

Nodes
accessing a node A-20
backward compatibility G-4
constants ...C-7
content .. 4-5
diagram of parent, child, siblings 4-6
enabling .. 4-50
extents box ... 4-52
grouping ... 4-6
how to get a pointer using node’s name

A-20
properties ... 4-48
radius .. 4-54
root ... 4-52
root node .. 4-7
scene graph hierarchy 4-6
tracking inactive nodes G-20
transform nodes4-5, 4-58
types ... 4-5
utility functions 4-76
warning message D-9
WTanchornode_new 4-40
WTgeometrynode_load 4-46
WTgetname .. 4-49
WTgroupnode_new 4-40
WTinlinenode_new 4-40
WTlodnode_new 4-41
WTnode_addchild 4-74
WTnode_addsensor 4-92
WTnode_axisrotation 4-62
WTnode_boundingbox 4-73
WTnode_canaddchild 4-51
WTnode_delete 4-75
WTnode_deletechild 4-75
WTnode_enable 4-49
WTnode_getchild 4-77

WTnode_getdata 4-5
WTnode_getextents 4-5
WTnode_getmidpoint 4-5
WTnode_getorientation 4-6
WTnode_getparents 4-7
WTnode_getradius 4-5
WTnode_getrotation 4-6
WTnode_gettransform 4-5
WTnode_gettranslation 4-5
WTnode_gettype 4-5
WTnode_hasboundingbox 4-7
WTnode_insertchild 4-74
WTnode_isenabled 4-5
WTnode_ismovable 4-5
WTnode_load 4-4
WTnode_load versus

WTgeometrynode_loadA-3
WTnode_load versus WTmovnode_load ..

A-4
WTnode_numchildren 4-7
WTnode_numparents 4-7
WTnode_numpolys 4-7
WTnode_print 4-7
WTnode_remove 4-7
WTnode_removechild 4-7
WTnode_removesensor 4-9
WTnode_rotatem3 4-6
WTnode_rotatem4 4-6
WTnode_rotateq 4-6
WTnode_rotation 4-6
WTnode_save 4-4
WTnode_setdata 4-5
WTnode_setname 4-4
WTnode_setorientation 4-6
WTnode_setrotation 4-6
WTnode_settransform 4-5
WTnode_settranslation 4-5
WTnode_translate 4-5
WTnode_vacuum 4-7
WTrootnode_new 4-3
WTrootnode_next 4-7
WTsepnode_new 4-4
WTswitchnode_new 4-4
WTuniverse_findnodebyname 4-4
WTuniverse_getrootnodes 2-1
WTxformnode_new 4-42
WTxformsepnode_new 4-4

Non-coplanar polygons
warning messageD
WorldToolKit Reference Manual Index-17

O Index

6
6
6
7
5
5
6
5
7
9
6
5
7

8
8
7
7
8
8
8
7
-8
6

3

1
0

5

5
4

7

5
9
7

-7

1
9

Normals
see Polygons

NTSC ... 2-3

O
OBJ file format .. 6-2
Object/Property/Event architecture

and World2World 21-1
events ... 3-23
overview ... 3-1
properties ... 3-14
supplied properties 3-2
supported types 3-2
time .. 3-27
Wtbase functions 3-7
WTbase objects and functions 3-7
WTbase_addparent 3-8
WTbase_delete 3-11
WTbase_deleteproperties 3-13
WTbase_find .. 3-13
WTbase_findchild 3-10
WTbase_getchild 3-10
WTbase_getdata 3-11
WTbase_getname 3-12
WTbase_getparnet 3-9
WTbase_getproperty 3-12
WTbase_gettype 3-11
WTbase_ischild 3-10
WTbase_new ... 3-8
WTbase_next ... 3-8
WTbase_nfind 3-13
WTbase_nfindproperty 3-13
WTbase_numchildren 3-9
WTbase_numparents 3-9
WTbase_numproperties 3-12
WTbase_print 3-11
WTbase_removeallhandlers 3-26
WTbase_removeparent 3-9
WTbase_setdata 3-11
WTbase_setname 3-12
WTnode properties 3-3
WTpath properties 3-6
WTproperty_addhandler 3-25
WTproperty_delete 3-15
WTproperty_exists 3-16
WTproperty_get 3-20
WTproperty_getasstring 3-22

WTproperty_getdata 3-1
WTproperty_getdatatype 3-1
WTproperty_gethandler 3-2
WTproperty_getsizeofdata 3-1
WTproperty_new 3-1
WTproperty_numhandlers 3-2
WTproperty_removeallhandlers 3-2
WTproperty_removehandler 3-2
WTproperty_set 3-1
WTproperty_setat 3-1
WTproperty_setdata 3-1
WTsensor properties 3-
WTtime_getcurrent 3-2
WTtime_getcurrentlocal 3-27
WTtime_getcurrentmsec 3-2
WTtime_getcurrentmseclocal 3-2
WTtime_getcurrentsec 3-2
WTtime_getcurrentseclocal 3-2
WTtime_getdouble 3-2
WTtime_getmsec 3-2
WTtime_getsec 3-2
WTtime_update 3-2
WTuniverse_getbases 3
WTuniverse_processevents 3-2
WTvalue_tostring 3-2
WTviewpoint properties 3-4
WTwindow properties 3-4

Objects
associating a task withA-2
axis ...G-2
collision detection exampleA-25
editing (example of)A-13
following a lightA-16
getting midpoint ofA-25
getting the rendered position ofA-2
keeping perpendicular to viewpointA-33
moving exampleA-2
naming conventions 1-

Octahedron
creating .. 6-1

Open functions
customizing ..E-
openfn .. 13-

Open GL Callback Node 4-6
OpenFlight file

subfaces .. 6
OpenGL

embedding drawing routines 19-
material properties specification 8-1
Index-18 WorldToolKit Reference Manual

Index P

-5
15
7
7
6
1
4
7
0
4

5
6
1
7
0
1
-8
6
1
1
3
5
3
2

3
0
9
-2
2

7
5
5
1
8
0
0
0
0
2
3
3

7
6
6
6
1

Optimization
geometry .. 6-39
LOD example of scene optimization .. A-29

Organizational grouping nodes 4-6
Orientation records

overview ... 25-1
Out of memory

error message .. D-3
Output devices

manufacturers ..J-2
Over/under mode, stereo viewing 2-35
Overlapping polygons

image flashing 6-12

P
Packets

see Networking
Parallax

definition .. 16-19
value ..16-20, 17-12

Parameters
setting from a file 2-28

Parent coordinate system
defined ..M-9

Parent node .. 4-8
Path elements

current .. 14-17
management 14-24
WTpathelement_copy 14-25
WTpathelement_delete 14-24
WTpathelement_getorientation 14-26
WTpathelement_getpath 14-26
WTpathelement_getposition 14-25
WTpathelement_new 14-24
WTpathelement_next 14-26
WTpathelement_remove 14-25
WTpathelement_setorientation 14-26
WTpathelement_setposition 14-25

Path file format 14-12
Path nodes

see Paths
Paths

also see Path elements
constant (maximum filename length) ..C-22
constants ...C-9
constraints .. 14-4
construction .. 14-2

copying a sequence of path nodes 14
creating a sequence of path nodes 14-
current element 14-1
current node 14-1
current node pointer 14-1
diagram .. 14-
direction constants 14-
editing .. 14-2
element list ... 14-1
element management 14-2
example of copying 14-
interpolating ... 14-
interpolation ... 14-
interpolation methods diagram 14-
list of elements 14-1
loading and saving 14-1
management ... 14
methods of interpolating 14-
overview .. 14-
play mode constants 14-4, 14-2
playback ... 14-1
recording 14-13, 14-1
sample rate ... 14-2
speed ... 14-4, 14-2
toggling visibility 14-8
universe list .. 2-1
universe list of paths14-5, 14-8, 14-1
user-specifiable data 14-2
uses for paths 14
viewpoint paths 14-
visibility ... 14-4
WTpath_appendelement 14-2
WTpath_copy 14-
WTpath_delete 14-
WTpath_getconstraints 14-2
WTpath_getcurrentelement 14-1
WTpath_getdata 14-3
WTpath_getdirection 14-2
WTpath_getelements 14-1
WTpath_getmarker 14-1
WTpath_getmode 14-2
WTpath_getplayspeed 14-2
WTpath_getsamples 14-2
WTpath_getvisibility 14-9
WTpath_insertelement 14-2
WTpath_interpolate 14-
WTpath_isplaying 14-1
WTpath_isrecording 14-1
WTpath_load 14-1
WorldToolKit Reference Manual Index-19

P Index

0
1
1
1

8
1
0
2

1

0

4

0

2
4
-4
-4
2
0
3
6

2
0
4
9
7
6
3
-5
5
6
9
1

WTpath_new .. 14-4
WTpath_next 14-10
WTpath_numelements 14-10
WTpath_play 14-14
WTpath_play1 14-14
WTpath_record 14-14
WTpath_record1 14-15
WTpath_rewind 14-16
WTpath_save 14-12
WTpath_seek 14-18
WTpath_setconstraints 14-20
WTpath_setcurrentelement 14-17
WTpath_setdata 14-29
WTpath_setdirection 14-19
WTpath_setmarker

description 14-9
WTpath_setmode 14-21
WTpath_setplayspeed 14-22
WTpath_setrecordlink 14-15
WTpath_setsamples 14-23
WTpath_setvisibility 14-8
WTpath_showcurrentelement 14-17
WTpath_stop 14-16

Performance
coordinate storage 6-13
geometry optimization 6-39
how to test for A-38
impact of lighting 12-4
modeling considerations 6-2
polygon complexity 6-10
radiosity preprocessor 6-10
system timer functions 2-22
texture filters 10-26
tip ... 6-45

Perpendicular
usage example A-33

Persistent Properties 21-3
Persistent sharegroups

description .. 21-14
PI constants ..C-6
Picking polygons

overview4-91, 17-20
usage example A-6
WTscreen_pickpoly 4-91
WTwindow_pickpoly 17-20

Pinch Glove
defined constants 13-62
list of functions 13-7
manufacturer ...J-1

overview
raw data .. 13-6
scaling records 13-6
update function 13-6
WTpinch_update 13-6

Pixel distortion
correcting the viewpoint aspect ratio . 16-1

Play mode .. 14-2
constants ..C-1
path’s playback speed 14-2

Playback
see Play mode

Point light ... 4-1
Point light node

definition .. 12-2
Pointer

getting a pointer to a nodeA-2
getting pointer to a WTK displayA-38
naming conventions 1-

Polhemus
FASTRAK, see FASTRAK
InsideTRAK, see InsideTRAK
ISOTRAK II, see ISOTRAK II
ISOTRAK, see ISOTRAK
Stylus, see Stylus

Polygons
adding a vertex 7-1
also see Picking polygons
attributes .. 7-
back face rejection 7-
back faces 6-11, 7
back faces defined 7
coplanar .. 6-1
creation .. 7-1
default color ... 6-2
default ID ... 7-
definition of front face 6-10
deleting .. 7-1
dynamic creation 7-1
front faces .. 7-
generating vertex normals 6-
get ID ... 7-
ID numbers .. 7-
intersection testing 7-1
non-coplanar (warning message)D
normals6-10, 7-4, 7-
obtaining pointers 7-
optimization ... 6-3
overview .. 7-
Index-20 WorldToolKit Reference Manual

Index P

4
1

4

9

3
-8

1
6

5

3
-6
1
0

4
4
2
3
6
5
6
0
2
1
6
6

2
1
2
2
2
7

picking ... 4-91
picking frontmost polygon A-6
pointers ... 7-1
set ID .. 7-6
texture information 10-31
vertex access .. 7-8
vertex order .. 6-10
warning message D-5, D-13
WTgeometry_beginpoly 6-23
WTgeometry_setuv 10-32
WTpoly_addvertex 7-10
WTpoly_addvertexptr 7-10
WTpoly_close 7-12
WTpoly_delete 7-12
WTpoly_deletetexture 10-23
WTpoly_getbothsides 7-4
WTpoly_getcg 7-5
WTpoly_getgeometry 7-7
WTpoly_getid .. 7-7
WTpoly_getmatid 7-3
WTpoly_getnormal 7-4
WTpoly_getrgb 7-2
WTpoly_gettextureinfo 10-31
WTpoly_gettexturestyle 10-24
WTpoly_getuv 10-32
WTpoly_getvertex 7-8
WTpoly_intersectnode 4-86
WTpoly_intersectpolygon 4-85
WTpoly_mirrortexture 10-29
WTpoly_next ... 7-8
WTpoly_numvertices 7-9
WTpoly_rayintersect 4-88
WTpoly_rotatetexture 10-27
WTpoly_setbothsides 7-4
WTpoly_setid ... 7-6
WTpoly_setmatid 7-3
WTpoly_setrgb 7-2
WTpoly_settexture 10-11
WTpoly_settexturestyle 10-23
WTpoly_settextureuv 10-13
WTpoly_setuv 10-32
WTpoly_stretchtexture 10-30
WTpolyintersectbbox 4-86
WTpolytranslatetexture 10-29
WTpoyscaletexture 10-28

POLYLINE entities
warning message D-5

Portability
overview ... 24-1

reading directories 24-
reading keyboard 24-
WTdirectory_close 24-5
WTdirectory_getentry 24-4
WTdirectory_open 24-

Portals
handling in R6/7A-22
using WTviewpoint_intersectpoly 4-90

Prebuild function 6-3
Precision Navigation Wayfinder-VR

see Wayfinder-VR
Precision of coordinates

see Scaling ... 6-1
Predecessor node 4
Printing

math functions 25-
scene graph .. 4-7

Prism
constructing .. 6-1

Private application data
see User-defined data field

Private networks
see Networking

Pro/Engineer file .. 6-
Procedural grouping nodes 4
Programming with C++ wrappers 26-
Projection type constantsC-1
Properties

compatibility with World Up 21-38
data types ... 3-1
overview .. 3-1
sharing .. 21-
WTnode ... 3-
WTpath .. 3-
WTproperty_delete 3-1
WTproperty_exists 3-1
WTproperty_get 3-2
WTproperty_getasstring 3-2
WTproperty_getd 3-2
WTproperty_getdata 3-1
WTproperty_getdatatype 3-1
WTproperty_getf 3-21
WTproperty_geti 3-21
WTproperty_getp 3-2
WTproperty_getp2 3-2
WTproperty_getp3 3-2
WTproperty_getq 3-2
WTproperty_gets 3-2
WTproperty_getsizeofdata 3-1
WorldToolKit Reference Manual Index-21

Q Index

5
6

0

-2
9

0

3

7

9

2
0

16

1

3
0

25

0
3
8
8
5

8
-9

8
3
3

WTproperty_getui 3-21
WTproperty_new 3-15
WTproperty_set 3-17
WTproperty_setat 3-19
WTproperty_setd 3-18
WTproperty_setdata 3-16
WTproperty_setf 3-18
WTproperty_seti 3-18
WTproperty_setp 3-19
WTproperty_setp2 3-18
WTproperty_setp3 3-19
WTproperty_setq 3-19
WTproperty_sets 3-19
WTproperty_setui 3-18
WTsensor ... 3-5
WTvalue_tostring 3-23
WTviewpoint ... 3-4
WTwindow .. 3-4

Public networks
see Networking

Pushbutton object
see User interface

Pyramid
constructing .. 6-16

Q
Quad-buffering ... 2-34
Quaternions

 also see Conversion functions
and the right-hand rule 25-3
convert to 3D matrix 25-26
convert to 4D matrix 25-32
convert to direction vector 25-30
convert to direction vector and twist .. 25-30
convert to euler25-29, 25-32
overview ... 25-12
used with rotation sensor records 13-14
warning message D-11

Quick reference guide 1-11
Quick-reject test 4-57

overview ... 4-56
separator nodes 4-42

R
Radiosity preprocessing6-10, 12-4
Raw sensor data

getting .. 13-1
setting ... 13-2

Ray casting
overview .. 17-2
WTwindow_getray 17-21
WTwindow_pickpoly 17-20
WTwindow_projectpoint 17-21

Realism
textures ... 10
vertex colors ... 6-

Rear-view mirror
example .. 10-2

Recording path information
sample rate ... 14-2

Rectangles
creating .. 6-1

Recursive
scene graph exampleA-1

Red Baron
see 3D Mouse

Reference frame
and rotating a viewpoint 16-1
diagram 13-19, 16-1
for geometry motion 13-19, 16-10
sensors .. 13-
viewpoint functions 16-14

Reflection Mapping 6-4
Registered interest

description .. 21-1
WTsharegroup_registerest 21-2

Relative sensor records 13-
Remote networks

see Networking
RENDER file format 6-3
Rendering

constants ..C-1
geometry options 6-3
global parameters 2-1
universe options 2-1
window usage exampleA-3

Replaced Features
overview ..G-

Replaced functionsG
Resource files

overview .. 2-2
setting image paths 2-3
setting model paths 2-3

Restricting viewpoint motion 4-53
RGB
Index-22 WorldToolKit Reference Manual

Index S

0
3
3
1
3
-3
5
3
1
5

0
4

-7
8
4

9
7
2
5
9
1
2

4
0
4
-7
3
-4
1
-2
3
8
3
8
7
2
7
2
5
7
7
-5
5
2

in WTK V2.1 A-11
setting via material table A-11

Right-hand rule
defined ... 25-2
diagram .. 25-3

Robot arm
diagram .. 5-9
example .. 5-9

Root nodes ..4-7, 4-8
building a scene graph 4-29
description in table 4-13

Rotating an object
usage example A-21

Rotating sensor input
example13-17, 13-20
geometry motion reference frames 13-19
overview ... 13-16

Rotation operators
column vector 25-3
defined ... 25-3
row vector .. 25-3

Rotation records
sensors scale factor 13-12

Roundoff
see Scaling

RTS
signal ..E-5

S
Sample rate

path ... 14-23
path value ... 14-4

Scale object
see User interface

Scaling
3D Mouse ... 13-75
5DT Glove ... 13-64
Bird .. 13-41
BOOM devices 13-56
CrystalEyesVR 13-109
CyberMaxx2 HMD 13-120
FASTRAK ... 13-94
Formula T2 13-112
gameport joystick 13-69
Geometry Ball Jr. 13-54
i-glasses! .. 13-122
InsideTRAK 13-91

ISOTRAK .. 13-86
ISOTRAK II 13-89
Logitech Head Tracker 13-8
model problems 6-1
overview .. 6-1
Pinch Glove 13-6
scaling factor with geometries 6-1
sensor records ..E
Serial Joystick 13-11
Space Control Mouse 13-8
Spaceball .. 13-10
Spaceball SpaceController 13-10
Wayfinder-VR 13-97

Scene graphs
accessing a nodeA-2
advantages 4-4, 4-1
ancestor node ... 4
anchor nodes .. 4-2
assembly .. 4-7
backward compatibilityG-2
building .. 4-2
child node ... 4-
composite car diagram 4-3
concepts in detail 4-
constructor functions 4-3
content nodes (table) 4-1
coordinate frames 4-3
culling .. 4-
cyclic tree diagram 4-3
depth first traversal 4-8
descendant node 4
description .. 4-
diagram of a simple scene graph 4
directed light .. 4-1
elements ... 4
encapsulation diagram 4-2
example .. 4-1
grouping nodes (table) 4-1
inline nodes .. 4-2
instancing ... 4-3
introduction 1-2, 4-
leaf node ... 4-
light encapsulation 4-2
loading a file .. 4-4
LOD diagram 4-2
multiple .. 4-
nodes .. 4
order of child nodes 4-1
overview .. 4-
WorldToolKit Reference Manual Index-23

S Index

13
-2
2
2
9
5
1
1

1
5
8
4
1

0

1
5
3
7
1

5
-1
6

1
1
2
9
6
6
5
6
23
11
3
25
1
0
4
3
3
0
1
7

parent node ... 4-8
point light ... 4-11
predecessor node 4-8
printing ..4-8, 4-76
rendering .. 4-9
root node ...4-7, 4-8
saving ... 4-48
scenes ... 4-2
schematic diagram 4-7
separator node diagram 4-21
separator nodes 4-21
sibling node .. 4-8
spot light .. 4-11
state ...4-10, 4-17
state accumulation diagram 4-17
state propagation diagram 4-19
state separation 4-21
static and dynamic geometries 4-2
structure inquiry 4-76
sub-tree ... 4-8
switch diagram 4-25
terminology .. 4-7
transform separator 4-24
transform separator diagram 4-24
traversal ...4-9, 4-78
traversal diagram 4-9
traversal example A-19
traversal order .. 4-8
tree ... 4-8
using frames of reference 4-32
viewing ... 4-8
WTviewpoint_intersectpoly 4-89

Screen
blanking interval 2-21
pixel units ... 16-21
vertical blanking interval 2-20
WTscreen_getyblank 2-21
WTscreen_load 10-33
WTscreen_pickpoly 4-91
WTscreen_setyblank 2-20

Scrolled list object
see User interface

Sensitivity value
default .. 13-11
sensors .. 13-12

Sensors
3D Mouse ... 13-73
5DT Glove13-8, 13-63
absolute records 13-25

absolute sensor 13-
absolute sensor records 13
attaching to node paths 4-9
attaching to transform nodes 4-9
Bird .. 13-3
BOOM ... 13-5
close function (custom drivers)E-
constants 13-15, C-1
constraining input 13-2
construction and destruction 13-
CrystalEyesVR 13-10
current rotation record 13-1
custom drivers13-24, E-
CyberMaxx2 HMD
example of detecting button eventsA-1
example of how to orient differently ...A-36
FASTRAK ... 13-92
Flock of Birds 13-51
Formula T2 13-11
frame-rate ... 13-
Geometry Ball Jr. 13-5
Head Tracker 13-7
i-glasses! .. 13-12
InsideTRAK 13-90
ISOTRAK .. 13-85
ISOTRAK II 13-88
lag .. 13-
manufacturers ...J
mouse ... 13-2
multi-sensor devices (custom drivers) ...E-
open function (custom drivers)E-
overview .. 13-
Pinch Glove 13-5
raw data .. 13-2
reference frame 13-1
relative records 13-2
rotating sensor input 13-1
sensor data, user-specifiable 13-
sensor state, accessing 13-
Serial Joystick 13-11
setting absolute sensor records 13-
Space Control Mouse (Magellan) 13-8
Spaceball .. 13-10
Spaceball SpaceController 13-10
Stylus ... 13-9
universe list .. 2-1
update function 13-1
update function (custom drivers)E-
update functions 13-
Index-24 WorldToolKit Reference Manual

Index S

7
1
-4
-6
6
9
3
-5
2
1
4
3

7
7
-1

0

8

5
3
2
-3
4
-3
1

8
9
8

7

7
9
9
8
5

7

5
2
1
4
3

Wayfinder-VR 13-96
WTsensor_delete 13-10
WTsensor_getangularrate 13-13
WTsensor_getconstraints 13-22
WTsensor_getdata 13-24
WTsensor_getlastrecord 13-25
WTsensor_getmiscdata 13-15
WTsensor_getrawdata 13-15
WTsensor_getrotation 13-14
WTsensor_getsensitivity 13-12
WTsensor_getserial 13-16
WTsensor_gettranslation 13-13
WTsensor_getunit 13-16
WTsensor_new 13-7
WTsensor_next 13-10
WTsensor_relativizerecord 13-24
WTsensor_rotate 13-20
WTsensor_setangularrate 13-12
WTsensor_setconstraints 13-21
WTsensor_setdata 13-23
WTsensor_setlastrecord 13-25
WTsensor_setmiscdata 13-25
WTsensor_setrawdata 13-26
WTsensor_setrecord 13-24
WTsensor_setsensitivity 13-11

Separator nodes
overview ... 4-56
WTsepnode_getcullmode 4-57
WTsepnode_setcullmode 4-57

Serial Joystick
constants ...C-17
defined constants 13-117
drift ... 13-118
list of functions 13-9
manufacturer ...J-2
overview ... 13-113
range ... 13-118
raw data .. 13-114
reinitializing 13-119
scaling records 13-115
update functions 13-115
WTjoyserial_fly 13-116
WTjoyserial_getdrift 13-119
WTjoyserial_getrange 13-118
WTjoyserial_rawupdate 13-117
WTjoyserial_readcalibrationfile 13-119
WTjoyserial_setdrift 13-118
WTjoyserial_walk 13-116
WTjoyserial_walk2 13-116

Serial ports
constants ..C-1
construction and destruction 23-
error message D-3, D
example using constant 13
getting an object 13-1
pointer to object 13-
reading and writing characters 23-
warning messageD
WTserial_delete 23-
WTserial_new 23-
WTserial_ntoread 23-
WTserial_read 23-
WTserial_write 23-4

SERIAL1 constantC-1
SERIAL2 constantC-1
Server Manager .. 21
Setting event order

example .. 2-1
Shading

Gouraud ... 6-
Shared properties

functions .. 21-
locked ... 21-
overview .. 21-
persistent .. 21
time-sensitive 21-
update frequencies 21
WTbase_unshare 21-1
WTproperty_getsharegroup 21-
WTproperty_gettimesensitive 21-
WTproperty_getupdatefreq 21-
WTproperty_islocked 21-10
WTproperty_islockedbyme 21-11
WTproperty_isshared 21-
WTproperty_lock 21-10
WTproperty_numshares 21-
WTproperty_sendupdate 21-
WTproperty_settimesensitive 21-
WTproperty_setupdatefreq 21-
WTproperty_share 21-
WTproperty_unlock 21-10
WTproperty_unshare 21-

Sharegroups
functions .. 21-1
locked ... 21-1
overview .. 21-1
persistent .. 21-1
registered interest 21-1
WorldToolKit Reference Manual Index-25

S Index

7
4

7
-1
5
0
6
7
5
8
5
7
2
0
1
1
5
6
8
2
7
0
3
-9
9
-8
-4
-5
4
3
-8
9
-5

4
4

-1
1
4
2
2
3
3
4
3
3
3

WTsharegroup_delete 21-16
WTsharegroup_enumerate 21-36
WTsharegroup_findchildbyname 21-21
WTsharegroup_getchild 21-20
WTsharegroup_getconnection 21-18
WTsharegroup_getdata 21-18
WTsharegroup_getname 21-18
WTsharegroup_getparent 21-20
WTsharegroup_getproperty 21-21
WTsharegroup_islocked 21-19
WTsharegroup_islockedbyme 21-19
WTsharegroup_isshared 21-17
WTsharegroup_lock 21-19
WTsharegroup_new 21-15
WTsharegroup_numchildren 21-20
WTsharegroup_numproperties 21-21
WTsharegroup_print 21-18
WTsharegroup_registerinterest 21-20
WTsharegroup_setdata 21-17
WTsharegroup_share 21-17
WTsharegroup_unlock 21-19

Sibling node ... 4-8
SIG-WTK users’ group 1-11, K-1, L-2
Simple objects

creating ... 6-14
overview ... 6-1

Simulation
development process 1-13
frames per second 2-23
management2-5, 2-11
manager .. 2-1
running speed 2-22

Simulation loop
creating path elements 14-1
definition .. 2-5
diagram ...2-6, 11-2
preparing for .. 2-6
setting order of events 2-9
starting ... 2-7
starting for one frame only 2-7
stopping .. 2-8

Simulation Server 21-2
SLP file format ... 6-3
Sound constantsC-18
Sound support library

CRE device parameters 20-7
device constantsC-19
device spatializing functions 20-9
overview ... 20-1

sound device options 20-6, 20-
sound parameter options 20-13, 20-1
sound spatializing functions 20-1
supported devices 20
WTK feature .. 1-
WTsound_delete 20-1
WTsound_getdata 20-1
WTsound_getdonefn 20-1
WTsound_getname 20-1
WTsound_getnodepath 20-1
WTsound_getparam 20-1
WTsound_getposition 20-1
WTsound_isplaying 20-1
WTsound_load 20-1
WTsound_next 20-1
WTsound_play 20-1
WTsound_setdata 20-1
WTsound_setdonefn 20-1
WTsound_setnodepath 20-1
WTsound_setparam 20-1
WTsound_setposition 20-1
WTsound_stop 20-1
WTsounddevice_close 20-
WTsounddevice_getdata 20
WTsounddevice_getlistener 20-
WTsounddevice_getparams 20
WTsounddevice_getsounds 20
WTsounddevice_name2sound 20
WTsounddevice_numplayable 20-
WTsounddevice_open 20-
WTsounddevice_setdata 20
WTsounddevice_setlistener 20-
WTsounddevice_setparam 20

Space Control Mouse
defined constants 13-8
dominant mode 13-8
list of functions 13-8
manufacturer ...J
overview .. 13-8
pick button ... 13-8
raw data .. 13-8
reference frame diagram 13-8
scaling and constraints 13-8
scaling records 13-8
special modes 13-8
update function 13-8
WTspacecontrol_rawupdate 13-8
WTspacecontrol_update 13-8

Spaceball
Index-26 WorldToolKit Reference Manual

Index T

-4

2

3
3
4
1

5
3

2
4

6
..

3
7
6
6

-8
2

1
0

2

1
2
1
1
1

avoiding unwanted motion 13-102
defined constants 13-103
dominant mode 13-102
error message .. D-4
list of functions 13-8
manufacturer ...J-2
Model 3003 13-104
overview ... 13-100
raw data .. 13-101
redefining the center 13-103
reference frame diagram 13-100
scaling records 13-101
update functions 13-102
warning message D-6, D-14
WTprecision_rawupdate 13-102
WTspaceball_dominant 13-102
WTspaceball_rezero 13-103
WTspaceball_update 13-102

Spaceball SpaceController
avoiding unwanted motion 13-106
defined constants 13-107
dominant mode 13-106
list of functions 13-8
manufacturer ...J-2
overview ... 13-104
raw data .. 13-105
redefining the center 13-107
scaling records 13-105
update functions 13-106
WTspaceballSC_dominant 13-106
WTspaceballSC_rezero 13-107
WTspaceballSC_setwindow 13-107
WTspaceballSC_update 13-106

Spaceship exhaust A-14
Spacetec IMC Spaceball

see Spaceball
Spacetec IMC Spaceball SpaceController

see Spaceball SpaceController
Spatial culling

 see Culling
Special Effects .. A-13
Special effects

see Fog
Spheres

creating ... 6-16
Spherical linear interpolation

math function 25-18
Spot light .. 4-11
Spot light node

definition .. 12-2
State information

separator nodes4-13, 5-2, 5
Statistics

universe .. 2-2
Stereo viewing

configurations 16-2
diagram .. 16-
modes ... 2-3
setting convergence 16-2

StereoGraphics CrystalEyesVR
see CrystalEyesVR

Streaming-Mode Flock of Birds Driver . 13-44
Stylus

constants ..C-1
overview .. 13-9

Subfaces
with MultiGen files 6-7

Surfaces
coplanar .. 6-1
non-planar .. 6-1

Switch nodes
animation ... 4-2
animation example using switch nodes

A-26
defined in table 4-1
overview 4-25, 4-5
portalling .. 4-2
using ... 4-2
WTswitchnode_getwhichchild 4-58
WTswitchnode_setwhichchild 4-57

switchnode constantsC
Synchronous connections 21-2

WTconnection_issynchronous 21-3
WTconnection_setsynchronous 21-3

System configuration
overview .. 1-1

T
Tag field

see Networking, multicast
Tasks

behavior of objects 11-
diagram .. 11-
overview .. 11-
task object .. 11-
usage exampleA-2
WorldToolKit Reference Manual Index-27

T Index

2
2
8

4

6
5
2
-2
5
7
7

2

2
2
3
2
3

8
1
3

2
0
9

8

3

7
7

with data structures 11-1
WTtask_add ... 11-4
WTtask_delete 11-4
WTtask_getfunction 11-5
WTtask_getpriority 11-5
WTtask_new

description 11-2
WTtask_remove 11-4
WTtask_setpriority 11-5
WTuniverse_gettaskbypointer 11-6

TCP .. 22-3
Technical support

Non-U.S. ..L-2
U.S. ..L-1

Terrain following
usage example A-31

Terrains
creating in this release G-8

Test
machine performance A-38
quick reject ... 4-42
quick-reject4-56, 4-57

testing for intersections (example of) A-24
Tests

viewpoint intersection 16-26
Tetrahedron

creating ... 6-16
Text input object

see User interface
Text object

see User interface
Text string

see 3D fonts
Text-field object

see User interface
Texture filtering

constants ...C-20
Textures ... 10-1

3DS uv values .. 6-2
animating ... 10-18
application .. 10-5
applying ... 10-4
assigning .. 10-22
bitmap image .. 10-2
changing properties 10-23
deleting ... 10-23
filtering ... 10-24
illustration .. 10-2
image formats (converting between) I-2

image utilities .. I-2
manipulating uv values 10-3
manipulation 10-2
memory use .. 10-1
methods for applying 10-
mipmapping overview 10-24
mirrored illustration 10-30
on non-rectangular polygons (diagram) 10-
on rectangular polygons (diagram) 10-
overview .. 10-
pattern and textures 10
procedure for applying 10-
rotation ... 10-2
scaling .. 10-2
scaling illustration 10-28
setting default filter 10-25
shading ... 10-2
translation illustration 10-29
transparent .. 10-2
usage exampleA-1
WTgeometry_deletetexture 10-2
WTgeometry_setuv 10-3
WTpoly_deletetexture 10-2
WTpoly_gettextureinfo 10-31
WTpoly_gettexturestyle 10-24
WTpoly_getuv 10-32
WTpoly_mirrortexture 10-29
WTpoly_rotatetexture 10-27
WTpoly_scaletexture 10-2
WTpoly_settexture 10-1
WTpoly_settexturestyle 10-2
WTpoly_settextureuv 10-13
WTpoly_setuv 10-3
WTpoly_stretchtexture 10-3
WTpoly_translatetexture 10-2
WTtexture_getfilter 10-27
WTtexture_getmemory 10-1
WTtexture_setfilter 10-25

ThrustMaster Formula T2 Steering Console
see Formula T2

ThrustMaster Mark II Flight Control System ..
13-113

ThrustMaster Mark II Weapons Control
System 13-11

ThrustMaster Serial Joystick
see Serial Joystick

Time
overview .. 3-2
WTtime_getcurrent 3-2
Index-28 WorldToolKit Reference Manual

Index U

2
2

5
6

8

-6

8
7
2
4

1
1
0

1
2
8
8
4
0
4
5
7
9
3
3
1
4

0

WTtime_getcurrentlocal 3-27
WTtime_getcurrentmsec 3-28
WTtime_getcurrentmseclocal 3-28
WTtime_getcurrentsec 3-27
WTtime_getcurrentseclocal 3-27
WTtime_getdouble 3-28
WTtime_getmsec 3-28
WTtime_getsec 3-28
WTtime_update 3-27

Time sensitivity
overview ... 21-4
WTproperty_gettimesensitive 21-9
WTproperty_settimesensitive 21-9

Time to Live value22-8, 22-13
Token Ring .. 22-2
Tool bar object

see User interface
Transform nodes

creating ... 4-42
description .. 4-11
overview ... 4-58
WTnode_axisrotation 4-62
WTnode_getorientation 4-60
WTnode_getrotation 4-60
WTnode_gettransform 4-58
WTnode_gettranslation 4-59
WTnode_rotatem3 4-61
WTnode_rotatem4 4-62
WTnode_rotateq 4-61
WTnode_rotation 4-61
WTnode_setorientation 4-60
WTnode_setrotation 4-60
WTnode_settransform 4-58
WTnode_settranslation 4-59
WTnode_translate 4-59
WTxformnode_new 4-42

Transform separator nodes
creating ... 4-43
defined in table 4-14
WTxformsepnode_new 4-43

Transformation
accumulated ... 4-84
changed functions H-1
composite ... 4-30

Transition guide
see Backward compatibility

Transitioning
from R6 to R7/8/9 H-1

Transparent Textures 10-8

Transparent textures 10-2
usage exampleA-1

Traversal order
see Scene graphs

Triangular prisms
constructing .. 6-1

TRUE constant ...C-
Truncated cones

creating .. 6-1
Type definitions

WTK naming conventions 1-4
Type field

see Networking, multicast

U
U constant ..C
UDP

see Networking
Ultrasonic sensor

CrystalEyesVR 13-10
Logitech Head Tracker 13-7
overview .. 13-

Universe ...A-2
action function 2-11
collision detection exampleA-25
construction .. 2-
destruction .. 2-
list of paths 14-8, 14-1
list of viewpoints 16-4
list of windows 17-8
overview .. 2-
performance and statistics function 2-2
rendering and display 2-1
rendering options 2-1
stereoscopic viewing 2-3
warning messageD-1
WTuniverse_avgframerate 2-2
WTuniverse_delete 2-
WTuniverse_deletelink 2-1
WTuniverse_findnodebyname 4-4
WTuniverse_framecount 2-2
WTuniverse_framerate 2-2
WTuniverse_getbgrgb 2-2
WTuniverse_getcurrscridx 2-1
WTuniverse_getcurrwindow 2-14
WTuniverse_getcurrwinidx 2-14
WTuniverse_geteventorder 2-1
WorldToolKit Reference Manual Index-29

U Index

4
0
0
6

8
7

6
7
7
6
5
5
1
8
9
0

1
5
3

8
-7

5
0
3
4

0

1
0
2

5
4

1
8
6
9

0

WTuniverse_getinitialview 2-16
WTuniverse_getmotionlinks 2-17
WTuniverse_getoption 2-27
WTuniverse_getpaths 2-13
WTuniverse_getrendering 2-20
WTuniverse_getrootnodes 2-17
WTuniverse_getsensors 2-13
WTuniverse_getsubfaceoffset 2-22
WTuniverse_gettaskbypointer 11-6
WTuniverse_getviewpoints 2-15
WTuniverse_getwindows 2-13
WTuniverse_go 2-7
WTuniverse_go1 2-7
WTuniverse_new 2-2
WTuniverse_ready 2-6
WTuniverse_resetframecount 2-23
WTuniverse_resettime 2-23
WTuniverse_setactions 2-12
WTuniverse_setbboxrgb 2-21
WTuniverse_setbgrgb 2-21
WTuniverse_seteventorder 2-9
WTuniverse_setoption 2-24
WTuniverse_setrendering 2-18
WTuniverse_setsubfaceoffset 2-22
WTuniverse_setviewpoint 2-15
WTuniverse_stop 2-8
WTuniverse_time 2-22

UNIX
getting a pointer to a WTK display A-38

Update frequencies
for shared properties21-3, 21-8

Update functions
called by simulation manager 13-9
changing ... 13-10
custom ..E-1
example .. 13-10
sensors .. 13-7
unsupported sensors 13-9
updatefn ...E-6
WTpolhemus_update 13-88

Update rates
for connections21-23, 21-31

URL
function for anchor and inline nodes ... 4-62

User interface
changed functions H-1
checkbuttons 18-16
constants ...C-20
example accessing scrolled list items 18-22

example GUI application 18-2
example of accessing a file 18-1
example of creating a scale object 18-2
example of creating a toolbar 18-1
example of menu system creation 18-2
example simulating WTuniverse_go1 18-3
example using variable argument list .. 18-
file selection box object 18-13
form object ... 18-
label object ... 18-1
loading images in form objects 18-1
menu bar button object 18-2
menu bar object 18-2
menu pop-up button object 18-2
overview .. 18-
pushbutton object 18-1
scale object ... 18-1
scale object example 18-2
scrolled list object 18-2
text input object 18-1
text object ... 18-2
text-field object 18-24
tool bar object 18-2
variable arguments 18
WTinit_usewindow 17-6
WTui_check 18-3
WTui_delete 18-4
WTui_deleteitem 18-3
WTui_enable 18-3
WTui_getcallback 18-41
WTui_getid .. 18-37
WTui_getparent 18-4
WTui_getposition 18-36
WTui_getselecteditem 18-3
WTui_gettext 18-3
WTui_go .. 18-1
WTui_init ... 18-5
WTui_insertitem 18-33
WTui_ischecked 18-3
WTui_isenabled 18-3
WTui_iswtkrunning 18-38
WTui_manage 18-1
WTui_setcallback 18-
WTui_setposition 18-3
WTui_settext 18-2
WTui_settoolbarcallback 18-9
WTui_unmanage 18-4
WTui_wtkstart 18-38
WTui_wtkstop 18-38
Index-30 WorldToolKit Reference Manual

Index V

0

-3
-3
3
9
8

8
9

-4
2

4
2
8
3
3
7
-5
1

2

6
6
3
-3

7
1
-2
4
0
-6
4

9
3
4

5
9
7

9

WTuicheckbutton_new 18-16
WTuifileselection_new 18-13
WTuilabel_new 18-17
WTuimenubar_new 18-24
WTuimenuitem_new 18-26
WTuimenupopup_new 18-25
WTuimessagebox_new 18-15
WTuipushbutton_new 18-18
WTuiradiobox_new 18-18
WTuiscale_new 18-19
WTuiscrolledlist_new 18-21
WTuiscrolledtext_new 18-23
WTuitextfield_new 18-24
WTuitextinput_new 18-15
WTuitoolbar_new 18-28
WTuiwtkwindow_new 18-11

User-defined data field
material tables 8-13
nodes .. 4-51
sensors .. 13-23
viewpoints .. 16-25

User-defined draw function
loading an image 17-25
overview ... 19-1

Users’ group (SIG-WTK)K-1, L-2
Utility functions 4-76

V
V constant ..C-6
Vertex

access ... 7-8
add to geometry 6-22
adding to a polygon 7-10
colors .. 6-9
editing example A-13
index ... 7-10
normals ... 6-9
normals in NFF file F-4
warning message D-5
WTgeometry_newvertex 6-22
WTpoly_addvertex 7-10
WTpoly_addvertexptr 7-10
WTpoly_close 7-12
WTpoly_getvertex 7-8
WTpoly_numvertices 7-9
WTpoly_rayintersect 4-88
WTvertex_next 6-33

Vertical blanking interval 2-20
Vertical sync problem 2-2
VictorMaxx Technologies’ CyberMaxx2 HMD

see CyberMaxx2 HMD
Video accelerator cards

manufacturers ...J
VideoScape .. 6
View matrix ... 17-2
Viewing angle .. 17-1

setting from a file 2-2
Viewpoints

accessing position and orientation 16-
aspect ratio 16-18, 16-1
convergence ... 16
convergence distance diagram 16-2
coordinate transformations 16-2
creation .. 2-
current .. 14-2
default orientation 16-
default position 16-
default sound position 20-1
delete ... 2-15, 16
getting convergence values 16-2
handling portalsA-2
hither and yon clipping 17-17
information .. 2-1
intersection test 16-2
keeping an object perpendicular toA-3
management ... 16
monoscopic viewing diagram 16-2
overriding attachments 20-1
overview .. 16-
paths ... 14
reference frame 16-2
reference frame diagram 16-1
sensor attachment 16
stereo modes .. 2-3
stereo viewing 16-1
stereo viewing diagram 16-
testing for intersectionsA-2
universe list of viewpoints 16-4
user-specifiable data 16-2
viewing angle 17-1
WTviewpoint_addsensor 16-
WTviewpoint_alignaxis 16-14
WTviewpoint_copy 16-5
WTviewpoint_delete 16-5
WTviewpoint_getaspect 16-1
WTviewpoint_getaxis 16-14
WorldToolKit Reference Manual Index-31

W Index

6

3
5
8

8
-4
2
6
1

-6
-5
1

6

-1
6
6
7
8
7
6
7
7

3
1
2

5
6
1

2

8
0

WTviewpoint_getconvdistance 16-23
WTviewpoint_getconvergence 16-21
WTviewpoint_getdata 16-26
WTviewpoint_getdirection 16-13
WTviewpoint_getdirectionframe 16-18
WTviewpoint_getframe 16-15
WTviewpoint_getlastorientation 16-11
WTviewpoint_getlastposition 16-9
WTviewpoint_getorientation 16-11
WTviewpoint_getorientationframe 16-16
WTviewpoint_getparallax 16-20
WTviewpoint_getposition 16-8
WTviewpoint_getpositionframe 16-15
WTviewpoint_intersectpoly 4-89
WTviewpoint_local2world 16-24
WTviewpoint_move 16-12
WTviewpoint_moveframe 16-17
WTviewpoint_moveto 16-13
WTviewpoint_movetoframe 16-17
WTviewpoint_new 16-3
WTviewpoint_next 16-5
WTviewpoint_removesensor 16-8
WTviewpoint_rotate 16-12
WTviewpoint_rotateframe 16-16
WTviewpoint_setaspect 16-18
WTviewpoint_setconvdistance 16-22
WTviewpoint_setconvergence 16-21
WTviewpoint_setdata 16-25
WTviewpoint_setdirection 16-13
WTviewpoint_setdirectionframe 16-17
WTviewpoint_setorientation 16-11
WTviewpoint_setorientationframe 16-16
WTviewpoint_setparallax 16-19
WTviewpoint_setposition 16-8
WTviewpoint_setpositionframe 16-15
WTviewpoint_translate 16-9
WTviewpoint_translateframe 16-15
WTviewpoint_world2local 16-24
WTwindow_gethithervalue 17-18
yon clipping 17-19

Viewports ... 17-30
Virtual i-O i-glasses!

see i-glasses!
Virtual reality

hardware components 1-12
Virtual Research

manufacturer ...J-2
VRML

exporting a file 6-4

file format .. 6-3
limitations .. 6-4
loading file ... 4-4
loading in using an http URL 6-3
material properties 8-
new viewpoints 2-1
overview for anchor nodes 4-2
overview for inline nodes 4-28
saving .. 4-41, 4-4
scene graph advantages 4
setting a URL path 4-6
support for .. 1-
used to create in-line nodes 4-4
WTvrml_seturl 4-62

W
W constant ...C
Warning messagesD

overview ..D-
Wavefront

file format .. 6-2
Wayfinder-VR

example .. 13-9
list of functions 13-8
manufacturer ...J
overview .. 13-9
raw data .. 13-9
scaling records 13-9
special notes 13-9
update function 13-9
WTprecision_new macro 13-9
WTprecision_rawupdate 13-9
WTprecision_update 13-9

Windows
angular field of view 17-19
configuration .. 2-
constants 2-3, 17-2, C-2
creation and deletion 17-
hither and yon clipping 17-17
loading an image file 17-2
monoscopic viewing diagram 17-
overview .. 17-
picking frontmost polygonA-6
rendering properties 17-2
setting position from file 2-28
setting size from file 2-2
size and placement 17-1
Index-32 WorldToolKit Reference Manual

Index W

-9
2
1
0
-8
-8
3
3
9
-9
2
1
6
-9
11
12
11
3
4
1
3
1
9

3
2
2

5
7
9
1
8
7
6
6
8
2

7
7
7
8
0
8

stereo viewing diagram 16-3
universe list of windows 17-8
usage example A-35
user-defined drawing functions 19-1
viewpoints .. 17-11
yon clipping 17-19

World coordinate frame
example .. 4-33

World coordinate system
defined ..M-17
example .. 4-33

World coordinates
paths ... 14-1

World Up compatible properties 21-38
World Up Modeler I-1

file formats supported I-1
World2World server product 21-1

also see Networking, client-server
WorldToolKit

additional features 1-5
documentation available 1-7
Hardware Guides 1-10
introduction .. 1-1
naming conventions 1-4
quick reference guide 1-11
sample animation 1-13
Special Interest Group 1-11
transitioning from R6 to R7/8/9 H-1
users’ group ..L-2

Writing a sensor driverE-1
WTanchornode_getlocation 4-63
WTanchornode_new 4-40
WTanchornode_setlocation 4-63
WTanimation functions G-9
WTbaron_update 13-76
WTbase objects

functions for all supported types 3-10
functions for WTbase objects 3-7
in World2World-compliant simulations

21-5
overview ... 3-7

WTbase_addparent 3-8
WTbase_delete ... 3-11
WTbase_deleteproperties 3-13
WTbase_find .. 3-13
WTbase_findchild 3-10
WTbase_getchild 3-10
WTbase_getdata 3-11
WTbase_getname 3-12

WTbase_getparent 3
WTbase_getproperty 3-1
WTbase_gettype 3-1
WTbase_ischild 3-1
WTbase_new ... 3
WTbase_next ... 3
WTbase_nfind .. 3-1
WTbase_nfindproperty 3-1
WTbase_numchildren 3-
WTbase_numparents 3
WTbase_numproperties 3-1
WTbase_print .. 3-1
WTbase_removeallhandlers 3-2
WTbase_removeparent 3
WTbase_setdata 3-
WTbase_setname 3-
WTbase_unshare 21-
WTBIRD constants 13-4
WTbird_autohemisphere 13-4
WTbird_getabsoluterecord 13-4
WTbird_gethemisphere 13-4
WTbird_new macro 13-5

Bird .. 13-3
Flock of Birds 13-51

WTbird_sethemisphere 13-4
WTbird_setsync 13-4
WTbird_update 13-4
WTBIRDDELAY environment variable ...B-5
WTBOOM constants

for BOOM with buttons 13-57
for BOOM with joystick 13-58

WTboom_new macro
example .. 13-5

WTboom_update 13-5
WTcalloc .. 24-
WTconnection_addcallback 21-3
WTconnection_connect 21-2
WTconnection_delete 21-2
WTconnection_deleteallenumtrees 21-3
WTconnection_deleteenumtreebyid 21-3
WTconnection_disconnect 21-2
WTconnection_getcallback 21-3
WTconnection_getclockdiff 21-30
WTconnection_getdata 21-2
WTconnection_getenumtree 21-3
WTconnection_getenumtreebyid 21-3
WTconnection_getenumtreeid 21-3
WTconnection_getlatency 21-3
WTconnection_getmyid 21-2
WorldToolKit Reference Manual Index-33

W Index

4

8
7

7
4
9
3
5

5
3
4

6
8

6
6
5
0
0
0
7
6
7
9
9
9

5

8
6
7
8
6
5
7
6

WTconnection_getmyname 21-29
WTconnection_getroot 21-32
WTconnection_getstatus 21-29
WTconnection_getupdaterate 21-31
WTconnection_getuserid 21-33
WTconnection_getuseridbyname 21-33
WTconnection_getusername 21-33
WTconnection_getusernamebyid 21-33
WTconnection_issynchronous 21-31
WTconnection_new 21-26
WTconnection_next 21-28
WTconnection_numcallbacks 21-32
WTconnection_numenumtrees 21-37
WTconnection_numusers 21-32
WTconnection_print 21-29
WTconnection_removecallback 21-32
WTconnection_setdata 21-27
WTconnection_setsynchronous 21-30
WTconnection_setupdaterate 21-31
WTconnection_synch 21-30
WTconnection_update 21-29
WTconnevent ... 21-24
WTCONSTRAIN constants

constraining a path 14-20
constraining a sensor 13-21
writing sensor driversE-3

WTcrystaleyesVR_new macro
example .. 13-109

WTcrystaleyesVR_update 13-110
WTcybermaxx2_new macro

example .. 13-119
WTcybermaxx2_rawupdate 13-121
WTcybermaxx2_update 13-120
WTcybglove_deletehandmodel 13-129
WTcybglove_getanglearray 13-132
WTcybglove_getfingers 13-131
WTcybglove_getforearm 13-130
WTcybglove_getpalm 13-131
WTcybglove_new 13-124
WTcybglove_setvisibility 13-130
WTcybglove_showcalibrationpanel 13-126
WTcybglove_usehandmodel 13-127
WTdir_2q ... 25-30
WTdirandtwist_2q 25-31
WTDIRECTION constants

getting a path direction 14-20
setting a path direction 14-19

WTdirectory_close 24-5
WTdirectory_getentry 24-4

WTdirectory_open 24-
WTDISPLAY constants 2-2, C-2

example of WTDISPLAY_DEFAULT 16-6
example of WTDISPLAY_STEREO .. 17-8

WTDRAW2D constantsC-2
WTercbird_init macro 13-52
WTerror ... 24-
WTeuler_2m3 .. 25-2
WTeuler_2q

description .. 25-2
example13-20, E-1

WTEVENT constants 2-
WTEYE constantsC-
WTfastrak_afilter 13-9
WTfastrak_afilteroff 13-95
WTfastrak_pfilter 13-95
WTfastrak_pfilteroff 13-95
WTFASTRAK_STYLUSBUTTON_DOWN

constant ..C-1
example .. 13-9

WTfastrak_update 13-9
WTFILE_DELIM constantC-21
WTFILE_PATHDELIM constantC-21
WTFILETYPE constants

saving a geometry 6-2
saving a node 4-4

WTFILTER constants 10-2
WTflock_close 13-4
WTflock_deviceopen 13-4
WTflock_getabsmat 13-5
WTflock_getabsoluterecord 13-5
WTflock_getabspos 13-5
WTflock_getcrtsyncdata 13-4
WTflock_getdefaulthemisphere 13-4
WTflock_gethemisphere 13-4
WTflock_getlastmat 13-4
WTflock_getlastpos 13-4
WTflock_getorgmat 13-4
WTflock_new 13-45, 13-51
WTflock_open 13-4
WTflock_resetorigin 13-48
WTflock_setcrtsync 13-4
WTflock_setdefaulthemisphere 13-4
WTflock_sethemisphere 13-4
WTflock_update 13-4
WTFOG constants 4-6
WTfognode_getcolor 4-6
WTfognode_getlinearstart 4-6
WTfognode_getmode 4-6
Index-34 WorldToolKit Reference Manual

Index W

0

2
8
9
5
8
6

4
9
7
3

3
8
9
7
5
6

9
7
7
6

0
1
8
2
2
0
1
4
6
8
1
0
9
3
1

2
2
5
2
8
5
-9
WTfognode_getrange 4-66
WTfognode_new 4-45
WTfognode_setcolor 4-65
WTfognode_setlinearstart 4-66
WTfognode_setmode 4-66
WTfognode_setrange 4-65
WTfont3d_charexists 9-5
WTfont3d_delete 9-3
WTfont3d_getextents 9-4
WTfont3d_getspacing 9-3
WTfont3d_load

description .. 9-2
example .. 6-21
warning message D-7, D-10

WTfont3d_setspacing 9-3
WTfont3d_textobject G-9
WTformula_drive 13-112
WTformula_rawupdate 13-113
WTFRAME constantsC-4

description .. 13-19
used by WTviewpoint_translate 16-9

WTfree ... 24-10
WTFUZZ

and other mathematical constantsC-6
and overlapping polygons 6-12
and WTwindow_sethithervalue 17-18
and WTzero .. 25-33

WTGEOBALL defined constants 13-55
WTgeoball_present 13-55
WTgeoball_update 13-54
WTgeometry_begin 6-22
WTgeometry_beginedit 6-42
WTgeometry_beginpoly

description .. 6-23
example .. 6-24

WTgeometry_changetexture 10-16
WTgeometry_close 6-23
WTgeometry_closesmooth 6-25
WTgeometry_computevertexnormal 6-46
WTgeometry_copy 6-26
WTgeometry_delete 6-26
WTgeometry_deleteprebuild 6-40
WTgeometry_deletetexture 10-23
WTgeometry_endedit 6-43
WTgeometry_getextents 6-29
WTgeometry_getmidpoint

description .. 6-28
usage example A-25

WTgeometry_getmtable 6-31

WTgeometry_getname 6-3
WTgeometry_getpolys

description .. 6-3
example .. 7-

WTgeometry_getradius 6-2
WTgeometry_getrenderingstyle 6-3
WTgeometry_getvertexmatid 6-4
WTgeometry_getvertexnormal 6-4
WTgeometry_getvertexposition

description .. 6-4
example .. 7-

WTgeometry_getvertexrgb 6-4
WTgeometry_getvertices 6-3
WTgeometry_id2poly

description .. 6-3
used with NFF files F-

WTgeometry_loadG-
WTgeometry_merge 6-2
WTgeometry_newblock 6-1
WTgeometry_newcone 6-1
WTgeometry_newcylinder 6-15
WTgeometry_newextrusion 6-1
WTgeometry_newhemisphere 6-1
WTgeometry_newrectangle 6-1
WTgeometry_newsphere 6-1
WTgeometry_newtext3d

description .. 6-2
example .. 6-2

WTgeometry_newtruncone 6-1
WTgeometry_newvertex 6-2
WTgeometry_numpolys 6-3
WTgeometry_prebuild 6-4
WTgeometry_prebuildreflectmap 6-4
WTgeometry_recomputestats 6-4
WTgeometry_save 6-2
WTgeometry_scale 6-3
WTgeometry_setmatid 6-3
WTgeometry_setmtable 6-3
WTgeometry_setname 6-2
WTgeometry_setrenderingstyle 6-3
WTgeometry_setrgb 6-3
WTgeometry_settexture

description .. 10-1
usage exampleA-1

WTgeometry_settextureuv 10-1
WTgeometry_setuv 10-3
WTgeometry_setvertexmatid 6-4
WTgeometry_setvertexnormal 6-4

vertex normals and Gouraud shading 6
WorldToolKit Reference Manual Index-35

W Index

2
1

4

-8

1

-1

4
3

2
-4

2
-4

1
-8

-2

1

9

WTgeometry_setvertexposition 6-44
WTgeometry_setvertexrgb 6-47
WTgeometry_stretch 6-37
WTgeometry_transform 6-39
WTgeometry_translate 6-38
WTgeometrynode_load

description .. 4-46
versus WTnode_load A-3

WTgeometrynode_new 4-44
WTglnode_getflags 4-72
WTglnode_new .. 4-70
WTglnode_replacecallback 4-71
WTglnode_setcullingbox 4-71
WTglnode_setflags 4-71
WTGLOVE5DT constants 13-65
WTglove5dt_calibrateclosed 13-66
WTglove5dt_calibrateopen 13-66
WTglove5dt_loadhandmodel 13-66
WTglove5dt_rawupdate 13-65
WTglove5DT_update 13-64
WTglove5dt_updatefingers 13-64
WTgroup functions G-9
WTgroupnode_new 4-40
WTHOSTS, warning message D-7
WTiglasses_new macro 13-121
WTiglasses_rawupdate 13-123
WTiglasses_update 13-122
WTIMAGE constantsC-20
WTIMAGES environment variable

description ..B-2
warning message D-7, D-14

WTinit_defaults 2-32
WTinit_setimages 2-33
WTinit_setmodels 2-33
WTinit_usewindow 17-6
WTinlinenode_getlocation 4-64
WTinlinenode_new 4-40
WTinlinenode_setlocation 4-63
WTinsidetrak_update 13-91
WTisotrak2_update 13-90
WTJOYSERIAL constants 13-117
WTjoyserial_fly 13-116
WTjoyserial_getdrift 13-119
WTjoyserial_getrange 13-118
WTjoyserial_rawupdate 13-117
WTjoyserial_readcalibrationfile 13-119
WTjoyserial_setdrift 13-118
WTjoyserial_walk 13-116
WTjoyserial_walk2 13-116

WTJOYSTICK 13-71
WTjoystick_fly 13-70
WTjoystick_getdrift 13-73
WTjoystick_getrange 13-7
WTjoystick_rawupdate 13-7
WTjoystick_readcalibrationfile 13-73
WTjoystick_setdrift 13-72
WTjoystick_walk 13-70
WTjoystick_walk2 13-70
WTK functions

backward compatibilityG-1
overview .. 1-1

WTKALPHAENABLE environment variable
B-5

WTKALPHATEST environment variable B-3
WTKCODES

warning messageD
WTKCODES environment variable

description ..B-
WTKCODES file

error message ...D
WTKCPU environment variableB-6
WTKDISPLAY environment variableB-7
WTKEY constantsC-
WTkeyboard_close 24-
WTkeyboard_getkey

description .. 24-
keyboard constantsC

WTkeyboard_getlastkey
description .. 24-
keyboard constantsC

WTkeyboard_open
description .. 24-
usage example ..A

WTKLS environment variableB-5
error message ...D

wtklsd daemon
warning messageD-1

WTKMAXTEXSIZE environment variable
B-4

WTKMULTISAMPLE environment variable .
B-6

WTKPROXY environment variableB-4
WTKSHMEM environment variableB-8
WTKSQRTEX environment variableB-4
WTKZBUFFERSIZE environment variable ...

B-3
WTlight functions

mapping to current release functionsG-
Index-36 WorldToolKit Reference Manual

Index W

2

2
-1
1
3
3
4
4
5
3

9
5

5
2

6

6
2
-7

2
-7

6
7

6
7

6
8
3
8

WTlightnode_getambient 12-15
WTlightnode_getangle 12-19
WTlightnode_getattenuation 12-18
WTlightnode_getdiffuse 12-16
WTlightnode_getdirection 12-13
WTlightnode_getexponent 12-20
WTlightnode_getintensity 12-14
WTlightnode_getposition 12-12
WTlightnode_getspecular 12-16
WTlightnode_gettype 12-18
WTlightnode_load 12-9
WTlightnode_newambient 12-5
WTlightnode_newdirected 12-6
WTlightnode_newpoint 12-7
WTlightnode_newspot 12-8
WTlightnode_save 12-11
WTlightnode_setambient 12-14
WTlightnode_setangle 12-19
WTlightnode_setattenuation 12-17
WTlightnode_setdiffuse 12-15
WTlightnode_setdirection 12-13
WTlightnode_setexponent 12-19
WTlightnode_setintensity 12-14
WTlightnode_setposition 12-12
WTlightnode_setspecular 12-15
WTLIGHTTYPE constantsC-5
WTLINE constantsC-2
WTlodnode_getcenter 4-56
WTlodnode_getrange 4-55
WTlodnode_new 4-41
WTlodnode_numranges 4-56
WTlodnode_setcenter 4-56
WTlodnode_setrange 4-55
WTLOGITECH constants

example, WTLOGITECH_FLYING . 13-74
for 3D Mouse 13-76
for CrystalEyesVR 13-110
for Head Tracker 13-81

WTlogitech_new macro 13-78
WTlogitech_update 13-80
WTm3 (3D matrix)

functions ... 25-21
math data type 25-1

WTm3_2euler .. 25-27
WTm3_2eulernear 25-32
WTm3_2q .. 25-26
WTm3_copy .. 25-22
WTm3_init ... 25-21
WTm3_multm3 25-22

WTm3_transpose 25-2
WTm4 (4D matrix)

functions .. 25-2
math data type 25

WTm4_2pq .. 25-3
WTm4_copy .. 25-2
WTm4_init ... 25-2
WTm4_invert ... 25-2
WTm4_multm4 25-2
WTm4_rotatep3 25-2
WTm4_transpose 25-2
WTm4_xformp3 25-24
WTmalloc .. 24-
WTMAT constantsC-
WTmessage

description .. 24-
printing ... 25-1

WTMESSAGE constants
description .. 24-
printing to WTMESSAGE_USER 25-12

WTmessage_sendto
description .. 24-
printing ... 25-1

WTmessage_setcallback 24
WTMODELS environment variable

description ..B-
error message ...D

WTmotionlink_addconstraint 15-11
WTmotionlink_delete 15-5
WTmotionlink_enable 15-5
WTmotionlink_getconstraintframe 15-11
WTmotionlink_getdata 15-6
WTmotionlink_getreferenceframe 15-9
WTmotionlink_getsource 15-6

description .. 15-
example .. 15-

WTmotionlink_gettarget 15-6
description .. 15-
example .. 15-

WTmotionlink_isenabled 15-5
WTmotionlink_new 15-3
WTmotionlink_next 15-8
WTmotionlink_removeconstraint 15-12
WTmotionlink_setconstraintframe 15-10
WTmotionlink_setdata 15-
WTmotionlink_setreferenceframe 15-
WTMOUSE constants 13-3
WTmouse_drawcursor13-28, E-
WTmouse_gettrackballdrift 13-37
WorldToolKit Reference Manual Index-37

W Index

3
8
1
5
1
8
7
4
2
3
6
2
9
5
9
-3
0
9
3
3
3

-4
1

7

9
1
-4
2
3
8
3
4

2
7
2
3
1
5
5
9
7
1
3
5
4

WTmouse_gettrackballsnap 13-39
WTmouse_gettrackballsnapangle 13-38
WTmouse_inwindow 13-35
WTmouse_move2D

description .. 13-29
example of setting update function 13-10
platform-independent macro example 13-27

WTmouse_moveview1 13-29
WTmouse_moveview2 13-31
WTmouse_new macro 13-26
WTmouse_rawupdate

description .. 13-32
example ..E-9

WTmouse_settrackballdrift 13-37
WTmouse_settrackballsnap 13-38
WTmouse_settrackballsnapangle 13-38
WTmouse_trackball 13-36
WTmouse_trackballreset 13-39
WTmouse_trackballvpoint 13-37
WTmouse_whichwindow 13-35
WTmovgeometrynode_new 5-3
WTmovlightnode_newdirected 5-4
WTmovlightnode_newpoint 5-3
WTmovlightnode_newspot 5-4
WTmovlodnode_new 5-5
WTmovnode_attach

description .. 5-11
usage example A-16

WTmovnode_axisrotation 5-8
WTmovnode_deleteattachment 5-12
WTmovnode_detach 5-12
WTmovnode_getattachment 5-13
WTmovnode_instance 5-13
WTmovnode_load

description .. 5-5
usage example A-16
versus WTnode_load A-4

WTmovnode_numattachments 5-13
WTmovsepnode_new 5-4
WTmovswitchnode_new 5-5
WTmsleep

description .. 24-8
example ..E-11

WTmtable_copyentry 8-14
WTmtable_delete 8-8
WTmtable_getbyname 8-13
WTmtable_getdata 8-13
WTmtable_getentrybyname 8-17
WTmtable_getentryname 8-16

WTmtable_getname 8-1
WTmtable_getnumentries 8-
WTmtable_getproperties 8-1
WTmtable_getvalue 8-1
WTmtable_load 8-1
WTmtable_merge 8-
WTmtable_new .. 8-
WTmtable_newentry 8-1
WTmtable_save 8-1
WTmtable_setdata 8-1
WTmtable_setentryname 8-1
WTmtable_setname 8-1
WTmtable_setproperties 8-
WTmtable_setvalue 8-1
WTnet_additem 22-4, 22-

sending message items 22
WTnet_addstring 22-1
WTnet_close .. 22-
WTnet_flush .. 22-1
WTnet_getport 22-1
WTnet_getrange 22-1
WTnet_next

checking for message items 22
description .. 22-1

WTnet_open
description .. 22-
initializing network communications .. 22-3
warning message D-6, D-7, D-

WTnet_removeitem 22-4, 22-1
receiving message items 22-3, 22

WTnet_removestring 22-1
WTnet_skip .. 22-1
WTNODE constantsC-7, C-
WTnode properties 3-
WTnode_addchild 4-7
WTnode_addsensor

description .. 4-9
example .. 13-1

WTnode_axisrotation 4-6
WTnode_boundingbox 4-7
WTnode_canaddchild 4-5
WTnode_delete .. 4-7
WTnode_deletechild 4-7
WTnode_enable 4-4
WTnode_getchild 4-7
WTnode_getdata 4-5
WTnode_getextents 4-5
WTnode_getgeometry 4-4
WTnode_getmidpoint 4-5
Index-38 WorldToolKit Reference Manual

Index W

1
2
3

3

1
5
5
5
4
9

4
-1
4
5
4
4
4
5

5
-1
7
1
6
-8
1
1

7
5
8
9
4
5

6
8

6
0
0
0
6
2
9
9
7

WTnode_getname 4-49
WTnode_getobject G-35
WTnode_getorientation 4-60
WTnode_getparent 4-78
WTnode_getradius 4-54
WTnode_getrotation 4-60
WTnode_gettransform 4-58
WTnode_gettranslation 4-59
WTnode_gettype 4-50
WTnode_hasboundingbox 4-73
WTnode_insertchild 4-74
WTnode_isenabled 4-50
WTnode_ismovable 4-50
WTnode_load

description .. 4-46
versus WTgeometrynode_load A-3
versus WTmovnode_load A-4

WTnode_numchildren 4-77
WTnode_numparents 4-77
WTnode_numpolys 4-78
WTnode_print .. 4-76
WTnode_rayintersect 4-88
WTnode_remove 4-75
WTnode_removechild 4-74
WTnode_removesensor 4-92
WTnode_rotatem3 4-61
WTnode_rotatem4 4-62
WTnode_rotateq 4-61
WTnode_rotation 4-61
WTnode_save .. 4-48
WTnode_setdata 4-51
WTnode_setname 4-49
WTnode_setorientation 4-60
WTnode_setrotation 4-60
WTnode_settransform 4-58
WTnode_settranslation 4-59
WTnode_translate 4-59
WTnode_vacuum 4-76
WTnodepath_addsensor 4-93
WTnodepath_delete 4-82
WTnodepath_getextents 4-83
WTnodepath_getnode 4-82
WTnodepath_getorientation 4-85
WTnodepath_gettransform 4-84
WTnodepath_gettranslation 4-84
WTnodepath_gettraversal 4-83
WTnodepath_intersectbbox 4-87
WTnodepath_intersectnode 4-87
WTnodepath_intersectpoly 4-86

WTnodepath_new 4-8
WTnodepath_numnodes 4-8
WTnodepath_removesensor 4-9
WTnormal_2slope 25-3
WTobject functions

mapping to current release functions ...G-1
WTobject_getnodeG-3
WTobject_setcolorG-3
WTobject_setrgbG-3
WTOPTION constants 2-2
WTOUTPUT constantsC-1
WTp2 (2D vectors)

functions .. 25-
math data type 25

WTp2_copy ... 25-
WTp2_dot .. 25-
WTp2_init .. 25-
WTp2_mag .. 25-
WTp2_norm ... 25-
WTp2_subtract .. 25-
WTp3 (3D vectors)

functions .. 25-
math data type 25

WTp3_add ... 25-
WTp3_coplanar 25-1
WTp3_copy ... 25-
WTp3_cross ... 25
WTp3_distance 25-1
WTp3_disttovector 25-1
WTp3_dot

description .. 25-
example .. 7-

WTp3_equal .. 25-
WTp3_exact ... 25-
WTp3_frame2frame 25-3
WTp3_init .. 25-
WTp3_invert

description .. 25-
example .. 13-5

WTp3_local2worldframe 25-34
WTp3_mag .. 25-
WTp3_multm3 25-1
WTp3_multm4 25-1
WTp3_mults .. 25-1
WTp3_norm ... 25-
WTp3_print .. 25-1
WTp3_rotate .. 25-
WTp3_rotatept ... 25-
WTp3_subtract .. 25-
WorldToolKit Reference Manual Index-39

W Index

9
9
5
1
9
6
6
2

5
3

7
6
5
4

6
8
6
5

4
8
6
6
6
5
6
5

6
2
1
1

6

0
4

0
6

2
4
2
3
4
5
6

WTp3_world2localframe 25-34
WTp3_xform ... 25-10
WTPATH constants

for WTpath_interpolate 14-6
for WTpath_seek 14-18

WTpath properties 3-6
WTpath_appendelement 14-27
WTpath_copy ... 14-5
WTpath_delete ... 14-5
WTpath_getconstraints 14-21
WTpath_getcurrentelement

description .. 14-18
example .. 14-19

WTpath_getdata 14-30
WTpath_getdirection 14-20
WTpath_getelements 14-10
WTpath_getmarker 14-10
WTpath_getmode 14-22
WTpath_getname 14-29
WTpath_getobject G-16
WTpath_getplayspeed 14-23
WTpath_getsamples 14-23
WTpath_getvisibility 14-9
WTpath_insertelement 14-27
WTpath_interpolate 14-6
WTpath_isplaying 14-16
WTpath_isrecording 14-16
WTpath_load

description .. 14-11
warning message D-10

WTpath_new .. 14-4
WTpath_next ... 14-10
WTpath_numelements 14-10
WTpath_play

description .. 14-14
example .. 14-19

WTpath_play1 14-14
WTpath_record 14-14
WTpath_record1 14-15
WTpath_rewind 14-16
WTpath_save ... 14-12
WTpath_seek

description .. 14-18
example14-19, 14-28

WTpath_setconstraints 14-20
WTpath_setcurrentelement 14-17
WTpath_setdata 14-29
WTpath_setdirection

description .. 14-19

example .. 14-1
WTpath_setmarker 14-

example .. 14-
WTpath_setmode 14-2
WTpath_setname 14-2
WTpath_setnodeobjectG-1
WTpath_setobjectG-1
WTpath_setplayspeed 14-2
WTpath_setrecordlink 14-1
WTpath_setsamples 14-2
WTpath_setvisibility 14-8
WTpath_showcurrentelement 14-1
WTpath_stop .. 14-1
WTpathelement_copy 14-2
WTpathelement_delete 14-2
WTpathelement_getorientation

description .. 14-2
example .. 14-2

WTpathelement_getpath 14-2
WTpathelement_getposition 14-2
WTpathelement_new

description .. 14-2
example .. 14-2

WTpathelement_next 14-2
description .. 14-2
example .. 14-2

WTpathelement_remove 14-2
WTpathelement_setorientation 14-2
WTpathelement_setposition 14-2
WTPATHLEN constantC-22
WTpathnode_getobjectG-1
WTPINCH constants 13-6
WTpinch_update 13-6
WTPLAY constants 14-2
WTpolhemus_new

example .. 16-
WTpoly_addvertex

description .. 7-1
example .. 6-2

WTpoly_addvertexptr 7-1
WTpoly_begin ...G-1
WTpoly_close

description .. 7-1
example .. 6-2

WTpoly_delete .. 7-1
WTpoly_deletetexture 10-2
WTpoly_getbothsides 7-
WTpoly_getcg ... 7-
WTpoly_getcolorG-1
Index-40 WorldToolKit Reference Manual

Index W

0
9
7

9
-1
1
0
6
0

0

6
7
7

6
4
5
5
6
0
2
1
6
6
1
6
1
2
1
2
2
2
8
7
9
1
8
0
1
7
0
5
5
-7
6
5

WTpoly_getgeometry 7-7
WTpoly_getid

description .. 7-7
with NFF file .. F-8

WTpoly_getmatid 7-3
WTpoly_getnormal

description .. 7-4
example7-5, 25-33

WTpoly_getobject G-16
WTpoly_getportal G-16
WTpoly_getrgb .. 7-2
WTpoly_gettextureinfo 10-31
WTpoly_gettexturestyle 10-24
WTpoly_gettexturetype G-16
WTpoly_getuv 10-32
WTpoly_getvertex

description .. 7-8
example .. 7-9

WTpoly_intersectbbox 4-86
WTpoly_intersectnode 4-86
WTpoly_intersectobject G-16
WTpoly_intersectobjpolys G-16
WTpoly_intersectpoly G-17
WTpoly_intersectpolygon 4-85
WTpoly_intersectuniverse G-17
WTpoly_intersectunivpolys G-17
WTpoly_mirrortexture 10-29
WTpoly_next ... 7-8
WTpoly_numvertices

description .. 7-9
example .. 7-8

WTpoly_rayintersect 4-88
WTpoly_rotatetexture 10-27
WTpoly_scaletexture 10-28
WTpoly_setbothsides

description .. 7-4
example .. 6-25

WTpoly_setcolor G-17, G-35
WTpoly_setid ... 7-6
WTpoly_setmatid 7-3
WTpoly_setrgb .. 7-2
WTpoly_settexture

description .. 10-11
error message .. D-2
usage example A-12

WTpoly_settexturestyle 10-23
WTpoly_settexturetype G-17
WTpoly_settextureuv 10-13
WTpoly_setuv .. 10-32

WTpoly_stretchtexture 10-3
WTpoly_translatetexture 10-2
WTportal functionsG-1
WTpq (WTp3 and WTq)

functions .. 25-1
math data type 25

WTpq_2m4 .. 25-3
WTpq_copy ... 25-2
WTpq_frame2frame 25-3
WTpq_init .. 25-2
WTpq_local2worldframe 25-36
WTpq_print .. 25-2
WTpq_world2localframe 25-36
WTprecision_new macro 13-9
WTprecision_rawupdate 13-9
WTprecision_update 13-9
WTPROJECTION constants

and WTwindow_setparams 17-1
description .. 17-1

WTproperty_addhandler 3-2
WTproperty_delete 3-1
WTproperty_exists 3-1
WTproperty_get 3-2
WTproperty_getasstring 3-2
WTproperty_getd 3-2
WTproperty_getdata 3-1
WTproperty_getdatatype 3-1
WTproperty_getf 3-2
WTproperty_gethandler 3-2
WTproperty_geti 3-2
WTproperty_getp 3-2
WTproperty_getp2 3-2
WTproperty_getp3 3-2
WTproperty_getq 3-2
WTproperty_gets 3-2
WTproperty_getsharegroup 21-
WTproperty_getsizeofdata 3-1
WTproperty_gettimesensitive 21-
WTproperty_getui 3-2
WTproperty_getupdatefreq 21-
WTproperty_islocked 21-1
WTproperty_islockedbyme 21-1
WTproperty_isshared 21-
WTproperty_lock 21-1
WTproperty_new 3-1
WTproperty_numhandlers 3-2
WTproperty_numshares 21
WTproperty_removeallhandlers 3-2
WTproperty_removehandler 3-2
WorldToolKit Reference Manual Index-41

W Index

4
8
9
7

1
3

1
6
0

-5

6
9
0

3
4
-3
2
4
5

5
0
3

5
3
7
4

2
4
-3

6
1
3
6

7
1
5

0
1

WTproperty_sendupdate 21-9
WTproperty_set 3-17
WTproperty_setat 3-19
WTproperty_setd 3-18
WTproperty_setdata 3-16
WTproperty_setf 3-18
WTproperty_seti 3-18
WTproperty_setp 3-19
WTproperty_setp2 3-18
WTproperty_setp3 3-19
WTproperty_setq 3-19
WTproperty_sets 3-19
WTproperty_settimesensitive 21-9
WTproperty_setui 3-18
WTproperty_setupdatefreq 21-8
WTproperty_share 21-5
WTproperty_unlock 21-10
WTproperty_unshare 21-7
WTq (quaternions)

math data type 25-1
overview and functions 25-12

WTq_2dir ... 25-30
WTq_2dirandtwist 25-30
WTq_2euler ... 25-29
WTq_2eulernear 25-32
WTq_2m3 .. 25-26
WTq_2m4 .. 25-32
WTq_construct 25-17
WTq_copy ... 25-15
WTq_dot .. 25-18
WTq_equal ... 25-16
WTq_exact ... 25-16
WTq_frame2frame 25-35
WTq_getangle .. 25-17
WTq_getvector 25-16
WTq_init .. 25-14
WTq_interpolate 25-18
WTq_invert .. 25-15
WTq_local2worldframe 25-35
WTq_mag .. 25-15
WTq_mult

description .. 25-17
example13-20, 25-29

WTq_multinv ... 25-18
WTq_norm ... 25-16
WTq_print .. 25-19
WTq_scale ... 25-17
WTq_world2localframe 25-35
WTrealloc .. 24-10

WTRENDER constants
used with geometries 6-3
used with the universe 2-1

WTrootnode_new 4-3
WTrootnode_next 4-7
WTSAMPLERATE constantsC-18
WTscreen_getyblank 2-2
WTscreen_load 10-3
WTscreen_pickpoly

description .. 4-9
example .. 13-1

WTscreen_setyblank 2-2
WTsensor properties 3
WTSENSOR_DEFAULT constant

example .. 13-
used with WTsensor_new 13-

WTsensor_delete 13-1
WTsensor_getangularrate

description .. 13-1
example E-10, E-1
scaling sensor recordsE

WTsensor_getconstraints 13-2
WTsensor_getdata 13-2
WTsensor_getlastrecord 13-2
WTsensor_getmiscdata

description .. 13-1
example ...2-9, E-1

WTsensor_getname 13-2
WTsensor_getrawdata

description .. 13-1
example .. E-9, E-1
used with mouse raw data 13-2

WTsensor_getrotation 13-1
WTsensor_getsensitivity

description .. 13-1
example .. E-9, E-1
scaling sensor recordsE

WTsensor_getserial
description .. 13-1
example ..E-1

WTsensor_gettranslation 13-1
WTsensor_getunit 13-1
WTsensor_new

description .. 13-
example ..E-
overview .. 13-

WTsensor_next
description .. 13-1
example .. 13-1
Index-42 WorldToolKit Reference Manual

Index W

0
8
8
8
0
1
9
9
7

9
5
0
1
8
0

17
7

9
4
0
6
7
5
8
5
7
2
0
1
1
5
6
8
2
7
0

-3
-9
9
-8
-4
-5
4
-3
-8
-9
-5
-4
WTsensor_relativizerecord 13-24
description .. 13-24
example ..E-7

WTsensor_rotate
description .. 13-20
rotating sensor input 13-17

WTsensor_setangularrate
description .. 13-12
scaling sensor recordsE-3

WTsensor_setconstraints 13-21
WTsensor_setdata 13-23
WTsensor_setlastrecord

description .. 13-25
example .. E-5, E-7

WTsensor_setmiscdata
description .. 13-25
example ..E-14

WTsensor_setname 13-23
WTsensor_setrawdata

description .. 13-26
example ..E-11

WTsensor_setrecord
description .. 13-24
example E-6, E-10, E-14

WTsensor_setsensitivity
description .. 13-11
example .. 4-54
scaling sensor recordsE-3

WTsensor_setupdatefn 13-10
WTsepnode_getcullmode 4-57
WTsepnode_new 4-41
WTsepnode_setcullmode 4-57
WTserial_delete

description .. 23-2
error message .. D-3

WTserial_new .. 23-1
description .. 23-1
error message D-1, D-4
warning message D-5, D-11

WTserial_ntoread 23-4
WTserial_read

description .. 23-3
warning message D-13

WTserial_write
description .. 23-4
error message .. D-4

WTsharegroup_delete 21-16
WTsharegroup_enumerate 21-36
WTsharegroup_findchildbyname 21-21

WTsharegroup_getchild 21-2
WTsharegroup_getconnection 21-1
WTsharegroup_getdata 21-1
WTsharegroup_getname 21-1
WTsharegroup_getparent 21-2
WTsharegroup_getproperty 21-2
WTsharegroup_islocked 21-1
WTsharegroup_islockedbyme 21-1
WTsharegroup_isshared 21-1
WTsharegroup_lock 21-1
WTsharegroup_new 21-1
WTsharegroup_numchildren 21-2
WTsharegroup_numproperties 21-2
WTsharegroup_print 21-1
WTsharegroup_registerinterest 21-2
WTsharegroup_setdata 21-
WTsharegroup_share 21-1
WTsharegroup_unlock 21-1
WTSOUND constants 20-1
WTsound_delete 20-1
WTsound_getdata 20-1
WTsound_getdonefn 20-1
WTsound_getname 20-1
WTsound_getnodepath 20-1
WTsound_getparam 20-1
WTsound_getposition 20-1
WTsound_isplaying 20-1
WTsound_load 20-1
WTsound_next 20-1
WTsound_play 20-1
WTsound_setdata 20-1
WTsound_setdonefn 20-1
WTsound_setnodepath 20-1
WTsound_setparam 20-1
WTsound_setposition 20-1
WTsound_stop 20-1
WTSOUNDDEVICE constantsC-19
WTsounddevice_close 20
WTsounddevice_getdata 20
WTsounddevice_getlistener 20-
WTsounddevice_getparam 20
WTsounddevice_getsounds 20
WTsounddevice_name2sound 20
WTsounddevice_numplayable 20-
WTsounddevice_open 20
WTsounddevice_setdata 20
WTsounddevice_setlistener 20
WTsounddevice_setparam 20
WTsounddevice_update 20
WorldToolKit Reference Manual Index-43

W Index

7
0
5
5
0
3
4
1
7
2
0
2
0
6
9
1
0
2

3
5

4

1
8
2
0
6
9
9
9
1
0

8
8

6

7
4
6
5
5
8
8
9

WTSOURCE constantsC-7
WTSPACEBALL constantsC-15
WTspaceball_dominant 13-102
WTspaceball_new

example13-13, 16-7
WTspaceball_rezero 13-103
WTspaceball_update 13-102
WTSPACEBALLSC constants 13-107
WTspaceballSC_dominant 13-106
WTspaceballSC_rezero 13-107
WTspaceballSC_setwindow 13-107
WTspaceballSC_update 13-106
WTSPACECONTROL constants 13-84
WTspacecontrol_new macro 13-81
WTspacecontrol_rawupdate 13-83
WTspacecontrol_update 13-83
WTSPATIALIZE constants

for WTsound_setparam 20-14
for WTsounddevice_setparam 20-7

WTSPATIALIZE_OFF20-7, 20-14
WTSWITCH constantsC-8
WTswitchnode_getwhichchild 4-58
WTswitchnode_new 4-42
WTswitchnode_setwhichchild 4-57
WTTARGET constantsC-7
WTtask_add ... 11-4
WTtask_delete ... 11-4
WTtask_getfunction 11-5
WTtask_getpriority 11-5
WTtask_new .. 11-2

usage example A-21
WTtask_remove 11-4
WTtask_setpriority 11-5
WTtexture_cache 10-17
WTtexture_getfilter 10-27
WTtexture_getmemory 10-18
WTtexture_iscached 10-18
WTtexture_load 10-17
WTtexture_replace 10-16
WTtexture_setfilter 10-25
WTtime_getcurrent 3-27
WTtime_getcurrentlocal 3-27
WTtime_getcurrentmsec 3-28
WTtime_getcurrentmseclocal 3-28
WTtime_getcurrentsec 3-27
WTtime_getcurrentseclocal 3-27
WTtime_getdouble 3-28
WTtime_getmsec 3-28
WTtime_getsec .. 3-28

WTtime_update 3-2
WTUI constantsC-2
WTui_check ... 18-3
WTui_checkbuttonstate 18-3
WTui_delete .. 18-4
WTui_deleteitem 18-3
WTui_enable .. 18-3
WTui_getcallback 18-4
WTui_getid .. 18-3
WTui_getitemtext 18-3
WTui_getmenutext 18-3
WTui_getnumitems 18-3
WTui_getparent 18-4
WTui_getposition 18-3
WTui_getscalefactor 18-2
WTui_getselecteditem 18-3
WTui_gettext ... 18-3
WTui_go .. 18-1
WTui_init ... 18-5
WTui_insertitem 18-3
WTui_ischecked 18-3
WTui_isconsolevisible 18-41
WTui_isenabled 18-3
WTui_iswtkrunning 18-38
WTui_manage .. 18-1
WTui_setcallback 18-
WTui_setitemtext 18-3
WTui_setmenutext 18-3
WTui_setposition 18-3
WTui_setscalefactor 18-2
WTui_settext .. 18-2
WTui_settoolbarcallback 18-
WTui_showconsole 18-4
WTui_unmanage 18-4
WTui_wtkstart 18-3
WTui_wtkstop 18-3
WTUIATT constants 18-7
WTuicheckbutton_new 18-1
WTuifileselection_new 18-13
WTuiform_new .. 18-6
WTuilabel_new 18-1
WTuimenubar_new 18-2
WTuimenuitem_new 18-2
WTuimenupopup_new 18-2
WTuimessagebox_new 18-1
WTuipushbutton_new 18-1
WTuiradiobox_new 18-1
WTuiscale_new 18-1
WTuiscrolledlist_new 18-21
Index-44 WorldToolKit Reference Manual

Index W

6
8

5
7
3

7
7
7
8
8
8
8

2
8
8
8
8
26
6
3
3
8
2
1
8
1
8
-9
8
8
4
8
8
2

5
8
2
9
8
7
3
9
9
9
9
3

WTuiscrolledtext_new 18-23
WTuitextfield_new 18-24
WTuitextinput_new 18-15
WTuitoolbar_new 18-28
WTuiwtkwindow_new 18-11
WTuniverse_avgframerate 2-24
WTuniverse_delete 2-5
WTuniverse_deleteconnections 21-28
WTuniverse_deletelink 2-17
WTuniverse_findnodebyname

description .. 4-49
getting a pointer to a node using its name ...

A-20
WTuniverse_framecount 2-23
WTuniverse_framerate 2-23
WTuniverse_getanimations G-17
WTuniverse_getbases 3-8
WTuniverse_getbgcolor G-17
WTuniverse_getbgrgb 2-21
WTuniverse_getconnections 21-27
WTuniverse_getcurrscridx 2-14
WTuniverse_getcurrwindow 2-14
WTuniverse_getcurrwinidx 2-14
WTuniverse_getentryfn G-17
WTuniverse_geteventorder 2-10
WTuniverse_getexitfn G-17
WTuniverse_getextents G-17
WTuniverse_getframe G-17
WTuniverse_getinitialview 2-16
WTuniverse_getintersectedpolys G-17
WTuniverse_getlights G-17
WTuniverse_getmidpoint G-17
WTuniverse_getmotionlinks 2-17
WTuniverse_getname G-17
WTuniverse_getobjects G-17
WTuniverse_getoption 2-27
WTuniverse_getpaths

description .. 2-13
example .. 14-11

WTuniverse_getpolys G-17
WTuniverse_getportaling G-17
WTuniverse_getradius G-18
WTuniverse_getremovedobjects G-18
WTuniverse_getrendering 2-20
WTuniverse_getrootnodes 2-17
WTuniverse_getsensors

description .. 2-13
example .. 13-11

WTuniverse_getsubfaceoffset 2-22

WTuniverse_gettaskbypointer 11-
WTuniverse_getviewpointG-1
WTuniverse_getviewpoints

description .. 2-1
example 2-16, 16-

WTuniverse_getwindows 2-1
WTuniverse_go

description .. 2-
example .. 16-

WTuniverse_go1 .. 2-
WTuniverse_id2polyG-1
WTuniverse_intersectG-1
WTuniverse_loadG-1
WTuniverse_name2objectG-1
WTuniverse_new

description .. 2-
example .. 17-

WTuniverse_npolygonsG-1
WTuniverse_pickobjectG-1
WTuniverse_pickpolygonG-1
WTuniverse_processevents 3-
WTuniverse_ready 2-
WTuniverse_resetframecount 2-2
WTuniverse_resettime 2-2
WTuniverse_saveG-1
WTuniverse_setactions 2-1
WTuniverse_setbboxrgb 2-2
WTuniverse_setbgcolorG-1
WTuniverse_setbgrgb 2-2
WTuniverse_setentryfnG-1
WTuniverse_seteventorder 2
WTuniverse_setexitfnG-1
WTuniverse_setnameG-1
WTuniverse_setoption 2-2
WTuniverse_setportalingG-1
WTuniverse_setrendering 2-1
WTuniverse_setsubfaceoffset 2-2
WTuniverse_setviewpoint 2-1
WTuniverse_stop 2-
WTuniverse_time 2-2
WTuniverse_updateconnections 21-2
WTuniverse_vacuumG-1
WTurl_download 4-4
WTvalue_tostring 3-2
WTvertex_deleteG-1
WTvertex_getnormalG-1
WTvertex_getpositionG-1
WTvertex_new ..G-1
WTvertex_next .. 6-3
WorldToolKit Reference Manual Index-45

W Index

7

8
9

2
3
1
5

5

9

9

9
8

5

2
6

3

7

9

8

WTvertex_setcolor G-35
WTvertex_setnormal G-19
WTvertex_setposition G-19
WTvertex_setrgb G-19, G-35
WTviewpoint properties 3-4
WTviewpoint_addsensor 16-7, G-19

example13-17, 13-77
WTviewpoint_alignaxis 16-14
WTviewpoint_copy 16-5
WTviewpoint_delete 16-5
WTviewpoint_getaspect 16-19
WTviewpoint_getasymmetric G-19
WTviewpoint_getaxis 16-14
WTviewpoint_getconvdistance 16-23
WTviewpoint_getconvergence 16-21
WTviewpoint_getdata 16-26
WTviewpoint_getdirection

description .. 16-13
example .. 13-57

WTviewpoint_getdirectionframe 16-18
WTviewpoint_getframe 16-15
WTviewpoint_gethithervalue G-19
WTviewpoint_getlastorientation 16-11
WTviewpoint_getlastposition 16-9
WTviewpoint_getname 16-25
WTviewpoint_getorientation 16-11
WTviewpoint_getorientationframe 16-16
WTviewpoint_getparallax 16-20
WTviewpoint_getposition

description .. 16-8
example .. 16-20

WTviewpoint_getpositionframe 16-15
WTviewpoint_getviewangle G-19
WTviewpoint_getwindowparams G-19
WTviewpoint_getyonvalue G-19
WTviewpoint_intersectpoly

description .. 4-89
usage example A-22

WTviewpoint_local2world 16-24
WTviewpoint_move 16-12
WTviewpoint_moveframe 16-17
WTviewpoint_moveto

description .. 16-13
example .. 2-16
restricting viewpoint motion 4-53

WTviewpoint_movetoframe 16-17
WTviewpoint_new 16-3
WTviewpoint_next 16-5
WTviewpoint_removesensor 16-8, G-19

example .. 13-7
WTviewpoint_rotate 16-12
WTviewpoint_rotateframe 16-16
WTviewpoint_setaspect 16-1
WTviewpoint_setasymmetricG-1
WTviewpoint_setconvdistance

description .. 16-2
example .. 16-2

WTviewpoint_setconvergence 16-2
WTviewpoint_setdata 16-2
WTviewpoint_setdirection 16-13
WTviewpoint_setdirectionframe 16-17
WTviewpoint_sethithervalueG-19
WTviewpoint_setname 16-2
WTviewpoint_setorientation 16-11
WTviewpoint_setorientationframe 16-16
WTviewpoint_setparallax 16-1
WTviewpoint_setposition 16-8
WTviewpoint_setpositionframe 16-15
WTviewpoint_setviewangleG-19
WTviewpoint_setwindowparamsG-19
WTviewpoint_setyonvalueG-1
WTviewpoint_translate

description .. 16-
example .. 13-5

WTviewpoint_translateframe 16-1
WTviewpoint_world2local 16-24
WTviewpoint_zoomallG-19
WTvrml_seturl ... 4-6
WTwarning .. 24-
WTWINDOW constants

for WTuniverse_new 2-
for WTwindow_new 17-2
WTWINDOW_DEFAULT, example .. 16-6

WTwindow properties 3-4
WTwindow_delete 17-
WTwindow_draw2Dcircle 19-3
WTwindow_draw2Dline 19-4
WTwindow_draw2Dpoint 19-4
WTwindow_draw2Drectangle 19-3
WTwindow_draw2Dtext 19-7
WTwindow_draw2Dtexture 19-5
WTwindow_draw3Dlines 19-10
WTwindow_draw3Dpoints 19-10
WTwindow_enable 17-
WTwindow_get2Dtextextents 19-7
WTwindow_getbgcolorG-19
WTwindow_getbgrgb 17-22
WTwindow_getdata 17-2
Index-46 WorldToolKit Reference Manual

Index X

8

9

2
3
3
-6

-6
8

-6

9

-6

2

-3
3
2
2

WTwindow_geteye 17-12
WTwindow_gethithervalue 17-18
WTwindow_getidx 17-29
WTwindow_getimage10-33, 17-27
WTwindow_getname 17-27
WTwindow_getparams 17-17
WTwindow_getposition 17-10
WTwindow_getprojection 17-16
WTwindow_getray 17-21
WTwindow_getrootnode 17-9
WTwindow_getscreen 17-13
WTwindow_getviewangle 17-20
WTwindow_getviewpoint 17-11
WTwindow_getviewpoint2 17-13
WTwindow_getviewport 17-32
WTwindow_getwidget 17-29
WTwindow_getyonvalue 17-19
WTwindow_isenabled 17-9
WTwindow_loadimage

description .. 17-25
with 2D drawing functions 17-24

WTwindow_new 17-2
WTwindow_newuser 17-7
WTwindow_newviewport 17-32
WTwindow_next 17-8
WTwindow_numpolys 17-25
WTwindow_pickpoly 17-20
WTwindow_pickpolygon G-19
WTwindow_projectpoint 17-21
WTwindow_saveimage 17-26
WTwindow_set2Dcolor 19-1
WTwindow_set2Dfont 19-6
WTwindow_set2Dlinestyle 19-2
WTwindow_set2Dlinewidth 19-2
WTwindow_set3Dcolor 19-8
WTwindow_set3Dlinestyle 19-8
WTwindow_set3Dlinewidth 19-9
WTwindow_set3Dpointsize 19-9
WTwindow_setbgcolor G-19
WTwindow_setbgrgb 17-22
WTwindow_setdata 17-28
WTwindow_setdrawfn 17-23
WTwindow_seteye 17-12
WTwindow_setfgactions 17-24
WTwindow_sethithervalue 17-18
WTwindow_setname 17-27
WTwindow_setparams 17-16
WTwindow_setposition 17-10
WTwindow_setprojection 17-14

WTwindow_setrootnode 17-
WTwindow_setviewangle 17-19
WTwindow_setviewpoint 17-11
WTwindow_setviewpoint2 17-12
WTwindow_setviewport 17-31
WTwindow_setyonvalue 17-1
WTwindow_zoomviewpoint 17-13
WTwindow_zoomviewtonode 17-14
WTxformnode_new 4-4
WTxformsepnode_new 4-4
WTzero .. 25-3

constant ..C

X
X constant ..C
X Resources ... 2-2

Y
Y constant ..C
Yon clipping

setting ... 17-1

Z
Z constant ...C
Z flashing

overlapping polygons 6-1
Z-buffer

error message ...D
rendering .. 6-1
roundoff ... 6-1
systems ... 6-1
WorldToolKit Reference Manual Index-47

Z Index
Index-48 WorldToolKit Reference Manual

NOTES

Notes
WorldToolKit Reference Manual

Notes
WorldToolKit Reference Manual

Notes
WorldToolKit Reference Manual

	Introduction to WorldToolKit
	Welcome
	What is WTK?
	Scene Graph Architecture
	What WTK Does
	Overview of the WTK Classes
	Naming Conventions
	Additional Features
	WTK Documentation
	Special Interest Group
	Basic System Configuration
	Input Sensors Supported
	Extending a System for Virtual Reality

	A Sample WTK Application
	Important WTK Functions
	Universe
	Geometry
	Polygon
	Sensor
	Light
	Viewpoint
	Path
	Window
	Scene Graph
	Drawing
	User Interface
	Sound

	The Universe
	Introduction
	Universe Construction and Destruction
	Simulation Management
	The Universe Action Function
	The Universe’s Objects

	Global Rendering Parameters
	Rendering Options
	Other Global Functions

	Performance and Timer Functions
	Universe Options
	Resource Files
	The Resource Hierarchy
	Choosing an Appropriate Resource File
	WTK Parameters Specified in a Resource File
	Telling WTK to Use Resource Information

	Modes of Stereoscopic Viewing
	Field Sequential Mode
	Over/Under Mode
	Interlaced Mode

	Object/Property/Event Architecture
	Overview
	Supported Types and Supplied Properties
	WTnode Properties
	WTviewpoint Properties
	WTwindow Properties
	WTsensor Properties
	WTpath Properties

	WTbase Objects and Functions
	WTbase Functions for WTbase Objects
	WTbase Functions for the Supported WTK Object Type...

	Properties
	Events
	Time

	Scene Graphs
	Introduction
	The Scene
	Elements Of A Scene
	The Viewpoint
	The Scene Graph
	Why WTK Uses the Scene Graph Structure

	Scene Graph Concepts in Detail
	The Node
	The Scene Graph Hierarchy
	Viewing your Scene Graph
	How WTK Draws the Scene Graph
	Why the Ordering of Children is Important
	State Accumulation and State Propagation
	State Encapsulation
	Other Node Types

	Building a Scene Graph
	How to Create the Scene Graph Tree
	Building a Composite Object in the Scene – Composi...

	WTK Scene Graph Functions
	Constructing Node Types
	Constructing Light Nodes
	Constructing Geometry Nodes
	Constructing Movable Nodes
	Constructing Fog Nodes
	Loading a File into a Scene Graph
	Saving a Scene Graph
	Node Property Functions
	Geometrical Property Functions
	LOD Node Functions
	Separator Node Functions
	Switch Node Functions
	Transform Node Functions
	URL for Anchor and Inline Nodes
	Anchor Node Functions
	Inline Node Functions
	Fog Node Functions
	Open GL Callback Node Functions
	Bounding Boxes
	Scene Graph Assembly
	Utility Functions
	Scene Graph Structure Inquiry
	Scene Graph Traversal

	Additional Topics Related to the Scene Graph
	Node Paths
	Intersection Testing
	Picking Polygons
	Sensor Attachment

	Movable Nodes
	Introduction
	What Makes Up a Movable Node?

	Movable Node Creation Functions
	Geometry and Light Movable Node Creation
	Group Movable Node Creation
	Movable Nodes Compared to ‘Regular’ Nodes

	Movable Node Position and Orientation
	Movable Node Hierarchies
	Movable Node Instancing

	Geometries
	Introduction
	Modeling Considerations
	File Formats Supported by WTK
	WTK VRML 1.0 Limitations
	Exporting a File in the VRML Format
	Notes on the Autodesk 3DStudio Mesh reader
	Notes on the MultiGen OpenFlight File Reader
	Subfaces in MultiGen/ModelGen
	Constructing a World with Multiple Objects
	Vertex Normals and Gouraud Shading
	Vertex Colors and Radiosity
	Back Face Rejection
	Overlapping Polygons
	Roundoff and Scaling

	Creating Predefined Geometries
	Creating Custom Geometries
	Other Geometry Functions
	Geometry Properties
	Materials used with Geometries
	Geometry Polygons and Vertices
	Geometry Modification
	Geometry Optimization
	Creating Reflection Mapped Optimized Geometries

	Vertex-level Geometry Editing

	Polygons
	Introduction
	Polygon Attributes
	Polygon ID’s
	Geometry that Contains a Polygon

	Polygon Access
	Vertex Access
	Dynamic Polygon Creation
	Deleting Polygons
	Polygon Intersection Testing

	Materials
	Introduction
	Material Properties
	Calculations Made to Determine Color
	About “In” and “Out” Vectors

	Using Material Tables
	Material Table Functions
	Example: Adding Shininess to a Multi-colored Geome...
	Material Table Entry Functions

	Advanced Topics
	How WTK Deals With Out-Of-Range Indices
	Using Material Index Table Entries
	Using Materials Tables With Geometries
	Notes on Specific File Formats
	OpenGL Compatibility

	3D Text
	Creating Three-dimensional Text in WTK
	NFF 3D Font Files

	Textures
	Introduction
	Supported Texture File Formats

	Applying Textures
	How WTK Applies a Texture to a Polygon
	Texture Size
	Texture Naming Conventions
	Transparent Textures
	Applying Textures with Explicit uv Values
	Animating Textures
	Assigning Textures in 3D File Formats
	Deleting Textures

	Changing Texture Properties
	FilteringTextures
	Setting the Default Texture Filter

	Manipulating Textures
	Texture Rotation, Scaling, and Other Operations
	Manipulating Texture uv Values Directly

	Screen Loading

	Tasks
	Introduction
	Creation and Deletion Functions
	Other WTtask Functions

	Lights
	Introduction
	Light Nodes
	Light Node Attributes
	Calculating Color
	Determining Intensity
	Creating Shadows
	Using Light Files
	Performance

	Constructing Light Nodes
	Light Properties

	Sensors
	Introduction to the Sensor Class
	Sensor Lag and Frame-rate
	Sensor Construction and Destruction
	Accessing Sensor State
	Rotating Sensor Input
	Geometry Motion Reference Frames
	Constraining Sensor Input

	Using Different Baud Rates
	Sensor Name
	User-specifiable Sensor Data
	Custom Sensor Drivers
	The Mouse
	Ascension Bird
	Streaming-Mode Flock of Birds Driver
	Ascension Extended Range Bird
	CIS Graphics Geometry Ball, Jr.
	Fakespace BOOM Devices
	Fakespace Pinch Glove System
	Fifth Dimension Technologies’ 5DT Glove
	Gameport Joystick
	Limitations
	Installing the joystick driver under NT
	Configuring and calibrating the joystick
	Creating a Gameport Joystick Sensor Object

	Logitech 3D Mouse (Red Baron)
	Logitech Head Tracker
	Logitech Space Control Mouse (Magellan)
	Polhemus ISOTRAK
	Polhemus ISOTRAK II
	Polhemus InsideTRAK
	Polhemus FASTRAK
	Precision Navigation Wayfinder-VR
	Spacetec IMC Spaceball
	Spacetec IMC Spaceball SpaceController
	StereoGraphics CrystalEyes and CrystalEyesVR LCD S...
	ThrustMaster Formula T2 Steering Console
	ThrustMaster Serial Joystick
	VictorMaxx Technologies’ CyberMaxx2 HMD
	Virtual i-O i-glasses!
	Virtual Technologies CyberGlove
	Initializing the CyberGlove
	Calibrating the CyberGlove
	Creating a Graphical Hand Model for CyberGlove
	Setting the Visibility of the Hand Model
	Accessing Hand Model Objects
	Accessing the CyberGlove Bend Angle Data
	Defined Constants for the CyberGlove Hand Model
	For Windows NT Users:

	Paths
	Introduction
	Path Construction and Destruction
	Functions

	Path Management
	Loading and Saving Paths
	Path File Format

	Recording and Playback
	Path Element Management
	The WTpathelement Class

	Path Editing
	Path Name
	User-specifiable Path Data

	Motion Links
	Introduction
	Motion Link Sources and Targets
	Reference Frames
	Constraints

	Motion Link Functions
	Constraints on Motion links

	Viewpoints
	Introduction
	Basic Viewpoint Management
	Linking a Sensor to a Viewpoint
	Accessing Viewpoint Position and Orientation
	Using a Specified Reference Frame
	Viewpoint Aspect Ratio
	Stereo Viewing
	Coordinate Transformations
	Viewpoint Name
	User-specifiable Viewpoint Data
	Viewpoint Intersection Test

	Windows
	Introduction
	Window Construction and Destruction
	Accessing Universe’s Windows
	Associating Scene Graphs with Windows

	Window Size and Placement
	Windows and Viewpoints
	Zooming the Window Viewpoint

	Window-projection Functions
	Other Window-projection Functions
	Picking and Ray Casting
	Window-rendering Properties
	Window Name
	User-specifiable Window Data
	System-specific Window ID
	Viewports

	Adding User Interface (UI) Objects
	Creating a UI Application
	User Interface Objects
	Forms
	File-selection Boxes
	Message Boxes
	Text-input Dialogs
	Checkbuttons
	Labels
	Pushbuttons
	Radioboxes
	Scales
	Scrolled Lists
	Scrolled Text
	Text Fields
	Menus
	Tool Bars

	User Interface Object’s Utility Functions
	Accessing the Scale Factors
	Accessing the Text for Text UI Objects
	Accessing the Position of a Selection (Scrolled Li...
	Accessing the Number of Items (Scrolled Lists and ...
	Accessing Text of Scrolled List Items
	Inserting or Deleting Items (Scrolled Lists)
	Accessing Status of UI Objects
	Accessing State of UI Objects (Menu Items and Chec...
	Accessing the Position of UI objects
	Extending The UI Functionality of Your Application...
	Controlling the WorldToolKit Simulation Loop
	Miscellaneous Functions

	Drawing Functions
	User-defined Drawing Functions
	2D Drawing
	Pre-defined 2D Drawing Functions

	3D Drawing
	Pre-defined 3D Drawing Functions

	Sound
	Introduction
	Supported Devices
	Device-level Functionality
	CRE Device Parameters
	Device-level Spatializing Functions
	Sound-level Functionality
	Sound-level Spatializing Functions

	Client-Server Networking (Via the World2World Serv...
	Introduction
	Sharing Properties
	Locked Properties
	Persistent Properties
	Update Frequencies
	Time Sensitive Properties
	WTbase – Working with Unsupported Object Types
	Property Sharing Functions

	Sharegroups
	Locked Sharegroups
	Registered Interest
	Persistent Sharegroups
	Sharegroup Functions

	Network Connections
	Synchronous and Asynchronous Connections
	Update Rates
	Connection Callbacks
	Connection Functions

	Enumeration
	Example of an Enumeration Tree

	WorldToolKit and World Up Compatible Properties

	Multicast Networking
	Introduction to Networking in WTK
	How the Transport Layer Works
	How the Protocol Layer Works
	How the WorldToolKit Layer Works
	How the Application Layer Works
	Sample Transaction
	Local Machine
	Remote Machines

	Message Latency
	Byte Ordering
	Network Functions

	Serial Ports
	Introduction to the Serial Port Class
	Serial Port Construction and Destruction
	Reading and Writing to a Serial Port Object
	User-specifiable Serial Data
	Platform Specific Functions

	Portability
	Providing for Portability
	Reading the Keyboard
	Reading File Directories

	Messages and Errors
	Waiting
	Memory Allocation

	Math Library
	Introduction
	WTK Math Conventions
	WTp2: 2D Vectors
	WTp3: 3D Vectors
	WTq: Quaternions
	WTpq: Coordinate Frame Structure
	WTm3: 3D Matrices
	WTm4: 4D Matrices
	Conversion Functions
	Floating-point Comparisons
	Reference-frame Math Utilities

	C++ Programming
	Introduction
	Class Diagrams
	Classes and their Methods
	Prototypes for Global functions
	World2World Client C++ Applications
	WtBase Classes
	Stand-alone Classes
	Math Classes
	Defines

	Frequently Asked Questions
	Introduction
	What Is The Difference Between WTnode_load And WTg...
	What Is The Difference Between WTmovnode_load and ...
	How Do I Display Multiple Instances Of An Object?
	How Do I Pick The Frontmost Polygon At A Specific ...
	Can WTK Detect Keyboard Events?
	How Can I Detect Button Events Using the “Misc Dat...
	How Do I Use Material Tables for Colors?
	How Do I Get Transparencies In A Texture?
	How Do I Dynamically Change The Appearance Of A Ge...
	How Do I Create Special Effects: Clouds, Missile T...
	Gas Clouds
	Missile plumes
	Spaceship exhaust
	Explosions

	How Do I Load Lights As Movables?
	How Do I Make An Object Follow A Light?
	How Do I Make An Object Follow The Viewpoint?
	How Do I Recursively “Walk” Down The Scene Graph?
	How Do I Get A Pointer To A Node Using Its Name?
	How Do I Associate A Task With a Particular Object...
	How Do I Handle Portals In This Release?
	How Do I Test For Intersections Between The Viewpo...
	How Do I Test For Objects Intersecting With Other ...
	How Do I Get The Rendered Position Of An Object?
	How Do I Create A Simple Animation Using Switch No...
	How Can I Optimize Performance Using LOD Nodes?
	What Is Terrain Following?
	How Do I Keep An Object Perpendicular To The Viewp...
	How Do I Change The Event Order?
	How Do I Integrate A WTK Rendering Window With A H...
	Orienting Sensors Differently
	How Do I Use Orientation-Tracking Sensors (On A He...
	Example Code

	How Do I Measure Performance On My Machine?
	On UNIX Platforms, How Do I Get A Pointer To The D...
	How do I use Boston Dynamic's DiGuy with WTK (or a...

	Environment Variables
	WTKCODES
	WTIMAGES
	WTMODELS
	WTKZBUFFERSIZE
	WTKALPHATEST
	WTKMAXTEXSIZE
	WTKSQRTEX
	WTKPROXY
	WTKALPHAENABLE
	WTBIRDDELAY
	WTKLS
	WTKNOSTEREO
	WTKMULTISAMPLE
	WTKCPU
	WTKDISPLAY
	WTKSHMEM

	Defined Constants
	Constraint Constants
	Display Constants
	Drawing Constants
	Event Order Constants
	Eye Constants
	Filetype Constants
	Frames of Reference Constants
	Keyboard Constants
	Light Type Constants
	Material Table Property Constants
	Mathematical Constants
	Message Constants
	Motion Link Source and Target Constants
	Node Constants
	Option Constants
	Path Constants
	Projection Type Constants
	Rendering Constants
	Sensor Constants
	Serial Port Constants
	Sound Constants
	Sound Device Constants
	Texture Constants
	User Interface Constants
	Window Constants
	Other Constants

	Error Messages and Warnings
	Error Messages
	Warnings

	Writing a Sensor Driver
	Overview
	WTK Math Conventions
	Sensor Records Must Be Relative
	Constraining Sensor Records
	Scaling Sensor Records
	Talking to the Serial Port
	Include Files

	Driver Functions
	Example 1: Update Function for the Mouse
	Example 2: Driver for the Geometry Ball Jr.
	Example 3: Update Function for Absolute Device (Ps...

	WTK Neutral File Format
	The NFF Format
	The BFF Format (Binary NFF)

	NFF Syntax
	NFF Header
	NFF Objects
	NFF Materials
	NFF Vertices
	NFF Polygons

	NFF Format Extensions
	Automatic Normal Generation

	NFF Version History, Backward Compatibility
	A Sample NFF File

	Transitioning From Version 2.1 To Release 6/7/8/9
	Introduction
	Paradigms of this Release
	The Scene Graph
	Instancing
	Materials
	Lights
	Special Effects (Fog)
	3D Sound
	Multiple Windows
	User-Interface (UI) Objects
	Motion Links
	Switches and Level of Detail Nodes
	Replaced Features

	Mapping WTK V2.1 Functions To This Release
	Details on Mapping WTK V2.1 Functions to This Rele...
	Loading In Objects
	Changes in Reading/Writing NFF Files
	Attaching Objects To One Another
	Handling Of Lights In This Release
	Moving from WTxx_addsensor to Motion Links
	Rotating A Movable About Its Midpoint
	Changing Vertex Positions
	Differences in Applying Tasks
	Positioning And Moving Objects In Your Scene: WTob...
	Picking
	Animation
	The Lack of WTgroup_* Functions
	Pivot Points And Handles
	Coordinate Frames

	New Functions to Facilitate Incorporation of WTK V...
	Scene Graphs and Nodes
	Material Colors

	Transitioning From Release 6 To Release 7/8/9
	Changed Functions from Release 6 to Release 7/8/9
	WTK User-Interface (UI) Functions
	Transformations

	Third-party Software
	Image Conversion (SGI)
	Image Conversion (Windows 32-bit Platforms)
	Model Conversion
	3D Modelers

	Sources of Components
	Input Devices
	Output Devices
	Video Accelerators

	The WTK Users’ Group
	Participating in SIG-WTK
	Communicating with SIG-WTK
	SIG-WTK:Email Archives

	Technical Support
	U.S. Technical Support
	Non-US Technical Support
	SIG-WTK Users’ Group

	Glossary
	Index

