
WorldToolKit Release 8
Technical Overview

High-Performance Visual Simulation
Development Software

February 1998

SENSE8 CORPORATION
100 Shoreline HWY, Suite 282
Mill Valley, CA 94941
Phone 415.331.6318
Fax 415.331.9148

This Technical Overview copyright  1997 - 1998 by Sense8 Corporation. All rights
reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced to
any electronic medium or machine-readable form without prior written consent of
Sense8.

Information in this document is subject to change without notice. While every effort has
been made to ensure the accuracy of the information in this document, Sense8 does not
offer any warranties or representations, nor does it accept any liabilities with respect to
the information contained herein.

World Up, WorldToolKit and SENSE8 are registered trademarks of Sense8
Corporation. World2World and OpenVR are trademarks of Sense8 Corporation. Other
brand and product names are trademarks or registered trademarks of their respective
holders.

SENSE8 CORPORATION
100 Shoreline Highway, Suite 282
Mill Valley, CA 94941 USA
Telephone: 415/331-6318
Facsimile: 415/331-9148
Web site: www.sense8.com

This document was written by Susan Rahn.

This document was printed in the United States of America.

WorldToolKit Technical Overview i

..........

Table of Contents

TABLE OF CONTENTS ... I

1. INTRODUCTION TO WORLDTOOLKIT ...1

OVERVIEW ..1
WHAT IS WORLDTOOLKIT?…...1
SCENE GRAPH ARCHITECTURE..2
WHAT WORLDTOOLKIT DOES ..2
FEATURES...3

Sound ...3
User-Interface Objects...3
MultiPipe/Multi-Processor Support ...3
VRML Support...3
Other Features...3

SYSTEM CONFIGURATION ..4
BASIC SYSTEM CONFIGURATION ...4
EXTENDING A SYSTEM FOR VIRTUAL REALITY..4
INPUT SENSORS AND DISPLAYS SUPPORTED ..5
GEOMETRIES: BUILDING BLOCKS OF YOUR VIRTUAL WORLD5
GEOMETRY CONSTRUCTION..6
TEXTURES ..6

Obtaining and Applying Textures ..6
BUILDING A VIRTUAL WORLD..6

2. THE UNIVERSE..9

OVERVIEW OF THE WORLDTOOLKIT CLASSES ..9
NAMING CONVENTIONS ..10
UNIVERSE CONSTRUCTION AND DESTRUCTION ...11
SIMULATION MANAGEMENT ...11
THE UNIVERSE ACTION FUNCTION..12
OTHER GLOBAL CONCEPTS...12

Coordinate Systems...12
Universe Geometrical Properties ..12
Accessing Objects in Your Simulation ...13
Interacting with the Objects in Your Simulation ...13
Testing for Intersections ..13

3. SCENE GRAPHS ...15

Contents

ii WorldToolKit Technical Overview

ADVANTAGES OF SCENE GRAPHS...16
SCENE GRAPH TERMINOLOGY ...16
OVERVIEW OF CREATING SCENE GRAPHS...17
NODES USED IN WTK SCENE GRAPHS ..18

Geometry and Attribute Nodes...18
Procedural Nodes ..18
Node Properties...19
Node Geometrical Properties ...20

HOW SCENE GRAPHS ARE RENDERED ...20
SCENE GRAPH STATE..21

Managing State ...21
UNIQUELY IDENTIFYING NODES IN THE SCENE GRAPH ..21
SAMPLE NODE FUNCTIONS ...22

4. MOVABLE NODES...23

WHAT MAKES UP A MOVABLE NODE? ..23
SEPARATOR ..23
TRANSFORM ...23
CONTENT..24
MOVABLE NODE HIERARCHIES..25
SAMPLE MOVABLE FUNCTIONS..26

5. GEOMETRY NODES..27

FILE FORMATS SUPPORTED BY WTK ..27
MODELING CONSIDERATIONS ..28
CONSTRUCTING A WORLD WITH MULTIPLE OBJECTS ..28
VERTEX NORMALS AND GOURAUD SHADING ..29
VERTEX COLORS AND RADIOSITY ...29
BACKFACE REJECTION ..30
COPLANAR POLYGONS ..30
SAMPLE GEOMETRY FUNCTIONS ...30
POLYGONS...31
SAMPLE POLYGON FUNCTIONS ..31

6. MATERIALS AND TEXTURES...33

MATERIAL PROPERTIES..33
USING EXISTING MATERIALS ...34
USING MATERIAL TABLES ..34
SAMPLE MATERIAL FUNCTIONS ...35
ADDING TEXTURES TO A POLYGON..35
TEXTURE APPLICATION...35
TEXTURE MANIPULATION ...36
TEXTURE FILTERING ...36
SAMPLE TEXTURE FUNCTIONS ...36

7. SENSORS ...37

Contents

WorldToolKit Technical Overview iii

SUPPORTED SENSORS AND DISPLAYS ...37
SENSOR OBJECT CONSTRUCTION AND DESTRUCTION ...37
SAMPLE SENSOR FUNCTIONS..38
FUNCTIONS FOR WRITING YOUR OWN SENSOR DRIVER.....................................39
AN EXAMPLE OF A SENSOR DRIVER: THE MOUSE ...39

8. LIGHTS ..41

INTRODUCTION TO LIGHT NODES ..41
LIGHT NODE ATTRIBUTES ...41
CALCULATING COLOR...42
DETERMINING INTENSITY..42
BASIC LIGHT MANAGEMENT ...42
PERFORMANCE ...43
OTHER IMPORTANT ASPECTS OF LIGHTS...43
LIGHT FUNCTIONS ..43

9. WINDOWS ...45

WINDOW CONSTRUCTION AND DESTRUCTION ...45
SAMPLE WINDOW FUNCTIONS ..46

10. VIEWPOINTS ..47

INTRODUCTION TO VIEWPOINTS ..47
SAMPLE VIEWPOINT FUNCTIONS ...48
ATTACHING A SENSOR TO A VIEWPOINT ...49

11. MOTION LINKS..51

MOTION LINK SOURCES AND TARGETS ...51
REFERENCE FRAMES...52
CONSTRAINTS..53
SAMPLE MOTION LINK FUNCTIONS ...53

12. PATHS ..55

PATH CONSTRUCTION...56
SAMPLE PATH FUNCTIONS..57

13. SPECIAL EFFECTS AND SOUND...59

FOG NODE ATTRIBUTES..59
INTRODUCTION TO WTK 3D SOUND SUPPORT..59
SUPPORTED DEVICES ..60

Windows 95/NT..60
SGI...60

SAMPLE SOUND FUNCTIONS ...60

14. TASKS ..61

Contents

iv WorldToolKit Technical Overview

SAMPLE TASK FUNCTIONS..61
SAMPLE CODE ..62

15. USER INTERFACE ELEMENTS...63

ADDING GUI ELEMENTS...63
SAMPLE USER INTERFACE FUNCTIONS ..64

16. MATH AND DRAWING FUNCTIONS..65

INTRODUCTION TO THE MATH LIBRARY ...65
WORLDTOOLKIT MATH CONVENTIONS ..65
SAMPLE MATH FUNCTIONS ...66
USER-DEFINED DRAWING FUNCTIONS..66
SAMPLE DRAWING FUNCTIONS ...66

17. OBJECT/PROPERTY/EVENT ARCHITECTURE.....................................67

OVERVIEW ..67
SUPPORTED TYPES AND SUPPLIED PROPERTIES..68
WTBASE OBJECTS ..68
SAMPLE BASE FUNCTIONS ..68
PROPERTIES AND EVENTS ...69
PROPERTIES ..69
EVENTS ..69
SAMPLE PROPERTY FUNCTIONS ..69

18. CLIENT-SERVER NETWORKING (VIA WORLD2WORLD)71

OVERVIEW ..71
HOW WORLD2WORLD WORKS ..71
SHARED PROPERTIES ..72
LOCKED PROPERTIES ..72
PERSISTENT PROPERTIES...72
UPDATE FREQUENCIES FOR SHARED PROPERTIES ...72
SAMPLE SHARED PROPERTY FUNCTIONS...73
SHAREGROUPS ..73
LOCKED SHAREGROUPS ..73
REGISTERED INTEREST ...74
PERSISTENT SHAREGROUPS ..74
SAMPLE SHAREGROUP FUNCTIONS ...74
CONNECTIONS ...74
CONNECTION UPDATE RATES ...75
CONNECTION EVENTS ...75
SAMPLE CONNECTION FUNCTIONS ..75

19. PIER-TO-PIER NETWORKING..77

HOW THE TRANSPORT LAYER WORKS ..77
HOW THE PROTOCOL LAYER WORKS ..77
HOW THE WORLDTOOLKIT LAYER WORKS ..77

Contents

WorldToolKit Technical Overview v

HOW THE APPLICATION LAYER WORKS ..78
SAMPLE TRANSACTION ...78

Local Machine ..78
Remote Machines..78

SAMPLE NETWORKING FUNCTIONS ...78

Contents

vi WorldToolKit Technical Overview

WorldToolKit Technical Overview 1

..........

1. Introduction to
WorldToolKit

Overview

WorldToolKit (or WTK) is a portable, cross-platform development system for building high-
performance, real-time, integrated 3D applications for scientific and commercial use.

WorldToolKit has the function library and end-user productivity tools you need to create,
manage, and commercialize your applications. With the high-level application programmer's
interface (API), you can quickly prototype, develop, and configure your applications as
required. WorldToolKit also supports network-based distributed simulations and an array of
interface devices, such as head-mounted displays, trackers, and navigation controllers.

From writing custom sensor drivers to rapidly developing virtual reality applications, WTK
offers an intuitive set of functions that provide a wide range of functionality.

This Technical Overview is designed to help you learn about WorldToolKit – its capabilities
and uses.

What is WorldToolKit?…

Simply stated, you build your virtual world by writing code to call WTK functions.
WorldToolKit is a library of over 1000 functions written in C that enable you to rapidly
develop new virtual reality applications. One function call can do the work of hundreds of
lines of C code, dramatically shortening development time.

WorldToolKit is so named because your applications can resemble virtual worlds, where
objects have real-world properties and behavior. You control these worlds with a variety of
input sensors, from a simple mouse to position and orientation-sensing 6D input devices.
Users can experience these worlds through a computer display (which acts as a movable
window into a world) or by using a position-tracked, head-mounted, stereoscopic display.

WorldToolKit is structured in an object-oriented way, although it does not use inheritance or
dynamic binding. WTK functions are object-oriented in their naming convention, and are
organized into over 20 classes. These classes include the Universe (which manages the
simulation and contains all other objects), Geometries, Nodes, Viewpoints, Windows, Lights,
Sensors, Paths, Motion Links, and others. Functions are included for device instancing,
display setup, collision detection, loading object geometry from file, dynamic geometry
creation, specifying object behavior, and controlling rendering.

Introduction to WorldToolKit

2 WorldToolKit Technical Overview

Scene Graph Architecture

The architecture of WorldToolKit has been designed to incorporate the power of scene
hierarchies. WTK lets you build a simulation by assembling geometry nodes into a
hierarchical scene graph, which dictates how the simulation is rendered and allows all of the
efficiencies of a state-preserving, stack-oriented rendering architecture.

While WTK Version 2.1 (the fifth release of WTK) offered object hierarchies, later releases
provide a much broader range of nodes which are hierarchically arranged in the scene graph
and each of which represents part of the simulation. This efficient visual representation of
the database provides increased performance, control, and flexibility through features such as
hierarchical object culling, efficient use of transform information, Level of Detail switching,
object grouping, VRML compatibility, and the ability to load in models and data from the
Internet. With the scene graph approach, you can create a light, and specify its location in
the scene graph so that light affects only the geometry you choose.

While providing the expressiveness and flexibility of constructing the scene graph for your
visual database node-by-node, WTK also contains functions that let you create scene graphs
by loading in files that contain scene graph descriptions. For example, loading a VRML file
from the Internet into your scene graph requires just a single function call. WTK also
provides calls for easily modifying and reconfiguring scene graphs.

In addition, WTK's companion product, World Up, provides an interactive scene graph
builder and integrated Modeler which can be used to construct your scene graph and models.

What WorldToolKit Does

WorldToolKit manages the tasks of rendering, reading input sensors, importing geometries,
and a wide range of simulation functions. You are left free to concentrate on developing the
details of your 3D applications.

At the core of an application written using WTK is a simulation loop which reads input
sensors, updates objects, and renders a new view of your scene onto the display. WTK is
designed to be used in real-time applications such as simulations, where frame rates on the
order of 5 to 30 frames per second are maintained. WTK's main loop and event dispatching
mechanisms are similar to those of a conventional window manager, but WTK applications
differ in that they are intended for use in situations where user viewpoint or objects in the
universe are continuously changing.

WorldToolKit incorporates the philosophy of OpenVR , which means that it is portable
across platforms, including SGI, Sun, HP, DEC, Intel, PowerPC, and Evans and Sutherland.
WTK is optimized to leverage the power of each hardware platform it supports, enabling
your applications to use the "fast path" through whatever graphics acceleration system you
are using. WTK is optimized to make full use of the unique capabilities of each platform to
deliver the fastest graphics possible.

WTK supports a wide variety of input and output devices, and allows you to incorporate
existing C code (such as device drivers, file readers, and drawing routines) and to interface
with a variety of information sources.

Introduction to WorldToolKit

WorldToolKit Technical Overview 3

Features

Sound

WorldToolKit provides a cross-platform API for creating 3D and stereo sound. On NT
systems, WTK supports Windows-compatible sound cards and Crystal River Engineering
products, and on Silicon Graphics Workstations, WTK supports the SGI system audio and
Visual Synthesis 3D sound products. (Please contact Sense8 for more detailed 3rd party
sound device support.)

WTK's sound API provides support for 3D spatialization of sounds, doppler shifts, volume
and roll-off controls, and other effects. It supports output to a variety of devices including
headphones, surround sound, and mono, stereo and quad systems.

User-Interface Objects

You can add graphical user interface (GUI) elements to your simulations by using the cross-
platform user-interface objects. These objects let you quickly and easily create a (2D)
graphical user interface. These user-interface objects have been designed in both Motif and
Windows styles, to match the native operating system. The user-interface object types
provided include: toolbars, bitmaps, menus, message boxes, text boxes, file-request dialogs,
and others. When you recompile your simulation on another platform, the GUI elements
automatically change to match the new operating system. For example, if you develop it for
X-Windows, and then recompile it in Windows, your simulation will use Windows style
toolbars.

MultiPipe/Multi-Processor Support

A multipipe/multi-processor version of WorldToolKit is also available. It provides support
for rendering to multiple graphics pipes or screens and utilizes the additional power
available on multi-processor systems. This is useful for creating high-resolution stereo
displays for Computer-Assisted Virtual Environment’s (CAVE).

VRML Support

WorldToolKit provides support for reading and writing VRML 1.0 files.

Other Features

Other features of WorldToolKit include the following:

• Materials and Translucency – Complete control of coloring geometries,
including specular highlights. WTK takes full advantage of the features
available with OpenGL.

• Task Objects – You can specify the behavior of any geometry, node, or C
structure by assigning tasks to it.

• Performance Optimizations for Rendering – Support for stripping, state
sorting, etc.

• Atmospheric Effects – Support for special effects, such as fog, haze, and
cloud layers.

Introduction to WorldToolKit

4 WorldToolKit Technical Overview

• Constraints – Available on the translations and rotations of your geometry
or other scene graph components.

• Textures from Memory – For video and playback onto object surfaces.

• Orthographic Projections – Useful for plan views or anytime a
perspective projection is not desired.

• Cross-Platform 2D Drawing Calls - Support for geometrical shapes,
lines, bitmaps, etc.

• Support for New Sensors - 5DT glove, CyberMaxx2, Thrustmaster T-2
steering wheel, Thrustmaster serial joystick, and Polhemus Insidetrak.

• Support for 3D Text - Capability of creating 3D text in your virtual world.

• Support for Many File Formats - Supports WRL, FLT, DXF, NFF, OBJ,
3DS, BFF, SLP, and GEO file formats.

• C++ Wrappers - Provides the choice of programming in either C or C++.

System Configuration

The WorldToolKit development system can be integrated with over fifty third-party
products, ranging from compilers to high resolution display devices. With these products,
WTK users have constructed a variety of systems, ranging from DOS-based Pentium
computers to CAVE-like environments running multiple Silicon Graphics Onyx RE2s.

Basic System Configuration

A basic WTK development system includes the following components:

• Host computer(s)

• Hardware graphics accelerator board [system dependent]

• WTK library

• C compiler

• 3D modeling program

• Bitmap editing software [system dependent]

Extending a System for Virtual Reality

To extend the basic system configuration for a virtual reality interactive display, additional
hardware components are required. The following list assumes that you have the software
and hardware listed above, including a 3D or 6D input sensor.

• A stereoscopic head-mounted display or stereo projection system.

• Video signal conversion, typically from the RGB signals of the graphics
device to the NTSC video inputs on the head-mounted display.

• One or more position tracking devices (to track the head position and
orientation and/or other body gestures).

Introduction to WorldToolKit

WorldToolKit Technical Overview 5

Input Sensors and Displays Supported

WorldToolKit supports a wide range of 3D and 6D input sensors and displays, both desktop
devices and devices that can be worn for sensing position and orientation of various body
parts of the user. Routines to read the input devices are part of the WTK library. The
following are some sensors and displays that WTK supports:

• Standard mouse.

• Spacetec IMC Spaceball.

• Spacetec Spaceball Space Controller (NT only).

• CIS Geometry Ball Jr.

• Polhemus Isotrak, Isotrak II, and Fastrak sensors.

• Polhemus InsideTrak (NT only).

• Ascension BIRD, Extended Range BIRD, and FLOCK of birds.

• Logitech 3D mouse and head tracker and also the Magellan Space Control
mouse.

• StereoGraphics CrystalEyes and CrystalEyes VR LCD shutter glasses with
built-in Logitech tracker.

• Fake Space Labs monochrome BOOM, two-color BOOM2C, and full-color
BOOM3C—button models and joystick models.

• Precision Navigation Wayfinder head tracker.

• Virtual i-O i-glasses! head tracker.

• Thrustmaster serial joystick.

• Thrustmaster T-2 steering wheel (NT only).

• Victormaxx Technologies Cybermaxx2 HMD (NT only)

• Precision Navigation 5DT serial glove.

• Fakespace Pinch glove.

• Virtual Technologies CyberGlove (some platforms only).

Geometries: Building Blocks of Your Virtual World

Objects are the building blocks of your virtual world. These objects may include geometries,
sensors, lights, viewpoints, serial ports, and others. Although there are several different types
of objects you will encounter in a typical WTK application, geometries are perhaps the most
interesting since they provide form and function in your virtual world. Only Geometry
objects (Geometry Nodes) are visible in the scene. Examples of Geometry objects are balls,
chairs, platforms, vehicles, cylinders, wheels, houses, and landscapes.

Introduction to WorldToolKit

6 WorldToolKit Technical Overview

Geometry Construction

You can construct geometries in several ways. You can use a modeling program to design a
geometry and then load it into WTK, or you can use the special functions WTK provides for
creating geometries. WTK lets you create spheres, cones, cylinders, 3D text, as well as
geometry built from the ground up with vertex and polygon primitives.

WTK supports the following CAD and modeling programs: AutoCAD, Pro/Engineer, and
any 3D modeling tool that can produce a DXF file. WTK also supports other file formats
including 3D Studio (3DS), Wavefront (OBJ), MultiGen/ModelGen (FLT), and VideoScape
(GEO).

WTK can read and write VRML (WRL) files. WTK can also read and write neutral file
format (NFF) files, which are ASCII text files with an easy-to-read syntax, and binary NFF
files.

Textures

WTK lets you apply textures to geometrical objects or to their underlying polygonal surfaces.
By using textures, geometries appear more realistic and lifelike. Judicious use of texturing
results in more complex and pleasing environments with simpler 3D models, because
textures provide image detail that no longer must be represented by individual geometric
surfaces. Texturing is valuable because while it provides greater image detail, less time must
be spent on actual modeling; it also improves run-time performance beyond what would have
been possible if all scene details had been modeled in 3D.

Obtaining and Applying Textures

You can obtain textures by using a capture board and a video camera, a scanner, a digital
camera, or paint (bitmap image editor) program. Many textures are available for free on the
WWW or can be purchased.

Typically, textures you acquire from either a capture board, camera, or scanner will require
some pixel editing. This is done using a pixel painting program. WTK supports transparent
textures, that is, you can specify WTK to treat all black pixels in a texture as if they were
transparent.

Textures can be applied to polygonal surfaces interactively with WTK function calls, and can
be interactively rotated, translated, scaled, or mirrored once they are applied.

Building a Virtual World

In a WTK simulation, you create individual moving parts as separate nodes, using a
Geometry Construction function. For example, to model a car with rotating wheels, the
geometry nodes used for wheels are constructed separately from the node representing the
car body. You can construct the car with individual nodes, or use self-contained groups of
nodes called movable nodes, which can be easily repositioned.

To create geometries for a simple world using a CAD or modeling program you typically
construct the geometries in the same CAD model, and then write out separate files for each
one.

For example, suppose you have a simple model of a room with four walls, a floor and a
ceiling. In this room, you have modeled five geometries: a table, chair, book, computer and
bookshelf. If you created a single .dxf file (in ASCII text format) of this model complete with

Introduction to WorldToolKit

WorldToolKit Technical Overview 7

the five geometries and started the WTK application that read in this file using the
WTgeometrynode_load command, you would be launched into your virtual world with
everything in the room treated as a single geometry (including the table, chair, book,
computer and bookshelf). This form of application is really a static “walk-through” program,
where you could interactively edit the polygon attributes (such as colors and textures) of any
surface, but you cannot move the parts of the geometry with respect to each other.

If each of the geometries which represent the table, chair, book, etc., were individually
loaded into WTK, then it would be possible to move the objects in relation to one another
using functionality which is available in WTK. For example, you could create and place
transform nodes between the individual geometry nodes to control the position and
orientation of the geometries.

WTK also has the higher level concept of a movable node, which combines the
characteristics of several different node types (for example, a geometry node and a transform
node) so that your simulation can make use of self-contained entities which are easy to move
around.

The example code below is a WTK application that allows the user to fly around a spinning
planet.

A Sample WTK Application

 /* SAMPLE PROGRAM */
 /*
 * simple.c
 * Usage: Use the mouse buttons to fly around a spinning planet.
 */
 #include "wt.h"
 void spin(WTnode *);
 #define Y_AXIS 1
 void main(int argc, char *argv[])
 {
 WTnode *root;
 WTnode *planet;
 WTsensor *sensor; /* the Mouse */
 WTviewpoint *view; /* the Viewpoint */
 WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);
 root = WTuniverse_getrootnodes();
 planet = WTmovnode_load(root, "PLANET.NFF", 1.0);
 sensor = WTmouse_new();
 view = WTuniverse_getviewpoints();
 WTviewpoint_addsensor(view, sensor);
 WTtask_new(planet, spin, 1.0);
 WTuniverse_ready();
 WTuniverse_go(); /* Starts simulation */
 WTuniverse_delete(); /* All done */
 }
 void spin(WTnode *planet)
 {
 WTmovnode_rotateaxis(planet, Y_AXIS, 0.01);
 }

Introduction to WorldToolKit

8 WorldToolKit Technical Overview

WorldToolKit Technical Overview 9

..........

2. The Universe
The universe contains all graphical objects that appear in a simulation. These objects may
include geometries, sensors, lights, viewpoints, serial ports, or other object types. Once these
objects are created, they are automatically maintained by the WTK simulation manager.

Overview of the WorldToolKit Classes

WorldToolKit is structured in an object-oriented way. Most WTK functions are object-
oriented in their naming conventions and are grouped into the following classes:

• Universe: is the “container” of all WTK objects such as geometries, nodes,
viewpoints, sensors, etc. While you can have multiple scene graphs and
simulations, there is only one universe. You can temporarily add or remove
geometries and nodes from being considered by the simulation manager.
You can also define the sequence of events in the simulation.

• Geometries: are graphical objects that are visible in a simulation, such as
Block, Sphere, Cylinder, and 3D Text. You can dynamically create
geometries or import them from other sources. Once you create a geometry,
you need to create a corresponding (Geometry) Node so that it can be
placed in the scene graph.

• Nodes: are the building blocks from which scene graphs are constructed.
Node types other than Geometry Nodes, such as Light Nodes, Fog Nodes,
Transform Nodes, Level of Detail Nodes, and Switch Nodes are not visible,
though they can affect the appearance of Geometry Nodes.

• Vertices: can be dynamically created along with the definition of a vertex
normal for gouraud-shading.

• Polygons: can be dynamically created and texture-mapped using various
sources of image data. Rendering is performed in either wireframe,
smooth-shaded or textured modes.

• Lights: can be dynamically created or loaded from a file.

• Viewpoints: define the position and orientation from which all of the
geometries in a simulation are projected to the screen and rendered. WTK
supports one or more viewpoints. You can also control a viewpoint’s
position and orientation by attaching sensors to it.

• Windows: display your scene. A WTK application can have multiple
windows into the same virtual world and/or multiple windows into
different virtual worlds.

Object/Property/Event Architecture

10 WorldToolKit Technical Overview

• Sensors: can be connected to transforms, viewpoints, movables, etc.
Multiple sensor objects are supported.

• Paths: objects or viewpoints can follow predefined paths. You can
dynamically create, interpolate, record, and play paths.

• Tasks: can be used to assign behaviors (such as movement, change in
appearance) to individual objects.

• Motion Links: connects a source of position and orientation information
with a target that moves to correspond with that changing set of
information.

• Sound: objects can be loaded, associated with 3D objects in the scene, and
played.

• User Interface: elements can be created for both X/Motif and Microsoft
Windows environments.

• Networking: this capability enables you to build applications that can
asynchronously communicate over an Ethernet between several PC and
Unix workstations. This allows distributed simulations to be created where
a mixture of PCs and Unix workstations support a single simulation.

• Serial Port: functions simplify the task of communicating over serial ports.

Naming Conventions

Naming conventions for WTK functions are such that each class of object has a typedef (type
definition) defining an object of that type. For instance, WTsensor is a sensor object, and
WTserial is a serial port object. Objects are always dealt with through pointers. In fact, the
internal state of WTK objects is not accessible except through WTK method (function) calls
provided for this purpose. Objects in WTK are “opaque,” enforcing data abstraction. The
state of any object must be accessed through “set” and “get” access methods defined in the
WTK library.

All functions acting on a given class have by convention a name which begins with the class
name. In addition, all classes accessible by the user have an object constructor whose name
ends in _new which returns a new object of the given class, and an object destructor ending
in _delete which accepts and destroys an object of the given class.

For instance, the function:

WTviewpoint *WTviewpoint_new();

creates a new viewpoint object and returns a pointer to that object, as in:

newview = WTviewpoint_new();

This new viewpoint could subsequently be destroyed by the call:

WTviewpoint_delete(newview);

Most functions expect a pointer to an object of their class as the first argument. This is the
object to which the method is directed. To copy a viewpoint, you would call the function
WTviewpoint_copy, which takes a pointer to an already existing viewpoint and returns a
pointer to a newly created copy of that viewpoint:

WTviewpoint *old_viewpoint, *new_viewpoint;
new_viewpoint = WTviewpoint_copy(old_viewpoint);

Object/Property/Event Architecture

WorldToolKit Technical Overview 11

Universe Construction and Destruction

The universe is the container of all WorldToolKit objects. Once these objects are created,
they are automatically maintained by the WorldToolKit simulation manager. In a
WorldToolKit application, you create the universe using the function WTuniverse_new.
WTuniverse_new must be the first WTK call in your main program and must be called only
once in an application. This function initializes the universe’s state and initializes the
graphics device, configuring it for the output device with which the virtual world is to be
viewed.

Unlike the methods for other WTK objects, universe methods do not require a pointer as the
first argument. This is because there is only one universe in existence at any given time.

The Universe is deleted using the WTuniverse_delete function. This function frees all of the
objects in the universe, including those that have been removed from the simulation with the
remove function appropriate for that object type, such as WTviewpoint_removesensor. The
WTuniverse_delete function also cleans up and closes the graphics hardware or WTK
display.

Simulation Management

The simulation loop is the heart of a WorldToolKit application. Every aspect of the
simulation takes place in the universe. The WTK simulation loop is entered by calling
WTuniverse_go and is exited by calling WTuniverse_stop. Alternatively, you can use the
function WTuniverse_go1 to go through the simulation loop exactly once and then exit the
loop automatically. Figure 1 shows the default order of events in the simulation loop. The
order can be changed by using the function WTuniverse_seteventorder.

Sensors are read.

 The universe’s action function is called.

 Objects are updated with sensor input.

 Objects perform tasks.

The universe is rendered.

WTuniverse_go()
to enter simulation loop

WTuniverse_stop()
to exit simulation loop

The order in

which these

items are

executed is user-

definable.

Paths in record or playback mode are stepped.

Figure 1: The default simulation loop.

Object/Property/Event Architecture

12 WorldToolKit Technical Overview

The Universe Action Function

The universe action function is used to define and control the activity in the simulation. In
the action function, actions involving any WorldToolKit objects, graphical or otherwise, can
be specified. The action function is a user-defined function which is called by the simulation
manager each time through the simulation loop. Figure 1 shows the order in which the
action function is called with respect to the other events in the simulation loop. This order
can be changed with the function WTuniverse_seteventorder.

Some examples of actions which you can specify in the universe action function are:

• Program termination by having a button press trigger a call to
WTuniverse_stop.

• Simulation activities such as object manipulation, intersection tests, or
others.

• Changes to rendering parameters such as lighting conditions or
background color.

• Event handling for a user interface, for example, calling
WTwindow_pickpoly to interactively select a polygon, specifying what is to
be done with the selected polygon, and processing keyboard input using
WTkeyboard functions.

Other Global Concepts

Coordinate Systems

A coordinate system (sometimes called reference frame or context) refers to the X, Y, and Z
coordinate axes used to describe position and orientation in space. Any location in space can
be described by its XYZ coordinates relative to the origin. The origin is the center of the
scene, which is located at XYZ coordinates 0,0,0. In a three-dimensional coordinate system,
the X coordinate refers to the left-right location, the Y coordinate refers to the up-down
location, and the Z coordinate refers to the near-far location.

The Scene Graph is a way of assembling objects hierarchically, so that the location of any
object is relative to the coordinate system of its parent in the Scene Graph. For example, if
you place an automobile Movable Geometry below a road Movable Geometry in the Scene
Graph, then the translation property of the automobile specifies the position of the
automobile in the reference frame of the road.

Universe Geometrical Properties

WorldToolKit functions provide access to three useful geometrical properties describing the
graphical entities in a scene graph. These are the extents of these entities in the world
coordinate frame, the midpoint of these extents, and the “radius” of this extents box. Figure
2 illustrates these properties.

Object/Property/Event Architecture

WorldToolKit Technical Overview 13

World x axis

extents[1][Y]

extents[0][Y]

World z axisWorld y axis

extents[0][X] extents[1][X]

radius

midpoint
extents[1][Z]

extents[0][Z]

Figure 2: Scene graph geometric properties: extents, radius, and midpoint.

The extents box is the smallest world-coordinate frame aligned box which fits about the
graphical entities in the scene graph. The radius is the distance from the midpoint of the
extents box to one of its corners.

Accessing Objects in Your Simulation

You can access the objects in your simulation through a variety of functions in
WorldToolKit. Generally, a call to the function which returns a pointer to the list of objects
of a specified class is called first. These functions are WTuniverse_getwindows,
WTuniverse_getviewpoints, and WTuniverse_getsensors, etc. Then to iterate through this
list, the corresponding iterator functions WTwindow_next, WTviewpoint_next, or
WTsensor_next, etc., are used.

Interacting with the Objects in Your Simulation

You can use the WTwindow_pickpoly function to select polygons in the scene graph
associated with a window based on their projection into the 2D window or screen.
WTwindow_pickpoly takes a 2D screen point and returns the front-most polygon at this
point. You can modify the appearance of this polygon by passing it in to other functions,
such as WTpoly_settexture.

Testing for Intersections

Many WorldToolKit applications require that the objects in the scene interact with each
other. To do so often requires that an object know when it comes in contact with another
object.

WTK provides functions which test for bounding box (extents box) intersections as well as
intersections of polygons with other polygons. Keep in mind that polygon-level intersection
testing, while more precise than bounding box intersection tests, is computationally
intensive. You should use these functions only as often as needed and only when bounding
box tests are insufficient.

Object/Property/Event Architecture

14 WorldToolKit Technical Overview

WorldToolKit Technical Overview 15

..........

3. Scene Graphs
The spatial organization and relationship of Node objects to each other is an important part
of the simulation’s content. In WorldToolKit, this organization and relationship is specified
visually with the Scene Graph.

The Scene Graph is a hierarchical arrangement of nodes which you use to create a scene.
Node objects make up a scene in a simulation. These Node objects can include Lights, Fog,
Geometries, Groups, Transforms, Separators, and others, which are organized beneath a
single Root node.

Figure 3 illustrates a simple scene graph used to display a car. The order in which nodes
appear in the Scene Graph determines the order in which objects get rendered. This tree is
traversed from top to bottom and left to right, in a “depth first” manner — the left-most
branch is read completely before the next one is considered. Note that there is only one wheel
in this scene graph; the second geometry node “Wheel” is just a reference to the first.

Figure 3: A simple scene graph.

Some nodes, like the Transform nodes, are used to affect the state of the scene you are
creating. The state remains in effect until you modify it with another similar node. For
example, the position and orientation set by the transform node in the upper-left quadrant of
Figure 3 are used for this entire scene graph; the transform nodes used to display the wheels
specify position and orientation relative to those initial settings.

Geometry node
“Car body”

Root node

Transform node
(Position and
Orientation)

 Group node

Geometry node
“Car Windows”Separator node

“Car axle”

Transform node
“Wheel 1 position”

Geometry node
“Wheel”

Transform node
“Wheel 2 position”

Geometry node
“Wheel”

Scene Graphs

16 WorldToolKit Technical Overview

Advantages of Scene Graphs

With earlier versions of WTK, programmers used the WTobject_attach function call to
create hierarchical assemblages of graphical objects. This allowed child objects to move with
— as well as independently of — the parent objects to which they were attached, so that, for
example, the wheels on a vehicle would move when the vehicle moved, but could also
themselves rotate independently of the vehicle.

WTK now supports a much more sophisticated scene database description, by using a scene
graph. The following are some of the new features and advantages of the scene graph:

• Object grouping.

• Level of Detail switching.

• Instancing of geometry and entire scene graph sub-trees, providing better
memory usage.

• More powerful culling and more efficient database representation,
providing increased performance, i.e., frame rate.

• Support for VRML and MultiGen file formats.

• The enabling of lights, materials, and environmental effects in selective
parts of the database.

• Multiple scene graphs.

Scene Graph Terminology

The following terms are important when learning how WorldToolKit implements scene
graphs:

Scene graph tree All of the nodes in a scene graph, arranged in a hierarchical
order. The nodes in figure 4 are all in one scene graph tree.

Scene graph sub-tree A node and all of its descendants. A sub-tree in figure 4 is
shaded.

Ancestor Since node A has a sub-tree that includes node E, A is an
ancestor of node E. Note that node J is not an ancestor of node I.

Child node A node’s direct descendant. In figure 4, nodes B and C are both
children of node A. J is not a child of A.

Parent node A node’s direct ancestor. Node A is a parent of node C, but not of
node E. It is possible for a node to have several parents.

Sibling Children of the same parent node are siblings. Nodes F, G, H, and
I are siblings.

Root node Each scene graph has only one root node. The root node in figure
4 is node A.

Traversal order The order in which nodes in a scene graph are processed while
the simulation is running. The nodes in the scene graph in figure
4 have been labeled so that their alphabetical order indicates the
proper traversal order.

Scene Graphs

WorldToolKit Technical Overview 17

Predecessor Since nodes B and C are processed before node J, they are its
predecessors. A node’s predecessors can affect the rendering of
that node, even though they may not be ancestors.

Figure 4: A schematic diagram of a scene graph.

Overview of Creating Scene Graphs

WorldToolKit provides two methods for constructing scene graphs. These two methods
range from a high-level, automatic approach, providing the greatest ease of use, to a low-
level approach which provides complete control of the scene graph on a node-by-node basis.

These techniques may also be combined. You can begin constructing a scene graph with one
method and then decide to continue development using the other method. Regardless of how
you construct your scene graph, WorldToolKit provides additional function calls for
disassembling, reassembling, and rearranging it at any time.

You can create a scene graph by doing the following:

• Loading in a file that contains a scene graph description. VRML and
MultiGen can create such files. For example, to read in a file named
“myworld” and attach it to the root node, you would call
WTnode_load(root, “myworld”, 1.0).

• Using the WTK constructor and scene graph assembly functions to
construct the graph node by node. This is the lowest-level approach and
provides the most control. For example, you can create an LOD node and
attach it as the last child node of the root node by calling
WTlodnode_new(root).

D

A

B C

J
E

F G H I

Scene Graphs

18 WorldToolKit Technical Overview

Nodes Used in WTK Scene Graphs

Although there are many node types, nodes can be grouped into three classes:

• Geometry nodes, which are used for visible entities.

• Attribute nodes, which are used to affect the way geometry nodes are
rendered.

• Procedural nodes, which are used to control the way a scene graph is put
together and processed.

In WTK, a geometry must be attached to a scene graph to become visible in the simulation.
This is a two-step process; first you create a geometry, then you create a geometry node so
that you can attach it to the scene graph. The scene graph contains other parts of the
simulation, like lights, LOD nodes, switches, etc. Only geometry nodes require the two-step
process of creation and attachment. All other scene graph components can be created in a
single step by creating a node of the appropriate type.

Geometry and Attribute Nodes

Table 1 below lists geometry nodes and the set of attribute nodes which affect scene graph
state.

Node What it does

Geometry Displays a set of polygons together with a WTK material.
(The Geometry node does not affect scene graph state.)

Fog A special effect that you can use to simulate fog, smoke, haze,
smog, mist, etc.

Light Specifies a WTK light. Light nodes illuminate geometry in a
scene and are part of a scene graph’s state. In other words,
when a scene graph is traversed, as it is for rendering,
geometry is lit according to the lighting state at the time a
WTgeometry node is reached.

Transform Provides position and orientation information.

Table 1: Geometry nodes and nodes that affect scene graph state.

Procedural Nodes

Table 2 lists procedural nodes that you use to organize the nodes in a scene graph.

Node What it does

Anchor A group node where children are read from a file. A user
interaction is required before an anchor node’s children are
read in.

Group Has child nodes, but no other properties.

Inline A group node whose children are read from a file without
user interaction.

Scene Graphs

WorldToolKit Technical Overview 19

Level of Detail (LOD) You use an LOD node so that WTK can dynamically select
between a set of different representations, each of which is a
different level of detail.

This is useful, for example, if your application involved a
train that passed close to the viewer and then receded into
the distance. After you created an LOD node, you would add
several children to it– each of which was a less-detailed
representation of the same train. WTK allows you to specify
the distance at which the LOD node could “swap in” a new
representation. Of course, your image doesn’t have to be
moving. LOD nodes are useful whenever the distance
between the viewpoint and a geometric object will vary.

Root Is the top node in a scene graph. Each scene has only one
root node, which is not shared with any other graph. As the
top node in its hierarchy, this node has no parent node.

Separator Prevents state information from propagating from its
descendant nodes to its sibling nodes. This is useful when
you have lights and or transformations in one part of your
scene graph and you do not want them to affect the
remaining portion of the scene graph. Separator nodes also
allow you to perform a quick “reject” test on the extents box
of the separator node’s sub-tree, which can result in a drastic
improvement in performance.

Switch Allows you to determine which of several children is
processed. This is particularly useful if you are creating an
animation sequence, in which case you could cycle through
the switch node’s children, switching once for each frame.

Transform Consists of a 4x4 matrix which allows you to specify
position and orientation information. You can set or retrieve
various properties of transform nodes, like translation and
rotation (orientation), by calling WTK functions.

Transform separator Prevents just the transformation state from propagating from
its descendant nodes to its sibling nodes. All other states are
allowed to propagate.

Table 2: Procedural nodes.

Node Properties

Certain node properties are generic in that they can pertain to all node types. Such
properties include the name of the node, the node type, and any tasks assigned to nodes.

Other node properties are specific to the type of node being considered. For example, Level
of Detail switching information is stored only in LOD nodes, while position and orientation
information is stored only in transform nodes.

Scene Graphs

20 WorldToolKit Technical Overview

Node Geometrical Properties

WorldToolKit functions provide access to three useful parameters that describe the space
occupied by the geometries in a scene graph. Figure 2 illustrates these parameters: the
extents of the rectangular box (“the extents box”) that encloses these geometries, the
midpoint of the box, and its “radius.”

The extents box of a node in a scene graph is relative to the coordinate system (the X, Y, and
Z axes) defined by the transformations accumulated by traversing the scene graph as far as
that node. A node’s extents box encloses the geometries beginning at that node and
including all nodes which are its children and grandchildren, etc. These comprise the node
and its sub-tree. The radius is the distance from the midpoint of the extents box to one of its
corners.

The extents box of the root node in a scene graph encloses all of the geometry referenced by
the graph. The concept of an extents box is extremely useful because it allows WTK to
quickly determine whether the geometry in a node sub-tree is in view or not.

How Scene Graphs are Rendered

Each WTK window has a scene graph associated with it. This graph is rendered into the
window automatically as the simulation runs. WTK windows can each reference the same
scene graph or use different ones. When windows reference the same scene graph, they can
provide different views into the same scene. When they reference different scene graphs, they
provide views into different scenes.

Different scene graphs may have common sub-trees, which means that the same geometry
may be referenced by more than one scene graph.

Each scene graph has a single root node. When WTK processes a scene graph, it starts at the
root node and traverses the tree top to bottom and left to right, so that the left-most branch
(sub-tree) is completely processed before the next sub-tree is processed.

During the traversal, WTK evaluates each type of node and processes it. Depending upon the
type of node encountered, WTK will do one of three things, as outlined in table 3 below:

Kind of Node What WTK does when it encounters one
of these nodes

Procedural Processes the children of this node, depending on
the type of traversal dictated by the node.

Attribute Modifies the current state, which determines the
appearance of subsequent geometries.

Geometry Draws the specified set of polygons.

Table 3: Processing nodes in the scene graph.

Scene Graphs

WorldToolKit Technical Overview 21

Scene Graph State

The attribute nodes listed in table 3 affect the state of a scene graph, how your geometry is
being rendered at any particular point in the graph. A light node placed just under the root
node, for example, dictates the light state of the entire scene graph, until another light node
is used to modify that state. Similarly, transform nodes affect the transform state (i.e.,
position and orientation) of geometries, until another transform node is used to modify the
transform state.

Managing State

Certain nodes, known as separators and transform separators, are provided to help you
manage state by isolating the effects of any of the attribute nodes. Note that neither of these
separators actively modifies the state of a scene graph; they merely prevent the descendant
attribute nodes from affecting the state of sibling and ancestor nodes.

In figure 3 on page 15, the position and orientation information contained in the first
transform node below the root affects the entire scene graph. However, the separator node
called “Car axle” prevents the information in the transforms below it from propagating
upward, thus ensuring that the geometry node “Car windows” is affected only by the original
transform node.

Uniquely Identifying Nodes in the Scene Graph

It is possible for a node to be referenced more than once in a scene graph. In other words, a
node can occur as a child of multiple parent nodes. It is even possible for a node to occur
multiple times as the child of the same parent node. Because of this, a mechanism is needed
to uniquely specify a particular occurrence or instance of a node in the scene graph.

WTK uses the concept of a node path to uniquely identify nodes in the scene graph. A node
path is a mathematical entity that allows you to distinguish between multiple occurrences of
the same node due to instancing.

If you create a geometry node, for example, and attach it to the scene graph’s root node, the
geometry is drawn at the universe origin. If you then create a transform node and attach it to
the scene graph’s root, and also re-attach the same geometry to the root node after the
transform node, the geometry is drawn a second time, wherever the transform dictates. The
“location” or instance of that geometry— remember, there is only one such geometry—
depends on the path you take through the scene graph tree to reach it.

Recall that the scene is rendered by starting at the root node and proceeding down the first
child recursively. Consequently, if you want a node path to the instance of the geometry
following the transform, you can create it by calling WTnodepath_new and specifying the
geometry as the node, the scene graph’s root node as the ancestor, and indicate the “second”
path with a 1 (arrays start at 0). The newly created node path can then be used to uniquely
specify a particular instance of a node.

Node Paths can be useful regardless of whether a node is referenced once or several times in
the scene graph. Node paths enable you to do the following:

• Perform intersection tests between a specific instance of a node and other
nodes in the scene graph.

• Pick graphical entities rendered into WTK windows. The WTK picking
functions generate the node path of the picked geometry node.

Scene Graphs

22 WorldToolKit Technical Overview

Sample Node Functions

Table 4 below lists some sample node functions:

Function Description

WTrootnode_new Creates a new root node.

WTnode_save Saves the data contained in a node sub-tree to a file.

WTnode_boundingbox Allows you to highlight parts of your scene with a
bounding box.

WTnode_addchild Attaches a node as a child of another node.

WTnode_getparent Returns the n’th parent node of the specified node
where n is a parameter of this function.

Table 4: Sample node functions.

WorldToolKit Technical Overview 23

..........

4. Movable Nodes
A movable node is a self-contained entity; it is a combination of a separator node, a
transform node, and a content node (such as a geometry node). Movable nodes are easy to
move around in a scene graph and retain a sense of how they will behave. They also simplify
the scene graph construction process.

What Makes Up a Movable Node?

As shown in figure 5, the three basic components of a movable node are a separator, a
transform, and a content.

Figure 5: The basic structure of a movable node.

Separator

A separator prevents the transformation within a movable from affecting sibling nodes.

Transform

Each movable node has a transformation component which allows you to control the position
and orientation of a movable node. This means that you do not have to explicitly create a
transformation node which is a predecessor to the movable node in order to control the
position and orientation of the movable node, since a transformation component is built into

Transform
Content

Separator

(to parent)

Movable Nodes

24 WorldToolKit Technical Overview

every movable node. To set the position and/or orientation of a movable node, you can use
any of the WTK position and orientation functions which are applicable to transform nodes.

By default, the WTK functions used to position a geometry use the geometry midpoint, the
midpoint of the geometry’s extents box, as the location of the geometry moved to the
specified position. For example, when WTnode_setposition is called, the geometry is
translated so that its midpoint is placed at the 3D world coordinate location passed in to this
function.

The following example shows how a movable geometry node can be created and positioned
at the world coordinates (100.0, 0.0, 0.0) given that the corresponding WTgeometry has
previously been created.

WTgeometry *geo;

WTnode *root;

WTnode *movgeo;

WTp3 position;

root = WTuniverse_getrootnodes();

movgeo = WTmovgeometrynode_new(root, geo);

position[0] = 100.0;

position[1] = 0.0;

position[2] = 0.0;

WTnode_settranslation(movgeo, position);

Content

The content controls what the movable displays or accomplishes. The five types of content
components are:

• Geometry: a series of vertex positions and polygon definitions.

• Light: a defined source of illumination.

• Separator: prevents state information from propagating from its
descendant nodes to its sibling nodes.

• Switch: a group that allows the user to control which of its children is in
the simulation at any given time.

• Level of Detail: a switch that chooses the active child automatically, based
on the distance to the viewpoint.

Movable Nodes

WorldToolKit Technical Overview 25

Movable Node Hierarchies

A movable hierarchy is a group of nodes which moves together as a whole but whose sub
parts can move independently. As an example, consider a hierarchically assembled robot arm
such as is illustrated in figure 6.

Figure 6: Hierarchically assembled robot arm.

Each part of the robot arm— the base, the lower arm, the middle arm, and the effector—
must be created as a separate node, using, for example, the function WTmovnode_load. Let’s
say that pointers to these four movable nodes are called base, lower, middle, and effector.
Then to assemble the robot arm as in the preceding diagram, you would make the following
calls to WTmovnode_attach:

WTmovnode_attach(base, lower);
WTmovnode_attach(lower, middle);
WTmovnode_attach(middle, effector);

These calls result in a geometry hierarchy in which base is the root, and moving down
through the hierarchy you find lower, then middle, and then effector. (Don’t be confused by
the fact that “down” in the hierarchy corresponds to “up” in figure 6) When a geometry in
the hierarchy moves, it moves all of the geometries that are hierarchically below it, as if the
geometries were rigidly attached.

Geometries that are hierarchically above the geometries are not affected by the geometry’s
motion. For example, when the lower arm moves, this causes the middle arm and effector to
move with it, while the base is unaffected. When the effector moves, none of the other
geometries are affected because the effector is at the bottom of the hierarchy. Since sub-
geometries move automatically with their parent geometries, if you wish to move an entire
geometry hierarchy, you need only move the topmost geometry in the hierarchy. In the robot
arm example, to move the entire arm you would simply move the base.

Any type of sensor could be attached to the various robot arm segments to cause the arm to
move. Most likely, only rotational input from these sensors would be applied to the robot arm
segments so that each segment would simply rotate and not become detached from the arm
segment hierarchically above it.

base

lower arm

middle arm

effector

Movable Nodes

26 WorldToolKit Technical Overview

For example, if using a Spaceball to control part of the robot arm, you could constrain the
motion link (discussed in Chapter 11) connecting the device to the robot arm to return only
rotations with these calls:

WTmotionlink *link;
WTmotionlink_addconstraint(link, WTCONSTRAIN_X, 0.0, 0.0);
WTmotionlink_addconstraint(link, WTCONSTRAIN_Y, 0.0, 0.0);
WTmotionlink_addconstraint(link, WTCONSTRAIN_Z, 0.0, 0.0);

Sample Movable Functions

Table 5 below lists some sample movable functions:

Function Description

WTmovgeometrynode_new Creates a movable geometry node from the existing
geometry and adds it to the scene graph after the
last child of the parent you specify.

WTmovlightnode_newpoint Creates a movable point light node and adds it to
the scene graph after the last child of the parent you
specify.

WTmovnode_rotateaxis Rotates a movable node in its local frame.

Table 5: Sample movable functions.

.

WorldToolKit Technical Overview 27

..........

5. Geometry Nodes
In WTK, three-dimensional graphical entities are rendered to the screen as the scene graph
is traversed and geometry nodes in the scene graph are encountered. Geometry nodes contain
a pointer to the actual geometry (or WTgeometry structure), which consists of a set of
polygonal faces.

You can create WorldToolKit geometries using the following approaches:

• WTK’s neutral file format (NFF) import facility.

• The Sense8 World Up Modeler that ships with WTK.

• A CAD or other modeling program such as AutoCAD, with the 3D
geometry written out in one of the formats supported by WTK.

• WTK’s functions for dynamically constructing predefined geometry types
such as cylinders, blocks, cones, truncated cones, spheres, hemispheres,
and extrusions.

• WTK’s polygon and vertex functions for dynamically constructing custom
graphical objects.

• WTK’s functions for creating 3D text objects.

• Copying an existing geometry with WTgeometry_copy, with the option of
modifying this copy by using WTK’s polygon and vertex editing functions.

File Formats Supported by WTK

The following file formats containing descriptions of 3D geometry and attributes can be read
by WTK. Geometrical entities are constructed when you call WTgeometrynode_load.

• Autodesk (DXF) file format: This common format is generated by many
3D modeling programs. WTK can also output files in DXF format.

• Wavefront (OBJ) file format: This is generated by the Wavefront
modeling tool. WTK imports the 3D polygonal geometry and curved
surfaces which have been polygonalized. Vertex normals and texture
vertices are supported for gouraud shading and texture draping.

• Autodesk 3D Studio mesh (3DS) file format: WTK reads polygonal
information from a 3DS file including color and texture information. WTK
uses the "ambient" color material value as the color for each polygon, and
supports 3DS texture uv values to allow correct reproduction of the 3D
Studio texture application methods. Smoothing groups are supported for
gouraud shading. A 3DS file can contain multiple geometries.

Geometry Nodes

28 WorldToolKit Technical Overview

• Pro/Engineer RENDER (SLP) file format: WTK reads the facets in an
SLP file as colored polygons with vertex normals for smooth shading. An
SLP file contains only one geometry.

• MultiGen/ModelGen Flight (FLT) file format: WTK supports textures,
subfaces, external references, transforms, instances and replicas. An FLT
file can contain multiple objects.

• VideoScape (GEO) file format: This is a simple 16-color format in which
all polygons are backface-rejected. A GEO file describes a single geometry.

• WorldToolKit neutral file format (NFF) and binary (BFF) file format:
The NFF format is an efficient and readable representation of 3D
geometry. It is also useful as an intermediary format between WTK and
formats not otherwise supported. NFF files can be written directly by WTK
functions. An NFF or BFF file can contain multiple geometries.

• VRML (WRL) file format: WTK can read and write VRML 1.0 files.

Many other file formats can be loaded into WorldToolKit through the use of third-party
geometry conversion programs capable of writing formats which WorldToolKit can read. A
program such as KANDU software’s CADMOVER reads and writes most popular 3D file
formats.

Modeling Considerations

The way in which geometrical entities are modeled affects the appearance as well as the run-
time performance of a simulation. There are several important factors you should consider
when modeling geometry for use in a WTK application.

Constructing a World with Multiple Objects

Using a CAD program, you can create a graphical environment for your WorldToolKit
application in which the various graphical entities have the desired spatial relationships. One
technique for accomplishing this is to initially build all of the geometry into one CAD file,
positioning the various entities as desired, and then to save out each portion of the model
from which you wish to create a separate graphical entity into a separate file. Alternatively,
you can save them out as separate objects in a single multi-object file.

For example, suppose you want to create an office model that consists of office walls, a desk,
a chair, and a book on the desk. And, suppose that you want only the chair and the book to
be movable (dynamic) objects. What you would do is construct the model containing all of
these components and then save it out to a file. Then to create the file which contains the
stationary scene, you would start from the original file, erase the book and the chair, and
then save to file the resulting model which contains just the walls and the desk. Similarly, to
create the file for the chair, you would load in the original file, erase the walls, desk, and
book, and then save the result to a separate file. Similarly you can create the file from which
the book object will be constructed.

If you are using AutoCAD, another approach is to create each graphical object which you
wish to load in separately to WorldToolKit on a separate layer. Once your model is
constructed, you can successively, for each object, turn off all layers but the one that the
object is on and save out the model to file.

Geometry Nodes

WorldToolKit Technical Overview 29

Vertex Normals and Gouraud Shading

A significant improvement can be made in the shading of continuous surfaces if lighting is
calculated at each vertex, instead of at the center of each polygon. This is called Gouraud
shading, and results in smooth surfaces when used correctly.

The following are a few important points about Gouraud shading:

• It is intended for curved, continuous surfaces, not structures like boxes.

• It requires you to define a normal vector at each vertex.

• It incurs a (usually small) speed penalty since it requires more
computation.

WorldToolKit automatically uses Gouraud shading when rendering geometric objects which
contain vertex normals.

You can generate vertex normals in a variety of ways:

• Create them with a modeling program. WTK reads in vertex normals from
Wavefront (.obj) files, 3D Studio (.3ds) files (using shading groups),
MultiGen/ModelGen (.flt) files, and Pro/Engineer RENDER (.slp) files.

• Enter them yourself in an NFF file (this is difficult).

• Use the NFF automatic-normal-generation feature to make them for you.

• Call a geometry constructor such as WTgeometry_newsphere or
WTgeometry_newcylinder with the gouraud parameter set to TRUE.

• Create your own objects in your application code and set vertex normals
with WTgeometry_setvertexnormal.

Vertex Colors and Radiosity

As with gouraud shading, you can use vertex colors to increase the visual realism of your
virtual scene.

For example, vertex color support enables you to render models which have been radiosity
preprocessed. A radiosity-preprocessed model stores lighting information such as shadows
and reflections as vertex colors. Since this lighting doesn't have to be computed at run-time,
you can achieve complex lighting with real-time performance.

In addition to storing lighting information, vertex colors can also represent other values such
as the temperature or pressure throughout an object. As with radiosity, you would need to
have a program which computes the appropriate vertex colors, and then pass them to WTK.

Vertex colors can be set for geometry in the following ways:

• In an NFF file.

• Using a radiosity preprocessing program. ATMA's program called Real
Light is a radiosity preprocessor which reads and writes NFF files.

• With the function WTgeometry_setvertexmatid.

Geometry Nodes

30 WorldToolKit Technical Overview

Backface Rejection

Another important modeling consideration is backface rejection. By eliminating the
rendering of polygons which face away from the viewer, frame rates can be significantly
increased.

In WorldToolKit, the front face of a polygon is the side of the polygon for which the vertices
are ordered counterclockwise. It is also the side from which the polygon normal points.

WTK’s NFF format is very flexible in its support for specifying the back face and front face
of polygons and whether they are backface rejected. The keyword "both" can be used in the
polygon definition if both sides of the polygon are to be visible, or omitted if the polygon’s
back face is to be rejected.

The function WTpoly_setbothsides enables you to specify whether both sides of a polygon are
visible. The polygons that are passed to this function can be obtained interactively, using
WTwindow_pickpoly, programmatically with the functions WTgeometry_getpolys or
WTgeometry_id2poly, or with the constructor function WTpoly_begin.

Coplanar Polygons

When building models it is best to avoid the use of coplanar polygons or surfaces— that is,
surfaces which overlap and lie in the same plane. An example of coplanar polygons is a
building facade with a door in it. If this model is loaded into WTK, WTK would not know
which surface is to appear in front, which can produce unexpected results. On Z-buffered
systems, Z-buffer roundoff can result in image flashing between coplanar surfaces where
they overlap.

To avoid this problem, your model should be constructed either (1) so that the surfaces are
not in the same plane or (2) so that they do not overlap. In the first approach, you would
construct the wall and door surfaces so that the door is in a plane in front of the plane of the
wall. How far separated the planes must be to avoid flashing depends on the resolution of the
Z-buffer and on the locations of the window’s hither and yon clipping planes.

In the second approach (constructing the model so that the surfaces do not overlap), you
would create a hole in the wall and fit the door rectangle into the hole. This approach has the
advantage that the surfaces would appear exactly coplanar when viewed from an angle. A
disadvantage of this approach is that creating the hole in the wall generates extra polygons.

Sample Geometry Functions

Table 6 below lists some sample geometry functions:

Function Description

WTgeometry_newcone Creates and returns a new cone geometry.

WTgeometry_newtext3d Creates and returns a new 3D text geometry.

WTgeometry_copy Creates and returns a new geometry by copying an
existing geometry.

WTgeometry_begin Starts the construction of a custom geometry.

WTgeometry_getradius Returns the radius of the specified geometry.

WTgeometry_save Saves a geometry to file.

Geometry Nodes

WorldToolKit Technical Overview 31

WTgeometry_setvertexrgb Assigns a color to a vertex of a geometry.

WTgeometrynode_new Creates a geometry node.

Table 6: Sample geometry functions.

Polygons

Geometries in WorldToolKit are made up of polygonal surfaces which can be colored,
shaded, and textured. These polygons are created automatically when geometries are
constructed with functions such as WTgeometry_newcone and WTgeometry_newtext3d.
Polygons can also be constructed explicitly, vertex by vertex.

Other functions enable you to modify polygon attributes, access their geometrical properties
and vertices, define polygon ID’s, and test for intersections of polygons with other graphical
entities.

Nearly all of the polygon functions take a pointer to a polygon. Polygon pointers are obtained
in a variety of ways. They can be obtained interactively, using WTwindow_pickpoly; through
polygon ID values using WTgeometry_id2poly; using the polygon access functions
WTgeometry_getpolys and WTpoly_next, or with the dynamic constructor function
WTgeometry_beginpoly.

WTK provides polygon functions that allow you to do the following:

• Set, get, and change polygon attributes, such as color, normals, and
material index.

• Assign polygon ID numbers.

• Iterate through a list of polygons.

• Dynamically construct geometries from vertices and polygons.

• Delete polygons.

• Test for intersections of polygons with other polygons.

Sample Polygon Functions

Table 7 below lists some sample polygon functions:

Function Description

WTpoly_setrgb Specifies the 24-bit color value of a polygon.

WTpoly_setmatid Changes the index into the current material table.

WTpoly_setbothsides Specifies whether both sides of a polygon are
visible.

WTpoly_addvertex Adds a vertex to a polygon.

WTpoly_intersectpolygon Tests whether two polygons intersect.

Table 7: Sample polygon functions.

Geometry Nodes

32 WorldToolKit Technical Overview

WorldToolKit Technical Overview 33

..........

6. Materials and Textures
A material is a combination of light and color attributes that you use to define the
appearance of a geometry or collection of geometries. WorldToolKit functions let you create,
edit, and save material information.

Surfaces of objects in the real world are not smooth and featureless— they have pattern,
grain, and detail. To emulate this, WorldToolKit lets you give polygons a surface texture.
For example, instead of depicting a table top with a uniform brown shaded polygon, WTK’s
texturing capability lets you create a table top with an actual wood-grain image mapped onto
it.

Material Properties

Geometries either emit light, reflect light, or both. This light is manifested as color. When
designing a geometry (such as a car), there are two kinds of color to consider:

• The colors used in the car itself.

• The colors of the light playing on the car.

A realistic image of a geometry includes many colors and potentially many ways of
reflecting light. You use a separate material to specify each of these differences in
appearance. Each type of color has three components (red, green, and blue), where each
component is a floating point number between 0.0 and 1.0.

Each material has the following properties:

Ambient: The color reflected from the material without regard to light
direction.

Diffuse: The color reflected from the material as a function of light
direction.

Specular The color reflected from the highlights of the geometry. The
specular material property is what makes a geometry appear
to by “shiny” with highlights appearing on its surface.
Usually the specular highlight is white, which means that it
reflects the color of the specular light (which is also usually
white).

Shininess The narrowness of focus of specular highlights. The higher
the value, the shinier the appearance of the material.
Shininess can range from 0 to 128 (floating point). The lower
the shininess value, the more “spread out” the highlight is;
the higher the shininess value, the sharper the highlight is.

Materials and Textures

34 WorldToolKit Technical Overview

Emissive The color of light produced (not reflected) by the material
even when there is no light. A geometry with this property
can be seen even when there are no lights in the scene,
however, the emissive light does not illuminate other
geometry in the area. This material property is used less
often than the others. It is specified in red, green, and blue
floats in range 0 to 1.

Opacity/
(Translucency) The extent to which the color value of a pixel is combined

with the color value behind it. Opacity ranges from 0 to 1
(float), where 0 is completely invisible and 1 is completely
opaque.

An object does not need to have all of its material properties specified. Using fewer fields can
generate a moderate improvement in performance.

Using Existing Materials

You can obtain materials by reading in files from a modeler which specifies material
properties in its export file format. Wavefront’s .obj, 3D Studio’s .3ds, and VRML’s .wrl
formats all have material information in them and are supported by WTK. When the file is
read in, the geometry is automatically rendered using the modeler-specified material
properties. For example, a material will look shiny in WTK if it looked that way in the
modeler.

Using Material Tables

The values for all of the materials used with a geometry are contained in its material table. A
material table is a collection of “robust” colors.

Material tables are indexed from 0 to the number of materials in the table. Each polygon or
vertex contains an index into the material table. This means that each polygon or vertex has
a number (not a color) attached to it. This number references an entry in the material table.

More than one geometry may point to the same material table, and a geometry may point to
different tables depending on the effect you need. Once a geometry file has been loaded into
a scene, you can use the material table functions to modify the settings in this table. For
example, you can use WTmtable_setvalue to change an existing material table entry. Since
the same material may be applied to several polygons, more than one polygon in your scene
may be affected when you modify a material.

To create a new material and then modify the copy, use WTmtable_copyentry and then
WTmtable_setvalue.

Materials and Textures

WorldToolKit Technical Overview 35

Sample Material Functions

Table 8 below lists some sample material functions:

Function Description

WTmtable_merge Merges two material tables and returns a new
material table which contains the materials from
both of the tables.

WTmtable_save Writes a material table to a file.

WTmtable_getnumentries Returns the number of table entries contained in the
material table specified by mtable.

WTmtable_load Reads a material table from the specified filename.

Table 8: Sample material functions.

Adding Textures to a Polygon

Textures add to the realism of geometries. Pattern, grain, and detail on the surface of a
polygon give it texture. You can create textures with a bitmap image editor or derive them
from video images. Basically, anything on a computer screen can be converted to a texture
format. WTK supports RGB, TGA, and JPEG texture files.

Texture makes an object look more authentic, more real. The more realistic the image, the
more pleasing the environment. A virtual world becomes “virtual reality” when it succeeds
in momentarily suspending the user’s disbelief. Textures play a significant role in this
reality.

Judicious use of textures increases the complexity and realism of your environments,
allowing you to avoid both the initial work of modeling surface details and the run-time
overhead of transforming them. For example, instead of modeling all of the windows of a
distant building with 3D details, you can apply a digital image of a real building to a single
polygon, which then serves as an entire side of the building. Modeling labor is conserved and
rendering speed is increased dramatically compared to what would have been necessary to
model all of these details in 3D.

Texture Application

WTK provides functions that let you drape textures over geometries and/or apply textures to
individual polygons. The functions WTpoly_settexture and WTgeometry_settexture,
automatically compute texture coordinates for geometries and polygons, thereby providing
automatic texture application to geometric entities. WTK also provides functions such as
WTpoly_settextureuv and WTgeometry_settextureuv which allow you to specify how the
texture is to be applied to the polygon or geometry.

Materials and Textures

36 WorldToolKit Technical Overview

Texture Manipulation

You can modify textures using any of the texture manipulation functions. WTK texture
manipulation functions let you modify the texture application using intuitive calls to
translate, rotate, scale, etc., the texture on a polygon. WTK internally modifies the polygon’s
texture uv values when these functions are called. WTK also lets you modify the texture
application by accessing the texture uv information directly.

Texture Filtering

Depending on their distance from the viewpoint, polygons appear at different sizes in your
simulation. Each texture, on the other hand, comes in at a specific size to take advantage of
hardware capabilities. Since a large texture carelessly applied to a small polygon can produce
unwanted results, WTK automatically processes each texture to match the varying size of the
polygon to which it has been applied.

A large texture applied to a small polygon (in terms of display size) or a small texture
applied to a large polygon can also produce unwanted results. WTK can eliminate these
undesired effects by performing additional computations. During this processing (called
filtering) the texture is scaled down to a size which is appropriate for the polygon’s display
size.

The function WTtexture_setfilter lets you specify the manner in which you want WTK to
filter the texture that has been applied to a polygon. You can use the function
WTtexture_setfilter to specify the quality of the filtering desired– higher quality requires
more computations (and rendering time).

Sample Texture Functions

Table 9 below lists some sample texture functions:

Function Description

WTtexture_load Reads in a texture bitmap file.

WTtexture_replace Dynamically replaces the image associated with a
texture.

WTpoly_settexturestyle Allows for shaded, transparent, and blended
texturing.

Table 9: Sample texture functions.

WorldToolKit Technical Overview 37

..........

7. Sensors
Sensor objects in WorldToolKit generate position, orientation, and other kinds of data by
reading inputs which originate in the real world. These inputs can be used to control motion
and other behavioral aspects of objects in the simulation. Sensors permit the user of a
WorldToolKit application to be directly coupled to the viewpoints, graphical objects, and
lights in the universe.

WorldToolKit supports many of the 3D and 6D (position/orientation) sensors that are
available. There are two principal classes of such sensors: desk-based sensors and sensors
that are worn on various parts of the body. While most desk-based sensors generate relative
inputs, that is, changes in position and orientation, devices worn on the body typically
generate absolute records, that is, values that correspond to their specific spatial location.

In the former category are conventional devices, such as the mouse, joystick and isometric
balls such as the CIS Geometry Ball Jr. and Spaceball Technology’s Spaceball that respond
to forces and torques applied by the user. Using such devices, a 3D object can be directly
manipulated, displaced or rotated, with the ball acting as if directly connected to the object.
Ball sensors are also useful for moving the viewpoint, by applying displacements and
rotational forces to move and rotate the viewpoint.

The second category of sensor (sensors generating absolute records) includes electromagnetic
6D trackers such as the Polhemus Fastrak and Ascension Bird. This type of sensor can be
used for viewpoint tracking when affixed to a head-mounted display. In addition to
electromagnetic devices, a variety of ultrasonic ranging/triangulation devices and optical
devices exist for absolute position and orientation tracking. One example is the ultrasonic
Logitech 3D Mouse and Head Tracker.

Regardless of the underlying hardware technology by which they operate, WorldToolKit’s
sensor objects are treated homogeneously and can be used interchangeably in an application.
Once a sensor object is created, it is automatically maintained by the simulation manager, as
are the objects to which the sensor is attached. In this way, the developer does not have to
deal directly with considerations such as whether the sensor is returning relative or absolute
records, or whether it is polled or streaming its data.

Supported Sensors and Displays

The WTK library directly supports a wide variety of devices. See page 5 in Chapter 1,
“Introduction to WorldToolKit.”

Sensor Object Construction and Destruction

You can create sensor objects with either the generic sensor constructor function
WTsensor_new or with one of WorldToolKit’s device-specific constructor macros such as
WTspaceball_new, WTfastrak_new, or WTbird_new.

Sensors

38 WorldToolKit Technical Overview

To consider a specific case, the device-specific constructor function for the Spaceball is a
macro defined as follows:

#define WTspaceball_new(port)

WTsensor_new(WTspaceball_open, WTspaceball_close, \

WTspaceball_update, WTserial_new(port, 9600))

To use this macro, you would make the call:

WTsensor *ball;

ball = WTspaceball_new(SERIAL1);

where the constant SERIAL1 is defined on all systems for portability.

All of the device-specific constructors are simply macro calls to WTsensor_new, which takes
as its first three arguments, pointers to WorldToolKit functions that respectively open, close,
and update the particular device.

Sample Sensor Functions

Table 10 below lists a some sample sensor functions:

Function Description

WTsensor_setsensitivity Sets the sensitivity value of the sensor. A sensor’s
sensitivity value defines the maximum magnitude of the
translation input from the sensor along each axis, in the
same distance units as the 3D geometry making up the
virtual world.

WTsensor_setangularrate Sets the scale factor for rotational records. The angular
rate is the maximum rotation (in radians) around any axis
that a sensor will return in any pass through the
simulation loop.

WTsensor_getmiscdata Returns a short in which miscellaneous data pertaining to
the sensor has been stored. For example, button press
information is retrieved this way.

WTsensor_getrawdata This function returns the sensor-specific raw data
structure. This should be typecast into an appropriate
value for a user or WorldToolKit-defined sensor. For
example, for the mouse as implemented in WorldToolKit,
the raw data is WTp2 containing the current mouse cursor
position in screen coordinates.

Table 10: Sample sensor functions.

Sensors

WorldToolKit Technical Overview 39

Functions for Writing Your Own Sensor Driver

WorldToolKit includes a complete set of functions for writing your own sensor driver. These
provide a hardware-independent interface to various input and output devices. Table 11
below lists a few of these functions:

Function Description

WTsensor_setrecord Use this function to store the current relative
position and orientation record with your sensor.

WTsensor_setmiscdata Use this function to store miscellaneous sensor data
with the sensor object.

WTsensor_setupdatefn Use this function to change a sensor’s update
function. A sensor object’s update function is
initially set in the sensor object constructor function
WTsensor_new.

Table 11. Sample WorldToolKit functions for writing sensor drivers.

An Example of a Sensor Driver: The Mouse

WorldToolKit provides the following sensor driver functions for using the mouse:

• A function for opening the mouse device.

• A function for closing the mouse device.

• Several update functions.

These functions are only used when calling WTsensor_new to create a new mouse sensor
object, or when calling WTsensor_setupdatefn to change the mouse’s update function.

When creating a mouse sensor object, you can use one of the update functions provided (such
as WTmouse_moveview1 or WTmouse_moveview2), or you can write your own. Your update
function should first call WTsensor_getrawdata to obtain the raw mouse record. It should
then specify how the raw data is to be transformed into the 3D position and orientation
record. Finally, your update function must store this record with the sensor by calling
WTsensor_setrecord.

WTmouse_moveview2 is a mouse update function which is useful for moving a viewpoint
through a 3D environment. WTmouse_moveview2 only moves the viewpoint while the cursor
is away from the center of the screen and one or more mouse buttons are pressed. The further
away from the middle of the screen, the faster the movement.

Sensors

40 WorldToolKit Technical Overview

WorldToolKit Technical Overview 41

..........

8. Lights
WorldToolKit supports several types of lighting: ambient, directed, point, and spot. Each
type of lighting illuminates geometries in a different way.

Introduction to Light Nodes

WTK supports the following four types of light nodes:

• Ambient Light Node

 Ambient light is background light which illuminates all polygons equally regardless
of their position or orientation.

• Directed Light Node

 Directed light provides illumination as a function of the angle between the light
direction and the polygon normal, or, in the case of gouraud shading, between the
light direction and the vertex normals.

• Point Light Node

 Point light emanates radially from the light position.

• Spot Light Node

 Spot light emanates radially from the light position, within a cone of specified angle
centered about the spot light direction.

Light Node Attributes

Excluding ambient light nodes, all other light nodes display three types of color: ambient,
diffuse, and specular. Once you create a light node, you can set these color attributes for
it—or accept existing default values if you are not concerned about a particular type of
color. If you are not concerned about the ambient and specular components of a particular
light, the easiest way of setting the light’s color is to specify a diffuse color value, leaving
the other colors in the light set to 0.

There are many attributes available for different types of lights, however, not all of these
attributes are applicable to all types of light nodes. Table 12 lists the full set of attributes
available for modifying WTK light nodes:

Attribute Description

Position The location of the light in 3D space, as affected by any
existing transformation.

Direction The direction of the light rays, as affected by any existing
transformation.

Lights

42 WorldToolKit Technical Overview

Intensity The brightness of the light, with a maximum value of 1.0.

Ambient color The color of the portion of the light which illuminates all
polygons equally regardless of their position or orientation.

Diffuse color The color of the portion of the light which illuminates
polygons as a function of the angle between the light direction
and the polygon (or vertex) normal.

Specular color The color of the highlights that are reflected off a shiny
surface.

Attenuation Degree to which light intensity decreases with increasing
distance from the position of the light.

Angle The half-angle of the spot light cone. This attribute only
applies to spot lights.

Exponent Specifies how the intensity of a spot light falls off within the
spot light cone. This attribute only applies to spot lights.

Table 12: Attributes available for modifying light nodes.

Calculating Color

Both a light and the material it illuminates have ambient, diffuse, and specular color values.
The precise method of calculating the final perceived material color is explained in the Open
GL Specification. Briefly, however, the ambient values for both the light and the material are
multiplied together to produce a term; similar calculations are also performed to produce
terms for diffuse and specular colors. These terms are then added together to achieve the
perceived color.

Determining Intensity

The intensity of the color of a polygon is determined by adding the contributions from each
of the light sources which affect the polygon. If the result is 0.0, then the polygon will be
black, and if the result is 1.0, then the polygon will be of maximum brightness. At maximum
brightness, an untextured polygon is rendered with the color assigned to it. At less than
maximum brightness, the polygon is rendered with a darker shade of that color. Anything
greater than 1.0 is also considered to be maximum brightness. Geometries are dynamically
lit, so that shading on a geometry’s surfaces is automatically recomputed each frame.

Basic Light Management

WTlightnode_newdirected creates a new directed light and adds it to the scene graph,
returning a handle to the new light. The intensity of the light should be between 0.0 and 1.0.
WTlightnode_load reads in a list of light descriptions from an ASCII file and creates the
corresponding light node objects. Each light must be specified on a separate line of the file.
For each light, seven floating point values must be specified: the X, Y, and Z coordinates of
the light position, the X, Y, and Z coordinates of the light direction, and the light intensity.
Depending upon the type of light being defined, other values may also be specified, such as a
spot light half angle, attenuation values, and ambient, diffuse, and specular color
components.

Lights

WorldToolKit Technical Overview 43

Performance

The maximum number of non-ambient (directed, point, and spot) lights which may be added
to the simulation is system dependent. However, the greater the number of lights, the greater
the performance impact of lighting computations. The time it takes to compute the total
effect of all of the lights playing on a geometry’s surfaces is proportional to the number of
lights in the simulation. For this reason, if at any time you wish to turn a light off, it’s better
to do so with a call to WTnode_enable (with the enable flag set to FALSE) to disable the
light node than by setting the light’s intensity to 0.0 using WTlightnode_setintensity. In the
former case the light is disabled from the simulation and no longer enters into shading
computations; in the latter case the light remains part of the simulation. You can also
remove a light node from a simulation by detaching the node from the scene graph.

Other Important Aspects of Lights

Polygons do not cast shadows. Therefore, lighting on a polygon is not affected by polygons
which might happen to be between it and a light source. Ambient and directed lights do not
attenuate with distance from the polygon while point and spot lights may attenuate with
distance. Also, there is no limit on the number of lights that you may add to the simulation.
By default, a simulation always contains a white ambient light whose intensity is 0.4.

Light Functions

Table 13 below lists some of the functions available for manipulating lights:

Function Description

WTlightnode_newdirected Adds a new directed light to the scene graph.

WTlightnode_load Reads in light settings from an ASCII file.

WTlightnode_setambient Sets ambient components of a light’s color.

WTlightnode_setdirection Sets the direction a particular light points to.

WTlightnode_setposition Sets the location of a particular light.

Table 13: Sample light functions.

Lights

44 WorldToolKit Technical Overview

WorldToolKit Technical Overview 45

..........

9. Windows
A WTK window object corresponds to a region of the screen in which a view of the
graphical scene is displayed. With the window class, you can display multiple views
simultaneously and to different parts of the screen.

WTK provides functions that let you create and delete windows with system-specific
characteristics (such as border type), set a window’s background color
(WTwindow_setbgrgb), reposition and resize a window (WTwindow_setposition), define the
way in which the scene is projected to the window when rendered
(WTwindow_setprojection), assign a textured backdrop to a window
(WTwindow_loadimage), and others.

Window Construction and Destruction

When you create a universe using WTuniverse_new, WTK automatically constructs a default
window and associated viewpoint for you. You can construct additional windows using the
WTwindow_new function. When constructing an additional window, you also need to use the
WTwindow_setviewpoint function to assign a viewpoint to the new window.

When you create a window, the following parameters are set:

• Projection Type: The way in which the scene is projected into the
window. You can specify a symmetric, asymmetric, general, or
orthographic projection.

• Viewpoint: The viewpoint from which the scene is projected into the
window.

• Eye: Specifies whether the scene is rendered as if projected by the left or
right eye.

• Background Color: The background color (red, green, and blue) of the
window.

• View Angle: The horizontal viewing angle (in radians) of the window.

• Hither Clipping Value: The distance (along the viewpoint direction) from
the viewpoint position to the hither clipping plane. Graphical entities are
clipped at this plane; only those portions of graphical entities on the
opposite side of the hither plane from the viewpoint are drawn.

• Yon Clipping Value: The distance (along the viewpoint direction) from
the viewpoint position to the yon clipping plane. Graphical entities are
clipped at this plane; only those portions of graphical entities on the side of
the yon clipping plane closest to the viewpoint are drawn.

Windows

46 WorldToolKit Technical Overview

Sample Window Functions

Table 14 below lists some of the window functions available:

Function Description

WTwindow_delete Deletes a WTK window object.

WTwindow_next Iterates through the universe’s list of WTK window
objects.

WTwindow_setrootnode Associates a scene graph with a particular WTwindow.

WTwindow_enable Lets you enable or disable rendering to a specified
window.

WTwindow_zoomviewpoint Zooms the viewpoint of the given window so that all
geometry in the scene graph associated with that window
is visible.

Table 14: Sample windows functions.

WorldToolKit Technical Overview 47

..........

10.Viewpoints
A WorldToolKit viewpoint defines the position and orientation of a simulation’s geometries
on the computer screen. Each WTK window has a viewpoint associated with it, from which
the scene graph associated with the window is drawn.

Introduction to Viewpoints

When the universe is created with WTuniverse_new, a viewpoint is automatically created for
it. WTK lets you construct additional viewpoints and switch between them. For example, you
may wish to create a “bird’s-eye view,” an “out-the-window view,” or a “rear view.” An
analogy to changing viewpoints in this way is cutting between various cameras in a movie.

To display several viewpoints simultaneously, you create multiple windows (and possibly
additional viewpoints - using WTviewpoint_new) and use the function
WTwindow_setviewpoint to specify the viewpoint from which the scene is rendered in each
window. Each of these windows is associated with a particular scene graph; alternate views
of the same scene would use the same scene graph, while windows depicting different scenes
would use different scene graphs. Note that, unlike some systems (such as Open Inventor),
viewpoints aren’t nodes in the WTK scene graph; the viewpoint is determined before a scene
is rendered.

The position and orientation of a viewpoint can be set explicitly through function calls such
as WTviewpoint_setposition and WTviewpoint_setorientation. Alternatively, a viewpoint’s
position and orientation can be controlled by attached sensors. For example, if you construct
a mouse sensor object and attach it to a viewpoint, as you move the mouse, the viewpoint
moves automatically. You can also manage a viewpoint’s motion by using a motion link.
(See Chapter 11, “Motion Links.”)

Figure 7 and figure 8 illustrate monoscopic and stereoscopic viewing geometries for
symmetric window projections. Note that the view position and orientation is relative to the
global (i.e., world) coordinate frame.

In figure 7, the view position is the origin of the viewpoint coordinate frame. The view
direction is the same as the Z axis of the viewpoint frame. Although the Y axes in the
viewpoint frame and the world coordinate frame happen to be parallel, this is not generally
the case. The yon clipping plane is not shown.

Viewpoints

48 WorldToolKit Technical Overview

y

x

World coordinate

hither clipping

hither distance

view plane

frame axes

2x the viewing angle

y

x

z (view direction)

Viewpoint coordinate
frame axes

view position

z

Figure 7: Monoscopic viewing geometry.

parallax

left eye view

right eye view

view position

Figure 8: Stereoscopic viewing.

Figures 8 illustrates how stereoscopic viewing has the same parameters as monoscopic
viewing, except that there are two view pyramids, linearly offset by the parallax distance.

Sample Viewpoint Functions

Table 15 below shows some sample viewpoint functions:

Function Description

WTviewpoint_new Creates a new viewpoint.

WTviewpoint_addsensor Attaches a sensor to the viewpoint allowing viewpoint
movement to be controlled by a device.

WTviewpoint_moveto Moves the viewpoint to a particular location and
orientation in the 3D world.

WTviewpoint_setdirection Sets the viewpoint direction.

WTviewpoint_setparallax Adjusts the parallax of the image.

Table 15. Sample viewpoints functions.

Viewpoints

WorldToolKit Technical Overview 49

Attaching a Sensor to a Viewpoint

It is possible to attach a sensor to a viewpoint, so that the sensor’s translation and orientation
records automatically cause a corresponding translation and rotation of the viewpoint. If a
viewpoint has more than one sensor attached to it, each one contributes to the motion of the
viewpoint.

In the following example, Polhemus and Spaceball sensor objects are created and attached to
the viewpoint. This is a useful sensor configuration in setups in which head-tracking with an
absolute sensor such as the Polhemus is desired, but where you also want to independently
control the viewpoint with a joystick-like device such, as the Spaceball.

#include “wt.h”

main()
{

WTsensor *polhemus, *spaceball; /* sensor objects */
WTnode *root, *scene;

/* initialize the universe */
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

/* create some graphics */
root = WTuniverse_getrootnodes();
scene = WTnode_load(root, “myscene”, 1.0);

/* create a polhemus sensor object on serial port SERIAL1 */
polhemus = WTpolhemus_new(SERIAL1);

/* create a spaceball sensor object on serial port SERIAL2 */
spaceball = WTspaceball_new(SERIAL2);

/* attach the polhemus and spaceball to the universe’s viewpoint */
WTviewpoint_addsensor(WTuniverse_getviewpoints(), polhemus);
WTviewpoint_addsensor(WTuniverse_getviewpoints(), spaceball);

/* prepare to enter the simulation */
WTuniverse_ready();

/* start the simulation */
WTuniverse_go();

/* clean up */
WTuniverse_delete();

return 0;
}

Viewpoints

50 WorldToolKit Technical Overview

WorldToolKit Technical Overview 51

..........

11.Motion Links
A motion link connects a source of position and orientation information with a target that
moves to correspond with that changing set of information. For example, you can attach a
mouse to a viewpoint using a motion link. Motion links are necessary, at least in part,
because of the concept of instancing.

If you have a geometry with many instances, you may want to modify the position,
orientation, or both of one instance of that geometry. For example, if you have 100 trees,
where 99 of the trees are instances of the tree geometry, you may want to modify the
position, orientation, or both of one tree by a sensor. You can accomplish this by creating a
nodepath to the instance of the desired tree, and then creating a motion link between the
sensor and the newly created nodepath to the instance of the tree.

You can also use a path as the source of position and orientation information which can then
be directed to some object by a motion link. This would be an advantage if you want to move
a viewpoint through your scene along a defined path. If you have a Grand Canyon
simulation, for example, you can define a path through the best parts of the canyon, then
attach the path to the viewpoint using a motion link.

Motion Link Sources and Targets

The motion link source can be a path or a sensor. Motion link targets include the following:

• A Viewpoint: Use this as your target when you want the user’s viewpoint
controlled by the source you’ve specified.

• A Transform Node: Use this as your target when you want your source to
affect a specific transformation in the scene graph, such as the one that
controls wrist movement in a human figure.

• A Node Path: Use this as your target when you want your source to affect
the cumulative set of transformations used for a specific node, as when you
want to control the position of a human figure in the world coordinate
frame.

• A Movable Node: Use this as your target when you want your source to
affect a movable node (with or without attachments).

Figure 9 shows some of the things that can be attached with a Motion Link. Although a
sensor (a mouse) is shown on one end of the Motion Link, sensors are not the only things
that can be attached using Motion Links. As mentioned before, you may have a viewpoint
on one end of the Motion Link and a path on the other end.

Motion Links

52 WorldToolKit Technical Overview

Mouse Motion Link

Viewpoint

Node Path

Transform Nodes

Movable NodesGives position and
transform information

can attach to:

Figure 9: Some ways to use motion links.

Once a motion link is created (WTmotionlink_new), position and orientation records from the
motion link source automatically cause corresponding translation and rotation of the motion
link’s target. If the target has more than one motion link associated with it, each of these
motion links contributes to the motion of the target.

You can also use functions like WTpath_recordmotionlink to record a path from the position
and orientation information being transmitted by a motion link. This path can then be used
as a source for other motion links.

Reference Frames

When you create a new motion link, the source affects the position and orientation of the
target relative to a particular reference frame. The default reference frame used for a newly
created motion link is dependent upon the target type.

The target types and their default references frames are as listed below:

Target type Default reference frame

VIEWPOINT WTFRAME_LOCAL

TRANSFORM WTFRAME_LOCAL

NODEPATH WTFRAME_WORLD

MOVABLE WTFRAME_LOCAL

It is possible to change the reference frame in which the position and orientation information
is applied to the motion link’s target by using the function WTmotionlink_setreferenceframe.
For example, if you have created a motion link which connects a sensor to a movable, the
sensor’s position and orientation information will, by default, affect the movable in its local
frame. By calling WTmotionlink_setreference, you could apply a sensor’s position and
orientation information to the movable in the current viewpoint frame.

Motion Links

WorldToolKit Technical Overview 53

Constraints

WTK lets you add control to a motion link so that the position and/or orientation of the
motion link’s target is constrained. You can add the constraint along any degree of freedom
(DOF) or any combination of DOFs using the WTmotionlink_addconstraint function.

Sample Motion Link Functions

Table 16 below shows some sample motion link functions:

Function Description

WTmotionlink_enable Enables or disables the specified motion link.

WTmotionlink_gettarget Finds the target and target type for a given link.

WTmotionlink_setreferenceframe Sets the reference frame in which the indicated
motion link will operate. It is the frame in which
motion of the motion link’s target is expected.

WTpath_recordmotionlink Records the motion of the target of a motion link.

Table 16: Sample motion link functions.

Motion Links

54 WorldToolKit Technical Overview

WorldToolKit Technical Overview 55

..........

12.Paths
A WorldToolKit path stores a series of position and orientation records. You can use these
paths to guide the viewpoint or move other entities in the scene graph. You can dynamically
create, record, save, load, and playback paths in a variety of ways. You can also use
interpolation to smooth a roughly defined path.

As shown in figure 10, paths are made up of a set of discrete elements, where each element
stores position and orientation. You might construct a path by recording the position and
orientation of the viewpoint each frame, or creating one element each time through the
simulation loop or at a specified sample rate.

Figure 10: A path around an object.

Paths are useful for a variety of applications. For example, if you are creating a
demonstration program, you can record an optimal path through the virtual environment
before the actual demonstration. Viewpoint paths are useful for any application in which it
may be important for the user to see certain aspects of the virtual world. You can also use
viewpoint paths whenever an application requires that a viewpoint be moved from one
location to another and you wish to provide a smooth transition.

Similarly, there are many uses for paths associated with other entities in the Scene Graph.
Consider a simple case in which you want to have a door swing open and shut. You can use
pathing to record the motion of the door while it is interactively swung open and shut. For
example, you could attach a sensor such as a Spaceball to the door, and while twisting the
Spaceball to open and close the door, record the door's path. Then, whenever the door
needed to be opened and closed in the simulation, the path could be replayed. If the path's
playback mode were set to oscillate, then you would only need to record the motion of the
door as it opened to have it both open and shut on playback.

Paths

56 WorldToolKit Technical Overview

Path Construction

There are 3 ways to create and define a new path: by recording, manually constructing, or
interpolating an existing path. The first method of recording a path, uses WTpath_record as
follows:

1. Call WTpath_new to obtain a pointer to a new, empty path.

2. Call WTpath_record to start recording your viewpoint location.

3. Call WTuniverse_go to start the simulation loop if it is not already running. One
element will be recorded to the path each frame.

4. Call WTpath_stop to stop recording.

If you use the WTpath_setrecordlink function, you can record the position and orientation of
a motion link’s target instead of the current viewpoint’s position and orientation.

The second method of manually constructing a path, uses WTpathelement_new and
WTpath_insertelement or WTpath_appendelement to construct a path one element at a time,
as follows:

1. Call WTpath_new to obtain a pointer to a new, empty path.

2. Call WTpathelement_new to create a new element at the desired location.

3. Call WTpath_insertelement or WTpath_appendelement to add the element to the path.

The third method of creating a path is to create an interpolated (“smooth”) version of an
existing path, using WTpath_interpolate. (You can also copy and delete paths.)

WTpath_interpolate creates and returns a pointer to a new path, based on an interpolation of
the elements of another path. The WTpath_interpolate function takes an argument npoints,
which specifies the number of elements to insert between each of the elements of the
original path. This number must be 1 or greater and the original path must have at least two
elements for the interpolation to be successful. The original path is unaffected by this
operation.

The WTpath_interpolate function also allows you to specify the approach to be used to
generate the positions of the interpolated points. The possible approaches are as follows:

WTPATH_BEZIER For a Bezier curve.

WTPATH_BSPLINE For a B-spline curve.

WTPATH_LINEAR For a straight line path between elements.

The orientations of the elements are also interpolated, however the method used to
interpolate orientations is always linear, independent of the method chosen to interpolate
positions.

The Bezier option may be the most useful since it gives a smooth curve which passes
through the elements of the original path. WTK sets the control points for the Bezier
interpolation so that the tangent vector to the curve at any point on the original path is
parallel to the vector from the previous point on the path to the next one. The B-spline
option produces a curve which is the “smoothest” of all the options, but which does not in
general pass through the elements of the original path. The linear path interpolation option
places the interpolated points along a straight line between each pair of points in the original
path.

Paths

WorldToolKit Technical Overview 57

An example of calling WTpath_interpolate is the following. Note that after calling this
function, you can delete the original path if it is no longer needed.

WTpath *oldpath, *newpath;
newpath = WTpath_interpolate(oldpath, 6, WTPATH_BEZIER);

The new path created by the above call has six elements between every pair of elements in
the original path, or 7 times as many elements as oldpath (plus one). The elements of the
new path lie on a Bezier curve through the elements of the original path.

Sample Path Functions

Table 17 below shows some sample path functions:

Function Description

WTpath_play Begins the playback of the indicated path, starting from
the path’s current element.

WTpath_save Saves a path to the specified filename.

WTpath_setmarker Sets the geometry which is to be used to display a path
element. This function lets you visualize a path that has
been recorded, loaded, or created.

WTpath_setvisibility Toggles the visibility of a path’s graphical representation.

Table 17: Sample path functions.

Paths

58 WorldToolKit Technical Overview

WorldToolKit Technical Overview 59

..........

13.Special Effects and Sound
You can use fog nodes to simulate special effects like fog, haze, smog, mist, smoke, and
clouds in the atmosphere or general cloudiness for underwater simulations. You set the
attributes of fog nodes to obtain these special effects. Fog obscures distant objects in the
scene more than closer objects. You can control the amount that objects are obscured and the
distance at which objects begin to be obscured.

WorldToolKit also allows you to enhance the realism of your scenes through the use of 3D
sound. WTK supports 3D spatialization of sounds, Doppler shifts, and volume and roll-off
controls. WTK supports WAV sound files on NT platforms and AIFF sound files on SGI
platforms.

Fog Node Attributes

You can control the effects generated by a fog node by setting the following attributes:

• fogcolor: The color to which objects in the scene are blended to. The
default fog color is black (0.0, 0.0, 0.0).

• range: The distance upon which all objects blend (completely) into the
fogcolor. The default range is 0.0 which means that the range is set to the
window yon plane distance.

• mode: The fog blending ramp (linear, exponential, exponential-squared).
The default mode is linear.

• linearstart: The distance at which objects begin to be affected by the fog
color. (Only applicable if the fog mode is linear.) The default linearstart is
0.0.

Introduction to WTK 3D Sound Support

WorldToolKit provides a common cross-platform API for playing sound files on various
hardware platforms. Some platforms support spatialized sound, while others simply provide
ambient sounds. A common scenario would proceed as follows:

1. Open an audio hardware device and set up the hardware parameters (such as output
type, rolloff).

2. Load various sound samples from disk.

3. Assign properties to sounds (such as volume, pitch, priority, position).

4. Cue the sounds to play on events or loop continuously during the simulation.

5. Close the audio hardware device, which removes the sound samples from memory.

Special Effects and Sound

60 WorldToolKit Technical Overview

Supported Devices

WTK supports the following sound devices:

Windows 95/NT

• Windows-compatible sound card (WINMM)

 This device does not require any special software. For this device to work, a
standard Windows-compatible sound card should be installed and working. Using
this device you can play one software-spatialized sound at a time.

• DiamondWare with Windows-compatible sound card (DWSTK)

 For this device type to work, you need to have a standard Windows-compatible
sound card installed and working, as well as the DiamondWare STK DLL. Using
this device you can play up to 16 software-spatialized sounds at a time.

• Crystal River Engineering AudioReality NT Sound Server (CRE)

 This device requires an AudioReality NT Sound Server from Crystal River
Engineering. This device is a separate PC which contains hardware specifically
designed to produce high-quality 3D audio. WorldToolKit communicates with the
Sound Server through a null-modem serial cable. Using this device you can play up
to 4 hardware-spatialized sounds at a time.

SGI

• SGI Audio Library (SGI)

 This device requires that you have an IRIS Audio Processor, and the Audio Library
(AL) installed. The number of sounds that can be software-spatialized at a time
depends on the system hardware.

• VSI Synthesiser (VSI)

 This device requires a synthesiser from Visual Synthesis Incorporated. Using this
device you can play up to 16 hardware-spatialized sounds at a time.

• Crystal River Engineering Acoustetron (CRE)

 Same as for Windows 95/NT, with the exception that the SGI requires an
Acoustetron Server rather than an AudioReality NT Server.

Sample Sound Functions

Table 18 below shows some sample sound functions:

Function Description

WTsound_load Creates a new sound from a source.

WTsound_play Cues a sound to begin playing

WTsounddevice_open Opens an audio hardware device.

WTsound_stop Stops a currently playing sound.

WTsound_setposition Sets a sound’s position.

Table 18: Sample sound functions.

WorldToolKit Technical Overview 61

..........

14.Tasks
In addition to the user-defined Universe Action function, which typically describes the
overall activity of a WTK application, you can also use tasks to assign behaviors to
individual objects. You can specify the behavior of any WTK data structure (or, in fact, any
C structure) by assigning tasks to it.

Here are a few examples of the kinds of behavior you can specify:

• Movement

• Change in appearance

• Testing for intersections

• Triggering other behavior

• Attaching a sensor

A WTK “task object” (a WTtask) contains a user-defined task function and a pointer to the
structure or WTK object with which the task is associated. It also contains a priority value
specifying the order in which the task is executed relative to other tasks as the simulation
runs.

You can add tasks, remove, and delete them from a simulation, as shown in Table 19.

Sample Task Functions

Table 19 below lists a few sample task functions:

Function Description

WTtask_new Creates a new WTtask and activates it, so that it is automatically
executed as the simulation runs. Tasks created by this function are
executed in the simulation loop (see figure 1, on page 11).

WTtask_remove This function removes a task from the simulation (deactivates it)
without deleting the WTtask. A task which has been de-activated is
no longer executed as the simulation runs. A task that has been de-
activated can be re-activated by calling WTtask_add.

WTtask_delete This function deletes a task. Deleting a task both removes it from
the simulation so that it is no longer executed as the simulation
runs, and also frees the memory associated with the WTtask object.

WTtask_setpriority Sets the priority of a task.

Table 19: Sample task functions.

Tasks

62 WorldToolKit Technical Overview

Sample Code

For example, to add a task to a light, your application would include code such as the
following:

WTnode *light;

WTtask_new(light, light_task,2.5f);

where light_task is defined as follows:

void light_task(WTnode *light) {

 /* code that changes the light */

}

WorldToolKit Technical Overview 63

..........

..........

15.User Interface Elements
WorldToolKit offers a complete set of high-level functions for creating common GUI
elements for both X/Motif and Microsoft Windows environments. You can use this library to
make an application that runs on both X Windows and MS Windows systems, while
preserving the look and feel of each native environment.

WTK’s GUI-suite includes the following elements:

• Toolbars

• Menus

• Message Boxes

• Text Input Dialogs

• Scales

• File Request Dialogs

• Scrolled Lists

• And Others

Adding GUI Elements

In addition to making common GUI elements, you can also easily add functionality to each
user interface element by attaching callback handler functions for each desired event type to
the element. Here’s the basic procedure:

1. Make the interface element, using the appropriate WTui Create function.

2. Write the handler function for the specific event type.

3. Use the WTui_setcallback function to make the connection between the UI element, the
handler function, the application data value that will be passed to the callback, and the
event type.

Differences in the way Motif and Windows handle events and messages are taken care of by
the underlying WTui library.

All UI elements are encapsulated in the generic WTui class. This is actually a structure
which describes the UI element entirely, including the following parameters:

• The type of object (push-button, menu bar, frame, etc.).

• The object’s generic ID.

• A pointer to the object’s parent.

User Interface Elements

64 WorldToolKit Technical Overview

• A pointer to the object’s list of children (if any).

• The object’s platform-independent coordinates.

• A pointer to a callback function.

Sample User Interface Functions

Table 20 below lists a few user interface functions:

Function Description

Wtuiform_new Creates a form object.

WTuimessagebox_new Creates a message box.

WTuipushbutton_new Creates a push-button object.

WTuitextinput_new Creates a simple input box composed of a label and text field.

Table 20: Sample user interface functions.

WorldToolKit Technical Overview 65

..........

16.Math and Drawing
Functions

WorldToolKit contains math functions for managing position and orientation data, and a set
of user-defined drawing functions for embedding your own OpenGL drawing routines into
your WTK applications.

Introduction to the Math Library

The WTK math functions include the following data types:

• WTp2 Two-dimensional floating point vector.

• WTp3 Three-dimensional floating point vector.

• WTq Quaternion — array of 4 floating point values.

• WTpq Structure containing WTp3 and WTq.

• WTm3 3x3 array of floats.

• WTm4 4x4 array of floats.

In WorldToolKit, orientation records are stored in quaternion form. If you prefer to work
with matrices or euler angles, or if you are writing a sensor driver for a device which returns
orientation records in one of these representations, then you will need to convert the records
into the quaternion representation. Conversion functions are provided for going between
matrix, euler angle, and quaternion representations of orientation. WTK also provides
functions to initialize, copy, add, subtract, multiply, invert, normalize, and compute
magnitude, as well as dot products for the above data types where meaningful.

It may be convenient, when indexing mathematical quantities in WorldToolKit, to use the
constants X, Y, Z, and W, which have been defined as 0, 1, 2, and 3 respectively.

The functions WTp3_print, WTpq_print, and WTq_print are provided to enable you to easily
print out the value of position and orientation variables, for debugging an application or
other purposes.

WorldToolKit Math Conventions

The WorldToolKit coordinate system obeys the right-hand rule. A viewpoint in the default
orientation has the X axis pointing to the right, the Y axis pointing down, and the Z axis
pointing straight ahead.

Rotations also obey the right-hand rule. For example, if a vector pointing along the Z axis is
rotated by 90 degrees about the X axis, it will end up pointing in the negative Y direction.

Math and Drawing Functions

66 WorldToolKit Technical Overview

Sample Math Functions

Table 21 below lists a few math functions:

Function Description

WTp3_rotate Rotates a 3D vector through a specified rotation.

WTp3_multm3,
WTp3_multm4

Multiplies a direction vector by a WTm3 matrix and a WTm4
matrix respectively.

WTp3_distance Returns the distance between two 3D points.

Table 21: Sample math functions.

User-defined Drawing Functions

WTK lets you embed your own OpenGL drawing routines into your WTK application. With
WTK’s user-defined drawing functions, you can combine the full rendering capabilities of
your workstation with the functionality of WTK. WTK provides the ability for the user to
specify a user-defined 2D drawing function (through the function WTwindow_setfgactions),
as well as a user-defined 3D drawing function (through the function WTwindow_setdrawfn).

WTK also offers predefined 2D and 3D drawing functions such as WTwindow_draw2Dline
and WTwindow_set3Dlinewidth, which can be called from the user-defined function.

Sample Drawing Functions

Table 22 below lists a few drawing functions:

Function Description

WTwindow_set2Dcolor Specifies the color to be used by subsequent draw2D functions.

WTwindow_draw2Dpoint Draws a point at the coordinates specified by the x and y
values.

WTwindow_draw2Dcircle Draws a circle whose center is specified by the xc, yc
parameters.

WTwindow_draw3Dlines Draws a set of lines.

Table 22: Sample drawing functions.

WorldToolKit Technical Overview 67

..........

17.Object/Property/Event
Architecture

Overview

WorldToolKit (WTK) Release 8 has been enhanced through the addition of an
Object/Property/Event architecture. This new architecture provides you with the following
capabilities:

• Treat most WTK object types as generic (or base) objects, which can all be stored,
manipulated, and retrieved in a uniform manner using certain WTbase_* functions.

• Create your own properties for objects, in which to easily store user-defined data. This
provides a convenient alternative to the setdata and getdata functions for each object
type.

• Trigger reactions to property changes for both user-defined and pre-defined properties.
A property change is known as an event, and the optional reaction that is triggered in
response to an event is controlled by the property’s event handler(s).

• Share properties, allowing you to create multi-user simulations to be used with Sense8’s
World2World server product. If you have not purchased World2World, contact Sense8
to learn more about this client/server networking solution.

The Object/Property/Event architecture can simplify many of the programming tasks
encountered by WTK programmers and represents an alternative programming paradigm to
the one described in the WorldToolKit Reference Manual. If you are developing multi-user
simulations that connect to Sense8’s World2World servers, use the Object/Property/Event
programming paradigm. Otherwise, you can use either programming paradigm.

For new WTK applications, we recommend that you make use of the Object/Property/Event
architecture programming paradigm, for the following reasons.

• It is easier to associate user-defined data with objects.

• The event-based architecture corresponds more closely with other modern event-based
programming paradigms.

• Should you decide to extend your simulation to be used with World2World as a multi-
user simulation, you will save development time if the application has already been
written using the Object/Property/Event paradigm.

Math and Drawing Functions

68 WorldToolKit Technical Overview

Supported Types and Supplied Properties

The Object/Property/Event architecture supports the following WTK object types:

• WTnode

• WTviewpoint

• WTwindow

• WTsensor

• WTpath

• WTbase

WTK supplies pre-defined properties for each of the supported object types, such as
WTLIGHT_INTENSITY for the WTnode object type, and WTVIEWPOINT_POSITION for
the WTviewpoint object type.

WTbase Objects

The WTbase object type allows you to create generic, empty objects, distinguished only by
the properties that you add to them. Just like the other object types supported by the
Object/Property/Event architecture, you can add properties to WTbase objects, add event
handlers to those properties to react to their value changes, and share those properties across
the network when using World2World servers. WTK object types that are not supported by
the Object/Property/Event paradigm cannot contain properties and, thus, do not generate
events or allow for the sharing of data over a network. To extend the Object/Property/Event
paradigm, create WTbase objects and user-defined properties to represent the desired
attributes of the unsupported objects.

You can arrange WTbase objects in a hierarchy so that user data can be organized in a
coherent fashion.

Sample Base Functions

Table 23 below lists some sample base functions:

Function Description

WTbase_new Creates a new, generic base object.

WTbase_addparent Adds the specified WTbase object as a new parent
of the object.

WTbase_getchild Returns a pointer to the childnum’th child of the
specified WTbase object, where childnum is a
parameter of this function.

WTbase_getproperty Returns the propnum’th property of the specified
object, where propnum is a parameter of this
function.

Table 23: Sample base functions.

Special Effects and Sound

WorldToolKit Technical Overview 69

Properties and Events

Properties

Objects that are supported by the Object/Property/Event architecture are distinguished from
one another by their properties. Properties describe characteristics of an object. For example,
WTviewpoint objects have the following pre-defined properties:

WTVIEWPOINT_ASPECT

WTVIEWPOINT_CONVDISTANCE

WTVIEWPOINT_CONVERGENCE

WTVIEWPOINT_ORIENTATION

WTVIEWPOINT_PARALLAX

WTVIEWPOINT_POSITION

One of the advantages of the Object/Property/Event architecture is that additional user-
defined properties can be added to an object of any of the supported types. This allows WTK
to treat user data in a similar fashion to pre-defined properties. Consequently, changes to
user data (events) can now trigger reactions to those changes and can be shared on the
network. Note that WTK still allows user data to be associated with WTK objects through
their ‘data’ field via calls to functions such as WTviewpoint_setdata and
WTviewpoint_getdata. However, you cannot trigger event reactions or share data across the
network for data associated with WTK objects in this manner.

Events

Events occur when the value of a property changes. The value of a property can change due
to a property being set with a call to WTproperty_set or via typical WTK calls such as
WTnode_settranslation, WTviewpoint_setposition, etc., or through internal processes like
motion link updates.

These value changes can be acted on by adding any number of event handlers (callback
functions) to the property. When a property value changes, an event is internally generated
which will trigger the execution of that property’s event handlers in the main WTK
simulation loop, right before the universe’s actions function is called. If WTK’s simulation
loop is not active (that is, if your application has not called WTuniverse_go or
WTuniverse_go1), a call to WTuniverse_processevents will execute the handlers.

Sample Property Functions

Table 24 below lists some sample property functions:

Function Description

WTproperty_new Creates a new user-defined property.

WTproperty_set Sets the specified property’s value.

WTproperty_get Retrieves the specified property’s value.

Math and Drawing Functions

70 WorldToolKit Technical Overview

WTproperty_addhandler Adds an event handler callback to the specified
property.

Table 24: Sample property functions.

WorldToolKit Technical Overview 71

..........

18. Client-Server Networking
(via World2World)

Overview

The Object/Property/Event programming paradigm, in conjunction with the high level
networking functionality available in WTK, provides programmers with the ability to easily
develop multi-user 3D/VR networked applications for use over LANs or the Internet. The
high level networking capabilities are designed to operate in conjunction with Sense8’s
World2World server product. If you have not purchased the World2World server product,
you will not be able to take advantage of the high level networking capabilities described in
this chapter to build multi-user simulations.

Based on the Object/Property/Event paradigm, World2World-compliant simulations are
composed of objects and object properties. To allow multiple users to run and participate in
the same simulation, each user (client) needs to be able to receive certain updates (changes in
property values) made by the other participants. For example, suppose there is a graphical
object in your simulation that you want each user to be able to manipulate. If one user drags
the object to a new location, you will want the other users to also see that movement.

To achieve this, the affected property must be shared by both the client that is modifying the
value and the clients that want to receive the new value. Each change made to the value of a
property is known as an event. When a property is shared, the events that are internally
generated for each property value change are what allow the updated information to be
automatically sent over the network to any other clients that have also shared that property.
If desired, you can add additional event handlers to specify actions to be performed in
response to an event.

The mechanism by which property value changes are transmitted to all clients who are
sharing the property is the World2World server product.

How World2World Works

The World2World server product consists of the following:

• a Server Manager

• one or more Simulation Servers

• an optional Firewall Proxy

A multi-user client application connects to the Server Manager, which determines whether
the client has the appropriate log-in authority and directs the client to the appropriate
Simulation Server, based on the simulation that the client is running. The Simulation Server

Client-Server Networking

72 WorldToolKit Technical Overview

stores and organizes simulation data and distributes data updates as appropriate to other
users of the multi-user application connected to the same Simulation Server. The WTK API
allows programmers to specify which object properties are to be shared, to specify how that
shared data will be stored and organized on a World2World Simulation Server and provides
the functionality necessary to connect to the World2World servers. By limiting network data
transfer to only properties that have been shared, World2World helps to reduce bandwidth
usage.

WTK applications can connect to multiple World2World Simulation Servers. Each
connection made by WTK to a World2World Simulation Server is represented by a
WTconnection object. Each WTconnection object has one or more WTsharegroups, which
are used to group together a set of shared properties. By default, each WTconnection has a
single WTsharegroup, which is referred to as the root WTsharegroup. Additional
WTsharegroups can be created in a hierarchical arrangement under the root WTsharegroup.

Shared Properties

As previously described, when a client shares a property, the events that are internally
generated each time that a client makes changes to the property’s value cause those updates
to be sent to the World2World Simulation Server. Once the update has been made on the
Simulation Server, the Simulation Server sends the property update to all the other clients
who are also sharing that property.

Properties are shared under specific sharegroups. Each Simulation Server can have a
hierarchical arrangement of sharegroups that are used to organize the properties stored on a
Simulation Server. A single property can be shared under multiple sharegroups, though each
Simulation Server will only retain a single copy of the shared property value.

Locked Properties

Shared properties can be locked by a client, causing the Simulation Server to prohibit any
other user from removing the property from its sharegroup or from modifying the property’s
value until the client (which holds the lock) releases the lock.

Only one client can have a lock on a particular property at any given time. Properties are
also affected by locks on sharegroups in that a sharegroup lock trickles down to the
sharegroup’s properties (as well as its child sharegroups and their properties).

Persistent Properties

Shared properties can be flagged as being persistent. By making a shared property persistent,
you ensure that the property will not be removed from the Simulation Server even if all of
the clients who are sharing the property have disconnected from the Simulation Server. If a
property is not persistent, the property will be automatically removed from the Simulation
Server when there are no remaining clients who are sharing that property.

Update Frequencies For Shared Properties

Shared properties have an update frequency, specified in seconds, which determines how
often property value updates are queued up to be sent over the network. It is the connection’s
update rate that controls how often the queued updates are actually sent across the network.

Client-Server Networking

WorldToolKit Technical Overview 73

The default for shared properties is to queue updates each time the property value changes.
You can override this default and set the update frequency to queue updates at a set time
interval, specified in seconds.

Sample Shared Property Functions

Table 25 below lists some sample shared property functions:

Function Description

WTproperty_share Shares an object’s property under a specified
sharegroup of a Simulation Server.

WTproperty_setupdatefreq Sets the frequency with which data updates for an
object’s property will be queued for transmission to
a Simulation Server.

WTproperty_lock Requests a property lock for the local client so that
other clients cannot modify the specified object
property.

WTproperty_sendupdate Manually queues an update for the specified
object’s property. If a property’s update frequency
is set to WTSHAREDDATA_NOUPDATE, this
function must be called in order for an update to
occur.

Table 25: Sample shared property functions.

Sharegroups

Sharegroups are container objects that are used to group one or more shared properties
together on a World2World Simulation Server. Sharegroups can also contain child
sharegroups. That is, they can have a parent/child relationship with other sharegroups so
that a hierarchical arrangement of sharegroups can be created on a Simulation Server. Each
connection has, by default, a root sharegroup. All other sharegroups created on that
connection will be direct descendants (children) or indirect descendants of the root
sharegroup.

Locked Sharegroups

Sharegroups can be locked by a client, causing the Simulation Server to prohibit all other
users from adding, moving, or removing properties or child sharegroups within the locked
sharegroup’s subtree, or from modifying the values of any properties contained within the
locked sharegroup’s subtree until the lock is released. That is, the lock on a sharegroup is
recursive, affecting not only the properties located directly within the sharegroup, but also
any of its child sharegroups and their properties. Locks are granted on a first-come, first-
served basis.

Client-Server Networking

74 WorldToolKit Technical Overview

Registered Interest

While the Simulation Server keeps track of the data tree for all sharegroups and their
properties, clients will only stay up-to-date with the sub-trees of sharegroups in which they
have registered interest. Any time a property or sharegroup is added or removed from a
sharegroup in the connection’s data tree, the Simulation Server is responsible for sending
notification of these changes to any client that is interested in that sharegroup.

Persistent Sharegroups

Sharegroups, like properties, can be flagged as being persistent. By making a sharegroup
persistent, you can ensure that the sharegroup and its properties will not be removed from
the Simulation Server, even if all of the clients who are interested in the sharegroup or who
are sharing one or more of the sharegroup’s properties have disconnected from the
Simulation Server. Making a sharegroup persistent has the same effect as making each of the
sharegroup’s properties persistent.

Sample Sharegroup Functions

Table 26 below lists some sample sharegroup functions:

Function Description

WTsharegroup_new Creates a new sharegroup as a child of another
specified sharegroup.

WTsharegroup_lock Requests a sharegroup lock for the local client so
that other clients cannot modify this sharegroup’s
subtree.

WTsharegroup_registerinterest Registers interest in the specified sharegroup for
the local client if the interested parameter is set to
TRUE and unregisters interest in the specified
sharegroup for the local client if the interested
parameter is set to FALSE.

WTsharegroup_getproperty Returns the name of the propertynum’th property of
a sharegroup, where propertynum is a parameter of
this function.

Table 26: Sample sharegroup functions.

Connections

When a client starts a World2World-compliant simulation, the simulation will connect to a
server where the application’s data is to be shared. This process begins with a login call to a
World2World Server Manager at a specified port, which determines what simulation this
client will be entering. The Server Manager then proceeds to direct the client to the
Simulation Server that has been designated to host that particular simulation. Once
connected to the Simulation Server, the client can begin creating sharegroups and sharing
properties.

Client-Server Networking

WorldToolKit Technical Overview 75

Connection Update Rates

A connection’s update rate determines the maximum updates per second for the connection.
This is the maximum number of times per second that the client will send data packets to the
Simulation Server and the maximum number of times per second that the Simulation Server
will send packets to the client. The lower the update rate, the lower the packet traffic over
the network.

For modems, or other low-bandwidth mediums, the connection’s update rate should be as
low as possible. The default behavior is for the connection to match the client frame-rate.

Connection Events

For any connection, you can respond to certain changes to the Simulation Server, such as the
addition of a user, sharegroup, or shared property to the connection.

As an example of how this may be useful, suppose that every time a new user connects to the
simulation, you want to create a graphical avatar to represent the new user. You would
simply trigger a reaction to be executed (the creation of the graphical object) each time a user
is added to the connection.

Sample Connection Functions

Table 27 below lists some sample connection functions:

Function Description

WTconnection_new Defines a new connection to the World2World
Server Manager at a specified port. Based on the
port number, the Server Manager will direct the
client to the appropriate Simulation Server as
configured.

WTconnection_connect Attempts to connect to the World2World Server
Manager and port represented by the specified
connection object.

WTconnection_setupdaterate Sets the rate at which data packets are sent over the
connection.

WTconnection_addcallback Adds a callback function to a connection.

Table 27: Sample connection functions.

Client-Server Networking

76 WorldToolKit Technical Overview

WorldToolKit Technical Overview 77

..........

19.Pier-to-Pier Networking
WorldToolKit lets you create and distribute simulations in environments where a mixture of
PCs and Unix platforms exist. Since WTK applications share a common API, a single
application can be run on both PC and Unix workstations without modification. (Note that
additional licenses are required to use WTK’s networking features.)

You can add networking functionality to your applications by using functions such as
WTnet_open, WTnet_close, WTnet_additem and WTnet_removeitem. To help you develop an
application using these calls, WTK provides a demo program which allows multiple users to
share the same virtual world. Graphical objects located at the other users’ viewpoints are
used to represent the other people.

The following terminology is useful when discussing distributed simulations:

• Local: The objects residing on the local simulation hardware.

• Remote: The objects residing on simulation hardware other than the local
machine‘s.

• Private: Objects that only exist on the specific machine’s hardware. They
are not part of the distributed simulation.

• Public: Objects that are part of the distributed simulation. They may be
controlled from a single machine, but their state is updated on all machines
participating in the simulation.

How the Transport Layer Works

At the transport layer, multiple PCs or Unix workstations must be connected with standard
Ethernet hardware and cabling. WorldToolKit only supports the DEC/Intel/Xerox (DIX or
referred to as the Bluebook Ethernet) standard. PCs can either have their own physical,
independent network, or be connected to the same Ethernet line used for the Unix
workstations. Byte-ordering problems between PCs and workstations are handled invisibly by
WTK.

How the Protocol Layer Works

WTK’s networking capability is built upon IP and UDP guidelines. This means that you can
use this capability on top of pre-existing networks without causing problems for the entire
network. This also means that it is possible to multicast messages onto the Internet for
geographically disbursed simulations.

How the WorldToolKit Layer Works

You initialize network communications by calling the WTnet_open function. You can
establish communication with other machines on the network by using a valid multicast
group address. In addition to the group address, simulation machines only communicate with

Pier-to-Pier Networking

78 WorldToolKit Technical Overview

other machines that share identical port addresses. This information is passed to WTK
through the WTnet_open call.

Upon establishing a network connection, you can pass application-specific information
between machines by using discrete message items that are assembled into valid UDP
packets. WTK assembles these message items using the WTnet_additem function, and then
automatically sends them out onto the network. The receiving application processes these
message items by stripping them out of the packet using the WTnet_removeitem function.

How the Application Layer Works

Communication is limited to the transmittal and receipt of specific message items that are
multicast to the network. Whereas WTK provides the substrate for communications to occur,
your application defines the type of information these items contain. In other words, it is the
application’s responsibility to make sense of these pieces of information and to do something
with them.

Sample Transaction

Local Machine

In this example, a local user changes his viewpoint and moves his virtual body to a different
position and orientation. The graphical object representing the local user is an example of a
local, public object. When the local machine enters its user-defined action function, an
application function net_actions executes. This function uses WTnet_additem to send the
current position and orientation of the local viewer. In the same net_actions routine on the
local machine, the WTnet_next function is called to see whether any valid message items
have arrived from a remote machine. If a message item has been received, it is extracted and
decoded using the WTnet_removeitem function. These message items might describe the
position and orientation of the remote public objects.

Remote Machines

When each of the remote machines reach their net_actions function, they also send messages
that describe the position and orientation of their local public objects (their viewpoints in this
case). Each remote machine then processes the message items received from other machines.
When a message item containing the new position and orientation information for a remote
user’s viewpoint is received, this information is used to move the graphical object
representing the remote user to the updated location. This cycle of sending and receiving
application-specific messages is endlessly repeated, resulting in a distributed simulation.

Sample Networking Functions

Table 28 below lists some networking functions:

Function Description

WTnet_open Opens up the network if it has not already been opened.

WTnet_close Closes the network, if it is currently open, and deletes private data
structures.

WTnet_getrange Returns the current range (Time to Live) value.

WTnet_getport Returns the current port value.

Table 28: A sample of some networking functions.

	Table of Contents
	Introduction to WorldToolKit
	The Universe
	SceneGraphs
	Movable Nodes
	Geometry Nodes
	Materials and Textures
	Sensors
	Lights
	Windows
	Viewpoints
	Motion Links
	Paths
	Special Effects and Sound
	Tasks
	User Interface Elements
	Math and Drawing Functions
	Object/Property/Event Architecture
	Client-Server Networking (via World2World)
	Pier-to-Pier Networking

