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Abstract

We present a new method that utilizes path coherence to accelerate
walkthroughs of geometrically complex static scenes. As a prepro-
cessing step, our method constructs a BSP-tree that hierarchically
partitions the geometric primitives in the scene. In the course of a
walkthrough, images of nodes at various levels of the hierarchy are
cached for reuse in subsequent frames. A cached image is reused
by texture-mapping it onto a single quadrilateral that is drawn in-
stead of the geometry contained in the corresponding node. Visual
artifacts are kept under control by using an error metric that quan-
tifies the discrepancy between the appearance of the geometry con-
tained in a node and the cached image. The new method is shown
to achieve speedups of an order of magnitude for walkthroughs of a
complex outdoor scene, with little or no loss in rendering quality.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words: BSP-tree, image-based rendering, level-
of-detail (LOD), path coherence, spatial hierarchy, texture map-
ping.

1 Introduction

Interactive visualization of extremely complex geometric environ-
ments is becoming an increasingly important application of com-
puter graphics. Though the throughput of graphics hardware over
the past decade has improved dramatically, the demand for perfor-
mance continues to outpace the supply, as virtual scenes containing
many millions of polygons become increasingly common. In order
to rapidly visualize truly complex scenes, rendering algorithms must
intelligently limit the number of geometric primitives rendered in
each frame.

This paper presents a new method for accelerating walkthroughs of
geometrically complex and largely unoccluded static scenes by hier-
archically caching images of scene portions. As a viewer navigates
through a virtual environment, the appearance of distant parts of the
scene changes little from frame to frame. We exploit this path co-
herence by caching images created in one frame for possible reuse
in many subsequent frames.
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Our method starts with a preprocessing stage. Given an unstructured
set of objects comprising a scene, we construct a BSP-tree [6] by
placing splitting planes inside gaps between objects. This construc-
tion produces a hierarchical spatial partitioning of the scene with
geometry stored only at the leaves of the hierarchy. During a walk-
through of the scene, our method traverses the hierarchy and caches
images of nodes at various levels to be reused in subsequent frames.
An error metric that quantifies the discrepancy between the appear-
ance of the actual geometry contained in a node and its cached im-
age is used to estimate the number of frames for which the cached
image is likely to provide an adequate approximation of the node’s
contents. A simple cost-benefit analysis is performed at each node
in order to decide whether or not an image should be cached.

The main contribution of our approach is the successful combina-
tion of two powerful paradigms: hierarchical methods and image-
based rendering. Image-based rendering is capable of drawing arbi-
trarily complex objects in constant time, once the image is created.
Using a hierarchy of images leverages the power of image-based
rendering by significantly reducing the number of images that must
be drawn. Another contribution is the introduction of a new simple
error metric that provides automatic quality control.

1.1 Previous work

Previous work on accelerating the rendering of complex environ-
ments can be classified into three major categories: visibility culling,
level-of-detail modeling, and image-based rendering.

Visibility culling

Visibility culling algorithms attempt to avoid drawing objects that
are not visible in the image. This approach was first investigated by
Clark [4], who used an object hierarchy to rapidly cull surfaces that
lie outside the viewing frustum. Garlick et al. [8] applied this idea
to spatial subdivisions of scenes. View-frustum culling techniques
are most effective when only a small part of the scene’s geometry is
inside the view frustum at any single frame. In a complex environ-
ment enough geometry remains inside the view frustum to overload
the graphics pipeline, and additional acceleration techniques are re-
quired.

Airey et al. [1] and Teller [19] described methods for interactive
walkthroughs of complex buildings that compute the potentially vis-
ible set of polygons for each room in a building. Only the potentially
visible set of polygons for the room currently containing the viewer
needs to be rendered at each frame. Both of these methods require
a lengthy preprocessing step for large models. More recently, Lue-
bke and Georges [11] developed a dynamic version of this algorithm
that eliminates the preprocessing. Such methods can be very effec-
tive for densely occluded polyhedral environments, such as build-
ing interiors, but they are not suited for mostly unoccluded outdoor
scenes.

The hierarchical Z-buffer [9] is another approach to fast visibility
culling that allows a region of the scene to be culled whenever its
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closest depth value is greater than those of the pixels that have al-
ready been drawn at its projected screen location. Like previous ap-
proaches, this method can achieve dramatic speed-ups for environ-
ments with significant occlusion but is less effective for largely un-
occluded environments with high visible complexity, such as a land-
scape containing thousands of trees.

Level-of-detail modeling

Another approach for accelerating rendering is the use of multireso-
lution or level-of-detail (LOD) modeling. The idea is to render pro-
gressively coarser representations of a model as it moves further
from the viewer. Such an approach has been used since the early
days of flight simulators, and has more recently been incorporated
in walkthrough systems for complex environments by Funkhouser
and Séquin [7], Maciel and Shirley [12], and Chamberlain et al. [2].

One of the chief difficulties with the LOD approach is the problem
of generating the various coarse-level representations of a model.
Funkhouser and Séquin [7] created the different LOD models man-
ually. Eck et al. [5] described methods based on wavelet analysis
that can be used to automatically create reasonably accurate low-
detail models of surfaces. Maciel and Shirley [12] used a number
of LOD representations, including geometric simplifications cre-
ated by hand, texture maps, and colored bounding boxes. Chamber-
lain et al. [2] partitioned the scene into a spatial hierarchy of cells
and associated with each cell a colored box representing its con-
tents. Another approach to creating LOD models is described by
Rossignac and Borrel [16], in which objects of arbitrary topology
are simplified by collapsing groups of nearby vertices into a single
representative vertex, regardless of whether they belong to the same
logical part.

Another problem with geometric LOD approaches is that the shad-
ing function becomes undersampled, as geometry is decimated. This
undersampling causes shading artifacts, especially with Gouraud
shading hardware, which evaluates the shading function only a the
(decreasing number of) polygon vertices.

Our approach can be thought of as a technique for automatically
and dynamically creating view-dependent image-based LOD mod-
els. Among the above LOD approaches, ours is closest to that of Ma-
ciel and Shirley. However, there are several important differences.
First, our approach computes LOD models on demand in a view-
dependent fashion, rather than precomputing a fixed set of LOD
models and using them throughout the walkthrough. Thus, we incur
neither the preprocessing nor the storage costs associated with pre-
computed LOD models. Second, we use a spatial hierarchy rather
than an object hierarchy, and our LOD models represent regions of
the scene rather than individual objects. Spatial partitioning allows
us to correctly depth-sort the LOD models chosen for rendering at
each frame, whereas an object hierarchy can suffer from occlusion
artifacts where objects overlap.

Image-based rendering

A different approach for interactive scene display is based on the
idea of view interpolation, in which different views of a scene
are rendered as a pre-processing step, and intermediate views are
generated by morphing between the precomputed images in real
time. Chen and Williams [3] and McMillan and Bishop [13] have
demonstrated two variants of this approach for restricted movement
in three-dimensional environments. Although not general purpose,
these algorithms provide a viable method of rendering complex en-
vironments on machines that do not have fast graphics hardware.
Images provide a method of rendering arbitrarily complex scenes
in a constant amount of time. This idea is central to both of these
papers and to the method we present here.
Another image-based approach, described by Regan and Pose [15],
renders the scene onto the faces of a cube centered around the viewer
location. Their method allows the display to be updated very rapidly
when the viewer is standing in place and looking about. They also
use multiple display memories and image compositing with depth
to allow different parts of an environment to be updated at differ-
ent rates. Only parts of the environment that change or move signif-
icantly are re-rendered from one frame to the next, resulting in the
majority of objects being rendered infrequently.

Our method can be thought of as a hierarchical extension to the
method of Regan and Pose, but with more flexibility: instead of us-
ing a fixed number of possible update rates, our method updates each
object at its own rate. Another important difference is that instead of
simply reusing an object’s image over several consecutive frames,
we use texture-mapping hardware to compensate for motion paral-
lax.

Schaufler and Stürzlinger [17, 18] have concurrently and indepen-
dently investigated ideas similar to our own. Our approach differs
from theirs mostly in the formulation of the error metric and in the
cost-benefit analysis that we perform in order to decide whether or
not to cache an image.

1.2 Overview

The remainder of the paper is organized as follows. In the next sec-
tion, we describe our algorithm in detail. In Section 3, we present
the error metric used to control the updating of cached images. In
Section 4, we describe the preprocessing stage that constructs a hi-
erarchical spatial partitioning of the environment. In Section 5, we
report on the performance of our algorithm for a walkthrough of a
complex outdoor scene. Section 6 closes with conclusions and fu-
ture work.

2 Algorithm

As a viewer follows a continuous path through a virtual environ-
ment, there is typically considerable coherence between successive
frames. The basic idea behind our algorithm is to exploit this coher-
ence by caching images of objects rendered in one frame for possi-
ble reuse in many subsequent frames. However, instead of simply
reusing the same image, we apply the image as a texture map to a
fixed quadrilateral placed at the center of the object. This textured
quadrilateral is then rendered instead of the original object during
several successive frames, using the current viewing transformation
at each frame. In this way, at each frame, the image of the object is
slightly warped, approximately correcting for the slight changes in
the perspective projection of the original object as the viewer moves
through the scene. Compensating for motion parallax in this manner
results in fewer “snapping” artifacts when the cached image is up-
dated and increases the number of frames for which the cache yields
an acceptable approximation to the object’s appearance.

To gain the most from image caching, it is not enough to cache im-
ages for individual objects. If too many objects are visible, the sheer
number of textured polygons that must be rendered at each frame
may overwhelm the hardware. However, distant objects that require
infrequent updates can be grouped into clusters, and a single im-
age can be cached and rendered in place of the entire cluster. Thus,
our algorithm operates on a hierarchical representation of the entire
scene, rather than on a collection of individual objects. An image
can be computed and cached for any node in the hierarchy; hence
the name “hierarchical image caching”.

We construct the hierarchy as a preprocessing step by computing a
BSP-tree [6] partitioning of the environment, as described in Sec-
tion 4. We chose to use a BSP-tree since it allows us to traverse



the scene in back-to-front order, which is necessary to ensure that
the partially-transparent textured quadrilaterals are composited cor-
rectly in the frame-buffer. In addition, BSP-trees are more flexible
than other spatial partitioning data structures, making it is easier to
avoid splitting objects.

The leaf nodes of the BSP-tree correspond to convex regions of
space and have associated with them a set of geometric primitives.
This set consists of all the geometric primitives contained inside the
node. In addition, it also contains nearby primitives from the neigh-
boring nodes, as will be explained in Section 4. Any node in the tree
may also contain a cached image.

At each frame we traverse the BSP-tree twice. The first traversal
culls nodes that are outside the view frustum and updates the image
caches of the visible nodes:

UpdateCaches(node, viewpoint)
if node is outside the view frustum then

node.status CULL

else if node.cache is valid for viewpoint then
node.status DRAWCACHE

else if node is a leaf then
UpdateNode(node, viewpoint)

else
UpdateCaches(node.back, viewpoint)
UpdateCaches(node.front, viewpoint)
UpdateNode(node, viewpoint)

For a leaf node, the routine UpdateNode decides whether, for the
current viewpoint, it is more cost-effective to draw the geometry
stored with the node, or to compute and cache an image:

UpdateNode(node, viewpoint)
if viewpoint 2 node then

if node is a leaf then
node.status DRAWGEOM

else
node.status RECURSE

return
k  EstimateCacheLifeSpan(node, viewpoint)
amortizedCost hcost to create cachei=k + hcost to draw cachei
if amortizedCost < hcost to draw contentsi then

CreateCache(node, viewpoint)
node.status DRAWCACHE
node.drawingCost hcost to draw cachei

else
if node is a leaf then

node.status DRAWGEOM
node.drawingCost hcost to draw geometryi

else
node.status RECURSE
node.drawingCost 

node.back.drawingCost + node.front.drawingCost

Geometry is always drawn if the viewpoint is inside the node. Other-
wise, the routine EstimateCacheLifeSpan computes an estimate of
the number of frames k for which we expect the cached image to re-
main valid, as will be described in Section 3. This estimate is used
to compute an amortized cost-per-frame for this node for each of the
next k frames. We compute and cache an image only if the amortized
cost is smaller than the cost of simply drawing the node’s contents.
For a leaf node, this cost is simply the cost of drawing the contained
geometry, while for an interior node, this cost is the cost of drawing
the node’s children. The costs to draw geometric primitives and to
create a cached image are established experimentally on each plat-
form and are given as input to our system.

The routine CreateCache starts by computing an axis-aligned rect-
angle that is guaranteed to contain the image of the node’s contents
on the screen. This rectangle is obtained by transforming the cor-
ners of the node’s bounding box from world coordinates to screen
coordinates and taking the minima and maxima along each axis. If
the dimensions of the rectangle exceed those of the viewport, no im-
age is cached. Otherwise, we redefine the viewing frustum so that it
contains the entire node without changing the viewpoint or the view
direction, and render the node. For a leaf node we draw all of its
geometry, while for an interior node we draw its children. In many
cases, the children are drawn using their cached images, if any ex-
ist. Thus, caching an image typically does not involve drawing all
the geometry contained in the corresponding subtree. After draw-
ing the contents of the node, we copy the corresponding rectangular
block of pixels into the node’s image cache. As mentioned earlier,
we use the cached image as a texture map that is applied to a quadri-
lateral representing the entire node. In order to define an appropri-
ate quadrilateral in world space, we project the corners of the image
rectangle onto a plane of constant depth with respect to the view-
point that goes through the center of the node’s bounding box.

Once the cached images have been updated, we can proceed to ren-
der the scene into the frame-buffer, during a second traversal of the
BSP-tree from back to front:

Render(node, viewpoint)
if node.status == CULL then

return
else if node.status 2 fDRAWCACHE, DRAWGEOMg then

Draw(node)
else if viewpoint is in front of node.splittingPlane then

Render(node.back, viewpoint)
Render(node.front, viewpoint)

else
Render(node.front, viewpoint)
Render(node.back, viewpoint)

To complete the description of our algorithm, the next section de-
scribes the error metric we use to determine whether a cached im-
age is valid with respect to a given viewpoint and to estimate the
life-span of a cached image. Section 4 describes in more detail our
BSP-tree construction algorithm.

3 Error metric

The algorithm described in the previous section requires answers to
the following two closely-related questions:

1. Given a node with a cached image computed for some previous
view, is the cached image valid for the current view?

2. Given a node in the hierarchy and the current view, if we were to
compute and cache an image of this node, for how many frames
is the cached image likely to remain valid?

In order to answer these questions efficiently we need to define an
error metric, which, given a node in the hierarchy, its cache, and the
current viewpoint, quantifies the difference between the appearance
of the cached image and that of the actual geometry. If this differ-
ence is smaller than some user-specified threshold �, the approxi-
mation is deemed acceptable, and the cache is considered valid. An
important requirement for an acceptable error metric is that it must
be fast to compute. For example, we cannot afford to analyze the ge-
ometric contents of the node, as the number of primitives contained
in a node can be very large.

Our algorithm employs an error metric that measures the maximum
angular discrepancy between a point inside a node and the point
that represents it in the cached image. We shall use the 2D diagram
shown in Figure 1 to define our error metric more precisely. The
rectangle in this diagram represents the bounding box of a node in
the hierarchy. The thick line segment crossing the bounding box rep-
resents the quadrilateral onto which the cached image is texture-
mapped, as described in Section 2. The viewpoint for which the
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Figure 1 Angular discrepancy.

cache was computed is v0. Let a be a point inside the node. The point
that corresponds to a on the quadrilateral is ã. By construction, a
and ã coincide when viewed from v0; however, for most other views,
the two points subtend some angle � > 0, as illustrated by view-
point v1 in the diagram. Our error metric measures the maximum
angular discrepancy over all points a inside the node:

Error (v, v0) = max
a

� (a, v, ã) (1)

For a given view direction and field of view, the smaller the max-
imum angular discrepancy is allowed to be, the closer the projec-
tions of points a and ã are in the image. Thus, using a smaller error
threshold results in fewer visual artifacts caused by using the cached
images instead of rendering the geometry.

The right-hand side of equation (1) may be approximated by com-
puting the angular discrepancy for each of the eight corners of a
node’s bounding box. This is not a conservative estimate, but it is
fast to compute, and has been found to work well in practice.

In order to predict the life span of a cached image before creating it
for some view v0, we must estimate how far from v0 we can travel
while keeping the error under �. If the view trajectory is known to
us in advance, we can simply search along the trajectory for the far-
thest point for which the error is within tolerance. This is probably
the best course of action for recording a walkthrough or fly-by off-
line. For an interactive walkthrough, the path of the viewer is not
known in advance; however, the current velocity and acceleration
are known at any frame, and an upper bound on the acceleration
is typically available. In this situation, for each node in the hierar-
chy we can attempt to find a safety zone around v0, that is, a set of
viewpoints v such that for each viewpoint in this set the error is less
than �:

SafetyZone(v0) � fv j Error (v, v0) � �g , (2)

Given the safety zone and using bounds on velocity and accelera-
tion, we can compute a lower bound on the number of frames for
which the cache will remain valid. Alternatively, we can obtain a
non-conservative estimate by extrapolating the viewer’s path and
intersecting it with the safety zone. Our implementation uses non-
conservative estimates. Next we describe how safety zones are com-
puted in our algorithm.

Consider the 2D diagram in Figure 2. Let v0 be the current view-
point, a a point inside a node, and ã its projection onto the textured
quadrilateral, as in Figure 1. Note that all viewpoints v from which
the angle subtended by a and ã is equal to � must lie on one of the
two circles of radius

r =
ka� ãk
2 sin �

(3)

passing through a and ã. Thus, we can conservatively define a cir-
cular safety zone around v0 (a sphere in 3D), whose radius d is given
by the shortest distance between these circles and v0:

d =
p

h2 + r2 + 2hr sin �� r (4)
v

∼

0

a

a

d
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Figure 2 The shaded region contains all the viewpoints v from which
a and ã subtend an angle greater than or equal to �. The lower circle
is a conservative safety zone.

where h is the distance between v0 and a.

In order to approximate the safety zone for a leaf node in the hi-
erarchy, we evaluate d for each corner of the node’s bounding vol-
ume and take the smallest of these distances. We then set the safety
zone to be the axis-aligned cube inscribed inside a sphere of radius
d around v0. The safety zone of an interior node is computed by first
computing the safety zone using the bounding box of the node, and
then taking the intersection of this safety zone with the safety zones
of the children.

In our implementation, the user specifies the error threshold in pix-
els. This threshold is converted to an angular error threshold using
the current resolution and field-of-view angle. If either the resolu-
tion or the field-of-view change in the course of a walkthrough, the
angular error threshold must be adjusted accordingly.

4 Partitioning

As a preprocessing step, we construct a BSP-tree [6] partitioning of
the scene. The goals of the partitioning algorithm are as follows:

1. split as few objects as possible;

2. make the hierarchy as balanced as possible (in terms of the num-
ber of geometric primitives contained in each subtree);

3. make the aspect ratio of each node’s bounding volume as close
to 1 as possible.

The first goal aims to reduce visual artifacts. The second and third
goals help improve performance: balanced trees facilitate hierarchi-
cal view-frustum culling, and cached images of nodes with good as-
pect ratios tend to remain valid longer. Computing the optimal BSP-
tree that satisfies these potentially contradictory goals appears diffi-
cult. Therefore, our partitioning algorithm employs a simple greedy
approach that is not optimal, but seems to work well in practice.

Given a list of objects to partition, we look for gaps between objects,
place a splitting plane in the “best” gap we can find, and then re-
curse on the lists of objects on each side of that plane. To facilitate
finding the gaps between objects, we compute their extents with a
method similar to the parallelepiped bounding volumes of Kay and
Kajiya [10]. For each object, we compute its extent along each of
N different directions on the unit sphere. Each splitting plane in the
BSP-tree is constrained to be perpendicular to one of the N vectors.
For example, if we chose the three coordinate axes as our direction
vectors, our partitioning algorithm would yield a binary tree of axis-
aligned boxes.
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Figure 3 (a) A bird’s eye view of the island scene. (b) The partitioning of the scene. (c) A viewpoint on the walkthrough path.
For each of the N directions, we create two sorted lists of objects:
one, according to the lower bound of each object’s extent; the other,
according to the upper bound. We then scan these lists, while keep-
ing track of the number of “active” objects (i.e., objects whose ex-
tents we are currently in). Intervals where the number of active ob-
jects is a local minimum are the gaps that we are looking for. Ideally,
we are looking for a gap with zero active objects, such that the num-
ber of geometric primitives on each side of the gap is roughly equal.
Such a gap does not always exist, so we compute a cost for each gap
that is a function of the number of its active objects and the ratio of
the number of primitives on either side of the gap. For each of the N
directions, we choose the gap with the smallest cost. To create good
aspect ratios, we tend to choose the best gap from the direction along
which the combined extent of all the objects on the list is greatest.

The current implementation of our system is geared towards visual-
ization of complex landscapes. Such scenes have a special structure:
they essentially consist of a height-field representing land and wa-
ter, and of objects such as trees and houses scattered on that height-
field. Thus, assuming that the positive Y axis points up, all of the
objects are spread above the XZ plane. Our partitioning algorithm
takes advantage of this structure by using N direction vectors that
evenly divide the unit circle perpendicular to the Y axis. As a result,
all of the splitting planes of the BSP-tree are perpendicular to the XZ
plane. In all of the experiments reported in Section 5, two direction
vectors were used, resulting in axis-aligned boundaries between re-
gions.

When objects are split between two or more leaf nodes, visual arti-
facts that look like gaps or cracks sometimes appear in the split sur-
faces. This problem results from approximating a single object by
multiple images, with no constraint that the images match along the
split boundary. Such artifacts can occur even with small error thresh-
olds because of the discrete sampling involved in creating the caches
and rendering the textured quadrilaterals. For small error thresholds,
it is possible to overcome these artifacts by ensuring a small amount
of overlap in the geometry contained in neighboring leaf nodes. To
achieve this overlap, we construct a slightly “inflated” version of
each leaf region, and associate with each leaf node the extra geome-
try that is contained in its inflated region, in addition to the geometry
contained in the original region. In our current implementation, the
amount by which regions are inflated is a user-specified parameter
(typically 10 to 20 percent).

5 Results

This section demonstrates the performance of our method using a
walkthrough of a complex outdoor scene. All tests were performed
on a Silicon Graphics Indigo2 workstation with a 250MHz R4400
processor, 320 megabytes of RAM, and a Maximum Impact graph-
ics board with 4 megabytes of texture memory.

The outdoor scene used in these tests is a terrain of an island pop-
ulated with 1117 willow trees. The terrain consists of 131,072 tri-
angles, and each tree consists of 36,230 triangles. The total number
of triangles in the database is 40,599,982. To keep the storage re-
quirements down the trees were instanced, and the total amount of
storage for the database before any processing by our method is 20
megabytes. The amount of storage required for this scene without
instancing is 3.5 gigabytes. Figure 3(a) shows a bird’s eye view of
the island.

Constructing the BSP-tree for this database took 46 seconds. The
resulting partitioning (shown in Figure 3(b)) has 13 levels, 1072 leaf
nodes, and is fairly balanced in terms of the geometric primitives
contained in each subtree. Most leaf nodes contain a single tree and
a portion of the terrain. The partitioning algorithm managed to avoid
splitting any of the trees, and the only object split was the terrain.

Partitioning the database causes an increase in the required storage.
This increase is primarily due to the need to “inflate” the leaf re-
gions, as described in Section 4. For this database, we used an infla-
tion factor of 17 percent, increasing the storage to 150 megabytes.
Note that the increase is only 4 percent relative to the storage the
original database would have required if we did not use instancing
on the trees.

We recorded timings for several walkthroughs of the island. Each
of the walkthroughs was along the same path, defined by a B-spline
space curve shown in white in Figure 3(c). This path was designed
to help us study the relative performance of image caching over a
range of visible scene complexities: the camera first tracks along the
edge of the model, then flies in toward the center of the island at tree-
top level. Although the path was known in advance, we did not take
advantage of this information, in order to get a better sense of how
the algorithm would behave under interactive control.

Figure 3(c) provides a snapshot illustrating our algorithm for a par-
ticular viewpoint on the path. The view frustum for that viewpoint
is indicated by green lines. Nodes outlined in purple are culled, as
they lie outside the view frustum. Nodes outlined in yellow are ren-
dered using their geometry. Nodes outlined in red are rendered using
their cached images. The quadrilaterals onto which these images are
mapped are shown in black.

To assess the relative performance of our algorithm, we first com-
puted two 1200-frame walkthroughs. Each frame was rendered at
a resolution of 640 � 480. The first walkthrough was performed



Figure 4 Frames from walkthroughs of the island. The top row shows two frames rendered using the original geometry. The second row shows
the same frames rendered with image caching using an error threshold of two pixels. The third row illustrates the visual artifacts resulting from
a larger error threshold (eight pixels).
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Figure 5 Image caching versus rendering geometry.

using an algorithm that employs hierarchical view frustum culling
(using the same BSP-tree), but renders all of the original geometry
contained in leaf nodes that are inside the view frustum. The second
walkthrough was performed using our method with an error thresh-
old of two pixels.

The top row of images in Figure 4 shows two different frames from
the walkthrough rendered using the original geometry. The second
row shows the same frames rendered by our method. The images
are not identical to those in the top row, but it is very hard to tell
them apart, except for the distant trees that appear slightly softer and
less blocky when rendered with our method, because of the linear
filtering used when rendering texture-mapped primitives.

The plot in Figure 5 shows the rendering times for the two walk-
throughs. For each frame, we plot the rendering time spent by each
of the two methods. It takes our method 134 seconds to compute the
very first frame of the walkthrough, which is two times longer than
the time required when rendering the geometry. However, once the
initial image caches have been computed, subsequent frames can be
rendered 4.1 to 25.2 times faster with our method, with an overall
speedup factor of 11.9 for the entire sequence.

In the experiment above, our method used a fairly small error thresh-
old: an angle subtended by roughly two pixels on the image plane.
As a result, there are almost no perceptible visual artifacts in the
walkthrough, as compared to rendering the geometry. If the error
threshold is relaxed, more visual artifacts start to appear, but the
rendering becomes faster, as cached images have longer life spans.
For instance, with the error threshold set to eight pixels, the overall
speedup increases to 14.1. Frames that were rendered with this error
threshold are shown in the bottom row of Figure 4. Comparing these
images with the ones rendered using geometry (in the top row) re-
veals increased “ruggedness” along the silhouette of the mountains,
as well as some “cracks” in the terrain, through which the blue back-
ground shows through.

Since our method utilizes path coherence, it is interesting to examine
how different frame rates along the same path affect performance.
Therefore, we rendered the same walkthrough using different num-
bers of frames, equally spaced along the path. For example, when
using two frames, the first frame is computed at the beginning of
the path and the second in the middle of the path. Thus, for very
small numbers of frames there is not much frame-to-frame coher-
ence at all. For each walkthrough the overall speedup factor was
computed, and the results are plotted in Figure 6. As expected, the
speedup factor becomes larger, as more frames are rendered along
the same path. Note that our method is faster than geometry with as
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Figure 7 Speedup as a function of scene complexity.

few as 30 frames along the path.

Another interesting statistic is the behavior of our method as a func-
tion of overall scene complexity. The same walkthrough path was
computed for several versions of the scene, each containing a dif-
ferent number of trees. Except for the number of trees, all of the
scenes were identical. The overall speedup factors for these scenes
(for a 1200-frame walkthrough with a two-pixel error threshold) are
plotted in Figure 7. The speedup factor introduced by our algorithm
first rapidly increases with the geometrical complexity of the scene,
but there is a drop in the speedup when the number of triangles in-
creases from 20 million (574 trees) to 40 million (1117 trees). The
reason for this behavior is that increasing the tree density on the is-
land causes significantly more extra geometry to be added to each
leaf node when its region is inflated. This extra geometry makes
the overhead of creating a cached image for the node substantially
larger.

An important limiting factor on the performance of image caching
is the constraint imposed by OpenGL [14] that texture maps have
dimensions in powers of 2. Because of these limitations on texture
size, almost half of the pixels in the textures defined by our method
go unused. The handling of so many unused pixels results in a per-
formance penalty for our image caching method.



6 Conclusions

There are many ways to extend the work presented in this paper:

� Animation. Although our method is currently applicable only to
static scenes, it should be easy to extend it to handle a few small
moving objects or animated sprites. A more challenging problem
for further research is to allow scenes where many objects are ca-
pable of moving and/or deforming their geometry.

� Pre-caching. Our algorithm should be extended to caching im-
ages not only for nodes already in the view frustum, but also for
nodes that should come into view in the next few frames. This
extension would help alleviate temporary degradations in render-
ing performance that occur as a user travels into an area of the
scene that is more complex. Pre-caching could be particularly ef-
fective if the caching computations are done in parallel by a sep-
arate thread.

� Geometric LOD modeling. Many of the objects drawn while cre-
ating cached images occupy only a small number of pixels in the
image. Thus, instead of drawing such objects in full detail, we
could draw a coarser model of the same object, using a multi-
resolution representation such as the one by Eck et al. [5] or
Chamberlain et al. [2]. Using a multi-resolution representation
could also accelerate rendering of objects for which no cached
images were created.

� Persistent caches. As regions of the scene pass out of the view
frustum, the images cached for the newly culled nodes are inval-
idated, and the memory is released. In the case that the viewer
is simply looking around, these culled caches are still valid rep-
resentations of their regions. Suspending invalidation of image
caches in this case could potentially save a great deal of computa-
tion, in much the same way as the method of Regan and Pose [15].

� Talisman. Image caching should prove even more effective in an
architecture that optimizes the reuse of rendered images as tex-
ture maps or sprites, such as the Tasliman architecture [20]. To
make the best use of Talisman’s capabilities, an affine warp of
the cached image should be computed rather than the more gen-
eral perspective warp resulting from texture-map the cached im-
age onto a quadrilateral in 3D.

In summary, we have presented a new method for accelerating walk-
throughs of complex environments by utilizing path coherence. We
have demonstrated speedups of an order of magnitude on a current
graphics architecture, the Indigo2 Maximum Impact. The speedups
increase with the frame rate. While these speedups are significant,
we believe they could be made still more dramatic through fur-
ther optimizations in the underlying graphics hardware and libraries,
such as improving the pixel transfer rate from the frame buffer to
texture memory, relaxing the existing restrictions on texture map
sizes, and providing applications with better control over texture
memory management.

Acknowledgments

We would like to thank Eric Brechner, Ka Chai, Brad Chamberlain,
Michael Cohen, Hugues Hoppe, and Jack Tumblin for many useful
discussions during the early stages of this project.

This work was supported by an Alfred P. Sloan Research Fellow-
ship (BR-3495), an NSF Postdoctoral Research Associates in Ex-
perimental Sciences award (CDA-9404959), an NSF Presidential
Faculty Fellow award (CCR-9553199), an ONR Young Investigator
award (N00014-95-1-0728), a grant from the Washington Technol-
ogy Center, and industrial gifts from Interval, Microsoft, and Xerox.
References

[1] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards
image realism with interactive update rates in complex virtual building
environments. Computer Graphics (1990 Symposium on Interactive
3D Graphics), 24(2):41–50, March 1990.

[2] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin,
and John Snyder. Fast rendering of complex environments using a spa-
tial hierarchy. In Proceedings of Graphics Interface ’96, May 1996.

[3] Shenchang Eric Chen and Lance Williams. View interpolation for im-
age synthesis. In Computer Graphics Proceedings, Annual Conference
Series, pp. 279–288, August 1993.

[4] James H. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554, October
1976.

[5] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis for arbitrary
meshes. In Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 173–182, August 1995.

[6] Henry Fuchs, Zvi M. Kedem, and Bruce Naylor. On visible surface
generation by a priori tree structures. Computer Graphics, 14(3):175–
181, June 1980.

[7] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algo-
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