
Per-Object Image Warping with Layered Impostors

Gernot Schaufler, GUP, Altenbergerstr. 69, A-4040 Linz, AUSTRIA
gs@gup.uni-linz.ac.at

Abstract. Image warping is desirable in the context of image-based rendering
because it increases the set of viewpoints for which a single image can be used.
This paper proposes a method for image warping with adaptive accuracy com-
patible with current texture-mapping hardware. It is based on the observation
that pixels at similar depth move in a similar way during warping. The method
also generates approximate depth values at each pixel so that polygonal and
image-based rendering can be applied in a mixed fashion.

1 Introduction and Motivation
In interactive computer graphics hardware-accelerated rendering of polygonal models
is a well-established visualization technique. However, the ever growing complexity of
polygonal models continues to outperform the advances made in hardware technology.

In recent years an alternative approach called image-based rendering (IBR) was
proposed concerned with generating new images from existing ones. It decouples
scene complexity from rendering complexity by employing work proportional to the
number of pixels in the final image instead of work proportional to the number of mod-
eling primitives in the scene.

Research on IBR has focused on how to best use the available image data and has
progressed to warping images augmented with depth information for new viewpoints
(view interpolation and extrapolation). Different approaches for this warp have been
taken and will be reviewed in the related work section. In particular surfaces pose
problems which were undersampled or occluded in the available images but are visible
in the image to be generated causing objectionable holes and tears in the final image.

Pure image-based representations require overwhelming amounts of image data to
represent a complex scene for every arbitrary point of view. Hybrid rendering systems
apply image-based methods mostly for distant scene elements to exploit the coherence
in the images of those scene parts. Image data generated for recent frames is reused in
the next frames to avoid the expensive re-rendering of the complete scene.

The approach to be presented uses hardware-accelerated texture mapping to warp
the image data for new viewpoints and is based on the observation that portions of an
image at a certain distance from the viewer move in a uniform way: the warp is
approximated by drawing several layers of texture-mapped quadrilaterals. This is sim-
ilar in spirit to using several impostors per object like in the hierarchical image cache
[20][22]. However, this is prohibitive both in texture memory consumption and texture
generation cost. The presented method avoids these problems by caching only one
image per object and warping it for new viewpoints. The warping accuracy is adaptive
to the desired change to the image. Little changes to the image are computationally
less expensive.

After an overview of the relevant work in this field the following section introduces
layered impostors and describes the ideas behind them. Implementation details are
given in section 4 followed by possible optimizations in section 5. Results are summa-
rized in section 6 and conclusions drawn in section 7.



2 Previous Work
A useful classification of IBR methods is by complexity of the warping technique. It is
most straightforward to re-use whole images or parts thereof to save rendering costs or
to achieve greater temporal fidelity [7][8][15].

The next complex class of image reuse is as (possibly partially transparent) texture
maps which are mapped onto simple geometry. This coarse type of reuse avoids tears
in the images resulting from previously occluded surfaces. Maciel et al [11] pre-gener-
ate textures for objects and clusters of objects to achieve a uniform frame-rate in their
walkthrough system. Schaufler et al [20] and Shade et al [22] dynamically update the
textures to always match the object’s or scene’s appearance from the current point of
view. Aliaga et al [1] warp the geometry to minimize the popping effect when switch-
ing between textures and geometry. The Talisman architecture [24] approximates the
3D warp with a hardware implementation of affine transformations. Schaufler [21]
augments textures with depth to avoid visibility errors caused by the “flatness” of
impostors.

In an attempt to better approximate the required changes to the reused images trian-
gular meshes have been generated from the images and their depth map. While Mark et
al [12] have found pixel-grained meshes to be expensive, meshes solve the problem of
holes in the images. However, they introduce the problem of “rubber sheets” in place
of the holes. Subsampling [23] and mesh-decimation [5] give meshes of manageable
size. Pulli et al [17] use a “soft” z-buffering approach to blend together the textured
meshes obtained from several range-images.

Instead of triangle meshes individual pixels have been warped as well. Both for-
ward and backward mappings have been tried. With forward mapping
[2][6][9][14][16] holes and tears in undersampled areas are avoided by splatting.

Backward mapping produces no holes but such a mapping is only simple to calcu-
late if the current point of view is the same as the viewpoint from which the input
images were taken [3][18]. Otherwise a search must be performed in the source image
to identify the pixel which maps to the current output pixel [10].

Only one object-centered approach to image-based rendering has been published
so far, also based on McMillan’s warping algorithm, namely delta trees [4]. They are
very efficient in storage requirements as redundancies among a number of input
images are avoided.

In several publications hardware implementations of IBR-methods are being called
for and the need for research on applicable hardware architectures for IBR has been
pointed out [12][13][24].

3 Layered Impostors
For generating an image of an object a possibly approximate representation of the
object’s shape is needed. A polygonal model is one such representation, usually con-
sidered view-independent (it can be used for any viewpoint, only in extreme close-ups
the polygonal approximation becomes apparent). An image of an object mapped onto a
polygon facing the viewer is another approximation of the object’s shape, but a view-
dependent one. Such a textured polygon (or impostor [11]) can only be used for points
of view close to the point from where the image was taken.

Layered impostors are a generalization of dynamically generated impostors [19] in
the following sense: an impostor replaces an object by one transparent polygon onto
which the opaque image of the object is mapped. Thereby the depth of the object is
discarded and the polygon’s flatness becomes apparent when the viewpoint moves.



A layered impostor consists of many such transparent polygons. On every polygon
all drawn texels show those parts of the object’s surface which are at a similar distance
to the viewer as the polygon. In other words, every layer in the impostor depicts a slice
of the object at some distance to the viewer (see figure 1). The more slices are used the
better the approximation.

3.1 Texture generation and storage

The color information in the texture is generated in exactly the same way as for impos-
tors: a tight viewing frustum is placed around the object and a view of the object is ren-
dered from the current point of view. The object’s surface can be textured as well. In
this paper, however, object image and texture interchangeably refer to the image of the
object which is mapped onto the layers. Texel refers to one pixel in such a texture.
Final image refers to what is eventually displayed on the screen.

When the object’s image is generated, instead of discarding the depth-buffer con-
tents (the information describing the object’s three-dimensional shape) the depth
buffer contents are retained and stored together with the color information for each
pixel. From this RGBz information a texture is defined in the format RGBα (with z in
the α component) available on today’s graphics workstations. (This is in contrast to
McMillan’s plenoptic modeling approach [16] for which disparity values must be
derived from depth values).

3.2 Using the depth information in the texture

Instead of rendering one transparent polygon as with impostors several polygonal lay-
ers are rendered as a pyramidal stack having the point of view as it’s apex (see
figure 1). The object’s image was generated from the current viewpoint and is mapped
onto the layers as a partially transparent texture. In each layer only those areas of the

Fig. 1: Replacing an object (top left) with an impostor (top right) or a layered impostor (bottom)

eye

eye

eye

eye

original
geometry

layered
impostor
eight layers

layered
impostor
32 layers

impostor
one layer



image are drawn where the stored z-value closely matches the layer’s distance from the
viewpoint. A pixel test based on the pixel’s alpha value (similar to the depth test) is
used to select these areas (described in detail in the implementation section 4).

If disjoint depth intervals are drawn on each layer, any deviation of the point of
view from the point of texture generation results in cracks being visible between the
individual layers. These cracks are avoided by drawing slightly overlapping depth
intervals onto every layer (see figure 2).

3.3 Texture lifetime and texture regeneration

With an increasing number of layers in the impostor the drawn pixels match the spatial
location of the object’s surface closer than the pixels on a single impostor polygon. As
a result, in response to changes of the point of view the drawn pixels move in much the
same way as the points on the surface of the object. Consequently, the layered impos-
tor approximates the object’s appearance over a much larger set of viewpoints than a
single polygon. Compared to impostors the incurred error due to a mismatch of the
spatial location of texels and object’s surface points is halved by doubling the layers in
the impostor.

The error introduced by impostors can be controlled by observing error angles
[19]. Their derivation is repeated here briefly for comparison. When an impostor is
used instead of an object, points on the object are drawn into the final image as texels
on a textured polygon. When viewing the impostor from a point of view different from
the one for which the texture was generated, a discrepancy between the point on the
object’s surface and the point on the texture will appear. The angle under which these
two points are observed by the viewer can be calculated and used to limit the amount
of error introduced. Whenever a given error threshold is exceeded (say the angle under
which a pixel is observed on screen) the impostor’s texture is regenerated.

A conservative estimation for the maximum error angle for all points on the
object’s surface can be calculated from a bounding volume. In figure 3 the error angles
for extreme point’s on the object’s bounding box under orthogonal movements of the
viewpoint are shaded in grey. These error angles are the result of the maximal distance
of the object’s points from the impostor. With layered impostors this distance is
reduced with each additional layer. Error angles diminish accordingly as is evident
when comparing figure 4 to figure 3.

3.4 Warping with variable accuracy

When drawing a layered impostor into the final image, the number of used layers can
be selected. By not considering all the bits of the depth component in the texture, less

Fig. 2: Layered impostor for an approximated cone: overlaying depth intervals are assigned to
each layer to avoid cracks to appear between layers when moving the viewpoint.

depth

layers

depth

layersdisjoint overlapping

1
2
3
4

1
2
3
4

... ...



layers are obtained. As a result, the image warp is performed with less and less accu-
racy because texels from larger and larger depth intervals are warped in a uniform way
(see figure 1).

Adapting the accuracy of the image warp is desirable because the warping accuracy
required depends on the amount by which the viewpoint has moved from the point of
view V1 for which the texture was generated. As long as the viewpoint is coincident
with the point of texture generation, one layer in the impostor is a sufficient approxi-
mation to the object’s appearance.

The more the point of view moves away from the point of texture generation, the
worse the approximation of the object’s appearance by a single textured polygon. A
warp of the object’s image is required. However, for small deviations, a crude approxi-
mation to the image warp is sufficient. Layered impostors support different approxima-
tion accuracies by varying the number of layers used to draw the impostor into the final
image.

3.5 Occlusion errors

When warping an image depicting a three-dimensional scene, occlusion errors can
result. Consider the simple scene depicted on the top of figure 5. The cone, cube and
cylinder hide portions of the wall behind them. When moving away from this point of
view, the previously hidden areas of the wall become visible. When warping the image
obtained from the initial point of view these areas are missing and holes in the final
image will result (see figure 5 bottom). These holes are the bigger, the further the
objects are separated in depth. Errors caused by objects occluding each other are called
inter-object occlusion errors in this paper.

As the distance between two objects in a scene is potentially unbounded, inter-
object occlusion errors are unbounded when warping a single image per scene and
cause objectionable warping artifacts in the final image. The objects mutually occlude

Fig. 3: Impostors: error angles on extreme points of the bbox for orthogonal motion cases.

Fig. 4: Layered impostors: error angles on extreme points of the bbox for motion cases as above.

V1

V2

Object’s BBox

αerror

V1

αerror

V2

Object’s BBox

ImpostorImpostor

V1

V2 αerror

V1

αerror

V2

Layers
Layers



each other and large holes appear in the final image due to the motion of objects in the
image as caused by movements of the viewpoint. As an anticipation of the results sec-
tion 6 consider the additional images of the scenes in figure 8. Each object occludes a
large portion of the floor. When warping a single image of the whole scene large holes
would appear around the objects in the floor as the camera orbits around the scene.

By using a separate image for each object and warping these images individually,
inter-object occlusion errors are avoided. This is the approach taken by layered impos-
tors: there is a layered impostor with a texture for each object in the scene. Object
images are warped individually and are z-buffered into the final image. As a result,
inter-object occlusion errors are avoided.

Another class of errors remains, namely intra-object occlusion errors (see figure 6).
Concave objects possibly occlude portions of their own surface, resulting in similar
holes to appear in individually warped object images. In contrast to inter-object occlu-
sion errors, the size of an object is bounded and so are the artifacts introduced by intra-
object occlusion errors. The error is proportional to the maximum depth discontinuity
in the image which - unfortunately - is not reported by the graphics hardware. Having
it allows to bound both inter- and intra-object occlusion errors.

4 Implementation
An implementation of layered impostors was done using the OpenGL graphics library
which runs on a variety of platforms. As a prerequisite blending of RGB colors based
on alpha values is disabled, so that every drawn pixel is always opaque.

The OpenGL standard provides an alpha test function to restrict the drawing of pix-
els to certain areas of a textured polygon. The alpha component stored in the texture is
compared to a reference alpha value and pixels can selectively be drawn based on the
outcome of the comparison. Drawing pixels with equal, smaller or greater alpha values
than the reference value is possible.

For layered impostors depth values are stored in the alpha component of the tex-

Fig. 5: Inter-object occlusion errors: surface parts previously hidden by another object become
visible. In one image for all the objects information on these surface parts is missing.

Fig. 6: Intra-object occlusion errors: a concave object hides parts of its surface. Even if one
image is used per object, information on these surface parts is not available for warping.



ture. Ideally one would like to select pixels for a certain interval of depth values,
namely the interval around the depth of each layer. As a test for depth intervals is not
available in OpenGL, the implementation tests for equality of depth values and relies
on the finite accuracy of depth values to actually result in an interval of depth values to
be selected.

Scaling depth values by a factor smaller than one maps several depth values onto
one (e.g. scaling by 0.5 removes one bit of accuracy and two values are mapped onto
one). Assume four bits of accuracy in the following example. When the most signifi-
cant bit of the depth value is set1 and the scaling factor is increased slightly to the next
representable number larger than 0.5 (with 4 bits 0.5 is represented as 10002, the next
larger representable value is 10012 or 0.5625) the behavior shown in table 1 is
achieved. Requiring the most significant bit to equal one insures that incrementing the
scale factor actually influences the multiplication result.

The regular pattern (highlighted by * in the above table) is used to select overlap-
ping depth intervals. For successive layers depth values are multiplied alternately by
10002 or 10012 and the desired interval is selected by testing for equality with the mul-
tiplication result given in the table. This depth interval selection is depicted in figure 7.
The same behavior is also obtained for more bits of accuracy and can be used to distin-
guish a larger number of overlapping depth intervals. This implementation has been
tested on SGI Reality Engine, SGI O2 and SGI INDIGO graphics.

5 Optimizations
The layered impostor method provides a number of tunable parameters which can be
used to optimize the drawing performance. As was already mentioned, the image
warping accuracy can be adapted by varying the number of layers drawn per impostor.
In the current implementation the number of layers is dynamically adapted to the error
which must be compensated for. To achieve this, the scale factor is changed accord-
ingly.

Another improvement of the basic algorithm is to provide a more uniform frame
rate. As the number of textures to be regenerated varies from frame to frame, the frame
rate varies as well. For walkthrough applications it has proven sufficient to update no
more than one texture per frame. With a high frame rate this results in several texture

1.Requiring the highest bit of the depth values to be set means that the frustum sur-
rounding the object must be made twice as deep with only the back half being occu-
pied by the object.

b b * 10002 b * 10012

1000 0100 0100
1001 0100 0101*
1010 0101* 0101*
1011 0101* 0110
1100 0110 0110
1101 0110 0111*
1110 0111* 0111*
1111 0111* 1000

Table 1: Fixed point value multiplication using 4 bits of accuracy. Values from 0.5 (10002) to
1.0 (11112) are scaled by 0.5 (middle column) and the next larger value 0.5625 (10012, right).



updates per second. The warping accuracy of layered impostors is sufficient to hide the
sparse updates of each texture even under object rotations.

While updating only one object image per frame guarantees that the frame-rate
does not drop below a certain threshold, variations remain because in some frames no
updates are necessary. These variations can be avoided with the saved time put to good
use by updating exactly one object image per frame. This strategy has the advantage
that any warping artifacts are kept to a minimum during slow movement of the point of
view. When no object image would need to be regenerated under given error tolerance
settings, the one with the highest error is updated. In particular intra-object occlusion
errors are removed whenever possible.

6 Results and Discussion
The rendering performance of the layered impostor approach was tested on two scenes
with different characteristics. The first one depicts a collection of cars where the com-
plexity of the cars and other objects in the scene varies between 2816 and 21492 poly-
gons. The second scene is made up from eighteen copies of one car model (the one
with 21492 polygons).

Performance measurements were carried out on two machines, one from the low
price range (an SGI O2 with 128MB memory and 175MHz R10000 CPU) and one
high end graphics workstation (an SGI Onyx with RealityEngine2 graphics, 128MB
memory and 195MHz R10000 CPU).

In the frame sequence measured the camera orbits in a circle around one of the
scenes. This motion has been chosen because under rotation of the scene in front of the
viewer the appearance of individual objects changes fastest. In all the previously pub-

Fig. 7: Remapping depth values to obtain overlapping intervals.

unused
11

00

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

z

z

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

depth values

alpha test

11
11

11
01

11
10

11
11

11
01

11
10

* 0.5 =
* 10002
* 0.5625 =
* 10012

la
ye

rs

unused

la
ye

rs

reference value

unused
sc

al
e 

by

no overlap

50% overlap

depth values in the texture

intervals selected for drawing



lished image-based acceleration methods mentioned in the related work section this
motion has been avoided. With layered impostors and their ability to warp object
images this motion of the camera becomes feasible.

The window size was set to 768 by 576 pixels, the texture size was limited to 128
by 128 pixels which resulted in about one megabyte of texture memory being used in
all cases. The maximal tolerable error angle was set to the angle under which one pixel
is observed. As up to 32 layers are used per impostor this still results in an increase of
the object image’s lifetime by more than an order of magnitude in comparison to
impostors.

For obtaining a more uniform frame rate with layered impostors the regeneration of
exactly one object image per frame was forced by limiting the number of regenerations
to one and using a very small error angle (much less than a pixel).

Average frame rates are given in table 2 for the two graphics platforms mentioned
and the following three different rendering techniques:

• polygonal geometry only
• layered impostors with an error angle corresponding to viewing one pixel of the

final image
• layered impostors with one texture update per frame (the one with the largest

error angle)

Rendering original geometry results in a very uniform frame rate because the same
amount of geometry is visible in all frames. This rendering option is also slowest.

Layered impostors warp the object images and can be used for many frames even
with the camera orbiting around the scene. As a result, most frames can be generated

Fig. 8: Rendering with layered impostors: one texture update per frame removes most artifacts.
Left: cars: 319847 vertices, 149488 polygons Right: jeeps: 1096096 vertices, 365368 polygons

rendering method O2 RE2
Car scene

polygonal geometry 1.0470 Hz σ = 0.00413 3.23215 Hz σ = 0.0317553

layered impostors 8.4143 Hz σ = 1.69594 47.1101 Hz σ = 12.6673

layered impostors (1 update/frame) 4.3317 Hz σ = 0.995001 20.8030 Hz σ = 7.74516

Jeep scene
polygonal geometry 0.4853 Hz σ = 0.00606 1.42590 Hz σ = 0.0154931

layered impostors 3.9107 Hz σ = 0.961839 22.6625 Hz σ = 9.22151

layered impostors (1 update/frame) 2.4541 Hz σ = 0.0433292 11.2178 Hz σ = 0.470177

Table 2: Average frame rates and frame rate variation for the different rendering methods.



without regenerating textures and the frame rate is high. Whenever an object image
must be regenerated the frame rate drops but usually no more than one image needs to
be regenerated per frame. As described in the optimizations section a maximum of one
update can be enforced without causing visible artifacts. It is a question of human fac-
tors whether it is a good thing to have such a high frame rate with occasional “drop-
outs”. If a uniform frame rate is desired, the fast frames can be delayed to match the
frame rate of those frames, when a texture needs regeneration.

Some variations in the frame rate is caused by the dynamic adaptation of the warp-
ing accuracy even if no object images need to be regenerated. These variations are
mainly due to the fact that the current implementation only supports powers of two as
the number of layers in an impostor. Finer control over the alpha test function would be
required to remove this restriction.

Instead of delaying the fast frames it is better to regenerate one texture every frame
as described in the optimizations section. Now the remaining frame rate variations are
due to the varying complexity of the objects which need regeneration. Texture regener-
ation time dominates the whole rendering process due to the overhead of texture defi-
nitions in OpenGL.

In a scene where objects of similar complexity are replaced with layered impostors,
a uniform frame rate is achieved (as in the jeep scene). Objects of uniform complexity
can either be created when modeling the scene or by automatically clustering or parti-
tioning too simple or too complex objects. Partitioning can be done arbitrarily as in the
image caching approaches [20][22] as visibility is correctly resolved from the approxi-
mated depth values. In the current implementation objects of equal complexity must be
created during scene modeling. If off-screen frame buffers were available, texture
regeneration for complex objects could be distributed over several frames.

In general, the amount of experimentation possible with this OpenGL implementa-
tion of layered impostors is limited by the inflexibility of the alpha test functionality.
Further evaluation of finer choices on the number of layers would be useful and differ-
ent amounts of overlap among layers should be tried.

In addition more flexible rendering architectures have already been proposed from
which layered impostors would benefit. For example in the talisman architecture [24]
image layers are composited into the final image during video signal generation. This
has the advantage that object-image regeneration and final image composition do not
share one frame time but are pipelined over two frames.

As with the talisman architecture layered impostors allow to adapt the resolution
on individual object images to the importance of the object. For example, distant back-
ground objects can be rendered into textures containing less texels than the pixels the
object covers on screen. The talisman architecture offers high-quality filtering to
decrease the so caused “pixelization” of object images. With OpenGL this is not possi-
ble because filtering RGBα textures would result in an interpolation of depth values of
layered impostors. This interpolation disturbs the selection of depth intervals by test-
ing for equality of finite accuracy depth values.

7 Conclusions and Future Work
This paper presented layered impostors, a novel object centered approach to render
objects from depth augmented textures. Layered impostors unify image generation and
warping into a single real-time rendering framework. They warp the images using the
images’ depth values to closely mimic the appearance of the depicted object from new
points of view.



As with impostors only one texture is kept per object and reused as long as the
errors introduced by the use of layered impostors remains below a given error thresh-
old. The main advantage of layered impostors over dynamically generated impostors is
the fact that they can be reused by an order of magnitude longer. Other advantages of
layered impostors include:

• The drawing time for layered impostors is independent of the complexity of the
represented object. Consequently, for sufficiently complex objects drawing time
is saved by using layered impostors.

• As one layered impostor is used per object layered impostors work in dynamic
scenes. Each layered impostor can be moved around individually.

• Layered impostors do not use more memory than impostors for storing the depth
augmented texture. The usual eight bits of alpha are replaced by eight bits of
depth.

• Approximate z-values are written into the depth buffer for correct visibility
among layered impostors and objects rendered with polygonal primitives.

• The number of layers used in any layered impostor can be adapted to the required
warping accuracy and the available fill-rate of the graphics hardware.

• Layered impostors cache the images of a scene on a per-object basis. Therefore,
inter-object occlusion errors are avoided.

• Layered impostors are a hardware accelerated approach to 3D image warping.
• The warping quality is sufficient to accommodate object rotations.

Some disadvantages of layered impostors still need to be addressed:
• Large, highly overlapping polygons are used to draw the layers in the impostor.

This results in high fill-rate requirements especially with many layers.
• Only one object image is warped. As a result, surface parts which were occluded

when generating the image cause holes to appear in the warped image (intra-
object occlusion errors). Always regenerating one texture per frame can partially
compensate for this.

While the fillrate requirements may seem high polygonal scenes in real-time rendering
typically cause a bottleneck in the vertex transformation stage of the rendering pipe-
line. Layered impostors provide a means to shift some of this work to the pixel pro-
cessing stage and consequently better balance the work between the two stages.

One approach to deal with the fill rate requirements would be to detect and make
use of the large amounts of transparent texels per layer. Intelligent pixel-fill hardware
could detect these transparent areas and rapidly skip over them.

More flexible alpha test functions would allow further variations of the number of
layers used and the amount of overlap between depth intervals.

Filling the holes in the warped image could be addressed by using more than one
source image to calculate the warp. In particular, if a prediction of the user’s motion is
available, the new images could always be generated along the user’s future trajectory.
When the point of view for the image to be generated is within the convex hull of the
viewpoints of available images, holes can be filled to a great extent.

References

[1] Aliaga, Daniel G., “Visualization of Complex Models Using Dynamic Texture-based Sim-
plification”, IEEE Visualization ‘96, pp 101-106, Oct 28-Nov 1, 1996.

[2] Chen, Shenchang Eric and Lance Williams, “View Interpolation for Image Synthesis”,
Computer Graphics (SIGGRAPH ‘93) 27 (August 1993) pp 279-288.

[3] Chen, Shenchang Eric, “Quicktime VR - An Image-Based Approach to Virtual Environment
Navigation”, Computer Graphics (SIGGRAPH ‘95) (August 1995) pp 29-38.



[4] Dally, William J., Leonard McMillan, Gary Bishop, and Henry Fuchs, “The Delta Tree: An
Object-Centered Approach to Image-Based Rendering”, MIT AI Lab Technical Memo
1604, May 1996.

[5] Darsa, Lucia, Bruno Costa and Amitabh Varshney, “Navigating Static Environments Using
Image-Space Simplification and Morphing”, Proceedings of the Symposium on 3D Interac-
tive Graphics, April 27 - 30, 1997, Providence, RI, pp 25 - 34.

[6] Debevec, Paul E., Camillo J. Taylor and Jitendra Malik, “Modeling and Rendering Archi-
tecture from Photographs: A Hybrid Geometry- and Image-Based Approach”, Computer
Graphics (SIGGRAPH ‘96) (August 1996) pp 11-20.

[7] Dorsey, Julie, Jim Arvo, and Donald Greenberg, “Interactive Design of Complex Time-
Dependent Lighting”, IEEE Computer Graphics and Applications. 15(2) (1995), 26-36.

[8] Duff, Tom, “Compositing 3-D Rendered Images”, Computer Graphics (SIGGRAPH ‘85)
19 3 (July 1985) pp 155-162.

[9] Gortler, Steven J., Li-wei He and Michael F. Cohen, “Rendering Layered Depth Images”,
Microsoft Technical Report MSTR-TR-97-09, March 1997.

[10] Laveau, Stéphane and Olivier Faugeras, “3-D Scene Representation as a Collection of
Images and Fundamental Matrices”, INRIA Technical Report N˚2205, February 1994.

[11] Maciel, Paulo W. and Peter Shirley, “Visual Navigation of Large Environments Using Tex-
tured Clusters”, Symposium on Interactive 3D Graphics (April 1995) pp 95-102.

[12] Mark, William R., Leonard McMillan and Gary Bishop, “Post-Rendering 3D Warping”,
Proceedings of the 1997 Symposium on Interactive 3D Graphics (Providence, RI), April
27-30, 1997, pp 7-16.

[13] Mark, William R., Gary Bishop, “Memory Access Patterns of Occlusion-Compatible 3D
Image Warping”, Proceedings of the 1997 SIGGRAPH / Eurographics Workshop on
Graphics Hardware (Los Angeles, California), August 3-4 1997, pp 35-44.

[14] Max, Nelson, “Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buff-
ers”, Proceedings of the 7th Eurographics Workshop on Rendering ‘96, Porto, Portugal,
pp165-174.

[15] Mazuryk, Thomasz and Michael Gervautz, “Two-Step Prediction and Image Deflection for
Exact Head Tracking in Virtual Environments”, Computer Graphics Forum (EURO-
GRAPHICS ‘95) 14 3 pp 29-41.

[16] McMillan, Leonard and Gary Bishop, “Plenoptic Modelling: An Image-Based Rendering
System”, Computer Graphics (SIGGRAPH ‘95), (August 1995) pp 39-46.

[17] Pulli, Kari, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and Werner
Stuetzle, “View-based Rendering: Visualizing Real Objects from Scanned Range and Color
Data”, Proceedings of 8th Eurographics Workshop on Rendering, St. Etienne, France, June
1997, pp 23-34.

[18] Regan, Matthew and Ronald Post, “Priority Rendering with a Virtual Reality Address
Recalculation Pipeline”, Computer Graphics (SIGGRAPH ‘94) (July 1994) pp 155-162.

[19] Schaufler, Gernot, “Exploiting Frame to Frame Coherence in a Virtual Reality System”,
VRAIS ‘96, Santa Cruz, California (April 1996) pp 95-102.

[20] Schaufler, Gernot and Wolfgang Stürzlinger, “A Three-Dimensional Image Cache for Vir-
tual Reality”, EUROGRAPHICS ‘96, (August 1996), 15 3, pp 227-236.

[21] Schaufler, Gernot, “Nailboards: A Rendering Primitive for Image Caching in Dynamic
Scenes”, Proceedings of the 8th Eurographics Workshop on Rendering ‘97, St. Etienne,
France, June 16-18, 1997, pp 151-162.

[22] Shade, Jonathan, Dani Lischinski, David H. Salesin, Tony DeRose and John Snyder, “Hier-
archical Image Caching for Accelerated Walkthroughs of Complex Environments”, Com-
puter Graphics (SIGGRAPH ‘96), (August 1996) pp 75-82.

[23] Sillion, François X., George Drettakis and Benoit Bodelet, “Efficient Impostor Manipula-
tion for Real-Time Visualization of Urban Scenery”, Proceedings of Eurographics’97, Sep-
tember 4-8, 1997, pp 207-218.

[24] Torborg, Jay and James T. Kajiya, “Talisman: Commodity Real-time 3D Graphics for the
PC”, Computer Graphics (SIGGRAPH ‘96), (August 1996) pp 353-363.


