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Abstract. We present a novel technique for ray tracing geometry represented by points.
Our approach makes it possible to render high quality ray traced images with global
illumination using unstructured point–sampled data thus avoiding the time-consuming
process of reconstructing the underlying surface or any topological information. Com-
pared with previous point rendering methods, our approach allows for more complex
illumination models while still maintaining the simplicity of the point primitive.

Intersections with the point–sampled geometry are detected by tracing a ray through
the scene until the local density of points is above a predefined threshold. We then use
all the points within a fixed distance of the ray to interpolate the position, normal and
any other attributes of the intersection. The considered distance from the ray must be
larger than the largest “hole” among the points.

We demonstrate results for soft shadows, reflection and refraction, global illumina-
tion and subsurface scattering.
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1 Introduction

As geometry is getting more complex, the triangles – today’s most popular modeling
primitives – are getting smaller and smaller. Soon, the overhead associated with them
will no longer be justified, given that they only occupy sub-pixel areas in image space.
The alternatives explored currently in the research community are higher order surfaces
or simpler primitives such as points.

Points became popular in particular with the introduction of particle systems [17]
but have also been used by rendering systems as the final target for subdividing more
complex modeling primitives [4]. Today they have seen a comeback in image–based
rendering and real-time graphics due to their modeling flexibility, efficiency, and ease
of acquisition with digital cameras, 3D scanners and range finders,

Given the simplicity of points and the growing complexity of the geometric models,
it seems natural that point geometry will become an important element in modeling and
rendering. It is therefore desirable to extend the available rendering algorithms to the
realm of photo–realistic image synthesis and physically–based lighting simulation.

This paper extends previous rendering approaches by introducing a method for ray
tracing point–sampled geometry. This enables more complex illumination models and
even makes it possible to simulate global illumination in scenes containing point sam-
pled geometry. We have developed an intersection technique that uses only a local
sampling of the point sampled geometry. This makes it possible to skip the time con-
suming surface reconstruction step and instead make high–quality renderings directly
from the points representing the geometry.



2 Previous Work

To date, direct rendering of points has mostly proceeded in a “forward” fashion using
the perspective transformation to map 3D points to 2D image locations. The image-
based rendering literature is rich in techniques how to deal with the fact that with this
approach not necessarily every output pixel receives a sample. Pioneering work [11]
has been done by Levoy and Whitted in 1985, in which they propose points as a uni-
versal modeling primitive and present algorithms allowing for anti-aliased rendering of
this representation. Cook et al. [4] propose to decompose more elaborate primitives
to points in image space during rendering. More recent approaches include work by
Grossman et al. [7], Pfister et al. [16], and Rusinkiewicz et al. [18]. The differ by how
visibility among points is established and how the final image is reconstructed.

In image-based rendering, points are usually organized either into images with
depth or layered–depth images [19]. For those images, incremental algorithms can
be devised which make use of this particular organization of the points into 2D grids.
Chen et al. [2] approximate the apparent motion of 3D points using optical flow. Dally
et al. [5] present a method to build hierarchical object representations from points.
Shade et al. [19] introduce layered depth images to obtain a complete sampling of the
objects rather than just a sampling of the visible surfaces. A recent approach [14] factors
the warping equation into two steps simplifying the reconstruction.

Somewhat related to layered-depth images of 3D geometry are volume represen-
tations. These have been rendered using “splatting” of individual volume elements as
in [25, 10, 12] or with hardware acceleration [24].

All these approaches have one thing in common: no global illumination models can
be applied to the geometry. In many cases the color stored per sample is copied into the
final image directly. The only global effect reported so far is sharp shadows from point
lights using shadow maps [15].

3 Point Sampled Geometry

The most popular sources of point–sampled geometry are 3D scanners and laser range
finders. While many scans are usually required to cover the surface of complex objects
with samples, there exist efficient methods such as the one by Chen et al. [3] and Ny-
land et al. [13] which register multiple scans into a common coordinate system without
explicitly reconstructing the surfaces in the scene. In [13] planes are fit to points on
known planar surfaces which are aligned between different scans. This approach works
best for indoor scenes, where samples on walls are aligned. For scans of smaller ob-
jects, background planes can be added to the scanned geometry artificially. We build on
the success of such methods and assume registered point samples of complex objects to
be available.

In order to unambiguously represent a surface by a sampling of points, this sampling
must fulfill a number of requirements in order to distinguish close but different surface
portions from each other, and to distinguish holes in the surface from regions of sparse
sampling. In particular, the sampling density of the points must be at least twice as high
as the minimum distance between different portions of the surface [8], i.e. at least as
high as the distance to the nearest point on the medial axis of the surface [1].

Our rendering approach assumes that the maximum size of a gap in the samples is
known. If the point samples are not that uniformly distributed over the surface, they can
be made to be more evenly spaced using an approach described by Szeliski et al. [21,
22]. By giving attracting and repulsive forces to the points, points tend to even out the



spacing between them. Adding points at gaps along borders can fill holes of a given
maximum size.

Like Szeliski et al., we also assume a normal to be available per point. If the 3D
scanning process does not provide normal information, it can be estimated by fitting a
plane to the points in the neighborhood of each point using least-squares minimization.
The nearest neighbor search can be accelerated using spatial data structures such as
octrees or bsp-trees, giving normal computation a complexity of O(n log n) [8]. Note
that we do not reconstruct a surface as Hoppe et al.but only compute normals from
fitting tangent planes to each point. Our implementation is capable of pre-computing
on the order of 5000 normals/second for geometry represented by 440000 points on a
MIPS R10k processor running at 250MHz. Alternatively, normals can be computed on
the fly as intersections are detected.

4 Intersecting a Ray with Point Geometry

Computing an intersection with the point geometry is split into two parts: detecting if an
intersection has occurred and computing the actual point and normal of the intersection.

4.1 Intersection Detection

An intersection is reported, if the ray intersects a disk centered at each point. These
disks have the same normal as the surface point. The radius r of the disks is set slightly
bigger than the radius of the biggest hole in the points’ sampling of the surface. We
accelerate the search for such a point using an octree. The ray is surrounded by a
cylinder of radius r and only those nodes in the tree that intersect the cylinder are
traversed. The cylinder is capped off at the origin of the ray and the maximum length
of the ray using two planes. Further acceleration is achieved by projecting the cylinder
onto two coordinate planes and checking the octree nodes with these projections (see
Figure 1).
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Fig. 1. Left: Cylinder around ray with projections onto coordinate planes. The first disk centered
at a point intersected by a ray (black) triggers an intersection. Position, normal and other per-
point attributes are interpolated for all points inside the bold cylinder (grey) starting at the first
found point. Right: Calculating the intersection point (grey) from four points in the cylinder.
Their normals and positions along the ray are weighted by their distance di from the ray.

The two planes are chosen based on the largest component of the ray’s direction



vector. The example in the figure shows a ray with the Y-coordinate largest. Therefore,
the cylinder is projected onto the XY- and YZ-planes.

4.2 Intersection Point Computation

Once an intersection is detected, another short cylinder is started at this point along the
ray (shown in bold on the left of Figure 1) and all the points within this cylinder are
collected. The actual intersection point will be interpolated from these points. We have
found our simple interpolation scheme to give visually satisfactory results although
higher order interpolation is possible. In particular, the normal of the intersection point
is formed by weighting the normals of the points in the cylinder based on the point’s
distance from the ray. The same weighting is applied to find the actual intersection
point along the ray. We intersect the planes formed by each point and its normal with
the ray’s parametric representation, ray = X + t ∗ D, where X and D are the origin
and the direction of the ray. The final intersection point is found by interpolating the
computed t values, and inserting this value in the ray’s parametric representation.

The right of figure 1 shows a 2D example of a ray running through a group of four
points. For each point Pi, the normal and local plane are shown which intersect the
ray’s supporting line at a distance di from the point. The normal of the intersection
point (shown in grey) is then calculated as in equation (1). In general, any attribute
associated with the points can be interpolated this way.

attrib =
∑

i attribi ∗ (r − di)∑
i (r − di)

(1)

Points will only be considered if their distance from the ray d i is smaller than r.
Note that the distance is not measured orthogonal to the ray but in the plane of the point
and its normal to create the circular disks around each point.

This intersection point computation is slightly view dependent. The final position
of the surface will vary with the direction of the incoming ray. The variations are small
enough that they do not result in visible changes to the surface, but for more complex
illumination algorithms this discrepancy must be taken into account as explained in the
next section.

5 Rendering with Points

Given a technique for intersecting a ray with points, we can apply more advanced illu-
mination models. We also augment each point with extra information such as texture
coordinates, color, diffuse albedo etc. that can be interpolated and used by the ray tracer.
Recursive ray tracing considers shadows and reflected and transmitted light. Further-
more, we can use Monte Carlo ray tracing methods to compute global illumination.

As mentioned in the previous section, the computed intersection point is slightly
dependent on the direction of the incoming ray. Even though this does not result in
visible changes to the surface, it must be taken into account within the ray tracer. This
is particularly important for shadow rays where wrong ray-geometry intersections can
result in false self-shadowing of the surface. To avoid this problem, we use a shadow
offset based on the radius r of the disks. We have found a shadow offset of 1-3 times r
to work well in practice. We do not consider this to be a problem of using points since
shadow offsets are necessary even for triangle meshes with vertex normals [20]. In
addition to the shadow offset we only accept intersections with point–sampled geometry



that are at least 2r away from the ray origin. This is to prevent wrong intersections for
reflected and transmitted rays.

Normals are either computed on the fly or in a pre-processing step. These normals
can possibly point into the interior of objects. To prevent this from being a problem
in the ray tracer, we flip the point normals such that they always point towards the ray
origin, meaning we cannot use the normal to determine whether the ray enters or leaves
a given object. For this purpose we use the history of the ray - ie. by counting the
number of previous transmissions we can determine whether we are inside or outside a
given object.

6 Results

We have implemented the intersection technique for point sampled geometry as a geom-
etry component in our ray tracer. This ray tracer also supports global illumination via
stochastic sampling of indirect light optimized with irradiance caching [23] and photon
maps [9]. All timings and results were obtained using a dual PII-400MHz.

Our first sequence of images in Figure 2 illustrates how the radius of the cylinder
around the ray is approaching the distance between the points. Eventually, the single
points join together into a smooth surface. Bigger radii result in more smoothing.

We have also implemented texture coordinate interpolation as another example of a
surface attribute specified per point. Figure 3 gives two examples of a texture mapped
onto geometry specified as points. Interpolation of texture coordinates in between
points is accomplished using Equation 1 from Section 4.

The image in Figure 4 demonstrates global illumination and caustics on point sam-
pled geometry. It is a glass bunny generating a caustic on a wooden bunny. The ren-
dering time for this image was 11 minutes given a resolution of 768x512 and 4 samples
per pixel.

Our final example in Figure 5 illustrates our approach on a complex model. It is a
scanned version of the head of Michelangelo’s David statue. The head has more than
two million points. Each point has an additional diffuse albedo attached.

Figure 5(a) shows the head rendered with global illumination and using the inter-
polated diffuse albedo information as the local surface color. This model was rendered
in 1024x1024 with 4 samples per pixel in 61 minutes. For this model we optimized the
size of the radius such that the surface just connects, and so we are able to capture every
fine detail of the model. We precomputed the normals using the 3-6 nearest neighboring
points.

Figure 5(b) shows an example of a complex translucent illumination model applied
to the head. We rendered the head using subsurface scattering with multiple scatter-
ing [6] based on highly translucent artificial volumetric marble. Notice how the point
sampled surface provides enough information to perform this simulation. The image
does have a few artifacts in areas with holes in the model (such as in the nose and in
the hair), but the overall appearance is captured faithfully. The image was rendered in
1024x1024 with 4 samples per pixel in approx. 4 hours.

To test the speed of our point intersection code we compared it with triangles in a
number of simple test scenes: one containing the bunny and one containing the Buddha
appearing in the video. Table 1 shows the resulting timings. The points code has not
yet been optimized, and it can be observed from the table that our optimized triangle
intersection code is approximately 3-4 times faster. For the triangle meshes we used a
hierarchical grid. We believe that most of this overhead is due to traversing the octree.



(a) Bunny: 500 points, r = 0.04 (b) Bunny: 1900 points, r = 0.03 (c) Bunny: 34800 points, r = 0.014

Fig. 2. Rendering a bunny with a variety of point counts and cylinder radii.

Fig. 3. Interpolation of texture coordinates in between points.

Fig. 4. A caustic from a glass bunny onto a wood bunny.



(a) (b)

Fig. 5. The head of the David rendered from 2 million points. (a) Global illumination using
points with color information, (b) Subsurface scattering using artificial volumetric marble.

Model Points/Triangles Render time (sec.) Rays/sec.
Bunny (points)a 34834 23.1 34204
Bunny (points)b 34834 24.5 32142
Bunny (triangles) 69451 8.4 93809
Buddha (points)b 543652 46.1 12309
Buddha (points)c 543652 36.1 15731
Buddha (triangles) 1087716 8.6 63300

a5 octree levels
b6 octree levels
c7 octree levels

Table 1. Intersection timing (points vs. triangles).



7 Discussion

In the process of trying to obtain these results we considered a number of simpler inter-
section techniques that did not work quite as well as the method we decided to use.

We tried the following alternative approaches:

• Using a sphere around each point. This method grows the object by the radius
of the spheres. It requires a large number of spheres to make the surface appear
mostly smooth – too few spheres will make the surface bumpy. The normals
generated at intersection points are determined by where each sphere is hit and
exhibit discontinuities between spheres.

• Using an octree with non–cube shaped leaf nodes. Within each leaf node the
local subset of points can be used to construct a small surface patch (a plane or
a higher order surface) which will possibly cause an intersection with the ray in
this part of space. This technique suffers from lack of continuity between the
leaf nodes. Moreover, the border of the patch is determined by the faces of the
octree node. In many cases the patch will inappropriately extend into the corners
of nodes.

• Using an oriented disc at each point. This approach is closest to what we
currently apply for ray intersection, but without interpolation between points, it
will not give a smooth surface. As other attributes are not interpolated, normals
or color per point and texture mapping will not work as expected. The disks will
appear as flat-shaded patches.

In our approach we use a cylinder to locate the points from which attributes are
to be interpolated. This results in a visually smooth surface – its smoothness can be
controlled by varying the disk radius. As pointed out, our definition of the ray-point
geometry intersection causes the obtained surface to be slightly view-dependent. The
interpolation of the ray-parameter t, from which the exact point of intersection is de-
rived, will be different for different directions of incidence of the ray. However, in the
animations we have rendered, this did not cause any visually distracting artifacts. We
attribute this to the fact that the shading of the surface is mostly determined by the
normal, which is unaffected by the exact location of the intersection.

An interesting question is how direct use of point sampled geometry compares to
using triangles. As our timings statistics in table 1 indicate our intersection code for
point sampled geometry is approximately 3-4 times slower than our optimized triangle
intersection code. This is not bad considering that the points intersection code is the
first rough implementation which has not been optimized. We believe that the point-
geometry intersection is no more complicated than triangles since the disk test is much
simpler than the barycentric test used for triangles. In addition most complex models
have fewer points than triangles (the bunny has approximately 70000 triangles but only
35000 points). Memory usage is similar for the two methods; points use slightly less
memory since they do not require connectivity information.

Another advantage with points is that it is easy to make hierarchical simplifications
by merging neighboring points. As demonstrated in a recent splatting approach [18]
it is possible to build a highly efficient hierarchical representation of point sampled
geometry for use with very complex models (more than hundred million points). The
complete model of the David has on the order of 1 billion points. A hierarchical point
sampled representation may be the most efficient way to deal with a model of this
complexity. Since we already use an octree to locate the points for our intersection
computation is should be straightforward to test this concept.



Currently, we use a fixed radius to locate neighboring points. This assumes a similar
density of points over the surface. For some objects it might be advantageous to wary
the density of the points to capture certain local variations such as edges in the geometry
more efficiently. For this purpose we would like to include an adaptive radius where
the local density of points is used to adjust the size of the region from which points are
used.

Our intersection routine for points is slightly view dependent. This has not caused
problems in the models that we have rendered, but it would be nice to have completely
consistent geometry. We have considered using a fixed direction for the cylinder that
collects points (for example based on the normal of the first disk that is intersected).
Another alternative would be to collect points using a sphere around the first intersection
point.

8 Conclusion and future work

In this paper we demonstrate how global illumination effects can be achieved on geom-
etry represented only by a sampling of 3D points. We formulated a method to intersect a
ray with such a surface representation and smoothly interpolate surface attributes across
it. By that we have extended the usefulness of this type of object representation to the
field of realistic image synthesis and physically-based light transport.

In the future we would like to compute a more accurate surface intersection based
on an adaptive local sampling of the points. In addition, we would like to make better
use of our octree hierarchy and sample the geometry at a level which reflects the level of
detail at which the point sampled geometry is observed. This could be done by storing
filtered attributes at the interior nodes of the point hierarchy using a filtering similar to
mip-mapping.

Even though it is still faster to use triangles for rendering our scanned models we
believe that direct ray tracing of point sampled geometry has significant potential in
particular as our models become more complex.
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