
Adding Force Feedback to Graphics Systems:
Issues and Solutions

William R. Mark1 Scott C. Randolph2 Mark Finch3 James M. Van Verth4 Russell M. Taylor II5

Department of Computer Science*

University of North Carolina at Chapel Hill
ABSTRACT
Integrating force feedback with a complete real-time virtual
environment system presents problems which are more
difficult than those encountered in building simpler force-
feedback systems. In particular, lengthy computations for
graphics or simulation require a decoupling of the haptic servo
loop from the main application loop if high-quality forces are
to be produced. We present some approaches to these problems
and describe our force-feedback software library which
implements these techniques and provides other benefits
including haptic-textured surfaces, device independence,
distributed operation and easy enhancement.

CR Descriptors: H.1.2 [Models and Principles]:
User/Machine Systems; C.3 [Special-Purpose and Application-
Based Systems]: Real-time systems; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – Virtual
Reality; I.6.8 [Simulation and Modeling]: Types of Simulation
– Distributed.

Additional Keywords: haptic, force feedback, friction
model, intermediate surface representation, scientific
visualization, interactive graphics, virtual environment,
virtual world.

1. INTRODUCTION
As designers of interactive computer systems work to increase
the information flow between the computer and the user,
sensory modalities other than vision become increasingly
important. One such modality is force feedback. The sensing
of forces is closely coupled to both the visual system and one’s
sense of three-dimensional space; the eyes and hands work in
concert to explore and manipulate objects.

* CB #3175, Sitterson Hall; Chapel Hill, NC 27599. Tel. +1.919.962.1700
Authors’ current organizations and contact information:
1 UNC-CH; markw@cs.unc.edu; www.cs.unc.edu/~markw
2 Spectrum Holobyte; randolph@holobyte.com; www.holobyte.com
3 Numerical Design, Ltd.; mf@ndl.com; www.ndl.com/ndl
4 Virtus Corp.; jim.van.verth@virtus.com; www.cs.unc.edu/~vanverth
5 UNC-CH; taylorr@cs.unc.edu; www.cs.unc.edu/~taylorr
Force feedback usefully enhances the capabilities of
virtual environment systems; [17] showed that force feedback
increases productivity in solving rigid-body placement
problems and [8] demonstrated an atomic-surface modification
system which would not have been feasible with graphics
alone.

Virtual environment force displays use models and
algorithms described in the robotics and teleoperation
literature for low-level control—see for example [9][22][23].
When combining a computer graphics engine, a simulation,
and a force-feedback device into one system, there are several
areas of concern in addition to that of low-level control. The
force-feedback component of such a system should:

• Maintain a high update rate in the force servo loop.
• Present high quality forces without detectable artifacts.
• Transparently support different force-feedback devices.
• Interface easily and cleanly with the rest of the system.

We discuss some approaches to these problems and present the
Armlib force-feedback library [13] as one solution.

2. PROBLEMS AND SOLUTIONS
It has been clearly shown that it is necessary to run the
simulation and graphics loops of virtual environment (VE)
systems asynchronously in order to maintain reasonable
display update rates (around 20 Hz) in the presence of long
simulation computations. [11][20]

Such a decoupling is even more critical for force display,
where update rates of several hundred Hz are required to produce
high-quality forces. The necessary rate depends somewhat on
the characteristics of the force-feedback device and control
algorithm, but, for example, [1] required an update rate of 500
Hz for their system. If the update rate falls below the required
minimum, the user begins to notice high-frequency
discontinuities and hard surfaces become either soft or
unstable.

We can decouple the simulation and haptic loops on a
single machine by using either multiple processors or very
frequent context switches. However, it is often more practical
to dedicate one real-time machine to the haptic servo loop, and
use other machine(s) for the rest of the virtual environment
tasks (simulation, high-performance graphics, etc.). This
strategy allows each machine to be well matched to its task. It
also allows for flexible system configuration, which i s
particularly useful in a research environment.

The general case of such a split system connects the force-
feedback device directly to a force server. This server tracks the
probe of the force-feedback device (held in the user’s hand) and
executes the force-feedback servo loop. The application
connects to this force server through some communication
channel, retrieving position information from the server and

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

sending descriptions of forces or force fields to it. We
currently use a TCP/IP Ethernet communications channel
because we must connect to existing graphics and research
equipment; a low-latency, high-bandwidth channel such as
shared memory would be superior.

Kim et al. [12] did the first work in this area, showing that
teleoperation systems benefit from a decoupling of low-level
force servo loops from higher-level control. Adachi et al. [1]
were the first to apply the technique to virtual environment
force-feedback systems. Rather than simply supplying a
single force vector to the force-feedback controller, they
supply an intermediate representation (their term, which we
adopt) for a force model. This representation is updated
infrequently by the application code, but is evaluated at a high
update rate by the force-feedback controller.

Gomez et al. [10] demonstrate a system which takes
almost the opposite approach. Their main simulation runs on
the force-feedback machine and sends state updates to a
graphics machine.

2.1 Intermediate representations

The kind of intermediate representation that is most useful
depends on the application. A molecular modeling system
might use spheres of contact. An immersive design system
could send a representation of nearby surfaces. A simulation
meant to teach understanding of physics force fields [3] might
send equations to the server that describe the field.

Mitsuishi et al. [16] demonstrate a remote milling system
which uses an intermediate representation of average tool
force.

We describe two general intermediate representations,
plane and probe and point-to-point spring, and our extensions
to these types.

Plane and probe
In the plane and probe model, the force server keeps

models of a plane which the probe can contact. [1] When the
probe penetrates the plane, a restorative spring force that
depends on the depth of the penetration is applied. The result
is a surface with controllable sponginess against which the
user can push (see Figure 1).

Using this model, the application computes a local planar
approximation to the surface at the user’s hand location each
time through its main loop. The user feels a firm plane (forces
updated at ~1 kHz by the force server), while the plane’s
position is updated more slowly (at ~20 Hz) by the application.
The increase in local force update rate from 20 Hz to 1 kHz
dramatically increases the maximum firmness of the surface
while maintaining a stable system.

Figure 2 shows how this this technique works in one
application, the Nanomanipulator, which allows the user to
control the motion of a microscopic tip as it travels over a
Probe

Probe

k

k

Figure 1: A hard surface is approximated by a plane
connected to a spring. When the probe encounters the plane,
a spring force with spring constant k is applied. Very high
values of k produce a surface that feels hard. The force i s
normal to the plane.

surface. [8] The initial implementation of the Nanomanip-
ulator system performed its force computations on the graphics
host, using Armlib only to read positions and send forces to
the force-feedback device. This method restricted the force
updates to at most the system loop update rate, which was
around 20 Hz. The result was either a soft surface with sluggish
response or an unusably unstable surface. Decoupling the
application and force servo loops using our plane and probe
model resulted in a much more stable and stiff surface.

Surface friction and texture
The surface model just described produces forces which are

always perpendicular to the surface. The resulting surfaces feel
like oiled glass, with the probe tending to slip off convex
surface areas and into concave ones.

Previous researchers have demonstrated the importance of
surface friction models in allowing the user to explore a surface
without slipping. Several researchers [5][18][19] investigated
models that combine static friction (which holds the probe at a
fixed spot) with kinetic friction (which slows the probe’s
movement once it breaks free of the static friction). Adachi et
al. [1] model only kinetic friction, using a velocity-based term.

Minsky et al. [15] model haptic surface textures using a
friction-like technique. Rather than directly representing
variations in surface height, they represent these variations
using a 2D lateral force field. This field is proportional to the
gradient of the surface height function. Because their force-
feedback device has only two degrees of freedom, lateral forces
are not proportional to the normal force, as is typical for a
friction model.

We have implemented a friction model that includes both
static and kinetic components and can represent simple surface
textures. Adjustment of the parameters produces surfaces that
feel like concrete, sand, rubber, skin, or cloth. The model i s
rapidly computable, allowing a high update rate. Figure 3
shows the parameters of our model graphically; an explanation
follows.
Application commands
microscope tip to move

Three samples yield
a tangent plane to the
surface at contact point

Plane is presented
to user, using the
plane-and-probe model

1 2

34

Force-Feedback Device Atomic Force Microscope

Nanomanipulator
Application

Force server measures
probe location

Atomic Scale
Surface

User

Figure 2: The Nanomanipulator application uses surface height readings from the microscope tip to determine a
local plane approximation which is sent to the force server.

dSnap

dMean

dSpread

kStick = spring
constant of the
probe tip (how
flexible it is)

kK = coefficient
of kinetic friction

Figure 3: Surface friction model. The tip slides across the
surface against kinetic friction kK until it hits a snag. Snags
populate the surface with mean distance dMean between
them, uniformly distributed within dSpread. The tip sticks in
the snag, bending with spring constant kStick until moved
more than dSnap, then it jumps free.

Our friction model is that of a surface populated by snags
being probed by a flexible tip. When the tip is not stuck in a
snag, it moves across the surface opposed by a friction force
that is proportional to the normal force (with coefficient of
kinetic friction kK). When the probe encounters a snag, i t
sticks there until the probe moves more than dSnap units away
from the sticking point, in any tangent direction. While it i s
snagged, a force tangent to the surface pulls the tip towards the
center of the snag. This force is proportional to both the
normal force and to the distance from the snag center (with
spring constant kStick).

The snags tend to hold the probe in place on the surface.
This tendency provides a natural “station keeping” on surfaces
with high snag density (such as sandpaper).

The snags are placed around the surface with a mean
distance between snags of dMean, uniformly distributed within
dSpread. In fact, we populate the surface with snags
dynamically. After leaving a snag, the tip will encounter
another placed with uniform probability between dMean-
dSpread/2 and dMean+dSpread/2 units away from the first snag,
regardless of the tangent direction traveled. Additionally, if
the forward motion of the tip (movement away from the
previous snag) ceases, it is considered to have encountered a
snag at the point where forward motion stopped. Although
actual surfaces could be measured to determine parameters for
our model, in practice we have explored the parameter space
interactively in order to produce different surfaces.

This parameterized snag distribution, which controls the
transition from kinetic to static friction, is what sets our
friction model apart from previous static/kinetic friction
models. Salcudean and Vlaar [18] based their kinetic-to-static
transition entirely on probe velocity. Salisbury et. al. [19]
transitioned immediately, without providing steady-state
kinetic friction. Our technique allows simulation of simple
surface textures in addition to modeling standard friction. It
provides these benefits while using only simple computations
that allow us to maintain a high update rate.

Multiple planes
One plane often suffices to model a smooth surface, as i t

can be continually positioned in the correct orientation to
provide the normal to the surface at the point of contact.
However, a model of an object with a sharp inner edge (such as
the inside corner of a box) requires multiple planes to constrain
probe motion in several directions at once. Armlib extends [1]
by providing this multi-plane capability, although as [24]
points out, this technique can result in errors when the planes
are not at right angles to each other.

Multiple probes
It is sometimes necessary to simulate a probe that is larger

than a single point. An application that allows users to feel
around in a virtual room with their hand is an example of such a
system. One virtual probe is created for each finger on the hand
and one for the palm, allowing the user to feel multiple
contacts between the world and the hand (for example, resting
the hand flat on a virtual desktop). Since the points might be
contacting different objects, each has its own local surface with
which it can collide. For example, when pulling out a chair,
the thumb may rest on top of the chair while the index finger
pulls it away from the table. Since the force-feedback device
has only one physical probe, the user experiences the sum of
the virtual probe forces; the effect is similar to sticking a
single finger in a very stiff glove.

Point-to-point springs
Some applications allow the user to pick and drag objects

which are subject to complex forces. Examples of such objects
include rigid bodies participating in a many-body simulation
and atoms in a protein, which are subject to forces determined
by a molecular dynamics simulation. Often the calculation of
the forces acting on the object is so complex that it can only
be performed once or twice a second. Furthermore, there i s
usually no rapidly-computable local approximation to these
forces which will remain valid for the entire interval between
full calculations.

We approach this problem by implementing a compliant
connection between the application loop and the force-
feedback servo loop. The technique uses a simulated spring to
connect the probe endpoint to the appropriate body in the
simulation, as shown in Figure 4. The user experiences forces
which are both reasonable and stable.

k

r (rest length)

f = k*(x-r)

Endpoint moved
by force server

Endpoint moved
by application

Figure 4: Point-to-point spring, which couples one point
moved by the application (at ~1 Hz) to another moved by the
force server (at ~1 kHz). The spring constant is k.

The method is based on that used in [21] for mouse-based
interaction. Another member of our lab, Yunshan Zhu,
implemented it for a force-feedback device using two
asychronous loops on the graphics host. That success led us to
integrate the technique into Armlib’s force server.

In this method, the application controls the motion of one
endpoint of the spring at its slower update rate, while the other
endpoint follows the probe motion at the force update rate. The
spring applies force both to the probe (pulling the user’s hand
towards the point of contact) and to the application (typically
adding forces into the simulation). Adjustment of the spring

constant controls the tightness of the coupling between
application and probe; a weaker spring produces small forces in
the application while a tighter spring causes more
discontinuity in the force when the application endpoint
moves.

In order to prevent the user from moving the probe too
rapidly, we may in the future add adjustable viscosity to the
force-server loop. Viscosity would tend to keep the probe from
moving large distances (and thus adding large forces) between
simulation time steps.

Multiple springs
Using a single point of contact

between the application and the force
server, it is only possible to specify
forces, not torques. This restriction i s
overcome by attaching springs to
multiple application points and
multiple virtual probes. Acting
together, multiple springs can specify a
force and general torque on the probe
and the application model (see Figure 5).

2.2 Preventing force discontinuity artifacts

As pointed out in [1], the plane-and-probe model works well
only when the plane equation is updated frequently compared to
the lateral speed of probe motion. As shown in Figure 6, this
restriction is most severe on sharply-curving surfaces. A sharp
discontinuity occurs in the force model when the probe i s
allowed to move large distances before the new surface
approximation is computed. If the discontinuity leaves the
probe outside the surface, the probe drops suddenly onto the
new level. Worse, if the probe is embedded in the new surface,
it is violently accelerated until it leaves the surface (and
sometimes the user’s hand).

a b
Figure 6: Probe motion that is rapid compared to the surface
curvature causes a sharp discontinuity when the new plane
equation arrives. Case a shows the free-fall that occurs for
convex surfaces. The more severe case b shows the sudden
force caused by being deeply embedded in the surface.

To solve the problem of extreme forces when the probe i s
embedded in the new surface, we have developed a recovery time
method. This method is applied during the time immediately
after new surface parameters arrive. If the probe is outside the
surface at the time the parameters change, the system works as
described above, dropping suddenly to the surface. If the probe
is within the surface, then the normal direction for the force
remains as above but the force magnitude is reduced so as to
bring the tip out of the surface over a period of time, rather than
instantaneously. This period of time is adjustable, and serves
to move the probe out of the surface gently, while still
maintaining proper direction for the force at all times. Figure 7
illustrates this algorithm.

Figure 5: Torque
from multiple
springs.
n=4

Figure 7: When a new plane equation would cause the probe
to be embedded in the surface, the recovery time algorithm
artificially lowers the plane to the probe position then raises
it linearly to the correct position over n force loop cycles.

This method allows the presentation of much stiffer-
feeling surfaces (higher spring constant) without noticeable
discontinuities. By using recovery times of up to 0.05 second,
the Nanomanipulator application was able to increase the
surface spring constant by a factor of 10.

A recovery-time algorithm is also required in the point-to-
point spring model. When the only adjustable parameter is the
spring constant, there is a trade-off between how tightly the
probe is tied to the application endpoint (higher k is better)
and how smooth the transition is when the application moves
its endpoint (lower k is better). We avoid this tradeoff by
allowing the application to specify the rate of motion for its
endpoint after an endpoint update. When the application sets a
new position for its endpoint (or a new rest length for the
spring), the point smoothly moves from its current location to
the new location over the specified number of server loop
iterations.

2.3 Flexibility and extensibility

Our force-feedback software has evolved from application-
specific device-driver routines [4], through a device-specific
but application-independent library controlling our Argonne-
III Remote Manipulator, to the current device-independent
remote-access library, Armlib.

Armlib provides connectivity to widely-used graphics
engines (SGI, HP and Sun workstations) over commonly-used
networks (Ethernet and other TCP/IP). It supports
commercially-available force displays (several varieties of
SensAble Devices PHANToM [14], and Sarcos Research
Corporation Dexterous Master), as well as our Argonne-III
Remote Manipulator from Argonne National Laboratories.
Armlib supports the simultaneous use of multiple force-
feedback devices, for multi-user or multi-hand applications.
The application selects the device(s) it needs to use at runtime.

Armlib structure
Armlib provides device independence at the API level by

using a cartesian coordinate system with an origin at the center
of the device’s working volume. Forces and positions can be
automatically scaled so that software will work unchanged with
devices of different sizes.

The device independence extends to Armlib’s internal
structure (Figure 8). Device-dependencies are compart-
mentalized in a set of simple low-level “device-driver”
routines, which handle the reading of joint positions, the
writing of joint forces, and the serializing of the robot link
configuration. Higher levels of the library, including the
intermediate representation servo loops, function in cartesian
space. The conversion from joint space to cartesian space and
back is handled by a common set of routines which utilize a
Denavit-Hartenberg based description of each device to
compute the forward kinematics and Jacobian matrix at runtime
(see e.g. [9]). These routines effectively discard most torque

information for three DOF devices such as the standard
PHANToM.

The compartmentalization of device dependencies
facilitates the addition of both new device types and new
library capabilities. Because code for intermediate
representations uses only cartesian space, this code works
automatically for all devices. The ease of making changes i s
illustrated by the fact that it took only two days to add support
for the PHANToM device to our library, and less than two days
to add the code for our spring-based intermediate
representation.

Haptic Device

Armlib
client side

TCP / UDPApplication
main loop

Application Machine Force Server

Intermediate represent.
servo-loop

Device-driver
(device-specific)

Forward kinematics &
Jacobian

Joint pos/forces

Cartesian pos/force

Intermediate Representation
Parameters

(sent over Ethernet)

Figure 8: Armlib’s structure. Intermediate representation
parameters pass between the client (application & API) and
the force server over the Ethernet. The intermediate
representation servo loop functions entirely in cartesian
space. Device-dependencies are contained in the joint-space
device-driver.

Client/Server communications
There are two types of information passed between the

application and the force server. Commands affecting system
state (starting, stopping, initiating local force computation)
must be delivered intact and not lost. In contrast, position
reports and updates to intermediate representation parameters
are sent frequently, so a lost packet can be ignored since a new
one will arrive shortly. (In fact, ignoring these lost packets i s
the correct approach; retransmission is time consuming). We
decided to use two channels between the client and server, the
command and data channels. We currently use a TCP stream
connection for the command channel (reliable, high overhead)
and use UDP datagrams (unreliable, low overhead) for the data
channel. Our client-server communications routines are well-
compartmentalized, so the substitution of different protocols
would be simple.

Armlib provides an asychronous continual report mode, in
which the server sends position reports at regular intervals
(using the data channel), rather than on request. This mode
avoids the wait for a round-trip network message which i s
required by standard requests. The application can poll for
these continual reports or block for them. Armlib also
provides the application with a file descriptor indicating report
arrival which can be select()’d by event-driven applications
such as those written under X-Windows.

Performance
All of the intermediate representation features (plane-vs.-

probe, multiple probes, recovery time, friction, and point-to-
point springs) are orthogonal, and can be used singly or in
combination. These tools produce a rich interaction
environment at high update rates. We achieve 1 kHz on a 133
MHz Pentium processor for our custom six sense-DOF, three
force-DOF PHANToM. The rate is even higher on a standard
PHANToM. When we use a recovery time with our plane-and-
probe model, we achieve stable hard surface stiffnesses of 2100
N/m on our custom PHANToM.

3. RESULTS AND SIGNIFICANCE
We have presented a system-based approach to solving the
problems encountered when integrating force feedback into
real-time computer graphics applications. Armlib combines
and extends earlier work in intermediate representation of
surfaces and in surface friction. It:

• Extends the intermediate representation of [1] by adding
multiple surfaces.

• Introduces point-to-point springs as a form of
intermediate representation on a force server.

• Extends previous work on surface friction by adding to the
friction model the capability to produce simple haptic
textures at high update rates.

Armlib also provides new functions and features. It:
• Presents a recovery-time algorithm to reduce sudden forces

due to changes in the intermediate representation, both for
local planes and point-to-point springs.

• Provides device independence, a simple interface, and easy
extensibility through a compartmentalized and multi-
layered design.

• Provides a fully-functional system running on readily-
available networks and commercial hardware. Several
groups outside our lab are already using our system.

4. FUTURE DIRECTIONS
The development of Armlib is driven by the needs of particular
applications in our lab; we add capabilities as they become
necessary. Use of existing library features to explore new areas
is already underway. The Nanomanipulator project is working
to adjust the friction parameters based on characteristics of the
surface under the microscope.

One useful intermediate representation we would like to add
is a 3-D linear approximation to the nearby force field; i.e. a
first order Taylor series expansion of the force field about the
most recent position. Such a representation would be useful for
smoothly varying force fields.

Some applications might benefit from an enhancement of
our plane-and-probe model to allow for half-planes, or even
general convex planar polygons. This capability would allow
several plane-and-probe constraints to be used simultaneously
at convex points of intersection, such as the outside of a box.
But this approach can also produce problems of its own; Zilles
and Salisbury [24] provide a good discussion of some of these
issues and discuss a technique to attack them.

It might be worthwhile in some applications to support
simple curved surfaces as an intermediate representation type.

The implementation of the force servo loop for our plane
and probe model is relatively simple. Work by Colgate and
Brown [6] provides guidance on how to do better in attacking
this “virtual wall” problem. Doing so would require providing
our library with information about the dynamic behavior of
each supported force-feedback device. We would also like to
add a braking pulse like that described by Salcudean and Vlaar
[18] to our virtual wall.

Armlib works with very simple intermediate
representations. There is a continual temptation to add
progressively more complex intermediate representations and

associated calculations. There is of course a tradeoff in doing
so—more complex representations take longer to evaluate,
thus reducing the force update rate. A possible solution is to add
another layer to our system. Such a layer might be in charge of
object-level contacts and dynamics, and the calculation of the
plane equations for our intermediate representation. It could
address the fact that under some circumstances multiple
simultaneous contacts should not be treated independently [7].
This layer would still run faster than the application main loop,
but would be more complex (and thus slower) than the force
server’s intermediate representation servo loop.

5. AVAILABILITY
The latest information on Armlib is available from our haptics
research web page, http://www.cs.unc.edu/Research/graphics/
force. The Armlib source code and documentation are available
by FTP at ftp://ftp.cs.unc.edu/pub/packages/GRIP/armlib/. A
SIGGRAPH course this year [2] presents some additional
tutorial information about Armlib.

ACKNOWLEDGEMENTS
Support for this work was provided by grant number RR02170
from the National Institutes of Health National Center for
Research Resources. Our SARCOS arm was provided by
DARPA. The Argonne Remote Manipulator is on loan from
Argonne National Laboratories.

We would like to thank other contributors to our work.
Frederick P. Brooks, Jr. and William V. Wright, the
investigators for our NIH grant, provided support and ideas.
Other students, in particular Yunshan Zhu, Kimberly Passarella-
Jones, and Chris Dimattia contributed to Armlib and the ideas
presented here. John Hughes attended to our force-feedback
hardware. Finally, the anonymous reviewers (and one in
particular) made some very helpful suggestions.

REFERENCES

[1] ADACHI, Y., KUMANO, T., OGINO, K. Intermediate Representation for
Stiff Virtual Objects. Proc. IEEE Virtual Reality Annual Intl.
Symposium ’95 (Research Triangle Park, N. Carolina, March 11-
15), pp. 203-210.

[2] BAILEY, M., JOHNSON, D., KRAMER, J. MASSIE, T., TAYLOR, R. So
Real I Can Almost Touch It: The Use of Touch as an I/O Device
for Graphics and Visualization. SIGGRAPH 96 Course Notes #37
(New Orleans, Louisiana, August 1996).

[3] BATTER, J. J., BROOKS, F. P. JR. GROPE-I: A computer display to the
sense of feel. Proc. Intl. Federation of Information Processing
Congress ‘71 (Ljubljana, Yugosolavia, Aug. 23-28). Information
Processing ‘71, vol. 1, pp. 759-763.

[4] BROOKS, F. P. JR., OUH-YOUNG, M., BATTER, J. J., KILPATRICK, P. J.
Project GROPE—Haptic displays for scientific visualization. Proc.
SIGGRAPH 90 (Dallas, Texas, Aug. 6-10, 1990). In Computer
Graphics 24, 4 (August 1990), pp. 177-185.

[5] BUTTOLO, P., KUNG, D., HANNAFORD, B. Manipulation in Real,
Virtual and Remote Environments. Proc. IEEE Conf. on Systems,
Man and Cybernetics (Vancouver, BC, Oct. 1995), vol. 5, pp. 4656-
4661.

[6] COLGATE, J. E., BROWN, J. M. Factors Affecting the Z-Width of a
Haptic Display. Proc. IEEE Intl. Conf. on Robotics and Automation
(San Diego, Calif., May 8-13, 1994), vol. 4, pp. 3205-3210.

[7] COLGATE, J. E., STANLEY, M. C., BROWN, J. M. Issues in the Haptic
Display of Tool Use. ASME Haptic Interfaces for Virtual
Environment and Teleoperator Systems 1994, In Dynamic Systems
and Control 1994 (Chicago, Illinois, Nov. 6-11), vol. 1, pp. 140-144.
[8] FINCH, M., CHI, V., TAYLOR, R. M. II, FALVO, M., WASHBURN, S.,
SUPERFINE, R. Surface Modification Tools in a Virtual Environment
Interface to a Scanning Probe Microscope. Proc. 1995 Symposium
on Interactive 3D Graphics (Monterey, CA, April 9-12, 1995), pp.
13-18.

[9] FU, K. S., GONZALEZ R. C., LEE, C. S. G. Robotics control, sensing,
vision and intelligence. McGraw-Hill, New York, 1987.

[10] GOMEZ, D., BURDEA, G., LANGRANA, N. Integration of the Rutgers
Master II in a Virtual Reality Simulation. Proc. IEEE Virtual
Reality Annual Intl. Symposium ’95 (Research Triangle Park, N.
Carolina, March 11-15), pp. 199-202.

[11] GOSSWEILER, R., LONG, C., KOGA, S., PAUSCH, R. DIVER: A
Distributed Virtual Environment Research Platform. Proc. IEEE
1993 Symposium on Research Frontiers in Virtual Reality (San Jose,
Calif., Oct. 25-26, 1993), pp. 10-15.

[12] KIM, W. S., HANNAFORD, B., BEJCZY, A. K. Force-Reflection and
Shared Compliant Control in Operating Telemanipulators with Time
Delay. IEEE Transactions on Robotics and Automation, April 1992,
pp. 176-185.

[13] MARK, W. R., RANDOLPH, S. C., FINCH, M., VAN VERTH, J. M. UNC-
CH Force-Feedback Library, Revision C. University of North
Carolina at Chapel Hill, Computer Science Technical Report
#TR96-012, Jan. 30, 1996. [Available at http://www.cs.unc.edu];
Also: ibid, Revision C.2. May 10, 1996. [Not a TR. Available at
ftp://ftp.cs.unc.edu/pub/packages/GRIP/armlib]

[14] MASSIE, T. M., SALISBURY, J. K. The PHANToM Haptic Interface:
A Device for Probing Virtual Objects. ASME Haptic Interfaces
for Virtual Environment and Teleoperator Systems 1994, In
Dynamic Systems and Control 1994 (Chicago, Illinois, Nov. 6-11),
vol. 1, pp. 295-301.

[15] MINSKY M., OUH-YOUNG, M., STEELE, M., BROOKS, F. P. JR.,
BEHENSKY, M. Feeling and Seeing: Issues in Force Display. Proc.
1990 Symposium on Interactive 3D Graphics (Snowbird, Utah,
March 25-28, 1990). In Computer Graphics 24, 2, pp 235-243.

[16] MITSUISHI, M., HORI, T., HATAMURA, Y., NAGAO, T., KRAMER, B.
Operational environment transmission for manufacturing
globalization. Proc. 1994 Japan-U.S.A. Symposium on Flexible
Automation (Kobe, Japan, July 11-18, 1994), vol. 1, pp. 379-382.

[17] OUH-YOUNG, M., Force Display In Molecular Docking. Ph. D.
Dissertation, University of North Carolina at Chapel Hill, UNC-CH
Computer Science TR90-004, February, 1990.

[18] SALCUDEAN, S. E., VLAAR, T. D. On the Emulation of Stiff Walls
and Static Friction with a Magnetically Levitated Input/Output
Device. ASME Haptic Interfaces for Virtual Environment and
Teleoperator Systems 1994, In Dynamic Systems and Control 1994
(Chicago, Illinois, Nov. 6-11), vol. 1, pp. 303-309.

[19] SALISBURY, K., BROCK, D., MASSIE, T., SWARUP, N., ZILLES, C.
Haptic Rendering: Programming Touch Interaction with Virtual
Objects. Proc. 1995 Symposium on Interactive 3D Graphics (April
9-12, Monterey, Calif.), pp. 123-130.

[20] SHAW, C., LIANG, J, GREEN, M., SUN, Y. The decoupled simulation
model for VR systems. Proc. 1992 Conf. on Human Factors in
Computer Systems (CHI ‘92) (Monterey, Calif., May 3-7, 1992),
pp. 321-328.

[21] SURLES, M. C. An Algorithm With Linear Complexity For
Interactive, Physically-based Modeling of Large Proteins. Proc.
SIGGRAPH 92 (Chicago, Illinois, July 26-31, 1992). In Computer
Graphics, 26, 2 (July 1992), pp. 221-230.

[22] SHERIDAN, T. B. Telerobotics, Automation, and Supervisory Control.
MIT Press, Cambridge, Mass., 1992.

[23] SNYDER, W. E. Industrial Robots: Computer Interfacing and
Control. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[24] ZILLES, C. B., SALISBURY, J. K. A Constraint-based God-object
Method for Haptic Display. ASME Haptic Interfaces for Virtual
Environment and Teleoperator Systems 1994, In Dynamic Systems
and Control 1994 (Chicago, Illinois, Nov. 6-11), vol. 1, pp. 146-150.

