
Accelerated Walkthrough of Large Spline Models

Subodh Kumar * Dinesh Manocha t Hansong Zhangt $ Kenneth Ho@ ~
Johns Hopkins University University of N. Carolina

Spline surfaces are routinely used to represent large-scale
models for CAD and rmimation applications. In this pa-
per, we present algorithms for interactive walkthrough of
complex NURBS models composed of tens of thousands of
patches on current graphics systems. Given a spline model,
the algorithm precomputes simplification of a collection of
patches and represents them hierarchically. Given a chang-
ing viewpoint, the algorithm combines these simplifications
with dynamic tessellations to generate appropriate levels of
detail. We also propose a system pipeline for parallel im-
plementation on multi-processor configurations. Diiferent
components, such as visibtit y and dynamic tessellation, are
divided into independent threads. We describe an imple-
ment ation of our algorithm and report its performance on
an SGI Onyx with Reality Enginez graphics accelerator and
using three R4400 processors. It is able to render models
composed of ahnost than 40,000 B6zier patches at 7-15
frames a second, almost an order of magnitude faster than
previously known algorithms and implementations.

Keywords: Computer Graphics, Image Generation, NURBS
Surface display, Performance, Algorithms

1 Introduction

Spline surfaces are commonly used to represent models for
computer graphics, geometric modeling, CAD/CAM and
animation. Large scale models consisting of tens of thou-
sands of such surfaces are commonly used to represent shapes
of automobiles, submarines, airplanes, building architectures,
sculpt ured models, mechanical parts and in applications in-
volving surface fitting over scattered data or surface recon-
struction. Many applications like interactive walkthroughs

“Department of Computer Science, Johns Hopkins University,
Eattimore MD 21216-2694. Email: subodhQcs.jhu.edu, Web:
http: //www.cs.jhu.edu/- subodh

tDeptiment of Computer Science, University of North Carolina,
Chapel Hill, NC 27599-3175. Emsil: manochaQcs.unc.edu, Web:
http: //www.cs.unc.edu/-manocha.

*Emsil: zhsnghOcs.unc.edu, Web:
http: //www .cs.unc.edu/ - zhsngh

~Emajl: hofYQcs.unc.edu, Web: http: //www.ca.unc.edu/ -hoff

Permission to make digitaVlrardcopiaof ail orp,ti ofthism~teridfor
personal or cl,a.ssroomuse is granted without fee provided that the copies
are not made or distributed for profit or corrunercialadvantage, the copy-
right notice, the title oftbe publication and its date appew, and notice is
given that copyigbt is by pem)ission of the ACM. Inc. To copy otherwise,
10 republish, to post on servers or to redistribute to lists. requires specific
permission and/or fee.
1997 Symposium on lntemctive 3D Graphics, Providence RI [ISA
Copyright 1997 ACM O-8979 l-884-3/97/04 ,.$3.50

and design validation need to interactively visualize these
surface models.

In order to exploit the recent advances in triangle render-
ing capabilities of graphics systems, it is common to generate
a one-time polygonal approximation of surfaces and discard
the analytic representation. Unfortunately such polygonal
approximations require an unduly large number of polygons,
thus necessitating the need for polygon simplification. What
is more, due to discretization of geometry, even a dense tes-
sellation is sometimes inadequate for zoomed up views. On
the other hand, recent advances [18, 21, 26] in efficient tes-
sellation of surfaces now allow us to dynamically generate an
appropriate number of triangles from the analytic represen-
tation based in the user’s location in a virtual environment.

The problem of rendering splines has been well-studied
in the literature and a number of techniques based on poly-
gonization, ray-tracing, scan-line conversion and pixel-level
subdivision have been proposed. The fastest algorithms
are based on polygonization. Algorithms based on view-
dependent polygonization have been proposed to render spline
surfaces. However, the fastest algorithms and systems can
only render models composed of a few thousand spline patches
at interactive rates on hi~h-end graphics systems (e.g. SGI
Onyx with ReaJityEngine graphics accelerator)

Main Contribution: In this paper, we present alp
rithms for interactive widkthrough of complex spline models
composed of tens of thousands of patches on current graph-
ics systems. This is abrtost one order oj magnitude speed-
improvement over previously known algorithms and systems.
We achieve such an improvement by using spline surface sitrt-
plification, parallel processing and effective combination of
static levels of detail and dynamic teasellation. Our main
contributions are:

● Surface Simplifications: Most surface triangulation
algorithms produce at least two triangles for each ten-
sor product B&zierpatch. Furthermore, each trimming
curve must be tessellated into at least one edge, and
it adds further to the triangle count. This may re
suit in too many triangles for parts of a model. For
example, a small part like the Utah teapot consists
of 32 B6zier patches. However, 64 triangles are not
required to represent it when its size is, say, a few pix-
els on screen. As part of pre-proceeding, we compute
polygonal sirnpMications of a mesh of trimmed B&zier
patches. We present techniques to combine adjacent
surfaces and compute polygonal approximations for
these .super-sur~aces. For a super-surface with n B&zier
patches, we are able to generate polygonal simplifica-

91

tions with less than 2n triangles. Moreover, simplifica-
tion of ‘super-surfaces’, rather than complete objects,
affords us finer control on our levels of detail and al-
lows us to significantly reduce the number of triangles
needed to approximate parts of a model. This allows
us to spend resources on the generation of high de-
tail for parts close to the viewer without throttling the
triangle rendering pipeline.

c Dynamic Tessellation and LOD Management:
The algorithm represents the surface patches and their
simplifications using spatial hierarchies. Given a view-
point, the algorithm computes an appropriate polygo-
nal approximation based on surface simplification and
incremental triangulation. Since two adjacent super-
surfaces may be rendered at different detail, we present
algorithms to prevent cracks between super-surfaces.

● Multi-Processor NURBS Pipeline: It is common
for current graphics system to be equipped with mul-
tiple general purpose processors in addition to spe-
cialized graphics accelerating hardware. We present a
novel pipeline for rendering NURBS (Non Uniform Ra-
tional B-Splines) on multi-processor shared-memory
architect urea. In particular, we allocate different com-
ponents of our algorithm (e.g. vtilbtity, dynamic tes-
sellation etc.) to independent threads. Various threads
communicate using only a few locks per frame. Our
pipeline helps reduce the rendering latency as well.

● System Implementation: We demonstrate the ef-
fectiveness of our algorithm by implementing it on an
SGI Onyx with Reality Enginez. Using a configura-
tion with three 200 MHz R4400 processors we are able
to render an architectural model composed of almost
40,000 B&zier patches at interactive frame rate.

Organization: The rest of the paper is organized
in the following manner. In Section 2, we briefly describe
various techniques for rendering NURBS models. Section 3
present techniques to spatially organize spline patches into
super-surfaces and compute simplifications with guaranteed
error bounds. Section 4 discusses the management of levels
of detail. We present our system pipeline and parallel algo-
rithm in Section 5. Section 6 describes our implementation
and highlights its performance on an archkctural model.
Fhmlly Section 7 concludes our presentation and offers some
future research directions.

2 Background

While the techniques presented in this paper are generally
applicable to auy analytic representation of models, we de-
scribe it in terms of B&zier surfaces. Indeed, B&.zierand
NURBS surfaces are among the most popular modeling tools
for computer aided design. For efficient display, we decom-
pose each NURBS surface into a collection of B&zierpatches
using knot insertion [8].

A tensor product rational B&zierpatch, F(u, o), of degree
nzxn, defined for D ==u xv, (u, v) E [0, 1]xIO, 1], is specified
by a mesh of control points, Pij, and their weights, Wij, O <

where the Bernstein function f? is given by

B:(t) =
()

: t’(1 – t)~-’

A trimmed B6zier patch has trimming B6zier curves as-
sociated with it. A rational B&zier curve f(t), of degree n,
defined for parameter t E [0, 1], is specitkd by a sequence of
control points, Pk, and their weights, IUk,O < k < n:

n

E tl)kpk~:(t)

f(t) = k=:

~wkB#(t)
k=O

The basic thrust of our approach is to combine dynamic
tessellation of surfaces, for high detail, with a few discrete
levels of detail, for efficiency. We do not generate levels of
detail for each object or solid, but rather for a collection of
B&zier patches. This fiords us better control on allocation
of detail for large models, but requires extra processing for
seamless integration of parts.

2.1 Related Work

There is considerable literature on rendering splines, poly-
gon simplification and parallel rendering algorithms. A numb-
er of surface rendering techniques are based on ray trac-
ing [14, 25, 31], scan-line generation [3, 22, 30], and pixel
level subditilon [4, 28, 27]. However, due to recent ad-
vances in hardware based triangle rendering techniques, al-
gorithms based on polygonal decomposition are much faster
in practice. In particular, a number of algorithms based
on uniform and adaptive subdivision have been proposed
[5, 17, 9, 26, 2, 10, 1, 23, 16]. Uniform subdivision, in gen-
eral, is more efficient [18]. Recently Rockwood et al. [26]
and Kumar et al. [18, 21] have proposed uniform subdivision
based algorithms for interactive display of trimmed surfaces.
A variant of [26]’s algorithm has been implemented in SGI
GL and OpenGL libraries. It can display models composed
of a few hundred patches at interactive frame rates on an
SGI Onyx with Reality Engine2. Kumar et al. [18, 21] pro-
posed a faster algorithm that includes back-patch tilbility,
improved bounds for polygonization and incremental trian-
gulation exploiting frame-to-frame coherence. The resulting
pipeline is shown in Figure 1. On an SGI Onyx with 250MHz
R4400 and Reality Engine2 it is able to render models com-
posed of a few thousand patches at 10-15 frames a second.

In our experience, many real world models of ships, sub-
marines etc. are comDosed of manv more than a few thou-. .
sand Bkzier patches. While surface models typically have ar-
eas of high detail and curvature, often each individual patch
is relatively flat and can be rendered at very low detail,
specially if they occupy a small area on the screen. Unfor-
tunately, the patch based rendering algorithms produce at
least two triangles even for such patches resulting, at times,

92

I 11 111

Bezier
~ Visibility Surface Bounds/

Patch Computation Computation
. “E

Figure 1: On-line Polygonization of NURBS [21]

IV

Triangle
Rasterization

in triangle proliferation. Simplifying the spline models could
ameliorate this problem. A number of techniques have been
proposed to simplify polygonal models. Some topology pre-
serving techniques include [6, 7]. However, they do not gen-
eralize to spline surfaces directly. It is not straightforward
to devise a technique that:

1. simplifies splines while preserving topology and guar-
anteeing small error, and

2. results in a drastic simplification of models.

Note that the major application of splines in walkthroughs
is to allow arbitrary levels of detail. However, we need to
simplify splines only when the corresponding part requires a
low-detail rendering. Hence, the simplification obtained by
using the polygonal approximation is sufficient, and we do
not require “true” spline simplification. Our approach ia to
group B&-zierpatches into super-surfaces and, generate tri-
angular approximations for each super-surface, and generate
a number of discrete levels of detail thereof. At rendering
time, we pick an appropriate approximation for each super-
surface and stitch adjacent super-surfaces together.

In addition to reducing the number of triangles sent to
the triangle rendering pipeline, we also present techniques
to efficiently map the walkthrough application onto multi-
ple processors on a shared memory architecture. A num-
ber of parallelization techniques are known in the literature
[11, 12, 15, 19]. In particular Kumar et al. [19] present
a dynamic load balancing technique for surface tessellation
with negligible overhead. We augment their technique with
modified pipeline described in Section 5.

2.2 Dynamic Tessellation

Previous algorithms for interactive display [1, 26] spend con-
siderable time in computing appropriatee view-dependent tes-
sellation bounds and polygonal triangulations. The incre-
mental algorithm in [18, 21] overcome these problems using
a combination of off-line and on-line bound computations
and incremental triangulations. Their algorithm, in brief, is
as follows

1.

2.

3.

Determine visibility. This includes computation of both
view-frustum visibility and back-patch visibfity [20].

For each Bbzier patch, determine the number of uni-
form tessellation steps in the u and v dimensions, re
spectively, required for a smooth image from the cur-
rent view point. Similarly, for each trimming curve,
determine the number of steps.

Triangulate the samples picked in the previous step,
so that there are no cracks at the boundaries between
adjacent patches.

4. At each subsequent frame, update the triangulation
incrementally making small ch-anges to the cur~ent tri-
angulation and taking advantage of coherence.

5. Send the updated triangles to the triangle rendering
pipeline.

This pipeline is represented schematically in Figure 1.
[21] maps stages I and II on the host CPU of the system.
Stages III and IV are parts of the triangle rendering sub
system.

We implemented this pipeline and discovered that ap
proximately half the polygon generation time is spent in
step size determination in stage II [18]. This number is
relatively high; the computational cost of incremental tri-
angulation and tessellation is low due to frame-t~frame CG
herence. As we apply the algorithm to large models, this
becomes a significant bottleneck in the overall pipeline. We
employ a spatial hierarchy to solve this problem. Instead of
determining the step size and generating triangles for each
Bkzier patch, we perform these computations for groups of
patches. Note that this algorithm suffers from the limitation
that each B?zier patch must be approximated by at least
one quad (for tensor-product patches), i.e. 2 triangles. The
minimum count is even higher for trimmed patches. Thus n
tensor-product B&zier patches must result in more than 2n
triangles. On the other hand, by tessellating super-surfaces,
we can obtain many fewer triangles.

However, in order to reduce the number of triangles gen-
erated, we introduce extra processing. As a result stage II
becomes a bottleneck. We eliminate this bottleneck by de
coupling this stage from the pipeline. We take advantage of
the multiple processors to allow such processing to occur in
the “background”.

2.3 Simplification Envelopes

In order to perform polygonal simplification of polygonal
surfaces we employ the technique of Simplification envelopes
[6, 29]. In brief, for a given c, it guarantees that the resulting
simplification is at most c distant from the original surface:

1.

2.

3.

For a given surface, generate two offset surfaces, one
on either side, each at most c distant from it.

Remove a vertex from the given surface, and retnan-
gulate the hole such that none of the resulting triangles
intersect the offset surfaces.

Stop if no more vertices can be removed.

Each of our super-surfaces is @ continuous and contain
borders. For each border we construct the border-tubes de
scribed by Cohen et al. [6] to facilitate crack-prevention. In
addition, the properties of super-surfaces allow us to obtain
high vertex reduction.

93

Bounding-Volume Hiersrc~y for View-fmstum Culler

I I

. .
1 [

1

Super-Surface~ at Leaf Nodes
.. .

Z+BiMHs”cEIEIl..
Firic3t

Figure 2: Model Representation

3 Super-surfaces

We assume that the inrmt model is a collection

c-t

of trimmed
B&zier patches. As a part of pm-processing, our rdgorithm
forms collection of patches into super-surfaces, and com-
putes a spatird hierarchy that is later used for view-frustum
culling and controlling the level of detail. It also teaaellates
each super-surface into triangles and generates discrete ap
proximations for each super-surface.

Our clustering algorithm partitions an input model into
super-surfaces bsaed on surface normals and patch adja-
cency. A super-surface corresponds to a ~ continuous mesh
of B&zier patches. Furthermore, our algorithm ensures that
the variation in normals along the surface boundary is boun-
ded. While algorithm of Cohen et al. [6] still guarantees
bounded error for surfaces with high curvature and sharp
edges, it is not able to remove many vertices for such sur-
faces. Using pseudc-Gauzs maps [21], we are able to en-
sure that a super-surface is does not have much variation
in curvature. We also make use of any natural structure or
hierarchy of the input model to speed up the super-surface
construction. For example, a NURBS surface is decomposed
into a mesh of Bkzier patches by knot-insertion. The result-
ing set of B&zier patches may be grouped into one super-
surface.

In order to limit the curvature of each super-surface, we
restrict the extent of its Gauss-map. The Gau-map of
a surface corresponds to the projection of its normals on
the unit sphere. Fortunately we do not have to compute
the actual projection, which is relatively expensive; we only
have to consider the pseud~Gauss map, G, which is easy to
write in the B&ier form:

~= P”x P.w-Pux Pw”– Pwu XP”
W3 . (1)

The pseudc+Gaum map of a rational B+zier surface of degree
m x n is itself a B&zier surface of degree 3m x 3n, and hence
is bounded by the convex hull of its control points. For
each point on the hull, consider the ray ikom the origin to
that point (we ignore any hull points that lie on the origin).
To compute the extent of the Gauss-map, we only need to
find the maximum angle between any two rays. We refer to
the maximum angle as the patch’s span. To compute the

11

Figure 3: Span of a Super-surface

variation of curvature across two (or more) B&zier patches,
we first compute the convex hull of the union of control
points of respective paeud_Gaus maps and then compute
its span (see Figure 3).

The super-surface construction algorithms starts with a
patch es a seed and grows it by merging with neighbor-
ing patches forming a super-surface, if the resulting span
is within user-specified bounds. If a hierarchy of adjacent
patches is available, the algorithm first groups together each
patch in a hierarchy before attempting to grow the group
further. If the span of the group is too big, the algorithm
subdivides it into two or more super-surface. The major
components of the rdgorithm are described below:

1. Consider all patches adjacent to a super-surface, not
added to another super-surface:

(a)

(b)

(c)

(d)

(e)

(f)

Pick the one that increzses the span by the min-
imum amount.

If the minimum span is greater than an input pa-
rameter a, output a super-surface; start a new
super-surface.

Add the patch to the super-surface.

Update the adjacency of the new super-surface.

Compute spans for newly adjacent patches.

Recursively apply la.

2. To start a new super-surface, randomly pick a new
seed to grow.

4 LOD Generation

Given a super-surface compased of n patches, the LOD gen-
eration algorithm generates discrete levels of detail, each
with a different value of (user prescribed) c, the maximum
error. Initially, the algorithm tessellates each B6zier patch
into triangles. These triangular approximations are then
simplified using offset surfaces. Although the dynamic sur-
face tessellation algorithm performs uniform subdivision for

94

Maximum
Deviation

\ I

Figure 4: Adaptive Tessellation of Bhzier Patch

efficiency, we use adaptive subdivision for generating the ap-
proximation for simplification since this is a pm-processing
step. We cart afEordto spend more time in order to generate
good approximations using fewer triangles. Our adaptive
tessellation algorithm ensures that the maximum deviation
between the B.3zier patch and its triangular approximation
is at most 6 (a user-specified value). This in turn ensures
that the simpliikd polygons are no more than 6 + c away
from the surface.

4.1 Adaptive Tessellation

The adaptive tessellation algorithm initially approximates
each patch with two triangles. For each triangle, it com-
putes the maximum deviation between each triangle and
the surface using bounds on derivatives [9].

For a linearly parametrized triangle T = Z(U,u) between
three points on a snrface at I(O,O), /(/1, O) and 1(0, /2):

where

We can reduce the computations of Ml, Mz and Ma to
finding zeros of polynomials and solve them using techniques
from elimination theory [24, 18]. Thus all local extrema of
the deviation function are obtained. Each triangle A that
we generate corresponds to a triangle AD in the domain of
the patch. We denote by Dee(A), its maximum deviation
from the part of the surface it approximates. This maxi-
mum deviation occurs either at one of the three vertices of
AIJ or at any local extrema contained in AD. The adap
tive tessellation algorithm proceeds as follows: (see Figure
reffig:adapt)

1. For erd patch, generate two triangles by adding one
of the diagonals. We choose the diagonal that mini-
mizes deviation. Say, thediagonal d] generates trian-
gles Al and Az, and the diagonal dz generates tri-
angles As and A,. If max(Deu(Al), Deo(Az)) <
max(Deu(Aa), Deu(A4)), we choose dl, otherwise we

2.

3.

Divide each triangle A = ~lp2p3 with Deu(A) > & as
follows:

Let (u1, WI) be the point on the domain of patch F
at which F.. is maximized, and let p4 = F(UI,ZJ1).
The new set of triangles is {plplpz, p2p4p3, p3P4P1 }.

In general, (uI, VI) may lie on one of edges, e.g. plpz,
of the A. Instead of generating degenerate triangles,
we generate only two triangles by adding an edge from
p4 to the opposite vertex, P3 in our example. Note that
(UI, VI) cannot lie on a vertex of A - the deviation at
a vertex is zero.

Subdivide each triangle recursively into smaller trian-
gles until the Dew of”all triangles is less than 6.

After generating the triangular approximation we sim-
plify it. Our construction algorithm ensures that each super-
surface is relatively flat and has low variance in normals and
curvature. As a result, the offset envelope approach is able
to simplify the models by 30 – 80%.

4.2 Super-surface Boundary

In the terminology of [6], our super-surfaces are surfaces
with borders, as opposed to closed surfaces. In order to
ensure that the apprmirnation to the border also has a small
error, we simplify each border first and then simplify the
interior without removing any more vertices from the border.

Furthermore, for our application, we must stitch adja-
cent super-surfaces together. While original model may
have no cracks between super-surfaces, using different ap
proximations for adjacent super-surfaces can result in arti-
ficial holes, overlaps or intersections. Correcting these ar-
tifacts can be quite expensive. Instead, we propose a solu-
tion that does not generate such artifacts in the first place.
We always pick the same c-approximation for the boundary
curve between two super-surfaces. We simplify the interior
separately from the boundary. It is possible to generate
for each super-surface and each of its boundaries, an c1~i-
approximation where the the interior is an c1-approximation
and the boundary is an ei-approximation. However, memory
needed to store the triangulations for all combinations of c
values can be quite large. We, instead, modify our adaptive
tessellation algorithm to triangulate only the interior of each
super-surface. We generate a boundary strip at run time.
The algorithm for generation of triangular approximation is
as follows:

1. Generate an adaptive tessellation of the boundary curve.
Include all comer points in the tessellation. A corner
point on the border of a super-surface is a point adj~
cent to two other super-surfaces (see Figure refsuperb).

2. Generate be, an c-approximation of the boundary b
curve, such that be contains all corner points.

3. In the domain of the super-surface, construct oj, an
offset curve c’ distant from b~. In order to maintain
similar triangles sizes in the interior and the border
c’ should be large enough to avoid narrow triangles
at the border. However, in the interest of efficient
triangulation, we let c’ = c, as that generates non-
intersecting offsets (see Appendix). Note that ~ is the
relative error, hence we can use it in separate domains:
the 2D parametric space of the patches and the 3D
object space

choose dz.

95

— I 1

,1 r- --l
al I I

I t
l-, ---, --- -~ I Off tcurveoI !

t r
I --, --- ---

--l
-- --- ---

-i t

s w-s ~=’ ~ m:m
-’ /

ComerPoint
I
I -1

1- ‘-
I

,- ---, -J
I --1

1-
1

I I
I I

I
I
I

--’ Adjacent
1- - ‘-

I

(

Super-surface
1 t

EM‘“’p”’>
Figure 5: Super-surface Domain

It is possible to reverse the order of the two steps
above. We can compute the offset curve of the orig-
inal tessellated boundary, rather than the simplified
boundary and then simplify the offset curve. In that
case larger values of c’ are needed.

4. Generate an c-approximation of the interior of the super-
surface bounded by the offset curve (i.e. the c-approxima-
tion of the offset curve).

At rendering time, for each segment of the boundary
curve, we pick the smaller of the two c values corresponding
to the two super-surfaces adjacent to it. Thus for a given
super-surface, a given border curve may be tessellated baaed
on a value of c diferent from that used for the intenor. We
triangulate this strip at rendering time. This triangulation is
not a costly operation since it is performed in the domain.
We triangulate two simple chains by stepping along each
chain and adding edges between vertices on the chains.

If topological consistency is not crucial and drastic sim-
plifications are desired, we have found that at small scales,
approximating each super-surface by two triangles, even if
the adjacent super-surface is approximated by more than
two triangles, hardly distracts from the realism of the walk-
through. At times, all super-surface adjacency information
is not available in an input model and cannot be resolved.
In such cases, it is not possible to generate approximations
that are free of artifacts.

4.3 Trimmed Patchaa

The algorithms described above easily generalizes to trimmed
B?zier patches. Trimming curves are treated like boundary
curves. In general, a trimming curve implies a large dis-
continuity in normals between the two patches adjacent to
it. As a result, moat trimming curves form boundaries be
tween super-surfaces. It is possible for a trimming curve
to lie entirely inside a super-surface i.e. both patches adja-
cent to a trimming curve belong to the same super-surface.
Such trimming curves need no extra processing at rendering
time. At pr~proceaaing time, we generate a vrdid mesh for
the super-surface with the trimming curve and apply the
simplification algorithm.

However, we need to generate offset curves for the bound-
ary trimming curves. This offset curve is a simple polygonal

Figure 6: Trimming Curve CltTset

chain of line segments. We first generate the adaptive tea-
aellation of the trimming curve, and then generate its offset
curve.

The algorithm for the generation of this oflk.et curve o=
of the boundary curve b~ is as follows:

1.

2.

For each segment s of bc, add segment s’ to o=, such
that s is parallel to s’, is t distant from it on the un-
trimmed side of bc, i.e. construct the of&t segment
on the patch.

For an armroximation b. with hid curvature o, mav
self inter&t. We delete &ch loo& ikom o., and-mar~
the vertex of the loop (see F~ure 7).

Note that the semantics of this offset curve is diferent
from that in [6]. Their algorithm generates offsets closer to
the curve in such cases. While we can use their definition,
our technique allows us to make the following claim (see
Appendix for the proof):

Theorem 1 0., and b=l do not intersect, i~ c1 ~ Q.

At rendering time, we again perform the triangulation
between the cl-approximation of the boundary and c2-appro-
ximation of the offset curve in the 2D domain. We exploit
the fact that the offset curve is quite close to the bound-
ary and perform the triangulation by stepping along the
two curves, traversing the two corresponding chains from a
marked vertex to the next marked vertex.

4.4 LOD Control

Our levels of detail control is well integrated with the view
frustum culling hierarchy.

Our visibility algorithm represents the model in a hier-
archy of bounding volumes. Each leaf node of the view-
frustum hierarchy corresponds to a super-surface (as shown
in Figure 2). The algorithm uses a top down approach to
build a tree.

The visibility algorithm outputs a listof leaf nodes that
are visible. Note that even if the viaibfity decision is made
at an internal node of the tree, all the corresponding leaves

96

Figure 7: Offset Curves: Self Intersection

must be output, since the super-surfaces contained in the
leaf nodes are the inputs to our rendering algorithm. For
each visible leaf node, correapondhg to a super-surface with
n B&zierpatches, our algorithm computes a crack-free tes=
sellation. First, each boundary curve is approximated. The
algorithm uses oriented bounding box of each curve to de-
termine its c value [6]. This ensures that the same approx-
imation of the curve is used for boundary strip on both its
sides, thus preventing cracks. The interior tessellation uses
the bounding box of the entire super-surface. Note that a
boundary curve may be result in static LOD while the ap
proximation of the interior of an adjacent patch may require
dynamic tessellation, which is performed independently for
each patch of the super-surface. In such cases, we still gen-
erate a common boundary strip for entire super-surface.

5 Multi-proceaaor Pipeline

As we perform visibility computations (view-fmatum and
back-patch culling), bounds computation and dynamic tes-
sellation on large spline models, triangle generation becomes
a bottleneck. In this section, we present a parallel algorithm
and a system pipeline for shared-memory multi-processor
architectures. The two main goals for a walkthrough ap
plication are: smooth motion and low latency. We achieve
these goals by decoupling triangle rendering with triangle
generation and utilize frarrwt~frame coherence. Figure 8
shows our pipeline (wit h three processors). If more proces-
sors are available, we allocate them for dynamic tessellation
and visibfit y computations.

5.1 Proceaaor Allocation

Our systems consists of three threads. Every super-surface
is tessellated into triangles as a function of the viewpoint by
thread T (corresponding to dynamic tessellator). The visi-
bility computations are performed by thread V (on visibility
processor). We use a greedy rendering strategy [18] and use
thread P, the triangle pusher, to pass the current approxi-
mation of each super-surface down to the triangle renderimg
pipeline.

A thread may be allocated to more than one processors.
If multiple prOceasors are available for any thread, we use
the lock-free dynamic load-balancing technique of Kumar

Dynamic
Tessellator

m

From. (l-k)

..
; Shared Memory ; Triangle

Pusher
4

w
;> Eizl................f

Visibility Framo I
Rocessor

m

Franro*1)

Figure 8: Multi-processor NURBS Pipeline

et al. [191 to distribute suDer-surfaces to those rmocesaors.
The b&ic’ idea of the load~balancing[19] algorit~m may be
described aa follows:

1. Each processor, p, maintains a local work queue Q(p).

2. The basic loop of processor p consists of deleting the
next element from Q(p) and performing the correspond-
ing work.

3. An idle processor, with no elements left in its queue,
finds a busg processor, that haa a non-empty queue.

4. The idle processor asynchronously partitions the Q(busy)
into two, adds one of the subqueues to its Q(idie), and
changea its status to busy.

The important properties of this algorithm are:

● The load-balancing algorithm itself has a low overhead.
Any processor with a non empty work-queue does not
explicitly perform any steps of the load-balancing algo-
rithm. Only the processors with empty queues execute
the load-balancing rdgonthm.

● The algorithm does not require locks for synchroniza-
tion and thus further reduces the overhead.

5.2 Threads

For our pipeline description, we abstract away individual
processors of a thread and consider three threads with three
“processor groups”. Ideally, at least one dedicated processor
should be allocated to each thread in order to avoid process-
context switch overheads. Tessellator thread T, which is the
moat compute intensive part of the NURBS pipeline, pr~
ceeds asynchronously with P. Thus, while P may display
an approximation that was generated, say, k frames earlier,
it never stops for T to complete. Due to framet~frame co-
herence, an update of surface tessellation once every 2-3
frames works well in most applications. The algorithm en-
sures that a consistent tessellations is displayed correspond-
ing to all the patches (to prevent cracks). Thus a new ap
proximation is always generated in a new memory location
and pointers to the tessellation of a patch are updated after
completion. Using this technique we are able to avoid all
locks for synchronization between T and P.

The visibility thread V executes synchronously with P.
It performs visibility computations on frame i or i+ 1, while
P pushes triangles corresponding to frame i. Synchroniza-
tion is performed using shared variables. Our model is orga-
nized hierarchically for visibility computation. The vieibihty

97

thread determines the visibility of nodes of the hierarchy; It
classifies then into totally visible, partially visible or not
visible at all. V adds a pointer to each completely visible
node into a queue, activity list, and recursively traverses the
tree for partially visible nodes. The triangle pushing thread
P consumes the elements of the activity list, traversing the
subtree corresponding to each element. The activity list
has two types of End-of-Queue markers. A marker NULL
implies all nodes produced by V have been consumed but
V has not finished traversing the entire hierarchy. Once V
completes the frame, it sets the end marker to NIL. We do
not require any locks for mutual exclusion.

Pusesabusywsit loop for synchronization when it en-
counters a NULL marker. In practice, this rarely occurs as
triangle rendering is the bottleneck most of the time. After
P ascertains that a super-surface is visible, it determines its
required level of det ail and uses a tessellation based on static
LOD’S or dynamically computed using incremental triangu-
lation slgorithrns. It pushes the triangles corresponding to
that tessellation down the graphics pipeline. The basic com-
putation loops of the three threads are as follows:

Teaaellator thread T.

1. Compute Surface bounds

2. Allocate memory M

3. Generate new triangles; save in M

4. After all triangles are generated, update P’s address.

Visibility thread V — Traverse(Tree):

1. If tree is invisible (i.e. none of the leaves are vtilble),
continue.

2. If tree is partially visible, Traverse all children

3. If is visible (i.e. all leaves are potentially visible)

● Append Tree to the End of ActivityList

Triangle Pusher P:

1. Wait while Next of ActivityList equals NULL

2. Delete Next element (Tree) of ActivityList

3. Traverse Tree, pushing each triangular approximation

The advantage of frame-overlapping V and P threads
is that we are still limited in throughput by the slower of
the two stages, but the latency reduces from two frames
to one frame. The new user position is used by P at ev-
ery frame. The advantage of allowing T to proceed sync-
hronously, apart from reducing latency by a frame, is that
it is no longer a bottleneck. However, it is possible for dif-
ferent approximations of boundary curves to be used for ad-
jacent super-surfaces. This occurs when multiple processors
are allocated to thread T and only one of the super-surfaces
gets updated before P reads the triangles. One possible so-
lution is to let P choose the boundary approximation each
frame. This unnecessarily complicates the logic of thread
P. Unfortunately due to restrictions on concurrent access
to the graphics hardware, we were limited in our implemen-
tation to allocating a single processor to thread P. Hence
we decided to keep thread P simple, and chose the solution
of Kumar et al. [19]:

Let T generate two boundary strips B1 and Bz. B1 is
a triangulation that uses the new approximation of interior
and the old approximation of the boundary curve. Bz uses
the new boundary and the new interior. B2 is kept in a
temporary location and P continues to use B1. Similarly,
B; and Bj are asynchronously generated for the adjacent
patch. The processor to perform the update of the boundary
second, replaces B1 and B; with Bz and B;, respectively, at
the same time.

5.3 Multi-threads

In our current implementation we use only one processor per
thread. The thread synchronization, ss described above,
works only if there exists only one processor per thread.
In reality, a thread may execute concurrently on multiple
processors. Thus there may be multiple producers and con-
sumers executing simultaneously. The following generaliza-
tion of the thread algorithm is needed for multi-threads:

Instead of one ActivityList, we maintain max NP, N=
Activity Lists, if NP processors are allocated to the produc-
ing thread and N, processors are allocated to the consuming
thread.

If Nc z NP,

● Allocate NP Activity Lists to the producers.

● Statically allocate the rest N. - NP lists to the pr~
ducers in a round-robin manner.

● Each producer adds elements to each of its associated
lists in a round-robin fashion.

● The ActivityList associated with a given consumer is
its work-queue

● The load-balancing algorithm mentioned above [19]
ensures, equitable re-dist ribution of work among con-
sumers.

If NP > N=,

● Associate one ActivityLast per consumer.

● Add a dummy consumers for each of the NP — N= un-
allocated lists.

● The load-balancing algorithm event uzdly re-distributes
the dummy queues to real processors

6 implementation and Performance

We have completed a prototype implementation of our al-
gorithms and report its performance on an SGI-Onyx with
three 200MHz R4400 CPUS and a Reality Enginez graphics
accelerator. We tested our system on Door, an architectural
model (the entrance of a courtyard in the Yuan Ming garden,
shown in Color Plate 1). This model has more than 9, 900
B-spliue surfaces. After applying knot-insertion algorithms,
the model is composed of 38,750 B&zier patches. Approxi-
mately 7000 of these are hi-linear. The rest are biquadric or
bicubic tensor-product patches. Less than 570 of the model
is composed of trimmed patches. In our current implemen-
tation, each super-surface corresponds to a B-spline patch.
Color plate 2 shows distribution of the super-surfaces for the
lion, one of the animals on the roof of the Door.

The model supplied to us was not clean. It had a few
problems. The B-spline surfaces in the model do not have
consistent orientation of the normals. That prevents us from

98

150 :;
I

~

100 ~
0 200 400 600 600 1000 1200 1400 1600 1600

Fmme Number

Figure 9: Performance Graph

performing back-face culling or back-patch culling. Further-
more, the model had a few cracks between the surfaces. As
a result, we do not have complete adjacency information
and our simplification algorithm can enlarge some of these
cracks.

The simplification algorithm works well on these model
and is able to achieve drastic polygon reduction. Diferent
simplifications of the lion model are shown in Color Plate 3.
For exarrmle when looked at from a far distance. the lowest
detail (le~t moat image) corresponds to about 80 triangles
while still maintaining the general characteristics of the lion.
At the same time, whenever the uqer zooms towards the
lion (as shown in Color Plate 4), the dynamic tessellation
algorithm incrementally computes a denser triangulation (aa
shown in Color Plate 5). Since the tessellation is updated
asynchronously, we do riot suffer from any slow-down due to
dynamic tessellation.

The algorithm achieves considerable speed-up over ear-
lier methods due to pa.delization and simplification of super-
surfaces. As for the Door model we obtain following speed-
ups:

. Parallelization: The parallel implementation on a
multi-processor SGI results in significant speed-up. The
relative speed has been shown in Figure 9. For this
comparison we used three CPUS, one for each thread:
tessellation, visibility and triangle pushing. The se-
quential implementation achieves an average rate of
approximately two frames a second. On the other
hand, the parallel version is able to display the model
at 8 —10 frames a second. The decoupling of dynamic
tessellation with ~lbility and rendering threads ac-
counts for most of this speed-up and helps reduce the
variation in the frame rate. Furthermore, the tessella-
tion thread does not lag behind the rendering by more
than 2 – 3 frames at most.

● Model Simplification: The implementation of [21]
based on dynamic tessellation (with no static levels
of detail) renders this model at 1.4 frames a second
(using only processor). As a result, our simplification
algorithms accounts for 40 – 50% improvement in the
overall frame rate.

The combination of parallel implementation and simplifica-
tion improves the overall frame rate by ahnost one order of
magnitude.

The static levels of detail add a little overhead to the
memory requirements of this algorithm. Typically, we only
computing four or five discrete levels for each super-surface.
The additional memory needed is a linear function (with a
very small constant) of the number of patches.

7 Conclusion

By effectively combining two successful techniques of sim-
plification envelopes [6] and incremental dynamic tessella-
tion [18], we have been able to obtain significant simplifi-
cations of large spline models while maintaining high detail
where necessary. In addition, by r~arranging our rendering
pipeline, we have been able to greatly speed-up the render-
ing of large spline models for walkthrough for a small cost
of lag in quality of tessellation. Due to coherence, this lag
is hardly noticeable in practice.

7.1 Future Work

Our work represents only a first step in research in meth-
ods for combting dilferent techniques and employing the
appropriate technique at any given time. Apart from bet-
ter visibtity and value determination algorithms, we need
further research in super-surface clustering. Our algorithm
does not always result in uniform sized clusters. As more
super-surfaces are formed, the size of each super-surface goes
down. While this results in better simplification, the num-
ber of super-surfaces can grow too big. Perhaps, a second
pass, combining small super-surfaces could be performed.
Another problem with our method manifests itself in the
case of large number of relatively flat B&zier patches. This
results in super-surfaces that are too large and the fine con-
trol in displaying each region of a model at the appropriate
detail is lost. Further investigation into a hierarchical super-
surface construction is needed.

Both the super-face construction algorithm and the crack-
prevention algorithm require adjacency data. We are work-
ing on robustly generating such data from an unordered col-
lection of B&zier patches. Another major issue is switching
between discrete levels of detail. In practice, switching ar-
tifacts are not noticeable when performing dynamic tessel-
lation incrementally. However, they become significant, if
we use statically generated discrete levels. While gradually
morphing from one level to another may reduce these arti-
facts, we believe an algorithm similar to dynamic tessellation
of B&zier patches would be more efficient. By appropriately
controlling the sample density in the domain, such an al-
gorithm would be able to incrementally update detail in an
efficient fashion.

Better exploitation of available parallelism is another im-
portant goal. We need better algorithms to allocate proces-
sors to threads. A sophisticated algorithm might dynami-
cally change processor allocation to different threads in order
to achieve maximum speed-up.

7.2 Acknowledgements

We thank Lifeng Wang and the modeling group at Univer-
sity of British Columbia and XingXing Graphics Co. for
providing the NURBS model of the Yuan Ming garden.

This work is supported in part by a Sloan fellowship,
ARO Contract P-34982-MA, ARO contract DAAH04-96-l-
0013, NSF grant CCR-93199S7, NSF grant CCR-9625217,
ONR contract NOO014-941-0738, DARPA contract DABT63-
93-C-0048, NSF/ARPA Science and Technology Center for

99

Computer Graphics & Scientific Visualization NSF Prime
contract No. 8920219.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S.S. Abi-Ezzi and L.A. Shirman. Tessellation of curved
surfaces under highly varying transformations. Proceerf-
ings of Eurogmphics, pages 385-397, 1991.

C.L. Bajaj. Rational hypersurface display. ACM Com-
puter Gmphics, 24(2):117-127, 1990. (Symposium on
Interactive 3D Graphics).

J. F. Blinn. Computer Display of Curved Surfaces.
Ph.d. thesis, University of Utah, 1978.

E. Catmull. A Subdivision Algorithm for Computer
Display of Curved Surjaces. PhD thesis, University of
Utah, 1974.

J. H. Clark. A fast aJgorithm for rendering paramet-
ric surfaces. ACM Computer Gmphics, 13(2):289–299,
1979. (SIGGRAPH Proceedings).

J. Cohen, A. Varshney, D. Manocha, and G. Turk et
al. SimplMcation envelopes. In Proceedings of A CM
SIGGRAPH, pages 119-128, 1996.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of ar-
bitrary meshes. In Proceedings oj ACM SIGGRAPH,
pages 173-182, 1995.

G. Fariu. Curves and Surfaces for Computer Aided Ge-
ometric Design: A Pmctical Guide. Academic Press
Inc., 1993.

D. Filip, R. Magedson, and R. Market. Surface algo-
rithms using bounds on derivatives. Computer Aided
Geometric Design, 3(4):295-311, 1986.

D.R. Forsey and V. Klsssen. An adaptive subdivision
algorithm for crack prevention in the display of par~
met nc surfaces. In Proceedings of Gmphics Interjace,
pages 1–8, 1990.

Y. Hazony. Algorithms for parallel processing: Curve
and surface definition with Q-splines. Computers &
Gmphics, 4(3-4):165-176, 1979.

B. Hendrickson and R. Leland. A multilevel algo-
rithm for partitioning graphs. Proc. Supercomputing
’95, 1995.

H. Hoppe. Progressive meshes. In Proceedings of A CM
SIGGRAPH, p~SS 99-108, 1996.

J. Kajiya. Ray tracing parametric patches. ACM
Computer Gmphics, 16(3):245-254, 1982. (SIGGRAPH
Proceedings).

G. Karypis and V. Kumar. Multilevel k-way parti-
tioning scheme for irregular graphs. Technical Report
TR95-06J, Department of Computer Science, Univer-
sity of Minnesota, 1995.

R. Klein and W. Straber. Large mesh generation from
boundary models with parametric face representation.
In Proc. oj ACM SIG GRAPH Symposium on Solid
Modeling, pages 431440, 1995.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P.A. Koparkar and S. P. Mudur. A new class of
algorithms for the processing of parametric curves.
Computer-Aided Design, 15(1):4145, 1983.

S. Kumar. Intemctive Display oj Pammetric Spline
Sur~aces. PhD thesis, University of North Carolina,
1996.

S. Kumar, C. Chang, and D. Manocha. Scalable alg~
rithms for interactive visualization of curved surfaces.
In Supercomputing, Pittsburgh, PA, 1996.

S. Kumar and D. Manocha. Hierarchical visibility
culling for spline models. In Proceedings o~ Gmphics
Interface, pages 142-150, Toronto, Canada, 1996.

S. Kumar, D. Manocha, and A. Lastra. Interactive dis-
play of large scale NURBS models. In Symposium on
Intemctiue .?D Gmphics, pages 51–58, Monterey, CA,
1995.

J.M. Lane, L.C. Carpenter, J. T. Whitted, and J.F.
Blinn. Scan line methods for displaying parametrically
defined surfaces. Communications of ACM, 23(1):23-
34, 1980.

W.L. Luken and Fuhua Cheng. Rendering trimmed
NURB SUIfWXS. Computer science research report
18669(81711), IBM Research Division, 1993.

D. Manocha and J. Demmel. Algorithms for intersect-
ing parametric and algebraic curves. In Proceedings of
Gmphics Interface, pages 232-241, 1992.

T. Nishita, T.W. Sederberg, and M. Kakimoto. Ray
tracing trimmed rational surface patches. ACM Com-
puter Gmphics, 24(4):337-345, 1990. (SIGGRAPH
Proceedings).

A. Rockwood, K. Heaton, and T. Davis. Red-time ren-
dering of trimmed surfaces. ACM Computer Gmphics,
23(3):107-117, 1989. (SIGGRAPH Proceedings).

M. Shantz and S. Chang. Rendering trimmed NURBS
with adaptive forward ditTerencing. ACM Computer
Gmphics, 22(4):189-198, 1988. (SIGGRAPH Proceed-
ings).

M. Shantz and S. Lien. Shading bicubic patches. ACM
Computer Gmphics, 21(4):189-196, 1987. (SIGGRAPH
Proceedings).

A. Varshney. Hiemmhical Geometric Approm”mations.
PhD thesis, University of North Carolina, 1994.

J.T. Whitted. A scan line algorithm for computer
display of curved surfaces. ACM Computer Gmphics,
12(3):8-13, 1978. (SIGGRAPH Proceedings).

J.T. Whitted. An improved illumination model for
shaded display. ACM Computer Gmphics, 13(3):1–14,
1979. (SIGGRAPH Proceedings).

100

Appendix

Trimming curve,

bq

Trimming curve

Figure 10: Offset Curve Intersection

We use the following theorem in Section 4.2 to show the ex-
istence of vaLid triangulations for our offset curves.

Theorem 1 0C2 and be, do not intersect, if cl < Ca.

Proof: Since for each boundary curve we choose the rnilI-
imum error, we ensure that CI < Cz. To prove Theorem 1,
consider Figure 10. OC2is the offset curve for &z. Siice
b,a is at most cz distant from the B&zier trimming curve,
the curve itself may not intersect 0C2. Since all points on
bcl lie on the curve, any intersection of b., with 0C2 mnst
imply that either the curve order ia p1Mp3 or p] p3~. In the
first case bcz is more than Q far from the curve and in the
second case btl is more than Q away from the curve - both
contradictions.

101

