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ABSTRACT

Level-of-detail (LOD) representations are an important tool for real-
time rendering of complex geometric environments. The previously
introduced progressive mesh representation defines for an arbitrary
triangle mesh a sequence of approximating meshes optimized for
view-independent LOD. In this paper, we introduce a framework
for selectively refining an arbitrary progressive mesh according to
changing view parameters. We define efficient refinement criteria
based on the view frustum, surface orientation, and screen-space
geometric error, and develop a real-time algorithm for incrementally
refining and coarsening the mesh according to these criteria. The
algorithm exploits view coherence, supports frame rate regulation,
and is found to require less than 15% of total frame time on a
graphics workstation. Moreover, for continuous motions this work
can be amortized over consecutive frames. In addition, smooth
visual transitions (geomorphs) can be constructed between any two
selectively refined meshes.

A number of previous schemes create view-dependent LOD
meshes for height fields (e.g. terrains) and parametric surfaces (e.g.
NURBS). Our framework also performs well for these special cases.
Notably, the absence of a rigid subdivision structure allows more
accurate approximations than with existing schemes. We include
results for these cases as well as for general meshes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation -
Display algorithms; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - surfaces and object representations.

Additional Keywords: mesh simplification, level-of-detail, multiresolution
representations, dynamic tessellation, shape interpolation.

1 INTRODUCTION

Rendering complex geometric models at interactive rates is a chal-
lenging problem in computer graphics. While rendering perfor-
mance is continually improving, significant gains are obtained by
adapting the complexity of a model to its contribution to the ren-
dered image. The ideal solution would be to efficiently determine
the coarsest model that satisfies some perceptual image qualities.
One common heuristic technique is to author several versions of a
model at various levels of detail (LOD); a detailed triangle mesh
is used when the object is close to the viewer, and coarser approx-
imations are substituted as the object recedes [4, 8]. Such LOD
meshes can be computed automatically using mesh simplification
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techniques (e.g. [5, 10, 19, 21]). The recently introduced progres-
sive mesh (PM) representation [10] captures a continuous sequence
of meshes optimized for view-independent LOD control, and allows
fast traversal of the sequence at runtime.

Sets or sequences of view-independent LOD meshes are appro-
priate for many applications, but difficulties arise when rendering
large-scale models, such as environments, that may surround the
viewer:

� Many faces of the model may lie outside the view frustum and
thus do not contribute to the image (Figure 12a). While these
faces are typically culled early in the rendering pipeline, this
processing incurs a cost.

� Similarly, it is often unnecessary to render faces oriented away
from the viewer, and such faces are usually culled using a “back-
facing” test, but again at a cost.

� Within the view frustum, some regions of the model may lie
much closer to the viewer than others. View-independent LOD
meshes fail to provide the appropriate level of detail over the
entire model (e.g. as does the mesh in Figure 12b).

Some of these problems can be addressed by representing a graph-
ics scene as a hierarchy of meshes. Parts of the scene outside the
view frustum can then be removed efficiently using hierarchical
culling, and LOD can be adjusted independently for each mesh in
the hierarchy [4, 8]. However, establishing such hierarchies on con-
tinuous surfaces is a challenging problem. For instance, if a terrain
mesh (Figure 11d) is partitioned into blocks, and these blocks are
rendered at different levels of detail, one has to address the problem
of cracks between the blocks [14]. In addition, the block boundaries
are unlikely to correspond to natural features in the surface, result-
ing in suboptimal approximations. Similar problems also arise in
the adaptive tessellation of smooth parametric surfaces [1, 13, 18].

Specialized schemes have been presented to adaptively refine
meshes for the cases of height fields and parametric surfaces, as
summarized in Section 2.1. In this paper, we offer a general runtime
LOD framework for selectively refining arbitrary meshes according
to changing view parameters. A similar approach was developed in-
dependently by Xia and Varshney [24]; their scheme is summarized
and compared in Section 2.3.

The principal contributions of this paper are:

� It presents a framework for real-time selective refinement of
arbitrary progressive meshes (Section 3).

� It defines fast view-dependent refinement criteria involving the
view frustum, surface orientation, and screen-space projected
error (Section 4).

� It presents an efficient algorithm for incrementally adapting the
mesh refinement based on these criteria (Section 5). The algo-
rithm exploits view coherence, supports frame rate regulation,
and may be amortized over consecutive frames. To reduce pop-
ping, geomorphs can be constructed between any two selectively
refined meshes.
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� It shows that triangle strips can be generated for efficient render-
ing even though the mesh connectivity is irregular and dynamic
(Section 6).

� Finally, it demonstrates the framework’s effectiveness on the
important special cases of height fields and tessellated parametric
surfaces, as well as on general meshes (Section 8).

Notation We denote a triangle mesh M as a tuple (V;F), where
V is a set of vertices vj with positions vj 2 R3, and F is a set
of ordered vertex triples fvj; vk; vlg specifying vertices of triangle
faces in counter-clockwise order. The neighborhood of a vertex v,
denoted Nv, refers to the set of faces adjacent to v.

2 RELATED WORK

2.1 View-dependent LOD for domains in R2

Previous view-dependent refinement methods for domains in R2

fall into two categories: height fields and parametric surfaces.

Although there exist numerous methods for simplifying height
fields, only a subset support efficient view-dependent LOD. These
are based on hierarchical representations such as grid quadtrees [14,
23], quaternary triangular subdivisions [15], and more general tri-
angulation hierarchies [3, 6, 20]. (The subdivision approach of [15]
generalizes to 2-dimensional domains of arbitrary topological type.)
Because quadtrees and quaternary subdivisions are based on a reg-
ular subdivision structure, the view-dependent meshes created by
these schemes have constrained connectivities, and therefore require
more polygons for a given accuracy than so-called triangulated ir-
regular networks (TIN’s). It was previously thought that dynam-
ically adapting a TIN at interactive rates would be prohibitively
expensive [14]. In this paper we demonstrate real-time modifica-
tion of highly adaptable TIN’s. Moreover, our framework extends
to arbitrary meshes.

View-dependent tessellation of parametric surfaces such as
NURBS requires fairly involved algorithms to deal with pa-
rameter step sizes, trimming curves, and stitching of adjacent
patches [1, 13, 18]. Most real-time schemes sample a regular grid in
the parametric domain of each patch to exploit fast forward differ-
encing and to simplify the patch stitching process. Our framework
allows real-time adaptive tessellations that adapt to surface curvature
and view parameters.

2.2 Review of progressive meshes
In the PM representation [10], an arbitrary mesh M̂ is simplified
through a sequence of n edge collapse transformations (ecol in
Figure 1) to yield a much simpler base mesh M0 (see Figure 11):

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0 :

Because each ecol has an inverse, called a vertex split transforma-
tion, the process can be reversed:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂) :

The tuple (M0; fvsplit0; : : : ; vsplitn�1g) forms a PM representation
of M̂. Each vertex split, parametrized as vsplit(vs; vl; vr; vt; fl; fr),
modifies the mesh by introducing one new vertex vt and two new
faces fl = fvs; vt; vlg and fr = fvs; vr; vtg as shown in Figure 1. The
resulting sequence of meshes M0; : : : ;Mn =M̂ is effective for view-
independent LOD control (Figure 11). In addition, smooth visual
transitions (geomorphs) can be constructed between any two meshes
in this sequence.

To create view-dependent approximations, our earlier work [10]
describes a scheme for selectively refining the mesh based on a user-
specified query function qrefine(vs). The basic idea is to traverse the

vr
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ecol
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vs
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vl vr
fl fr

Figure 1: Original definitions of the refinement (vsplit) and coars-
ening (ecol) transformations.

vspliti records in order, but to only perform vspliti(vsi ; vli ; vri ; : : :) if

(1) vspliti is a legal transformation, that is, if the vertices
fvsi ; vli ; vrig satisfy some conditions in the mesh refined so far, and

(2) qrefine(vsi ) evaluates to true.

The scheme is demonstrated with a view-dependent qrefine function
whose criteria include the view frustum, proximity to silhouettes,
and screen-projected face areas.

However, some major issues are left unaddressed. The qrefine
function is not designed for real-time performance, and fails to
measure screen-space geometric error. More importantly, no facility
is provided for efficiently adapting the selectively refined mesh as
the view parameters change.

2.3 Vertex hierarchies

Xia and Varshney [24] use ecol/vsplit transformations to create a
simplification hierarchy that allows real-time selective refinement.
Their approach is to precompute for a given mesh M̂ a merge tree
bottom-up as follows. First, all vertices V̂ are entered as leaves
at level 0 of the tree. Then, for each level l � 0, a set of ecol
transformations is selected to merge pairs of vertices, and the re-
sulting proper subset of vertices is promoted to level l + 1. The ecol
transformations in each level are chosen based on edge lengths, but
with the constraint that their neighborhoods do not overlap. The
topmost level of the tree (or more precisely, forest) corresponds to
the vertices of a coarse mesh M0. (In some respects, this structure
is similar to the subdivision hierarchy of [11].)

At runtime, selective refinement is achieved by moving a vertex
front up and down through the hierarchy. For consistency of the re-
finement, an ecol or vsplit transformation at level l is only permitted
if its neighborhood in the selectively refined mesh is identical to that
in the precomputed mesh at level l; these additional dependencies
are stored in the merge tree. As a consequence, the representation
shares characteristics of quadtree-type hierarchies, in that only grad-
ual change is permitted from regions of high refinement to regions
of low refinement [24].

Whereas Xia and Varshney construct the hierarchy based on edge
lengths and constrain the hierarchy to a set of levels with non-
overlapping transformations, our approach is to let the hierarchy
be formed by an unconstrained, geometrically optimized sequence
of vsplit transformations (from an arbitrary PM), and to introduce
as few dependencies as possible between these transformations, in
order to minimize the complexity of approximating meshes.

Several types of view-dependent criteria are outlined in [24], in-
cluding local illumination and screen-space projected edge length.
In this paper we detail three view-dependent criteria. One of these
measures screen-space surface approximation error, and therefore
yields mesh refinement that naturally adapts to both surface curva-
ture and viewing direction.

Another related scheme is that of Luebke [16], which constructs
a vertex hierarchy using a clustering octree, and locally adapts the
complexity of the scene by selectively coalescing the cluster nodes.
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Figure 2: New definitions of vsplit and ecol.

3 SELECTIVE REFINEMENT FRAMEWORK

In this section, we show that a real-time selective refinement frame-
work can be built upon an arbitrary PM.

Let a selectively refined mesh MS be defined as the mesh obtained
by applying to the base mesh M0 a subsequence S � f0; : : : ; n�1g
of the PM vsplit sequence. As noted in Section 2.2, an arbitrary
subsequence S may not correspond to a well-defined mesh, since a
vsplit transformation is legal only if the current mesh satisfies some
preconditions. These preconditions are analogous to the vertex or
face dependencies found in most hierarchical representations [6, 14,
24]. Several definitions of vsplit legality have been presented (two
in [10] and one in [24]); ours is yet another, which we will introduce
shortly. LetM be the set of all meshes MS produced from M0 by a
subsequence S of legal vsplit transformations.

To support incremental refinement, it is necessary to consider not
just vsplit’s, but also ecol’s, and to perform these transformations
in an order possibly different from that in the PM sequence. A
major concern is that a selectively refined mesh should be unique,
regardless of the sequence of (legal) transformations that leads to it,
and in particular, it should still be a mesh inM.

We first sought to extend the selective refinement scheme of [10]
with a set of legality preconditions for ecol transformations, but
were unable to form a consistent framework without overly restrict-
ing it. Instead, we began anew with modified definitions of vsplit
and ecol, and found a set of legality preconditions sufficient for con-
sistency, yet flexible enough to permit highly adaptable refinement.
The remainder of this section presents these new definitions and
preconditions.

New transformation definitions The new definitions of vsplit
and ecol are illustrated in Figure 2. Note that their effects on
the mesh are still the same; they are simply parametrized differ-
ently. The transformation vsplit(vs; vt; vu; fl; fr; fn0; fn1; fn2; fn3), re-
places the parent vertex vs by two children vt and vu. Two new
faces fl and fr are created between the two pairs of neighboring
faces (fn0; fn1) and (fn2; fn3) adjacent to vs. The edge collapse trans-
formation ecol(vs; vt; vu; : : :) has the same parameters as vsplit and
performs the inverse operation. To support meshes with bound-
aries, face neighbors fn0; fn1; fn2; fn3 may have a special nil value,
and vertex splits with fn2 = fn3 =nil create only the single face fl.

Let V denote the set of vertices in all meshes of the PM sequence.
Note that jVj is approximately twice the number jV̂j of original
vertices because of the vertex renaming in each vsplit. In contrast,
the faces of a selectively refined mesh MS are always a subset of the
original faces F̂. We number the vertices and faces in the order that
they are created, so that vspliti introduces the vertices ti = jV0

j+2i+1
and ui = jV0

j+2i+2. We say that a vertex or face is active if it exists
in the selectively refined mesh MS.

Vertex hierarchy As in [24], the parent-child relation on the
vertices establishes a vertex hierarchy (Figure 3), and a selectively
refined mesh corresponds to a “vertex front” through this hierarchy
(e.g. M0 and M̂ in Figure 3). Our vertex hierarchy differs in two
respects. First, vertices are renamed as they are split, and this

M0

v8 v9v4 v5

v6 v7

v12 v13

v1 v2 v3

v10 v11

v14 v15M^

Figure 3: The vertex hierarchy on V forms a “forest”, in which the
root nodes are the vertices of the coarsest mesh (base mesh M0) and
the leaf nodes are the vertices of the most refined mesh (original
mesh M̂).
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Figure 4: Preconditions and effects of vsplit and ecol transforma-
tions.

renaming contributes to the refinement dependencies. Second, the
hierarchy is constructed top-down after loading a PM using a simple
traversal of the vsplit records. Although our hierarchies may be
unbalanced, they typically have fewer levels than in [24] (e.g. 24
instead of 65 for the bunny) because they are unconstrained.

Preconditions We define a set of preconditions for vsplit and
ecol to be legal (refer to Figure 4).

A vsplit(vs; vt; vu; : : :) transformation is legal if

(1) vs is an active vertex, and

(2) the faces ffn0; fn1; fn2; fn3g are all active faces.

An ecol(vs; vt; vu; : : :) transformation is legal if

(1) vt and vu are both active vertices, and

(2) the faces adjacent to fl and fr are ffn0; fn1; fn2; fn3g, in the config-
uration of Figure 2.

Properties LetM? be the set of meshes obtained by transitive
closure of legal vsplit and ecol transformations from M0 (or equiv-
alently from M̂ since the PM sequence M0

 !M̂ is legal). For any
mesh M =(V;F) 2M?, we observe the following properties:1

� If vsplit(vs; vt; vu; : : :) is legal, then ffn0; fn1g and ffn2; fn3g must
be pairwise adjacent and adjacent to vs as in Figure 2.

� If the active vertex front lies below ecol(vs; vt; vu; : : :) (i.e. fl; fr 2

F), then ffn0; fn1; fn2; fn3g must all be active.

� M 2 M, i.e. M = MS for some subsequence S, i.e. M? =M.

� M = MS is identical to the mesh obtained by applying to M̂ the
complement subsequence fn�1; : : : ; 0g n S of ecol transforma-
tions, which are legal.

Implementation To make these ideas more concrete, Figure 5
lists the C++ data structures used in our implementation. A selec-
tively refinable mesh consists of an array of vertices and an array
of faces. Of these vertices and faces, only a subset are active, as
specified by two doubly-linked lists that thread through a subset of

1Although these properties have held for the numerous experiments we
have performed, we unfortunately do not have formal proofs for them as yet.



struct ListNode f // Node possibly on a linked list
ListNode* next; // 0 if this node is not on the list
ListNode* prev;

g;
struct Vertex f

ListNode active; // list stringing active vertices V
Point point;
Vector normal;
Vertex* parent; // 0 if this vertex is in M0

Vertex* vt; // 0 if this vertex is in M̂; (vu=vt+1)
// Remaining fields encode vsplit information, defined if vt 6= 0.

Face* fl; // (fr=fl+1)
Face* fn[4]; // required neighbors fn0; fn1; fn2; fn3

RefineInfo refine info; // defined in Section 4
g;
struct Face f

ListNode active; // list stringing active faces F
int matid; // material identifier

// Remaining fields are used if the face is active.
Vertex* vertices[3]; // ordered counter-clockwise
Face* neighbors[3]; // neighbors[i] across from vertices[i]

g;
struct SRMesh f // Selectively refinable mesh

Array<Vertex> vertices; // set V of all vertices
Array<Face> faces; // set F̂ of all faces
ListNode active vertices; // head of list V � V
ListNode active faces; // head of list F � F̂

g;

Figure 5: Principal C++ data structures.

the records. In the Vertex records, the fields parent and vt encode
the vertex hierarchy of Figure 3. If a vertex can be split, its fl and
fn[0::3] fields encode the remaining parameters of the vsplit (and
hence the dependencies of Figure 4). Each Face record contains
links to its current vertices, links to its current face neighbors, and
a material identifier used for rendering.

4 REFINEMENT CRITERIA

In this section, we describe a query function qrefine(vs) that deter-
mines whether a vertex vs should be split based on the current view
parameters. As outlined below, the function uses three criteria: the
view frustum, surface orientation, and screen-space geometric error.
Because qrefine is often evaluated thousands of times per frame, it
has been designed to be fast, at the expense of a few simplifying
approximations where noted.
function qrefine(vs)

// Refine only if it affects the surface within the view frustum.
if outside view frustum(vs) return false
// Refine only if part of the affected surface faces the viewer.

if oriented away(vs) return false
// Refine only if screen-projected error exceeds tolerance � .

if screen space error(vs) � � return false
return true

View frustum This first criterion seeks to coarsen the mesh out-
side the view frustum in order to reduce graphics load. Our approach
is to compute for each vertex v 2 V the radius rv of a sphere cen-
tered at v that bounds the region of M̂ supported by v and all its
descendants. We let qrefine(v) return false if this bounding sphere
lies completely outside the view frustum.

The radii rv are computed after a PM representation is loaded into
memory using a bounding sphere hierarchy as follows. First, we
compute for each v 2 V̂ (the leaf nodes of the vertex hierarchy) a
sphere Sv that bounds its adjacent vertices in M̂. Next, we perform
a postorder traversal of the vertex hierarchy (by scanning the vsplit

backfacing
region

α v

Sv
'

Gauss map

v

n v
^

n v
^

(a) Nv (b) region of M̂ (c) S2

Figure 6: Illustration of (a) the neighborhood of v, (b) the region in
M̂ affected by v, and (c) the space of normals over that region and
the cone of normals that bounds it.

sequence backwards) to assign each parent vertex vs the smallest
sphere Svs that bounds the spheres Svt ; Svu of its two children. Finally,
since the resulting spheres Sv are not centered on the vertices, we
compute at each vertex v the radius rv of a larger sphere centered at
v that bounds Sv.

Since the view frustum is a 4-sided semi-infinite pyramid, a sphere
of radius rv centered at v=(vx; vy; vz) lies outside the frustum if

aivx + bivy + civz + di < �rv for any i = 1 : : : 4

where each linear functional aix + biy + ciz + di measures the signed
Euclidean distance to a side of the frustum. Selective refinement
based solely on the view frustum is demonstrated in Figure 12a.

Surface orientation The purpose of the second criterion is to
coarsen regions of the mesh oriented away from the viewer, again to
reduce graphics load. Our approach is analogous to the view frustum
criterion, except that we now consider the space of normals over the
surface (the Gauss map) instead of the surface itself. The space of
normals is a subset of the unit sphere S2 = fp 2 R3 : kpk = 1g;
for a triangle mesh M̂, it consists of a discrete set of points, each
corresponding to the normal of a triangle face of M̂.

For each vertex v, we bound the space of normals associated
with the region of M̂ supported by v and its descendants, using a
cone of normals [22] defined by a semiangle �v about the vector
n̂v = v:normal (Figure 6). The semiangles �v are computed after
a PM representation is loaded into memory using a normal space
hierarchy [12]. As before, we first hierarchically compute at each
vertex v a sphere S0v that bounds the associated space of normals.
Next, we compute at each vertex v the semiangle �v of a cone about
n̂v that bounds the intersection of S0v and S2. We let �v = �

2 if no
bounding cone (with �v <

�

2 ) exists.

Given a viewpoint e, it is unnecessary to split v if e lies in the
backfacing region of v, that is, if

av � e

kav � ek
� n̂v > sin�v ;

where av is a cone anchor point that takes into account the geometric
bounding volume Sv (see [22] for details). However, to improve both
space and time efficiency, we approximate av by v (it amounts to a
parallel projection approximation [13]), and instead use the test

(v� e) � n̂v > 0 and ((v� e) � n̂v)
2 > kv � ek2 sin2�v :

The effect of this test is seen in Figures 13c, 14, and 16c, where the
backfacing regions of the meshes are kept coarse.

Screen-space geometric error The goal of the third criterion
is to adapt the mesh refinement such that the distance between the
approximate surface M and the original M̂, when projected on the
screen, is everywhere less than a screen-space tolerance � .
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Figure 7: Illustration of (a) the deviation space Dn̂(�; �), (b) its
cross-section, and (c) the extent of its screen-space projection as a
function of viewing angle (with � = 0:5 and � = 1).

To determine whether a vertex v 2 V should be split, we seek a
measure of the deviation between its current neighborhood Nv (the
set of faces adjacent to v) and the corresponding region N̂ v in M̂. One
quantitative measure is the Hausdorff distance H(Nv; N̂v), defined
as the smallest scalar r such that any point on Nv is within distance
r of a point on N̂v, and vice versa. Mathematically,H(Nv; N̂v) is the
smallest r for which Nv � N̂v�B(r) and N̂v � Nv�B(r) where B(r)
is the closed ball of radius r and� denotes the Minkowski sum2. If
H(Nv; N̂v) = r, the screen-space approximation error is bounded by
the screen-space projection of the ball B(r).

If Nv and N̂v are similar and approximately planar, a tighter dis-
tance bound can be obtained by replacing the ball B(r) in the above
definition by a more general deviation space D. For instance, Lind-
strom et al. [14] record deviation of height fields (graphs of functions
over the xy plane) by associating to each vertex a scalar value � rep-
resenting a vertical deviation space Dẑ(�) = fh ẑ : �� � h � �g.
The main advantage of using Dẑ(�) is that its screen-space projec-
tion vanishes as its principal axis ẑ becomes parallel to the viewing
direction, unlike the corresponding B(�).

To generalize these ideas to arbitrary surfaces, we define a de-
viation space Dn̂(�; �) shown in Figure 7a–b. The motivation is
that most of the deviation is orthogonal to the surface and is cap-
tured by a directional component �n̂, but a uniform component
� may be required when N̂v is curved. The uniform component
also allows accurate approximation of discontinuity curves (such as
surface boundaries and material boundaries) whose deviations are
often tangent to the surface. The particular definition of Dn̂(�; �)
corresponds to the shape whose projected radius along a direction ~v
has the simple formula max(�; �kn̂� ~vk). As shown in Figure 7c,
the graph of this radius as a function of view direction has the shape
of a sphere of radius � unioned with a “bialy” [14] of radius �.

During the construction of a PM representation, we precompute
�v; �v for deviation space Dn̂v (�v; �v) at each vertex v 2 V as follows.
After each ecol(vs; vt; vu; : : :) transformation is applied, we estimate
the deviation between Nvs and N̂vs by examining the residual error
vectors E = feig from a dense set of points X sampled on M̂ that
locally project onto Nvs , as explained in more detail in [10]. We use
maxei2E(ei � n̂v) =maxei2E kei � n̂vk to fix the ratio �v=�v, and find
the smallest Dn̂v (�v; �v) with that ratio that bounds E. Alternatively,
other simplification schemes such as [2, 5, 9] could be adapted to
obtain deviation spaces with guaranteed bounds.

Note that the computation of �v; �v does not measure parametric
distortion. This is appropriate for texture-mapped surfaces if the
texture is geometrically projected or “wrapped”. If instead, vertices
were to contain explicit texture coordinates, the residual computa-
tion could be altered to measure deviation parametrically.

Given viewpoint e, screen-space tolerance � (as a fraction of
viewport size), and field-of-view angle ', qrefine(v) returns true if

2The Minkowski sum is simply A � B = fa + b : a 2 A;b 2 Bg.

the screen-space projection of Dn̂v (�v; �v) exceeds � , that is, if

max

�
�v ; �v

n̂v �
v� e

kv� ek


�
= kv� ek �

�
2 cot

'

2

�
� :

For efficiency, we use the equivalent test

�2
v � �2

kv� ek
2 or

�2
v

�
kv� ek

2
� ((v� e) � n̂v)

2
�
� �2

kv� ek
4 ;

where �2 = (2 cot '2 )2� 2 is computed once per frame. Note that the
test reduces to that of [14] when�v = 0 and n̂v = ẑ, and requires only
a few more floating point operations in the general case. As seen in
Figures 13b and 16b, our test naturally results in more refinement
near the model silhouette where surface deviation is orthogonal to
the view direction.

Our test provides only an approximate bound on the screen-space
projected error, for a number of reasons. First, the test slightly
underestimates error away from the viewport center, as pointed out
in [14]. Second, a parallel projection assumption is made when
projecting Dn̂ on the screen, as in [14]. Third, the neighborhood
about v when evaluating qrefine(v) may be different from that in
the PM sequence since M is selectively refined; thus the deviation
spaces Dn̂ provide strict bounds only at the vertices themselves.
Nonetheless, the criterion works well in practice, as demonstrated
in Figures 12–16.

Implementation We store in each Vertex.RefineInfo record the
four scalar values f�rv; sin2�v; �

2
v ; �

2
vg. Because the three refine-

ment tests share several common subexpressions, evaluation of the
complete qrefine function requires remarkably few CPU cycles on
average (230 cycles per call as shown in Table 2).

5 INCREMENTAL SELECTIVE REFINEMENT
ALGORITHM

We now present an algorithm for incrementally adapting a mesh
within the selective refinement framework of Section 3, using the
qrefine function of Section 4. The basic idea is to traverse the list of
active vertices V before rendering each frame, and for each vertex
v 2 V , either leave it as is, split it, or collapse it. The core of the
traversal algorithm is summarized below.
procedure adapt refinement()

for each v 2 V
if v:vt and qrefine(v)

force vsplit(v)
else if v:parent and ecol legal(v:parent) and

not qrefine(v:parent)
ecol(v:parent) // (and reconsider some vertices)

procedure force vsplit(v0) f
stack v0

while v stack.top()
if v:vt and v:fl 2 F

stack.pop() // v was split earlier in the loop
else if v 62 V

stack.push(v:parent)
else if vsplit legal(v)

stack.pop()
vsplit(v) // (placing v:vt and v:vu next in list V)

else for i 2 f0 : : : 3g
if v:fn[i] 62 F

// force vsplit that creates face v:fn[i]
stack.push(v:fn[i]:vertices[0]:parent) 3

3Implementation detail: the vertex that should be split to create an in-
active face f is found in f :vertices[0]:parent because we always set both
fl:vertices[0] = vt and fr:vertices[0] = vt when creating faces, thereby obvi-
ating the need for a Face.parent field.



We iterate through the doubly linked list of active vertices V .
For any active vertex v 62 M̂, if qrefine(v) evaluates to true, the
vertex should be split. If vsplit(v) is not legal (i.e. if any of the faces
v:fn[0::3] are not active), a chain of other vertex splits are performed
in order for vsplit(v) to become legal (procedure force vsplit), namely
those that introduce the faces v:fn[0::3], and recursively, any others
required to make those vertex splits legal.

For any active vertex v 62 M0, if qrefine(v:parent) returns false,
the vertex v should be collapsed. However, this edge collapse is
only performed if it is legal (i.e. if the sibling of v is also active and
the neighboring faces of v:parent:fl and v:parent:fr match those of
v:parent:fn[0::3]).

In short, the strategy is to force refinement when desired, but to
coarsen only when possible. After a vsplit or ecol is performed,
some vertices in the resulting neighborhood should be considered
for further transformations. Since these vertices may have been pre-
viously visited in the traversal of V , we relocate them in the list to lie
immediately after the list iterator. Specifically, following vsplit(v),
we add v:vt; v:vu after the iterator; and, following ecol(v:parent),
we add v:parent and relocate vl; vr after the iterator (where vl and vr

are the current neighbors of v as in Figure 1).

Time complexity The time complexity for adapt refinement,
transforming MA into MB, is O(jVA

j + jVB
j) in the worst case since

MA
!M0

!MB could possibly require O(jVA
j) ecol’s and O(jVB

j)
vsplit’s, each taking constant time. For continuous view changes,
VB is usually similar to VA, and the simple traversal of the active
vertex list is the bottleneck of the incremental refinement algo-
rithm, as shown in Table 2. Note that the number jVj of active
vertices is typically much smaller than the number jV̂j of original
vertices. The rendering process, which has the same time com-
plexity (jFj ' 2jVj), in fact has a larger time constant. Indeed,
adapt refinement requires only about 14% of total frame time, as
discussed in Section 8.

Regulation For a given PM and a constant screen-space toler-
ance � , the number jFj of active faces can vary dramatically depend-
ing on the view. Since both refinement times and rendering times
are closely correlated to jFj, this leads to high variability in frame
rates (Figure 9). We have implemented a simple scheme for regu-
lating � so as to maintain jFj at a nearly constant level. Let m be the
desired number of faces. Prior to calling adapt refinement at time
frame t, we set �t = �t�1(jFt�1j=m) where jFt�1j is the number of
active faces in the previously drawn frame. As shown in Figure 10,
this simple feedback control system exhibits good stability for our
terrain flythrough. More sophisticated control strategies may be
necessary for heterogeneous, irregular models. Direct regulation of
frame rate could be attempted, but since frame rate is more sensitive
to operating system “hiccups”, it may be best achieved indirectly
using a secondary, slower controller adjusting m.

Amortization Since the main loop of adapt refinement is a sim-
ple traversal of the list V , we can distribute its work over consecutive
frames by traversing only a fraction of V each frame. For slowly
changing view parameters, this reduces the already low overhead of
selective refinement while introducing few visual artifacts.

With amortization, however, regulation of jFj through adjustment
of � becomes more difficult, since the response in jFj may lag
several frames. Our current strategy is to wait several frames until
the entire list V has been traversed before making changes to � . To
reduce overshooting, we disallow vsplit refinement if the number of
active faces reaches an upper limit (e.g. jFj � 1:2m). but do count
the number of faces that would be introduced towards the next
adjustment to � . In the flythrough example of Figure 10, where the
average frame rate is 7.2 frames/sec, amortization increases frame
rate to 8 frames/sec.

MA

v8 v9v4 v5

v6 v7

v12 v13

v1 v2 v3

v10 v11

v14 v15

MB

MG

Figure 8: Illustration of two selectively refined meshes MA and MB,
and of the mesh MG used to geomorph between them.

Geomorphs The selective refinement framework also supports
geomorphs between any two selectively refined meshes MA and MB.
That is, one can construct a mesh MG(�) whose vertices vary as a
function of a parameter 0 � � � 1, such that MG(0) looks identical
to MA and MG(1) looks identical to MB. The key is to first find
a mesh MG whose active vertex front is everywhere lower than or
equal to that of MA and MB, as illustrated in Figure 8. Mesh M̂
trivially satisfies this property, but a simpler mesh MG is generally
obtained by starting from either MA or MB and successively calling
force vsplit to advance the vertex front towards that of the other
mesh. The mesh MG has the property that its faces FG are a superset
of both FA and FB, and that any vertex vj 2 VG has a unique ancestor
v
�G!A(j) 2 VA and a unique ancestor v

�G!B(j) 2 VB. The geomorph
MG(�) is the mesh (FG;VG(�)) with

v
G
j (�) = (1��)v

�G!A(j) + (�)v
�G!B(j) :

In the case that MB is the result of calling adapt refinement on MA,
the mesh MG can be obtained more directly. Instead of a single pass
through V in adapt refinement, we make two passes: a refinement
pass MA

! MG where only vsplit are considered, and a coarsening
pass MG

! MB where only ecol are considered. In each pass,
we record the sequence of transformations performed, allowing us
to backtrack through the inverse of the ecol sequence to recover
the intermediate mesh MG, and to construct the desired ancestry
functions �G!A and �G!B. Such a geomorph is demonstrated on
the accompanying video. Because of view coherence, the number
of vertices that require interpolation is generally smaller than the
number of active vertices. More research is needed to determine the
feasibility and usefulness of generating geomorphs at runtime.

6 RENDERING

Many graphics systems require triangle strip representations for
optimal rendering performance [7]. Because the mesh connectivity
in our incremental refinement scheme is dynamic, it is not possible
to precompute triangle strips. We use a greedy algorithm to generate
triangle strips at every frame, as shown in Figure 12e. Surprisingly,
the algorithm produces strips of adequate length (on average, 10–15
faces per “generalized” triangle strip under IRIS GL, and about 4.2
faces per “sequential” triangle strip under OpenGL), and does so
efficiently (Table 2).

The algorithm traverses the list of active faces F, and at any face
not yet rendered, begins a new triangle strip. Then, iteratively, it
renders the face, checks if any of its neighbor(s) has not yet been
rendered, and if so continues the strip there. Only neighbors with the
same material are considered, so as to reduce graphics state changes.
To reduce fragmentation, we always favor continuing generalized
triangle strips in a clockwise spiral (Figure 12e). When the strip
reaches a dead end, traversal of the list F resumes. One bit of the
Face.matid field is used as a boolean flag to record rendered faces;
these bits are cleared using a quick second pass through F.



Recently, graphics libraries have begun to support interfaces
for immediate-mode rendering of (V;F) mesh representations (e.g.
Direct3D DrawIndexedPrimitive and OpenGL glArrayElementAr-
rayEXT). Although not used in our current prototype, such inter-
faces may be ideal for rendering selectively refined meshes.

7 OPTIMIZING PM CONSTRUCTION FOR
SELECTIVE REFINEMENT

The PM construction algorithm of [10] finds a sequence of vsplit
refinement transformations optimized for accuracy, without regard
to the shape of the resulting vertex hierarchy. We have experi-
mented with introducing a small penalty function to the cost metric
of [10] to favor balanced hierarchies in order to minimize unneces-
sary dependencies. The penalty for ecol(vt; vu) is c (nvt +nvu ) where
nv is the number of descendants of v (including itself) and c is a
user-specified parameter. We find that a small value of c improves
results slightly for some examples (i.e. reduces the number of faces
for a given error tolerance � ), but that as c increases, the hierarchies
become quadtree-like and the results worsen markedly (Figure 17).
Our conclusion is that it is beneficial to introduce a small bias to
favor balanced hierarchies in the absence of geometric preferences.

8 RESULTS

Timing results We constructed a PM representation of a Grand
Canyon terrain mesh of 6002 vertices (717,602 faces), and trun-
cated this PM representation to 400,000 faces. This preprocessing
requires several hours but is done off-line (Table 1). Loading this
PM from disk and constructing the SRMesh requires less than a
minute (most of it spent computing rv and �v). Figures 9 and 10
show measurements from a 3-minute real-time flythrough of the
terrain without and with regulation, on an SGI Indigo2 Extreme
(150MHz R4400 with 128MB of memory). The measurements
show that the time spent in adapt refinement is approximately 14%
of total frame time. In the accompanying video, amortization is
used to reduce this overhead to 8% of total frame time. For the fly-
through of Figure 10, code profiling and system monitoring reveal
the timing breakdown shown in Table 2. Note that triangle strip
generation is efficient enough to keep CPU utilization below 100%;
the graphics system is in fact the bottleneck. On another computer
with the same CPU but with an Impact graphics system, the average
frame rate increases from 7.2 to 14.0 frames/sec.

Space requirements Table 1 shows the disk space required to
store the PM representations and associated deviation parameters;
both are compressed using GNU gzip. Positions, normals, and de-
viation parameters are currently stored as floating point, and should
be quantized to improve compression.

Since jVj ' 2jV̂j and jF̂j ' 2jV̂ j, memory requirement for
SRMesh is O(jV̂j). The current implementation is not optimized
for space, and requires about 224 jV̂j bytes. The memory foot-
print could be reduced as follows. Since only about half of all
vertices V can be split, it would be best to store the split informa-
tion (fl; fn[0::3]; refine info) in a separate array of “Vsplit” records
indexed by vt. If space is always allocated for 2 faces per vsplit, the
Vertex.fl field can be deleted and instead computed from vt. Scalar
values in the RefineInfo record can be quantized to 8 bits with an
exponential map as in [14]. Coordinates of points and normals can
be quantized to 16 bits. Material identifiers are unnecessary if the
mesh has only one material. Overall, these changes would reduce
memory requirements down to about 140 jV̂j bytes.

For the case of height fields, the memory requirement per vertex
far exceeds that of regular grid schemes [14]. However, the fully
detailed mesh M̂ may have arbitrary connectivity, and may therefore
be obtained by pre-simplifying a given grid representation, possibly

Table 1: Statistics for the various data sets.
Model Fully detailed ^M Disk (MB) Mem. V hier. Constr.

j^Vj j^Fj PM f�; �g (MB) height (mins)

canyon200 40,000 79,202 1.3 0.3 8.9 29 47
canyon400 160,000 318,402 5.0 1.1 35.8 32 244
canyon600 360,000 717,602 11.0 2.6 80.6 36 627
” trunc. 200,600 400,000 6.6 1.5 44.9 35 627

sphere 9,902 19,800 0.3 0.1 2.2 19 11
teapot trunc. 5,090 10,000 0.2 0.0 1.1 20 12
gameguy 21,412 42,712 0.8 0.2 4.8 26 30
bunny 34,835 69,473 1.2 0.2 7.8 24 51

Table 2: CPU utilization (on a 150MHz MIPS R4400).

procedure % of frame time cycles/call

User adapt refinement 14 % -
(vsplit) (0 %) 2200
(ecol) (1 %) 4000
(qrefine) (4 %) 230

render (tstrip/face) 26 % 600
GL library 19 % -

System OS + graphics 21 % -
CPU idle 20 % -

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600
Frames

|F|,thousands

pixel tolerance

frame time

AR time

Figure 9: Measurements in flythrough for constant � = 0:25% (1.5
pixels in 6002 window). From top: number of faces in thousands,
� in pixels, frame times and adapt refinement times in seconds.

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600
Frames

|F|,thousands

pixel tolerance

frame time

AR time

Figure 10: Same but with regulation to maintain jFj' 9000. (� is
never allowed below 0.5 pixels.)



by an order of magnitude or more, without significant loss of accu-
racy. This pre-simplification may be achieved by simply truncating
the PM representation, either at creation time or at load time.

Applications that use height fields often require efficient geomet-
ric queries, such as point search. Because the vertex hierarchies in
our framework have O(log n) height in the average case (this can be
enforced using the approach in Section 7), such queries can be per-
formed in O(log n) time by iteratively calling force vsplit on vertices
in the neighborhood of the query point.

Parametric surfaces Our framework offers a novel approach
to real-time adaptive tessellation of parametric surfaces. As a pre-
computation, we first obtain a dense tessellation of the surface, then
construct from this dense mesh a PM representation, and finally
truncate the PM sequence to a desired level of maximum accuracy.
At runtime, we selectively refine this truncated PM representation
according to the viewpoint (Figure 14). The main drawback of this
approach is that the resolution of the most detailed tessellation is
fixed a priori. However, the benefits include simplicity of runtime
implementation (no trimming or stitching), efficiency (incremen-
tal, amortized work), and most importantly, high adaptability of
the tessellations (accurate TIN’s whose connectivities adapt both to
surface curvature and to the viewpoint).

General meshes Figures 15 and 16 demonstrate selective re-
finement applied to general meshes. We expect this to be of practi-
cal use for rendering complex models and environments that do not
conveniently admit scene hierarchies.

9 SUMMARY AND FUTURE WORK

We have introduced an efficient framework for selectively refin-
ing arbitrary progressive meshes, developed fast view-dependent
refinement criteria, and presented an algorithm for incrementally
adapting the approximating meshes according to these criteria. We
have demonstrated real-time selective refinement on a number of
meshes, including terrains, parametric surface tessellations, and
general meshes. As the adaptive refinement algorithm exploits
frame-to-frame coherence and is easily amortized, it consumes only
a small fraction of total frame time. Because the selectively re-
fined meshes stem from a geometrically optimized set of vertex
split transformations with few dependencies, they quickly adapt to
the underlying model, requiring fewer polygons for a given level of
approximation than previous schemes.

There are a number of areas for future work, including:

� Memory management for large models, particularly terrains.

� Experimentation with runtime generation of geomorphs.

� Extension of refinement criteria to account for surface shad-
ing [24], or for surface velocity and proximity to gaze center [17].

� Adaptive refinement for animated models.

� Applications of selective refinement to collision detection.
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(a) Base mesh M0 (1 face) (b) M514 (1,000 faces) (c) M5066 (10,000 faces) (d) M̂ =Mn (79,202 faces)
Figure 11: The PM representation of a mesh M̂ captures a continuous sequence of view-independent LOD meshes M0 : : :Mn =M̂.

(a) Top view (� =0:0%; 33,119 faces) (b) Top and regular views (� =0:33%; 10,013 faces)

(c) Texture mapped M̂ (79,202 faces) (d) Texture mapped (10,013 faces) (e) 764 generalized triangle strips
Figure 12: View-dependent refinement of the same PM, using the view frustum (highlighted in orange) and a screen-space geometric error
tolerance of (a) 0% and (b,d,e) 0.33% of window size (i.e. 2 pixels for a 600�600 image).

(a) Original M̂ (19,800 faces) (b) Front view and (c) Top view (� =0:075%; 1,422 faces)
Figure 13: View-dependent refinement of a tessellated sphere, demonstrating (b) the directionality of the deviation space Dn̂ (more refinement
near silhouettes) and (c) the surface orientation criterion (coarsening of backfacing regions).



Figure 14: View-dependent refinement (� = 0:15%; 1,782 faces) of a truncated PM representation (10,000 faces in M̂) created from a
tessellated parametric surface (25,440 faces). Interactive frame rate near this viewpoint is 14.7 frames/sec, versus 6.8 frames/sec using M̂.

(a) Original M̂ (42,712 faces) (b) View 1 (3,157 faces) (c) View 2 (2,559 faces)
Figure 15: Two view-dependent refinements of a general mesh M̂ using view frustums highlighted in orange and with � set to 0.6%.

(a) Original M̂ (69,473 faces) (b) Front view and (c) Top view (� =0:1%; 10,528 faces)
Figure 16: View-dependent refinement. Interactive frame rate near this viewpoint is 6.7 frames/sec, versus 1.9 frames/sec using M̂.
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Figure 17: Height of vertex hierarchy,
and number of faces in mesh of Figure 16b,
as functions of the bias parameter c used
in PM construction of bunny.


