Hierarchical Polygon Tiling with Coverage Masks

Ned Greene*

Apple Computer

Abstract

We present a novel polygon tiling algorithm in which recur-
sive subdivision of image space is driven by coverage masks
that classify a convex polygon as inside, outside, or inter-
secting cells in an image hierarchy. This approach permits
Warnock-style subdivision with its logarithmic search prop-
erties to be driven very efficiently by bit-mask operations.
The resulting hierarchical polygon tiling algorithm performs
subdivision and visibility computations very rapidly while
only visiting cells in the image hierarchy that are crossed
by visible edges in the output image. Visible samples are
never overwritten. At 512x512 resolution, the algorithm
tiles as rapidly as traditional incremental scan conversion,
and at high resolution (e.g. 4096x4096) it is much faster,
making it well suited to antialiasing by oversampling and
filtering. For densely occluded scenes, we combine hierarchi-
cal tiling with the hierarchical visibility algorithm to enable
hierarchical object-space culling. When we tested this com-
bination on a densely occluded model, it computed visibility
on a 4096x4096 grid as rapidly as hierarchical z-buffering
[Greene-Kass-Miller93] tiled a 512x512 grid, and it effec-
tively antialiased scenes containing hundreds of thousands
of visible polygons. The algorithm requires strict front-to-
back traversal of polygons, so we represent a scene as a BSP
tree or as an octree of BSP trees. When maintaining depth
order of polygons is not convenient, we combine hierarchical
tiling with hierarchical z-buffering, resorting to z-buffering
only in regions of the screen where the closest object is not
encountered first.

CR Categories: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Hidden line/surface
removal; 1.3.3 [Computer Graphics]: Picture/Image Gener-
ation.

Keywords: tiling, coverage mask, antialiasing, visibility,
BSP tree, octree, recursive subdivision.

1 INTRODUCTION

Polygon tiling algorithms have been an important topic in
computer image synthesis since the advent of raster graph-
ics some two decades ago. Their purpose is to determine
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which point samples on an image raster are covered by the
visible portion of each of the polygons composing a scene.
Currently, polygon tiling software running on inexpensive
computers can render point-sampled images of simple scenes
at interactive rates. The fastest tiling algorithms have been
carefully tuned to exploit image-space coherence by using
incremental methods wherever possible. However, they fail
to exploit opportunities for precomputation and they waste
time tiling hidden geometry. There is a need for more effi-
cient tiling algorithms that effectively exploit coherence and
precomputation to enable efficient culling of hidden geome-
try and efficient tiling of visible geometry.

The dominant polygon tiling algorithm in use today is in-
cremental scan conversion. Typically, raster samples on a
polygon’s perimeter are traversed with an incremental line-
tiling algorithm. Edge samples on each intersected scan-
line define spans within a polygon, which are then traversed
pixel-by-pixel, permitting incremental update of shading pa-
rameters and, in the case of z-buffering, depth values. Vis-
ibility of samples can be determined by a) maintaining a
z-buffer and performing depth comparisons [Catmull74], b)
traversing primitives back to front and writing every pixel
tiled [Foley-et-al90], or c) traversing primitives front to back
and overwriting only vacant pixels [Foley-et-al90]. With in-
cremental scan conversion, the cost per pixel tiled is very
low because incremental edge and span traversal effectively
exploits image-space coherence.

One problem with traditional incremental scan conver-
sion is that it must tile every sample on every primitive,
whether or not it is visible, and so it wastes time tiling hid-
den geometry. This is not a big problem for simple scenes,
but for densely occluded scenes it severely impairs efficiency.
Ideally, a tiling algorithm should cull hidden geometry effi-
ciently so that running time is proportional to the visible
complexity of the scene and independent of the complexity
of hidden geometry.

The Warnock subdivision algorithm [Warnock69] ap-
proaches this goal, performing logarithmic search for visible
tiles in the quadtree subdivision of a polygon. If scene prim-
itives are processed front to back, only visible tiles and their
children in the quadtree are visited. Although Warnock sub-
division satisfies our desire to work only on visible regions of
primitives, the traditional subdivision procedure is relatively
slow and consequently, this approach is slower than incre-
mental scan conversion, except for densely occluded scenes.
Neither traditional incremental scan conversion nor Warnock
subdivision is well suited to tiling scenes of moderate depth
complexity.

A second shortcoming of incremental scan conversion is
that it spends most of its time tiling edges and spans, travers-
ing these features pixel by pixel, even though all possi-
ble tiling patterns for an edge crossing a block of samples
can be precomputed and stored as bit masks called cover-
age masks. Then the samples that a convex polygon covers
within a block can be quickly found by compositing the cov-
erage masks of its edges. Previously, this technique has been
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used to estimate coverage of polygonal fragments within a
pixel to accelerate filtering [Carpenter84, Sabella-Wozny83,
Fiume-et-al83, Fiume91].

Here we present a polygon tiling algorithm that combines
the best features of traditional algorithms. The key innova-
tion that makes this integration possible is the generaliza-
tion of coverage masks to permit their application to image
hierarchies. The generalized masks, which we call triage
coverage masks, classify cells in the image hierarchy as in-
side, outside, or intersecting an edge. This enables them to
drive Warnock-style subdivision of image space. The result
is a hierarchical tiling algorithm that finds visible geometry
by logarithmic search, as with the Warnock algorithm, that
exploits precomputation of tiling patterns, as with filtering
with coverage masks, and that also uses incremental meth-
ods to exploit image-space coherence, as with incremental
scan conversion. The algorithm efficiently performs high-
resolution tiling (e.g. 4096x4096), so it naturally supports
high-quality antialiasing by oversampling and filtering. A-
buffer-style antialiasing with coverage masks [Carpenter84]
is particularly convenient.

For densely occluded scenes we combine hierarchi-
cal tiling with the hierarchical visibility algorithm
[Greene-Kass-Miller93, Greene-Kass94, Greene95] to per-
mit hierarchical culling of hidden regions of object space.
This combination of algorithms enables very rapid rendering
of complex polygonal scenes with high-quality antialiasing.
The method has been tested and shown to work effectively
on densely occluded scenes. On a test scene containing up-
wards of 167 million replicated polygons, the algorithm com-
puted visibility on a 4096x4096 grid as rapidly as hierarchi-
cal z-buffering [Greene-Kass-Miller93] tiled a 512x512 grid.

In §2, we survey previous work on efficient polygon tiling.
In §3, we introduce triage coverage masks, and in §4 we
present the rendering algorithm in which they are applied.
In §5, we discuss how rendering of densely occluded scenes
can be accelerated with object-space culling methods. In
§6, we discuss strategies for efficiently processing dynamic
scenes. In §7, we compare the hierarchical tiling algorithm to
hierarchical z-buffering. In §8, we describe hierarchical tiling
of polyhedra. In §9, we describe our implementation and
show results for both simple and densely occluded scenes.
Finally, we present our conclusions in §10.

2 PREVIOUS WORK

2.1 Warnock Subdivision

Our tiling algorithm is loosely based on the Warnock algo-
rithm [Warnock69], a recursive subdivision procedure that
finds the quadtree subdivision of visible edges in a scene
by logarithmic search. Scene primitives are inserted into a
quadtree data structure beginning at the root cell, which rep-
resents the whole screen. At each level of subdivision, the
algorithm classifies the quadrants of the current quadtree
cell as inside, outside, or intersecting the primitive being
processed, and only intersected quadrants are subdivided.
Quadrants which are entirely covered by one or more primi-
tives are identified, permitting hidden geometry within them
to be culled. The Warnock algorithm is actually a family of
algorithms based on a common subdivision procedure, and
the control structure varies from implementation to imple-
mentation [Rogers85]. A typical implementation processes
primitives in no particular order, maintains lists of poten-
tially visible primitives at quadtree cells, and expends con-
siderable work performing depth comparisons in order to cull

hidden geometry.

When circumstances permit convenient front-to-back
traversal of primitives, as with a presorted static polygonal
scene, a simpler and more efficient variation of the Warnock
algorithm can be employed. In this case, we insert primi-
tives into the quadtree one at a time in front-to-back order.
As subdivision proceeds, we mark cells that primitives com-
pletely cover as occupied and ignore cells that are already oc-
cupied, since any geometry that projects to them is known to
be hidden. We complete subdivision of one primitive down
to the finest level of the quadtree before processing the next.
This version of the Warnock algorithm is simpler because it
need not maintain lists of primitives or perform depth com-
parisons. It is more efficient because, unlike the traditional
algorithm, it only subdivides cells crossed by edges that are
visible in the output image. Our tiling algorithm is based
on this variation of the Warnock algorithm, which we will
refer to as the depth-priority Warnock algorithm. Although
Meagher’s volume rendering algorithm uses this procedure
to tile faces of octree cubes [Meagher82], to the best of our
knowledge this variation of the Warnock algorithm has not
been applied previously to rendering geometric models. In-
cidentally, front-to-back traversal of primitives would accel-
erate Warnock-style subdivision in the error-bounded ren-
dering algorithm described in [Greene-Kass94].

2.2 Coverage Masks

We turn now to reviewing how filtering algorithms ex-
ploit precomputation with coverage masks [Carpenter84,
Sabella-Wozny83, Fiume-et-al83, Fiume91]. The underly-
ing idea is that all possible tiling patterns for a single
edge crossing a grid of raster samples within a pixel can
be precomputed and later retrieved, indexed by the points
where the edge intersects the pixel’s border [Fiume-et-al83,
Sabella-Wozny83]. These tiling patterns can be stored as
bit masks, permitting samples inside a convex polygon to
be determined by ANDING together the coverage masks for
its edges. Moreover, if polygons are processed front to back
or back to front, visible-surface determination within a pixel
can also be performed with bit-mask operations. For exam-
ple, Carpenter’s A-buffer algorithm [Carpenter84] clips poly-
gons to pixel borders, sorts the polygonal fragments front
to back, and determines the visible samples on each frag-
ment on a 4x8 grid by compositing coverage masks. The
A-buffer algorithm also uses coverage masks to accelerate
filtering. For each visible fragment, a single shading value
is computed, weighted by the bit count of its mask, and
added to pixel color. This shading method efficiently ap-
proximates area sampling [Catmull78] and it effectively an-
tialiases edges. Abram, Westover, and Whitted advance sim-
ilar methods that permit jitter, convolution with arbitrary
filter kernels, and evaluation of simple shading functions to
be performed by table lookup [Abram-et-al85].

3 TRIAGE COVERAGE MASKS

To accelerate polygon tiling, the hierarchical tiling algorithm
generalizes coverage masks to operate on image hierarchies,
thereby enabling Warnock-style subdivision of image space
to be driven by bit-mask operations. A conventional cov-
erage mask for an edge classifies each grid point within a
square region of the screen as inside or outside the edge, as
shown in figure la. In the context of Warnock subdivision,
the analogous operation is classifying subcells of an image hi-
erarchy as inside, outside, or intersecting an edge, as shown



in figure 1b for an edge crossing a square containing a 4x4
grid of subcells. We call such masks triage coverage masks
because the three states that they distinguish correspond to
trivial rejection, trivial acceptance, and “do further work.”
We represent each triage mask as a pair of bit masks, one
indicating inside subcells, the other indicating outside sub-
cells, as shown in figures 1c and 1d. We will refer to the
bit mask for inside subcells as the “C” mask (for covered)
and the bit mask for outside subcells as the “V” mask (for
vacant). We call the intersected subcells the active region of
the mask, because the corresponding regions of the screen
require further work and will later be subdivided. The bit
mask for the active region is A = “(C'| V), as shown in
figure le.! In practice, we use 8x8 masks rather than the
illustrated 4x4 masks.

The basic tiling and visibility operations performed by
conventional coverage masks are (1) finding the mask of a
convex polygon from the masks of its edges, and (2) finding
the visible samples on a polygon within a pixel by com-
positing the polygon’s mask with the pixel’s mask, which
represents previously tiled samples. In the context of the
hierarchical tiling algorithm, tiling and visibility operations
performed by triage masks are entirely analogous, except
that compositing is performed recursively on an image hier-
archy rather than a single square region of the screen. The
image hierarchy is a “coverage pyramid” constructed from
both conventional and triage coverage masks, as schemat-
ically illustrated in figure 2 (see caption). Operations (1)
and (2) for triage masks are easily understood by analogy
with conventional coverage masks, as outlined below. See
[Greene95] for derivations of the formulas for triage masks
and examples illustrating compositing of triage masks.

Tiling a convex polygon into a square region of the
screen using coverage masks. The existing coverage mask
for a screen cell represents previously tiled polygons,
which are in front of the polygon being tiled.

Conventional Coverage Masks
Existing pixel mask: C
(1) Find intercepts of edges with pixel border and look

up edge masks (call them E1, E2, ... , EN).
Find mask P of convex polygon from edge masks:
P=El&E2& ... & EN
(2) Find mask W of visible samples on polygon within C:
W=P&"C
Update C:
c> =C | P.

Triage Coverage Masks
Existing triage mask for cell in the coverage pyramid:
(Cc,Cv) - covered and vacant bit masks
(1) Find intercepts of edges with cell border and look
up edge masks ((Elc,Elv), , (ENc,ENv)).
Find mask (Pc,Pv) of polygon from edge masks:
Pc = Elc & E2c & ... & ENc
Pv = Elv | E2v | ... | ENv
(2) Find mask W of entirely visible cells on polygon
within (Cc,Cv):
W =Cv & Pc
Find mask A of active cells on polygon in (Cc,Cv):
A=~ | Pv | Cc
Update (Cc,Cv):
Cc’ =Cc | W
Cv? =Cv & "W
(Note: (Cc,Cv) may also be modified by propagation
from finer levels.)

1We use standard notation for bit-mask operations: & for bit-
wise AND, | for bitwise OR, and for bitwise complement.
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Figure 1: A conventional coverage mask classifies grid points
as inside or outside an edge (panel a). A triage coverage mask
classifies subcells as inside, outside, or intersecting an edge (panel
b). We refer to these regions as covered (panel ¢), vacant (panel
d), and active (panel e), respectively. We represent triage masks
as the pair of bit masks (C,V) indicating the covered and vacant
regions. In practice, we use 8 X8 masks rather than 4x4 masks.
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Figure 2: Schematic diagram of a pyramid of N xN masks with
L levels for an image with N XN oversampling at each pixel. This
coverage pyramid is built from triage masks, except at the finest
level where a conventional one-bit coverage mask is associated
with each pixel. In this hierarchical representation of the screen,
the C and V bits for each subcell in triage masks indicate whether
a square region of the screen is covered, vacant, or active. At the
coarsest level, a single triage mask represents the whole screen
(left), and at the finest level, a single one-bit mask represents the
raster samples within a pixel (right). A four-level pyramid of 8x8
masks corresponds to a 512x512 image with 8 X8 oversampling at
each pixel. The corresponding diagram for a point-sampled image
is the same, except that the masks represent an N XN block of
pixels, an N2x N2 block of pixels, and so forth.



3.1 Tiling by Recursive Subdivision

Now that the primitive tiling and visibility operations have
been described, we are ready to outline the recursive proce-
dure for tiling a convex polygon into the coverage pyramid.
Initially, the masks in the coverage pyramid are a hierar-
chical representation of regions of the image raster that are
already occupied by previously tiled polygons. To make the
discussion more concrete, the following outline assumes 8x 8
oversampling and filtering.

To tile polygon P, we begin by finding the triage mask
for each of its edges that crosses the screen by finding its
intercepts on the screen border and looking up the corre-
sponding mask in a precomputed table. Then we composite
the edge masks according to operation (1) above in order to
construct P’s triage mask. Next, beginning at the root cell
of the coverage pyramid, we composite P’s mask with cells
in the pyramid, using triage mask operations to distinguish
three classes of cells: where P is entirely hidden, where P
is entirely visible, and where P’s visibility is uncertain, i.e.
“active” cells (operation (2)). We ignore cells where P is
entirely hidden, we display (or tag) cells where P is entirely
visible (mask W), and we recursively subdivide active cells
(mask A). During subdivision, edge intercepts used to look
up edge masks are computed incrementally. In regions of
the screen where P’s edges cross vacant or active cells, sub-
division continues, ultimately down to all vacant and active
pixels crossed by P’s edges. At the pixel level, coverage
masks in the pyramid are conventional one-bit masks. If we
are box filtering, operations may follow the traditional A-
buffer algorithm: we find P’s visible samples, compute their
contribution to pixel value and add it to the accumulation
buffer, and then update the pixel’s coverage mask. If the
status of a pixel changes from vacant or active to active or
covered, the status of masks in coarser levels of the pyra-
mid may also change, so whenever this occurs, we propagate
coverage information to coarser levels by performing simple
bit-mask operations during recursive traversal of the pyra-
mid. When this recursive tiling procedure finishes, all visible
samples on P have been tiled and the coverage pyramid has
been updated. This procedure is outlined in LISTING 1.

4 RENDERING A SCENE

Now that the procedure for tiling a polygon has been de-
scribed, we are ready to place it in the context of rendering a
frame. But first we describe the underlying data structures:
the coverage pyramid, the image array, and the model tree.

4.1 Data Structures

To permit Warnock subdivision to be driven by bit-mask op-
erations, we maintain visibility information about previously
tiled polygons in an image-space pyramid of coverage masks.
As schematically illustrated in figure 2, a single triage mask
represents the whole screen, triage masks at the next level
of the pyramid correspond to subcells in the root mask, and
so forth. Thus, this coverage pyramid is a hierarchical rep-
resentation of the screen with the C' and V' bits for each
subcell in the triage masks indicating whether a square re-
gion of the screen is covered, vacant, or active. Within a
covered region, all corresponding samples in the underlying
image raster are covered, within a vacant region, all corre-
sponding raster samples are vacant, and within an active
region, at least one but not all corresponding raster samples
are covered. At the finest level of the pyramid only, we use

LISTING 1 (pseudocode)

/*
Recursive subdivision procedure for tiling a convex
polygon P.

After clipping P to the near clipping plane in object
space, if necessary, and projecting P’s vertices into
the image plane, we call tile_poly with the root mask of
the mask pyramid, P’s edge list, and "level" set to 1.

arguments:

(Cc,Cv): pyramid mask (input and output)

edge_list: P’s edges that intersect pyramid mask

level: pyramid level: 1 is root, 2 is next coarsest, etc.

*/
tile_poly((Cc,Cv), edge_list, level)
{

set active_edge_list to nil

/* build P’s mask (Pc,Pv) */
Pc = all_ones
Pv = all_zeros
for each edge on edge_list {
find intercepts on square perimeter of mask
if square is outside edge
then return /* polygon doesn’t intersect mask */
if edge intersects square, then {
append edge to active_edge_list
/* Note: at the pixel level, Ec is a conventional

coverage mask and Ev = "Ec */
look up edge mask (Ec,Ev)
Pc = Pc & Ec
Pv = Pv | Ev

}
}

/* make "write" bit mask and update pyramid mask */
W =Cv & Pc
Cc=Cc | W
Cv=Cv & "W
if level is the pixel level, then {
/* filter pixel using coverage mask W */
/* to perform A-buffer box filtering:
add bitcount*color to accumulation buffer */
evaluate shading and update accumulation buffer
return

for each TRUE bit in W {
for each pixel in this square region of screen {
/* to perform A-buffer box filtering:

add 64x(polygon color) to accumulation buffer */

evaluate shading and update accumulation buffer
}
¥

/* Recursive Subdivision */

/* make "active" bit mask */
A="W 1| Pv | Cc
/* subdivide active subcells */
for each TRUE bit in A {
/* call corresponding subcell S
call its pyramid mask (Sc,Sv) */
copy all edges on active_edge_list that intersect
S to S_edge_list
tile_poly((Sc,Sv), S_edge_list, level+l)
/* propagate coverage status to coarser levels of
mask pyramid */
if Sc is all_omnes
then Cc = Cc | active_bit /* set covered status */
if Sv is not all_ones
then Cv = Cv & “active_bit /* clear vacant status */




conventional one-bit coverage masks to indicate whether or
not point samples in the image raster have been covered.
If we are oversampling and filtering, each of these one-bit
masks corresponds to the 8x8 grid of raster samples within
a pixel. The appropriate pyramid for a 512x 512 image with
88 oversampling at each pixel has four levels, three arrays
of triage masks with dimensions 1x1, 8x8, and 64x64, and
one 512x512 array of one-bit masks. Alternatively, if we are
point sampling rather than filtering, each one-bit mask cor-
responds to an 8 x8 block of pixels. In this case, the pyramid
for a 512x512 image would have two arrays of triage masks
with dimensions 1x1 and 8x8, and one 64x64 array of one-
bit masks.

Memory requirements for the coverage pyramid are very
modest. Since the finest level requires only one bit per raster
sample and the vast majority of cells in the pyramid are in
the finest level, total memory requirements are only slightly
more than one bit per raster sample. The actual number of
bits per raster sample required for an n-level pyramid lies
in the range [1 1/32 1 2/63) for n>1. Note that a z-buffer
requires a great deal more memory because it stores a depth
value for each raster sample.

The other image-space data structure that our algorithm
requires is an image array with an element for each color
component at each pixel. If we perform A-buffer-style filter-
ing [Carpenter84], shading contributions from 64 subpixel
samples accumulate in each array element. Thus, elements
in this accumulation buffer require considerable depth. We
use 16 bits per pixel per color channel. When filtering with
a convolution kernel that overlaps multiple pixels, we store
color components as floating-point values in the accumula-
tion buffer. If no filtering is performed, pixel values do not
accumulate, so a conventional image array is employed.

Now for representing the model. Our algorithm requires
front-to-back traversal of polygons in the scene, so we rep-
resent the scene as a binary space partitioning tree (BSP
tree) [Fuchs-Kedem-Naylor80], which permits very efficient
traversal in depth order. Strategies for handling dynamic
scenes are discussed in §6.

4.2 Precomputation Step

In a precomputation step, we build a BSP tree for the model.
We also build lookup tables for both conventional and triage
coverage masks. In building mask tables, we divide the
perimeter of a canonical square into some number of equal
intervals (e.g. 64) and create an entry in a two-dimensional
table for each pair of intervals not lying on a common edge.
Once this table has been constructed, to obtain the mask for
an arbitrary edge we determine which two intervals it crosses
and look up the corresponding table entry. To conserve stor-
age, we can use the same table entry for edges with opposite
directions, because complementing the (C,V') bit masks in a
triage mask corresponds to reversing an edge. Hierarchical
tiling depends on accurate classification of vacant and cov-
ered regions in triage masks, so we construct them with the
following conservative procedure. The endpoints of the pair
of intervals used to index a coverage mask define a quadri-
lateral. Any subcells intersected by the quadrilateral are
classified active, guaranteeing that cells classified covered are
completely covered and cells classified vacant are completely
vacant.

4.3 Generating a Frame

We begin a frame by clearing the accumulation buffer and
the coverage pyramid. We traverse polygons in the model’s
BSP tree in front-to-back order. We clip each polygon to the
front clipping plane, if necessary, and project its vertices into
the image plane. There is no need to preserve depth infor-
mation. Before tiling a polygon, we first determine whether
its bounding box is visible. If this procedure fails to prove
that the polygon is hidden, we then tile it into the smallest
enclosing cell in the coverage pyramid using the procedure
outlined in LISTING 1. In regions of the screen where the
polygon is visible, this procedure updates pixel values in the
image buffer and updates coverage status in the coverage
pyramid. After all polygons have been processed, the scene
is complete and we display the image buffer.

4.4 Otbher Filtering Methods

We have already discussed A-buffer-style filtering by area
sampling, a term used to describe convolution of visible sam-
ples with a pixel-sized box filter [Catmull78]. Abram, West-
over, and Whitted extended coverage-mask techniques to
include jitter, table-driven convolution with arbitrary filter
kernels, and evaluation of simple shading functions by table
lookup [Abram-et-al85]. All of these methods are compati-
ble with hierarchical tiling. To perform table-driven convo-
lution, the contribution of each subpixel sample to neighbor-
ing pixels is precomputed and stored in a table of filtering
coefficients. For some simple shading functions, the con-
tribution of arbitrary collections of samples can be stored
as precomputed coefficients which enables, for example, ef-
ficient byte-by-byte processing of coverage masks. We use
this method when filtering 3x3 pixel neighborhoods with a
one-pixel radius cosine-hump kernel.

4.5 Point Sampling

Modifying the algorithm to produce point-sampled rather
than filtered images is straightforward. In this case, each
mask at the finest level of the pyramid corresponds to an
8x8 block of pixels. So for each TRUE subcell in the “W”
mask (see pseudocode), we evaluate the shading function at
the corresponding pixel and write the result to the image
buffer. Since pixel values correspond to point samples, color
values do not accumulate, so we use a conventional image
array rather than an accumulation buffer. Note that it is
not necessary to clear the image array at the beginning of a
frame. Instead, after tiling all scene polygons, we composite
a screen-sized polygon of the desired background color (or
texture) with the root mask, thereby tiling all remaining
vacant pixels in the image.

5 HIERARCHICAL OBJECT-SPACE CULLING

Because of its ability to cull hierarchically in image space,
the hierarchical tiling algorithm processes densely occluded
scenes much more efficiently than conventional tiling meth-
ods, which must traverse all hidden geometry pixel by pixel.
Nonetheless, it must still consider every polygon in a scene,
doing some work even on those that are entirely hidden.
To avoid this behavior, we integrate our algorithm with
the hierarchical visibility algorithm [Greene-Kass-Miller93,
Greene-Kass94, Greene95] to enable hierarchical object-
space culling of hidden regions of the model. This can be
done by substituting hierarchical tiling for z-buffering in the



hierarchical z-buffer algorithm of [Greene-Kass-Miller93], al-
though this requires some changes in both the object-space
and image-space hierarchies. In image space, instead of us-
ing a z-pyramid of depth samples to maintain visibility in-
formation, we use a coverage pyramid. In object space, we
modify the octree to permit strict front-to-back traversal
of polygons. Note that the z-buffer algorithm traverses oc-
tree cubes in front-to-back order, but not the primitives con-
tained within them. And since octree cubes are nested, it is
not sufficient to simply organize the primitives inside each
cube into a BSP tree. Instead we use the following algo-
rithm for building an octree of BSP trees that permits strict
front-to-back traversal.

5.1 Building an Octree of BSP Trees

Starting with a root cube which bounds model space, we
insert polygons one at a time into the cube. If the polygon
count in the cube reaches a specified threshold (e.g. 30),
we subdivide the cube into eight octants and insert each of
its polygons into each octant that it intersects, clipping to
the cube’s three median planes. When all polygons in the
scene have been inserted into the root cube and propagated
through the tree, we have an octree where all polygons are
associated only with leaf nodes, thereby circumventing the
ordering problem caused by nesting. The last step is to orga-
nize the polygons in each leaf node of the octree into a BSP
tree [Foley-et-al90]. Now scene polygons can be traversed in
strict front-to-back order by traversing octree cubes front to
back and traversing their BSP trees front to back.

5.2 Combining Hierarchical Tiling with Hierarchical
Visibility
Now that we have established how to traverse scene polygons
in front-to-back order, combining hierarchical tiling with the
basic hierarchical visibility algorithm is straightforward. As
with hierarchical z-buffering, we traverse octree cubes in
front-to-back order, testing them for visibility and culling
those that are hidden. As with hierarchical z-buffering, we
determine whether a cube is visible by tiling it, stopping
if a visible sample is found. Note that it is only necessary
to tile a cube’s polygonal silhouette (unless it intersects the
front clipping plane), rather than tiling its front faces. By
comparison, z-buffering often needs to tile three faces of a
cube to establish its visibility. To test cube silhouettes for
visibility, we modify the tiling procedure of LISTING 1 to re-
port visibility status, returning TRUE whenever a polygon’s
mask indicates that it covers a vacant subcell or a vacant
grid point in the image raster. Once we have established
that an octree cube is visible, we traverse the polygons in
its BSP tree in front-to-back order, tiling them into the cov-
erage pyramid. When we finish traversing the octree, all
visible polygons have been tiled and the image is complete.
This version of the hierarchical visibility algorithm has
very efficient traversal properties in both object-space and
image-space. Like the hierarchical z-buffer algorithm, in ob-
ject space the algorithm only visits visible octree nodes and
their children, and it only renders polygons that are in visible
octree nodes. In image space, when tiling polygons into the
coverage pyramid, hierarchical tiling only visits cells that are
crossed by visible edges in the output image. Visible sam-
ples are never overwritten. As a result of these properties,
this variation of the hierarchical visibility algorithm is very
efficient at both culling hidden geometry and tiling visible
geometry.

If a hardware graphics accelerator is available to perform
shading operations such as texture mapping, we can per-
form visibility operations with software and shading with
hardware. We would use the usual hierarchical tiling algo-
rithm to maintain the coverage pyramid and perform object-
space culling, and we would render visible polygons with
the graphics accelerator, using an accumulation buffer, if
available, to perform antialiasing [Haeberli-Akeley90]. This
would be a fast way to produce texture-mapped images of
densely occluded scenes.

6 HANDLING DYNAMIC SCENES

One weakness of the hierarchical tiling algorithm is that it
requires strict front-to-back traversal of polygons. This does
not present a problem for a static model, since it may be
represented as a BSP tree [Fuchs-Kedem-Naylor80], and if
only a relatively small number of polygons are moving, the
tree can be efficiently maintained [Naylor92a]. However, in
scenes with numerous moving polygons, maintaining depth
order can impose a severe computational burden. Here we
consider two different methods that address this problem.

6.1 Lazy Z-Buffering

The following “lazy z-buffering” algorithm is an attractive
alternative whenever at least part of the model can be con-
veniently traversed in approximate front-to-back order. For
convenience, the following discussion assumes that we are
oversampling and box-filtering. With this variation of hier-
archical tiling, we make the following changes to the basic
algorithm. For every cell in the coverage pyramid, we main-
tain znear and zfar depth values for all potentially visible
polygons thus far encountered that intersect the cell. In-
stead of automatically culling a portion of a polygon that
intersects a covered cell, it is culled only if it lies behind
the cell’s zfar value. At a pixel, we assume that fragments
arrive in an order that permits tiling with coverage masks,
i.e., one or more non-overlapping fragments cover all of the
pixel’s samples before any other fragments arrive. These
conditions are easily monitored using the pixel’s coverage
mask and znear/zfar values. Unless and until a fragment
violating the conditions arrives, we perform filtering like the
usual algorithm, adding shading contributions to the accu-
mulation buffer and updating the pixel’s coverage mask. We
also cache information about each fragment in case we need
it later. If and when the conditions are violated, we discard
the current accumulated color value for the pixel and revert
to ordinary z-buffering, allocating the memory required for
storing color and depth at each subpixel sample, and then
tiling the cached fragments. This produces the same image
samples as if we had been maintaining an oversampled z-
buffer all along. The last step after all polygons in the scene
have been tiled is to filter the z-buffered pixels. This pro-
cedure produces the same image as hierarchical tiling would
have produced if polygons had been traversed in depth order.

This simple strategy exploits whatever depth coherence is
in the scene being processed. If polygons are mostly in front-
to-back order, lazy z-buffering will not do much more work
than the usual hierarchical tiling algorithm. This would oc-
cur, for example, if a few small dynamic objects were posi-
tioned in front of a static background model that was tra-
versed in depth order. In the worst case, when frontmost
objects are never processed first, lazy z-buffering does only
slightly more work than hierarchical z-buffering.



| Thing Being Compared |

Hierarchical Tiling

| Hierarchical Z-Buffering |

object-space hierarchy

BSP tree / octree of BSP trees | octree

image-space hierarchy

pyramid of coverage masks

z-pyramid

front-to-back polygon traversal required? | yes

no

visibility information per raster sample

< 1 2/63 coverage-mask bits

Z (usu. 24-32 bits)

color information per raster sample none

RGB (usu. 24-36 bits)

type of output-image buffer accumulation (deep) standard
need to store coverage-mask LUTs? yes no
pixel overwrite? no yes
mask support for filtering built-in? yes no
identifies covered image-pyramid cells? yes no

Table 1: Some points of comparison between hierarchical polygon tiling and hierarchical z-buffering.

6.2 Merging Octrees

For polygonal scenes consisting of independently moving
rigid bodies, another strategy can be employed that guar-
antees front-to-back traversal of polygons, permitting us to
render polygons with the standard hierarchical tiling proce-
dure. According to this method, each rigid body is repre-
sented as an octree of BSP trees. To render a frame, we
simultaneously traverse all octrees front to back, culling any
octree cubes which are hidden by the coverage pyramid, and
using the following strategy to synchronize traversal of oc-
trees. For each octree, we determine the current frontmost
leaf cube and then determine the frontmost leaf cube of all
octrees. If this single frontmost cube does not intersect a leaf
cube in any other octree, we can safely render its BSP tree.
If this cube does intersect other leaf cubes, we clip their poly-
gons to the frontmost cube, insert the clipped fragments into
the frontmost cube’s BSP tree, and then render that BSP
tree. This procedure ultimately will cull or render all oc-
tree leaf nodes, whereupon rendering of the scene is finished.
This procedure for rendering dynamic scenes is nearly as fast
as the standard hierarchical tiling algorithm, except for the
time spent merging octree leaf nodes. Although merging
operations can require considerable computation, for many
scenes merging will only rarely be required, and in such cases
this algorithm will run efficiently.

7 HIERARCHICAL TILING VERSUS HIERARCHI-
CAL Z-BUFFERING

Table 1 summarizes some points of comparison between hi-
erarchical polygon tiling and hierarchical z-buffering. As the
table points out, hierarchical tiling requires strict front-to-
back traversal of polygons, which complicates the object-
space hierarchy, assuming that we are maintaining an octree
of BSP trees to enable object-space culling. Another point
in favor of hierarchical z-buffering is that it does not need to
build or store lookup tables for coverage masks. The other
points of comparison strongly favor hierarchical tiling. One
big advantage is that its memory requirements are much less.
Whereas hierarchical z-buffering needs to store depth and
color information for each raster sample, hierarchical tiling
only needs to store slightly more than one bit of coverage
information for each raster sample. The resulting memory
savings can be very substantial. In fact, if we are rendering a
512x512 image with 8 x8 oversampling at each pixel, hierar-
chical tiling requires only about 3.7% of the image memory
required for z-buffering. Other points in favor of hierar-
chical tiling are that it never overwrites visible samples, it
has built-in support for filtering with coverage masks, and

it facilitates exploiting image-space coherence by identify-
ing regions of the image-space pyramid that are completely
covered by individual polygons.

8 TILING POLYHEDRA

Hierarchical tiling with coverage masks can also be applied
to Warnock subdivision in three dimensions to tile convex
polyhedra into a voxel grid. In this case, 64-bit triage masks
would classify cells within a 4x4x4 subdivision of a cube
as inside, outside, or intersecting a plane. The triage mask
for a convex polyhedron within a cube would be obtained
by compositing the triage masks of its face planes. The re-
cursive subdivision procedure for tiling a polyhedron into a
3D pyramid of coverage masks would be analogous to hier-
archical polygon tiling, and it would only visit cells in the
pyramid that are intersected by the polyhedron’s faces. The
speed and modest memory requirements of this volume tiling
algorithm make it an attractive alternative to traditional
methods [Kaufman86].

9 IMPLEMENTATION AND RESULTS

Our implementation of hierarchical polygon tiling is pro-
grammed in C and renders either point-sampled or filtered
images of scenes composed of flat-shaded convex polygons.
Our polygon tiling program follows the pseudocode outline,
except that we tile a polygon into the smallest enclosing cell
in the coverage pyramid after first testing its bounding box
for visibility, as described in §4.3. As described in §3 and
84, filtering is performed by box filtering according to the
A-buffer method, or by table-driven convolution with a one-
pixel radius cosine-hump kernel. In the latter case, kernel
coefficients are precomputed for all byte patterns and ac-
cessed by table lookup for each non-zero byte within a poly-
gon’s coverage mask at a pixel. Color components in the
accumulation buffer are represented as 16-bit integer val-
ues when box filtering, and as 32-bit floating-point values
when filtering with a cosine-hump kernel. Tables of cover-
age masks are constructed with 64 intervals along each edge
of the bounding square. One-bit coverage masks for filtering
pixels are constructed with jitter, using random placement
of raster samples within the corresponding sub-pixel square
[Dippé-Wold85, Cook86]. All of the following tests were per-
formed on a SGI Indigo2 with a 75 megahertz R8000 pro-
cessor, which performs atomic 64-bit mask operations.

To compare the efficiency of hierarchical tiling to tradi-
tional incremental scan conversion for tiling simple polyg-
onal scenes, we employed the color-cube model of figure 5,



composed of 192 presorted front-facing squares. We ren-
dered this model with hierarchical tiling and with a back-
to-front “painter’s” algorithm [Foley-et-al90]. The painter’s
algorithm maintained a color triplet for each point in the
image raster and performed tiling by incremental scan con-
version, overwriting the image at every pixel encountered.
On a 512x512 grid, hierarchical tiling tiled the color-cube
model approximately ten percent faster than the painter’s
algorithm (.087 seconds versus .097 seconds). At higher res-
olution, the speed advantage of hierarchical tiling was much
more pronounced. For example, hierarchical tiling took .357
seconds to tile the model on a 4096x4096 grid and produce
the 512x512 box-filtered image of figure 5. By comparison,
the painter’s algorithm took 5.3 times longer (1.91 seconds)
to tile this scene on a 2048%x2048 grid without filtering (our
Indigo didn’t have enough memory to render a 4096x4096
RGB image). By timing the painter’s algorithm at various
resolutions, we found that it was only able to tile a 910x910
grid in the .357 seconds it took hierarchical tiling to tile and
filter the image of figure 5. This example illustrates that for
software tiling at sufficient resolution to enable high-quality
antialiasing by oversampling and filtering, hierarchical tiling
is much more efficient than traditional incremental scan con-
version, even for simple scenes.

To test the effectiveness of hierarchical tiling on densely
occluded scenes we integrated hierarchical tiling with hi-
erarchical visibility as described in §5, performing tiling
of both model polygons and octree-cube silhouettes with
the hierarchical tiling method. For a test model, we
used a version of the modular office building described in
[Greene-Kass-Miller93]. We built an octree of BSP trees for
the repeating module using the method described in §5.1,
each BSP tree containing approximately 16,000 quadrilat-
erals. We replicated this octree within the shell of a 408-
story building resembling the Empire State Building to cre-
ate a model consisting of approximately 167 million repli-
cated quadrilaterals. Figures 4, 6, and 7 show various views
of this model.

To compare the relative speed of hierarchical tiling and hi-
erarchical z-buffering, we rendered animation of a building
walk-through. We found that hierarchical tiling was able to
perform tiling on a 4096x4096 grid and produce box-filtered
512x512 frames as fast as hierarchical z-buffering produced
512x512 point-sampled frames. On viewing the animation
produced with the z-buffer algorithm, we observed consider-
able aliasing as expected. By comparison, we observed high-
quality antialiasing with the box-filtered animation gener-
ated with hierarchical tiling.

Next, we compared the speed of various rendering options.
Hierarchical tiling took 3.21 seconds to tile the scene of figure
4 on a 4096x4096 grid and produce the pictured box-filtered
image. When we rendered this same box-filtered image with-
out using the bounding-box culling method of §4.3 and in-
stead tiled all polygons into the root cell of the coverage
pyramid, rendering took 1.28 seconds longer, indicating that
the bounding-box culling strategy provides significant accel-
eration. Next we rendered the scene of figure 4 with higher-
quality antialiasing using cosine-hump filtering within a 3 x3-
pixel neighborhood. With this filtering method, it took 4.42
seconds to tile the scene on a 4096x4096 grid and produce
the filtered image. Finally, we used the point-sampling vari-
ation of hierarchical tiling to render a 512x512 image of the
scene, which took 1.71 seconds.

To compare the algorithmic efficiency of hierarchical tiling
to hierarchical z-buffering, we constructed “work images”
that show the number of times during frame generation

that each cell in the coverage pyramid is visited (not count-
ing subpixel samples), with an access to a coarser-than-
pixel cell being amortized over the corresponding window
of the screen.? Work images show the “depth complex-
ity” of the visibility computation and indicate where the
algorithm is working hardest [Greene95, Greene-Kass94,
Greene-Kass-Miller93]. An average intensity of one in a work
image means that, an average, only a single pyramid cell is
accessed in the coverage pyramid during visibility operations
for each pixel in the output image. With hierarchical tiling,
except for very complex scenes or finely tessellated models,
average intensity is usually less than one because visibility at
most pixels is established at a coarser level in the hierarchy.
For example, for the simple model of figure 5, an average
of only .123 cells in the coverage pyramid are traversed per
pixel in the output image.

Figure 3 shows log-scale work images corresponding to
figure 4. Left to right, the images show work tiling cube sil-
houettes during visibility tests (.09 cells visited per pixel, on
average), work tiling model polygons into the coverage pyra-
mid (1.01 cells visited per pixel, on average), and the sum
of these two images, showing total work performed on tiling
(1.10 cells visited per pixel, on average). In other words,
hierarchical tiling visited an average of only 1.10 cells in
the coverage pyramid for each pixel in the 512x512 output
image, even though tiling and filtering were performed on
a 4096x4096 grid. Far fewer cells in the image pyramid
are visited with hierarchical tiling than with hierarchical z-
buffering [Greene95] because it only visits cells in the image
pyramid that are crossed by visible edges in the output im-
age. When we performed a motion test on the scene of figure
4, we found that the number of pyramid cells visited was ap-
proximately one for frames rendered with hierarchical tiling
and approximately three for frames rendered with hierar-
chical z-buffering. The lower figure for hierarchical tiling is
particularly impressive considering that it resolves visibility
at 64 times as many raster samples and many more poly-
gons are visible. Of course the depth complexity of visibility
computations for the scene of figure 4 is far lower for both
hierarchical tiling and hierarchical z-buffering than for naive
z-buffering, which visits each pixel dozens of times on aver-
age [Greene95].

To explore the limits of hierarchical tiling to effectively
filter images of very complex scenes, we rendered a motion
sequence in which the camera flies around and through the
408-story model of the Empire State Building [Greene96].
Figures 6 and 7 are 512x512 frames from this animation,
which was produced by tiling on a jittered 4096x4096 grid
and filtering with a cosine-hump kernel as previously de-
scribed. From the viewpoint of figure 6, this scene poses
a formidable challenge to effective filtering, since approx-
imately 765,000 polygons are visible, and dozens of poly-
gons are visible within some pixels. Nonetheless, we ob-
served high-quality antialiasing in the motion sequence. Jit-
tering of sub-pixel samples effectively converted aliasing to
noise [Dippé-Wold85, Cook86], which was noticeable only in
frames having hundreds of thousands of visible polygons. For
this motion sequence, we observed subtle patterned aliasing
artifacts when the same jitter pattern was employed at all
pixels, a problem that was overcome by using several dif-
ferent jitter patterns. To reduce temporal aliasing we ren-
dered each video field separately and to reduce flicker we

20ur accounting of work done on visibility does not include
clearing of the coverage pyramid. Clearing the pyramid at the
beginning of a frame visits each pyramid cell once, but this is not
necessary if a “lazy clearing” strategy is employed.



applied a 1-4-6-4-1 filter to every other scanline (not applied
to figure 6 or 7). With cosine-hump filtering and multiple
jitter patterns, rendering times were 5.15 minutes for fig-
ure 6 and 34 seconds for figure 7, which has approximately
81,300 visible polygons. We also recorded the motion se-
quence with box filtering, but observed noticeably worse im-
age quality, particularly the characteristic “ropyness” of area
sampling. When box filtering with a single jitter pattern,
rendering time for the scene of figure 6 was 4.28 minutes.
We also rendered the version of this model shown in figure
1 of [Greene-Kass94], which took the error-bounded render-
ing algorithm described in that article one hour to produce
on a 50-megahertz workstation. By comparison, this same
scene took hierarchical tiling 34 seconds to render. These
examples illustrate that hierarchical tiling with object-space
culling can produce high-quality animation of very complex
scenes in reasonable frame times. Adding a level to the cov-
erage pyramid would permit the algorithm to accurately fil-
ter even more complex scenes.

10 CONCLUSION

Warnock subdivision with its elegant simplicity and logarith-
mic search properties endures as one of the great computer-
graphics algorithms. Although polygon tiling by Warnock
subdivision is well known, it has rarely been used in practice
due to the inefficiency of the traditional subdivision proce-
dure. Here we have shown that Warnock-style subdivision
can be driven very efficiently with triage coverage masks.
The resulting hierarchical polygon tiling algorithm is very
efficient, visiting only cells in the image hierarchy that are
crossed by visible edges in the output image and never over-
writing a visible image sample. At high resolution, hier-
archical tiling is much faster than traditional incremental
scan conversion, so it is well suited to antialiasing by over-
sampling and filtering. Moreover, hierarchical tiling with
object-space culling can process densely occluded scenes ex-
tremely efficiently, considerably faster than hierarchical z-
buffering, while facilitating high-quality filtering. Although
the practicality of the basic algorithm for dynamic scenes is
constrained by the requirement that polygons be traversed
front to back, whenever at least part of the model can be tra-
versed in approximate front-to-back order, “lazy z-buffering”
helps to overcome this shortcoming. The algorithm is com-
pact, straightforward to implement, and has very modest
memory requirements. In short, hierarchical tiling offers the
prospect of generating high-quality animation at reasonable
frame rates with modest computing resources.
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Figure 3: Log-scale work images showing the number of times that cells in the coverage pyramid were visited while tiling the
frame of figure 4. These images depict the “depth complexity” of the visibility computation, showing where the algorithm is
working hardest.

Left: work tiling cubes: .09 cells visited per pixel (avg)

Middle: work tiling polygons: 1.01 cells visited per pixel (avg)

Right: total work on tiling: 1.10 cells visited per pixel (avg)

Figure 4: Interior view of the Empire State Building model. Hierarchical tiling took 3.21 seconds to tile this scene on a
4096x4096 grid and produce this 512x512 box-filtered image (75 Mhz processor).



Figure 5: Hierarchical tiling took .36 seconds to tile this simple model on a 4096x4096 grid and produce this 512x512

box-filtered image (75 Mhz processor).
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[Greene96]. The model

of this 408-story building consists of approximately 167 million quadrilaterals, 765,000 of which are visible in this frame. This

Figure 6: A frame from “Naked Empire,” animation produced for the Siggraph ’96 Electronic Theater

512x512 frame was produced by tiling and filtering on a jittered 4096x4096 grid. Jitter converted aliasing to noise, which is

evident in complex regions of the image. Rendering took 5.15 minutes on a 75 Mhz processor.



Figure 7: Another frame from “Naked Empire.” Note that the building model has no outer shell, making it possible to see
deep inside. Rendering time for this frame was 34 seconds (75 Mhz processor).



